
Comparison of Automatic Syllabification Methods 1

Running head: COMPARISON OF AUTOMATIC SYLLABIFICATION METHODS

Automatic Syllabification in English: A Comparison of Different Algorithms

Yannick Marchand1,2, Connie R. Adsett1,2,3 and Robert I. Damper1,4

1Institute for Biodiagnostics (Atlantic)

National Research Council Canada

Neuroimaging Research Laboratory

1796 Summer Street, Suite 3900

Halifax, Nova Scotia

Canada B3H 3A7

2Faculty of Computer Science

Dalhousie University

Halifax, Nova Scotia

Canada B3H 1W5

3Faculty of Computer Science

University of New Brunswick

540 Windsor Street

Fredericton, New Brunswick

Canada E3B 5A3

4Information: Signals, Images, Systems (ISIS) Research Group

School of Electronics and Computer Science

University of Southampton

Southampton SO17 1BJ, UK.

Comparison of Automatic Syllabification Methods 2

Abstract

Automatic syllabification of words is challenging, not least because the syllable is not easy

to define precisely. Consequently, no accepted standard algorithm for automatic

syllabification exists. There are two broad approaches: rule-based and data-driven. The

rule-based method effectively embodies some theoretical position regarding the syllable,

whereas the data-driven paradigm tries to infer ‘new’ syllabifications from examples

assumed to be correctly-syllabified already. This paper compares the performance of

several variants of the two basic approaches. Given the problems of definition, it is difficult

to determine a correct syllabification in all cases and so to establish the quality of the

‘gold standard’ corpus used either to evaluate quantitatively the output of an automatic

algorithm or as the example-set on which data-driven methods crucially depend. Thus, we

look for consensus in the entries in multiple lexical databases of pre-syllabified words. In

this work, we have used two independent lexicons, and extracted from them the same

18,016 words with their corresponding (possibly different) syllabifications. We have also

created a third lexicon corresponding to the 13,594 words that share the same

syllabifications in these two sources. As well as two rule-based approaches (Hammond’s

and Fisher’s implementation of Kahn’s), three data-driven techniques are evaluated: a

look-up procedure, an exemplar-based generalization technique, and syllabification by

analogy (SbA). The results on the three databases show consistent and robust patterns.

First, the data-driven techniques outperform the rule-based systems in word and juncture

accuracies by a very significant margin but require training data and are slower. Secondly,

syllabification in the pronunciation domain is easier than in the spelling domain. Finally,

best results are consistently obtained with SbA.

Keywords: syllabification, computational linguistics, corpus linguistics, speech

technology, rule-based systems, analogy

Comparison of Automatic Syllabification Methods 3

Automatic Syllabification in English: A Comparison of

Different Algorithms

The syllable has been much discussed as a linguistic unit. Whereas some linguists

make it central to their theories (e.g., Pulgram, 1970; Selkirk, 1982), others have ignored

it or even argued against it as a useful theoretical construct (e.g., Kohler, 1966). Much of

the controversy centers around the difficulty of defining the syllable. Crystal (1980,

p. 342), for instance, states that the syllable is “[a] unit of pronunciation typically larger

than a single sound and smaller than a word” but goes on to write: “Providing a precise

definition of the syllable is not an easy task”. There is general agreement that a syllable

consists of a nucleus that is almost always a vowel, together with zero or more preceding

consonants (the onset) and zero or more following consonants (the coda) but determining

exactly which consonants of a multisyllabic word belong to which syllable is problematic.

Good general accounts of the controversy are provided by Treiman and Zukowski (1990)

and Goslin and Frauenfelder (2001), with the former more specifically considering

English—the language of interest in this paper—and the latter focusing on French.

However it is defined, and whatever the rights or wrongs of theorising about its

linguistic status, native speakers of a language are easily able to count the syllables of a

word based entirely on intuition. And if the syllable does act as a structuring device in

composing words, as many believe, then knowledge of this structure could well aid word

modeling in automatic speech recognition and/or the unit selection and composition

process of concatenative synthesis. For instance, Müller, Möbius, and Prescher (2000,

p. 225) write “syllable structure represents valuable information for pronunciation

systems”. That is, the pronunciation of a phoneme can depend upon where it is in a

syllable. In some quarters, there is thought to be a morphological influence on syllable

structure, such that syllabification can predict good points at which to hyphenate words

Comparison of Automatic Syllabification Methods 4

at line endings in computer typesetting software such as LATEX (Liang, 1983). So,

arguments about the theoretical status of the syllable as a linguistic unit notwithstanding,

there are good practical reasons for seeking powerful algorithms to syllabify words.

Traditional approaches to automatic syllabification have been rule-based (or

knowledge-based), implementing notions such as the maximal onset principle (Pulgram,

1970; Kahn, 1976) and sonority hierarchy (Clements, 1988), including ideas about what

constitute phonotactically legal sequences in the coda1, for instance. Other putative

principles of syllabification include the idea that consonants more readily associate with,

or are ‘attracted to’, stressed vowels (Hoard, 1971). Frequently, the constraints implied by

the different principles cannot be simultaneously satisfied and some means has to be found

to arbitrate between competing hypotheses. For instance, Goslin and Frauenfelder (2001)

document the disagreement between five different syllabification procedures on

approximately 23,000 French words, with agreement assessed at “just over 58% of

types” (p. 420)—see below. Unfortunately, it is far from clear how the arbitration should

be done, i.e., we do not actually possess the requisite knowledge to determine a canonically

correct syllabification. As Goslin and Frauenfelder conclude: “. . . the search for an answer

to the problem of correct syllable segmentation is, as yet, unfinished” (pp. 432–3).

Although syllabifications produced by näıve humans might provide a valid ‘gold

standard’ that could be potentially useful for arbitration, there are two major problems,

as follows:

1. Näıve humans do not necessarily agree in all cases. To cite Goslin and

Frauenfelder: “However, when listeners are asked to state explicitly where the syllable

boundaries lie between . . . nuclei, great difficulties are encountered with differences of

opinion arising between listeners.” (p. 410) Syllabification is known to be influenced by

familiarity of the subject with orthography (Treiman, Bowey, & Bourassa, 2002; Goslin &

Floccia, 2007), leading to adult/child differences. A possible solution to this problem is to

Comparison of Automatic Syllabification Methods 5

take majority, or ‘preferential’ syllabifications, yet this necessarily weakness the status as

a gold standard.

2. It is impractical to collect large numbers (on the order of tens of thousands) of

human syllabifications. For instance, Goslin and Frauenfelder perform human

experimentation using just 138 tokens with only 57 intervocalic consonant

singletons/cluster types in bisyllabic French non-words. This accounts for only 13% of the

431 possible consonant clusters in their lexical source (BDLEX). Furthermore, the context

of intervocalic singletons/clusters was not considered; as the authors write: “One influence

which has not been considered in this study is that of the vowel” (p. 432). Clearly, it

would be an imperfect gold standard that was based on these results, having such weak

coverage of cases and ignoring vowels!

An alternative to the rule-based methodology is the data-driven (or corpus-based)

approach, which attempts to infer ‘new’ syllabifications from an evidence base of

already-syllabified words (a dictionary or lexicon2), i.e., the corpus acts as the gold

standard. Data-driven methods are therefore based on machine learning and, for the

purposes of this paper, it is convenient to draw a distinction between ‘lazy’ and ‘eager’

learning. By lazy learning (Aha, Kibler, & Albert, 1991; Aha, 1997), we mean a

data-driven method that deliberately avoids the wholesale replacement of the example

dataset by some compressed representation of its major regularities—so called eager

learning. A typical form of eager learning is the well-known back-propagation algorithm

(Rumelhart, Hinton, & Williams, 1986) for training artificial neural networks, in which

the training data are encoded into a small set of connection weights and thresholds. There

is a small existing literature on data-driven syllabification. In particular, Daelemans and

van den Bosch (1992) compare various methods for Dutch and show that the

generalization performance of back-propagation learning is not better than symbolic

(knowledge-based) approaches and that both are inferior to a form of lazy learning that

Comparison of Automatic Syllabification Methods 6

they call “exemplar-based generalization”. Kiraz and Möbius (1998) present a

probabilistic syllabification algorithm in which observed frequencies of onsets, nuclei and

codas are converted into the weights of a weighted finite state transducer. Müller, Möbius,

and Prescher (2000) describe a hybrid (partly rule-based and partly data-driven) approach

in which a form of the expectation-maximization (EM) algorithm is used to cluster

example data in 3- and 5-dimensional syllable classes. The 3-dimensional data are onset,

nucleus and coda; the 5-dimensional data add position of syllables in the word and stress

type. The overall system uses a hand-crafted rule-based system (see Müller, 2001) that

produces (all possible) candidate pronunciations; these are then ranked by the

probabilistic syllable model and the most probable analysis selected to give the predicted

pronunciation. Marchand and Damper (2007) describe a lazy learning procedure called

syllabification by analogy (SbA) in which 78.1% of the approximately 20,000 words in

Webster’s Pocket Dictionary are correctly syllabified, but they do not assess how this

performance compares to other approaches.

This paper compares the performance of several variants of the two basic

approaches to automatic syllabification: rule-based and data-driven. Our work attempts

to be predictive and empirical , aimed at finding good syllabifications for practical

application in speech technology and computational linguistics, rather than descriptive

and theoretical , aimed at explaining experimental data and/or giving insight into any

linguistic theory of the syllable. The remainder of this paper is structured as follows. In

the next section, we describe the three dictionaries used as the source of inferential data

for the data-driven methods and against which all five methods were evaluated. We then

describe the five automatic syllabification procedures: two rule-based and three

data-driven. Next, we describe the results before discussing their implications for

automatic syllabification, and concluding.

Comparison of Automatic Syllabification Methods 7

Electronic Lexical Databases

A key issue in assessing algorithms for automatic syllabification is the quality of the

‘gold standard’ corpus used to define the correct result. Further, in the data-driven

paradigm, this corpus forms the evidence base for inferring new syllabifications; hence, it

is vital that its quality can be assured. This, however, is extremely difficult to do in the

absence of any way of determining canonically correct syllabifications. Our approach is to

use multiple dictionaries and to seek consensus among them, so as to reduce the

possibility that our results are affected by the choice of a particular, idiosyncratic corpus.

In this work, we use two public-domain dictionaries, namely Webster’s Pocket

Dictionary and the Wordsmyth English Dictionary-Thesaurus, as the sources from which

we derive three lexical databases, as now described.

Webster’s Pocket Dictionary

The primary lexical database in this work is derived from Webster’s Pocket

Dictionary (20,009 words), as used by Sejnowski and Rosenberg (1987) to train their

Nettalk neural network. The dictionary is publicly available for non-commercial use from

ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/ (last accessed

8 April 2004). For consistency with our previous work on pronunciation using this

dictionary, homonyms (413 entries) were removed from the original Nettalk dataset

leaving 19,596 entries. Sejnowski and Rosenberg have manually aligned the data, to

impose a strict one-to-one correspondence between letters and phonemes3. The phoneme

inventory is of size 51, including the null phoneme and ‘new’ phonemes (e.g.,

/K/ and /X/) invented to avoid the use of null letters when one letter corresponds to two

phonemes, as in <x> → /ks/. The null phoneme (represented by the ‘–’ symbol) was

introduced to give a strict one-to-one alignment between letters and phonemes to satisfy

the training requirements of Nettalk. In this paper, we retain the use of the original

Comparison of Automatic Syllabification Methods 8

phonetic symbols (see Sejnowski & Rosenberg, 1987, Appendix A, pp. 161–162) rather

than transliterating to the symbols recommended by the International Phonetic

Association. We do so to maintain consistency with this publicly-available lexicon.

In addition to the pronunciation, Sejnowski and Rosenberg have also indicated

stress and syllabification patterns for each word. The form of the data is:

accumulate xk-YmYlet- 0 < > 1 > 0 > 2 < <

adaptation @d@pteS-xn 2 < 2 < > 1 > 0 < <

albatross @lbxtrcs- 1 < > 0 > > 2 < < etc.

The second column is the pronunciation and the third column encodes the syllable

boundaries for the words and their corresponding stress patterns:

< denotes syllable boundary (right)

> " syllable boundary (left)

1 " primary stress

2 " secondary stress

0 " tertiary stress

Stress is associated with vowel letters and arrows with consonants. The arrows point

towards the stress nuclei and change direction at syllable boundaries. To this extent,

“syllable boundary (right/left)” is a misnomer because this information is not adequate by

itself to place syllable boundaries directly. We can, however, infer four rules (or regular

expressions) to identify syllable boundaries. Denoting boundaries by ‘ | ’:

R1: [<>] ⇒ [< | >]

R2: [< digit] ⇒ [< | digit]

R3: [digit >] ⇒ [digit | >]

R4: [digit digit] ⇒ [digit | digit]

Comparison of Automatic Syllabification Methods 9

These have been confirmed as correct by Sejnowski (personal communication). Table 1

gives the syllable patterns of the three above examples.

Insert Table 1 about here

Wordsmyth English Dictionary-Thesaurus

As we have seen, disagreements exist about the way a word should be segmented

into syllables. A second (independent) lexical source was therefore used, namely the

Wordsmyth English Dictionary-Thesaurus, so that our results would not be overly

specialized to one particular source of data. This dictionary is also available via the World

Wide Web from www.wordsmyth.net (last accessed 9 July 2004). It originated in the early

1980’s when Robert Parks, a Fulbright Fellowship researcher in Japan, began to develop

an English dictionary for students to use on their computers. In 1991 and 1992, the

dictionary was licensed to IBM to integrate into their products, and IBM in turn

supported the development of the associated thesaurus. In 1996, the University of

Chicago’s ARTFL (American and French Research on the Treasury of the French

Language) Project assisted in presenting the first World Wide Web edition. The

dictionary is composed of about 50,000 headwords covering all areas of knowledge without

technical vocabulary. It provides the syllables, pronunciation, part of speech, inflected

forms, and definition for each word.

The Three Lexical Databases

Of the 19,596 entries remaining in Webster’s Pocket Dictionary after pre-processing

to remove homonyms, 18,016 were also found in the Wordsmyth English

Dictionary-Thesaurus, although not necessarily having the same syllabification. Since

4422 words had different syllabifications (roughly 25% of the words), this suggests that

Comparison of Automatic Syllabification Methods 10

different syllabification conventions are used in compiling the two dictionaries. It is likely

that the main difference is in the extent to which morphological information has been

utilised in deciding syllable boundaries, although we have no easy way to confirm this.

We refer hereafter to the 18,016 words found in both dictionaries with syllabification

taken from Webster’s Pocket Dictionary as S&R (for “Sejnowski and Rosenberg”). This

forms the first of the three lexical databases used here. The second of the three consists of

these 18,016 words common to the two public-domain dictionaries with syllabification

taken from the Wordsmyth English Dictionary-Thesaurus (hereafter Wordsmyth). A third

database of syllabified words (hereafter Overlap) was derived consisting of the

13,594 words present in both public-domain dictionaries with identical syllabification

patterns in the two independent lexical sources.

Distribution of Syllables in the Three Databases

Figure 1 shows the distribution of the number of syllables per word in the three

databases of syllabified words. Most words (more than 60% of the total) have 2 or

3 syllables. There are 111,739 junctures (possible placements of syllable boundaries)

in S&R and Wordsmyth and 78,768 junctures in the Overlap lexicon. Of these

possibilities, 26,459 (23.68% of the junctures), 26,283 (23.52% of the junctures), and

16,808 (21.34% of the junctures) are actual syllable boundaries in S&R, Wordsmyth, and

Overlap, respectively. Table 2 shows the letter type (vowel4 or consonant) of the bigrams

that encompass the syllable boundaries; Tables A1 and A2 in the Appendix more

specifically indicate, in rank order, the 10 letter bigrams and 10 phoneme bigrams that

most often surround them.

Insert Figure 1 about here

Comparison of Automatic Syllabification Methods 11

Insert Table 2 about here

Description of the Syllabification Algorithms

In this section, we briefly describe the five automatic syllabification techniques that

are compared later with respect to their performance.

Rule-Based Systems

We have implemented and evaluated two different rule-based algorithms, namely

Hammond’s constraint-based parser and Fisher’s implementation of Kahn’s procedure.

Hammond’s method works in the spelling domain whereas Kahn’s syllabification works in

the pronunciation domain. These will now be described in turn.

Hammond’s constraint-based syllable parser. Hammond’s algorithm, based on

optimality theory (OT), is guided by a constraint hierarchy that the syllabification process

in the spelling domain must follow. See Hammond (1997) for theoretical background.

Hammond’s possible constraints are the following:

Cpeak A consonant cannot be a syllable peak.

Vmargin A vowel cannot be an onset or a coda.

Onset Syllables must have onsets.

Complex Syllable margins cannot contain more than one segment.

Nocoda Syllables cannot have codas.

The first constraint entered is the highest rank and so forth. The program first

breaks the given word into a list of its characters and gives each character the option of

being either the onset, nucleus, or coda of a syllable in the word. It then places

constraints on the word in the order given and proceeds to determine what role each

Comparison of Automatic Syllabification Methods 12

character plays by following the constraints (beginning with the highest ordered constraint

and ending with the lowest ordered). According to OT, words are permitted to violate

constraints but a single violation of a higher-ranked constraint is worse than any number

of violations of a lower-ranked constraint.

Hammond implemented two versions of his constraint-based syllable parser in

Prolog: one in 1997 and the other in 1998. These will be referred to as Hammond 1 and

Hammond 2. Both can be downloaded from the World Wide Web at

http://www.u.arizona.edu/~hammond/ (last accessed 16 March 2005) but only the

1997 version offers an on-line user interface. These programs are based on the same theory

and accept the same constraints but they do not produce identical output. The difference

lies in the placement of a syllable boundary within a series of three consonants beginning

and ending with vowels (e.g., in <bubble> and <poncho>). The 1997 version places the

syllable boundary after the second consonant (<bubb | le> and <ponc |ho> while the

1998 version places the syllable boundary after the first consonant (<bub |ble> and

<pon | cho>). The three English databases were syllabified with both versions.

Hammond’s original implementations could only handle a single word entered into the

program, so the code was modified to process all the words of a file consecutively.

Because the five constraints can be applied in any order, there are 5! = 120 possible

sets of input for Hammond’s algorithm, each of which could produce different results. We

ran the system with the default constraint order given by Hammond on the online

interface, namely: Cpeak >> Vmargin >> Onset >> Complex >> Nocoda.

Fisher’s implementation of Kahn’s procedure. In his PhD dissertation, Kahn (1976)

proposed a theory of syllabification based on a different type of constraint. Unusually, this

works in the pronunciation domain. Kahn postulated that syllabification in English is

derived from three categories of consonant clusters: possible syllable-initial, possible

syllable-final and ‘universally-bad’ syllable-initial (in his terminology). These consonant

Comparison of Automatic Syllabification Methods 13

clusters are derived from the beginnings and endings of existing English words. For

example, the two-phoneme sound /br/ is a possible syllable-initial consonant cluster

because it forms the beginning of the word pronunciation /bred/ (<bread>) and it is

therefore possible to syllabify the pronunciation /�nbre*d/ (<unbraid>) as /�n |bre*d/.

By contrast, /rk/ is considered a universally-bad syllable-initial consonant cluster because

no English word begins with this sound combination. Therefore the pronunciation

/mark�t/ (<market>) would have to be syllabified as /mar | k�t/ and not /ma | rk�t/.
Kahn’s theory also permits ambisyllabicity of consonants and differences in syllable

boundaries for different rates of speech (artificially slow, normal, or fast). Ambisyllabicity

allows a single consonant to occupy both the last position in the coda of one syllable and

the first position in the onset of the following syllable. According to this theory, the

/t/ sound in /kw=rt�/ (<quarter>) is ambisyllabic in normal and fast speech. Under

these circumstances, /kw=rt�/ would be syllabified as /kw=rt | t�/ with /t/ occupying two

positions.

A C implementation of Kahn’s theory was developed in 1996 by William Fisher and

can be downloaded from: ftp://jaguar.ncsl.nist.gov/pub/tsylb2-1.1.tar.Z (last

accessed 16 March 2005). Fisher’s program is accompanied by files containing lists of

acceptable syllable-initial, acceptable syllable-final, and unacceptable syllable-final

consonant clusters5. Two options are available for these lists: one has only ‘native’

clusters, while the other includes ‘foreign’ clusters. For example, /kM/ is not permissible in

the native syllable-initial clusters but is permissible as a foreign cluster because it forms

the beginning of /kMatria/ (<kshatriya> is a Hindu of upper caste). Fisher further

explains Kahn’s “rates of speech” (in the algorithm.doc file with the download) by

stating that “ ‘rate’ is probably a conventional misnomer for degree of casualness,

informality, or lack of monitoring”. In this implementation, Fisher defines five different

rates of speech:

Comparison of Automatic Syllabification Methods 14

1 slow, over-precise, “syllable-by-syllable”;

2 formal, monitored, self-conscious speech;

3 ordinary conversational speech;

4 faster speech;

5 fastest, sloppiest, least monitored speech.

Finally, note that we used the ‘tight’ constraints developed during the summer of 1996 by

several researchers at a Johns Hopkins CLSU speech recognition workshop (see

algorithm.doc).

As with Hammond’s system, we changed Fisher’s original implementation to process

all words in a file consecutively. Because we were interested in the standard

syllabification, we used the results given for the first rate (i.e., “slow, over-precise”,

hereafter Basic) and the third rate (“ordinary conversational speech”, hereafter OCS).

The program also allowed the unsyllabified input to be provided with stress information

(primary, secondary and no stress) on some specific phonemes6 and without stress

information. We processed the word list both ways, using the stress information provided

in S&R (i.e., the digit stress—see Table 1).

As mentioned earlier, the aim of Fisher’s system is to find the syllabification

patterns in the pronunciation domain. Therefore, it was necessary to translate the

phoneme set used in his program to the phoneme set of S&R (a not entirely

straightforward process we called ‘harmonization’ in Damper et al., 1999). Table A3 in

the Appendix gives the correspondence between these phoneme sets. Table A4 shows the

five special phonemes from S&R that were decomposed into a two-phoneme combination

to be consistent with Fisher’s phoneme set. All instances of the null phoneme were

removed because this special ‘phoneme’ was not part of Fisher’s set. Table A5 illustrates

this recoding with and without stress information. Overall, 1338 pronunciations were

recoded in S&R and Wordsmyth and 932 pronunciations were recoded in Overlap.

Comparison of Automatic Syllabification Methods 15

Finally, there are two modes in which Fisher’s procedure can be run: with only the

‘native’ consonant cluster constraints and with both the ‘native’ and foreign’ consonant

cluster constraints. Because the results were not improved by including the ‘foreign’

option, we have not presented them in this paper.

Data-driven methods

We now describe the three different data-driven approaches to automatic

syllabification compared in this paper. They are all instances of lazy learning. One of the

outstanding advantages of lazy learning approaches to language processing is the ease with

which algorithms can be transferred to new tasks. In fact, all three methods studied here

were originally designed for automatic pronunciation but are readily modified to perform

syllabification. Another advantage is that, unlike eager learning which compresses the

training dataset, it is often practical to test performance on the complete dataset. As we

shall see, this is more true of SbA than the other two methods.

Syllabification by Analogy. Syllabification by analogy syllabifies words in either the

orthographic or pronunciation domain. It closely follows the principles of pronunciation by

analogy (PbA) set out in detail in our earlier publications (Damper & Eastmond, 1997;

Marchand & Damper, 2000; Damper & Marchand, 2006; Marchand & Damper, 2007).

Let us first briefly describe PbA. When an unknown word is presented as an input

to the system, so-called full pattern matching between the input letter string and database

entries is performed, starting with the initial letter of the input string aligned with the

end letter of the database entry. If common letters are found in matching positions in the

two strings, their corresponding phonemes (according to the prior alignment) and

information about their positions in the input string are used to build a pronunciation

lattice, as detailed next. One of the two strings is then shifted relative to the other by one

letter and the matching process continues, until the end letter of the input string aligns

Comparison of Automatic Syllabification Methods 16

with the initial letter of the database entry.

The pronunciation lattice is a directed graph that defines possible pronunciations for

the input string, built from the matching substring information. A lattice node represents

a matched letter, Li, at some position, i, in the input. The node is labelled with its

position i and the phoneme corresponding to Li in the matched substring, Pim say, for the

mth matched substring. An arc is labelled with the phonemes intermediate between Pim

and Pjm (j > i) in the phoneme part of the matched substring and the frequency count,

increasing by one each time the substring with these phonemes is matched during the

search through the lexicon. Arcs are directed from i to j. If the arcs correspond to

bigrams, the arcs are labelled only with the frequency. (The string of phonemes

intermediate between Pim and Pjm is empty.) Phonemes Pim and Pjm label the nodes at

each end of the arc, i.e., i and j respectively. Additionally, there is a Start node at

position 0 and an End node at position equal to the length of the input string plus one.

Finally, the decision function identifies the ‘best’ candidate pronunciation of the

input according to some criterion. Possible pronunciations correspond to the string

assembled by concatenating the phoneme labels on the nodes or arcs in the order that

they are traversed in moving through the lattice from Start to End. If there is just one

candidate corresponding to a unique shortest path, this is selected as the output. If there

are tied shortest paths, five different scoring strategies are applied and the winning

candidate selected on the basis of their rank (Marchand & Damper, 2000; Damper &

Marchand, 2006).

The major modification in converting PbA to SbA (in the orthographic domain) is

to represent all junctures between letters explicitly. This representation has to be different

in the case of:

1. input words, where the syllabification is unknown;

2. lexical entries, where it is known;

Comparison of Automatic Syllabification Methods 17

3. the SbA output, where it is inferred.

For example, the input word <abbey> is expanded to <a ∗b ∗b ∗ e ∗ y>. Here the

‘ ∗ ’ symbol merely indicates the possibility of a syllable boundary. On the other hand, a

database entry such as <ab |nor |mal> is expanded to <a ∗b |n ∗ o ∗ r |m ∗ a ∗ l>. In this

case, the ‘ ∗ ’ symbols indicate the known absence of a syllable boundary. During pattern

matching, ‘ ∗ ’ in the input is allowed to match either with ‘ ∗ ’ or with ‘ | ’ in the database

entries. A ‘ ∗ – ∗ ’ match is entered into the syllabification lattice as a ‘ ∗ ’ whereas a ‘ ∗ – | ’

match is entered into the syllabification lattice as a ‘ | ’. The syllabification lattice has

exactly the same form as the pronunciation lattice, except that ‘ ∗ ’ is explicitly

represented as an input symbol (labelling nodes), ‘ ∗ ’ and ‘ | ’ are explicitly represented as

possible output symbols (labelling arcs), and there is no pronunciation information

labelling the nodes and arcs. From here, the process proceeds exactly as for PbA,

eventually producing as output a syllabified version of <abbey>, such as <a ∗b |b ∗ e ∗ y>,

from which the ‘ ∗ ’ symbols are removed to yield the final output <ab |bey>. The

modifications to perform SbA in the pronunciation domain should now be obvious.

In our previous syllabification work using analogy (Marchand & Damper, 2007), we

obtained best results by combining only 3 of the 5 scoring strategies when choosing

between tied shortest paths. These were the product of arc frequencies, the frequency of

the same pronunciation, and the ‘weak link’ (see Marchand & Damper, 2000 and Damper

& Marchand, 2006 for full specification). Accordingly, in this work, these same three

scoring strategies are used exclusively, and combined by rank fusion7, for SbA.

Although the required program code modifications to PbA are minimal, we do

approximately double the size of the strings with which we are dealing. In fact, for a word

of length l, we increase the possible number of arcs in the lattice by a factor of 2 l−1 by

introducing ‘ ∗ ’ in the input representation, which can associate with either ‘ ∗ ’ or ‘ | ’ in

the syllabified database at l − 1 junctures. This leads to a significant increase in run times

Comparison of Automatic Syllabification Methods 18

for SbA relative to PbA.

Look-up Procedure. This method was originally proposed by Weijters (1991) as a

means of letter-to-phoneme conversion (i.e., automatic pronunciation), where it was shown

to be superior to Nettalk, the well-known neural network of Sejnowski and Rosenberg

(1987). It was then adapted for the syllabification process and presented in the

comparison of syllabification algorithms for Dutch spellings by Daelemans and van den

Bosch (1992). This method can syllabify words in either the spelling domain or the

pronunciation domain. The first step is to construct a table encoding the knowledge

implicit in the training set by converting each syllabified entry into a series of N -grams.

Each N -gram has a left and right context and a central ‘focus’ character. The length of

the N -gram (i.e., N) is equal to the sum of the sizes of the left and right contexts plus one

(the focus character).

For example, if the syllabified word <kid |ney> is part of the (spelling domain)

training corpus, then with a left context of 1 character and a right context of 2 characters,

the N -grams (or 4-grams in this case) for this word would be: <– kid>, <kidn>, <idne>,

<dney>, <ney –>, and <ey – –>. That is, to allow every character to be a focus

character, there is an N -gram for each character in a word. When the focus character has

no left context (as in <– kid>) or right context (as in <ey – –>), the character positions

in the context are filled with null characters. Each N -gram is stored in the table along

with the corresponding juncture class, i.e., the syllabification information. This consists of

a field stating whether or not a syllable boundary exists immediately after the focus

character in the N -gram (SB or NSB for syllable boundary and non syllable boundary,

respectively). Table 3 shows how the N -grams in the word <kid |ney> are stored in the

look-up table.

Comparison of Automatic Syllabification Methods 19

Insert Table 3 about here

Once the construction of the look-up table is complete, words for which the

syllabification is unknown can be syllabified based on the information in the table. Input

words are broken down into a set of N -grams in the same manner as described above for

table construction. The table is then searched for the closest matches to each N -gram.

When found, closest matches are examined to determine whether the majority has, or

does not have, a syllable boundary following the focus character. If the majority has a

syllable boundary, a syllable boundary is placed at the appropriate position in the word;

otherwise, a non-syllable boundary is placed at that position.

For example, if the word <midnight> is to be syllabified by this method, one of the

N -grams to match would be <midn>. The closest match in the table is <kidn>, which

has a syllable boundary following the focus character <d>. A syllable boundary is then

placed following the focus <d> in <midn> and, therefore, <midnight> is determined to

be syllabified as <mid |night>.

The process of determining which N -grams in the pre-compiled look-up table best

fit a given N -gram is described in Algorithm 1. Here, NgramT is a given N -gram stored in

the table and NgramS is an N -gram to be syllabified. It follows that NgramT[i] is the

ith position in the N -gram (for example, NgramT[1] = m when NgramT is <midn>). The

closest-fit N -grams are those with the highest MatchValue.

We ran the look-up procedure using all 15 different sets of weights presented in the

original description of the method (Weijters, 1991, p. 1647). These weight vectors are

given in Table A6 in the Appendix.

Comparison of Automatic Syllabification Methods 20

Algorithm 1 : Computation of best-fit N -gram in table look-up method.

FindMatchValue(weights, NgramT, NgramS)

MatchValue := 0

for i := 1 to length(weights) do

if (NgramT[i] = NgramS[i]) then

MatchValue := MatchValue + weights[i]

end if

end for

Exemplar-Based Generalization. The version tested here (also known as IB1-IG) is

due to Daelemans, van den Bosch, and Weijters (1997). It operates in a manner similar to

the look-up procedure with the only difference being the weights used to determine the

closest-fit N -grams. In this method, the weights are calculated with a function that

determines the relative importance of each position in the N -gram (i.e., letter or phoneme

positions in the spelling and pronunciation domains, respectively). The process of

determining the weights is based on the concept of information entropy by using

information from the table of stored N -grams. Each position in an N -gram is considered

to contribute a real-valued amount of information to the process of determining the

placement of a syllable boundary. This value can be determined via the series of steps

presented below.

First, the entropy of the entire table of N -grams extracted from the training corpus

is calculated. Essentially, Daelemans, van den Bosch and Weijters define database (or

look-up table) information entropy as “the number of bits of information needed to know

the decision [whether a syllable boundary should be placed after the focus character or

not] of a database given a pattern [or N -gram].” This is calculated as:

Comparison of Automatic Syllabification Methods 21

E(D) = −
2

∑

i=1

Pi log2 Pi (1)

where E(D) is the information entropy of database D, P1 is the probability of an N -gram

being associated with a syllable-boundary decision, and P2 is the probability of an

N -gram being associated with a non-syllable-boundary decision. As there are only two

possibilities—to place or not to place a syllable boundary after the focus

character—equation (1) can also be written as:

E(D) = −

(

NS

NT

)

log2

(

NS

NT

)

−

(

N¬S

NT

)

log2

(

N¬S

NT

)

(2)

where NS is the number of stored N -grams that have a syllable boundary following the

focus character, N¬S is the number of stored N -grams that do not have a syllable

boundary following the focus character, and NT is the number of stored N -grams (i.e.,

NS + N¬S).

From equation (2), the information gain of each position in an N -gram can now be

determined. This requires two additional equations. The first computes the average

information entropy at position f in an N -gram, E(Df), by taking the “information

entropy of the database [or table] restricted to each possible value [or character] for the

[position in the N -gram].” This is given by:

E(Df) =
∑

c∈V

E(Df=c)
card(Df=c)

card(D)
(3)

where Df=c is the set of those N -grams in the table that have character c at position f ,

V is the set of characters that occur at position f in a N -gram, and card() is the

cardinality of a set (i.e., card(D) is the total number of N -grams in database D).

The second equation necessary for calculating the information gain G(f) at a given

position f in an N -gram is:

Comparison of Automatic Syllabification Methods 22

G(f) = E(D) − E(Df) (4)

To run this method, we first followed Daelemans, van den Bosch and Weijters and

used the same values of N as in their work, namely 3, 5 and 7 with the focus letter in the

middle of the N -gram. In addition to these values, we extended the study to use N -grams

of size 9 and 11 (with left and right contexts of 4 and 5 respectively).

Speed of the Algorithms

Because the various algorithms have been run on several different machines, we do

not have precise timings but some useful comments on relative efficiency can be made.

Generally, the methods satisfy the following relationship, which include both training

(where required) and test times:

time(rules) < time(look-up table) < time(SbA) < time(IB1-IG) (5)

Neither the rules nor SbA require prior training. The rules are very fast to apply

but SbA requires significant computation to build and traverse the syllabification lattice

(see Marchand & Damper, 2007 for additional comments on the computational complexity

of SbA). The time for the look-up table and IB1-IG methods depends on the window size.

Obviously, the larger is the window size, the longer the algorithm takes to run. A good

deal of the apparent inefficiency of the table look-up and IB1-IG methods stems from the

need for repeated re-training when using leave-one-out testing (see next section), which

would not be required in a practical setting.

Results

Results were computed using word and juncture accuracy. Word accuracy is simply

the number of words syllabified by the method in exactly the same way as is given by the

Comparison of Automatic Syllabification Methods 23

lexicon used. Juncture accuracy compares syllabification at the sub-word level. Each

position between letters is assessed to determine whether it was classified correctly. For

example, the word <satire> has five junctures: <s ∗ a ∗ t ∗ i ∗ r ∗ e>. The syllabification

according to S&R is <sa | tire>. If an algorithm syllabifies the word as <sat | ire>, this is

considered entirely wrong in terms of word accuracy. However, it is 60% correct in terms

of juncture accuracy, as 3 out of 5 junctures are correct.

For the rule-based methods, there is no difficulty in evaluating syllabification

performance on each of the three datasets in their entirety. For data-driven methods,

however, this is not always possible. Eager learning approaches like error

back-propagation training of neural nets, for example, require the available data to be

split into disjoint training and test sets (and possibly a validation set also). However, the

lazy learning methods employed in this study all allow performance to be evaluated on the

complete dataset without undue difficulty. For SbA, we used the well-established

leave-one-out procedure, whereby each word is removed from the corpus in turn, and its

syllabification inferred from the remaining words. For the table look-up and

exemplar-based methods, we again remove each word in turn from the corpus, but this

time it is necessary to build the respective tables repeatedly before testing each word.

Although this is computationally expensive, it is not prohibitively so (table construction

being generally faster than error back-propagation training, for instance.)

Figures 2, 3 and 4 show the results in both spelling and pronunciation domains for

the various automatic syllabification methods on the S&R, Wordsmyth and Overlap

databases, respectively. For Hammond 1 and 2, results could only be obtained in the

spelling domain. For table look-up, the set of weights which provided broadly the best

results (for each database) are presented in the figures. Results were obtained for

N -grams from N = 5 up to N = 11 for the exemplar-based approach. As expected, results

were poor for N = 3 as insufficient context is captured around the focus letter, and by

Comparison of Automatic Syllabification Methods 24

N = 11 the algorithm was very slow and there was some indication that performance was

falling off. As with table look-up, the results for broadly the best value of N are presented

in the figures. For the Fisher/Kahn system, results can only be obtained in the

pronunciation domain. There was no difference between the results when stress was

provided and when it was not for the Basic (slow) rate of speech. However, this was not

the case for the ordinary conversational speech condition, where the inclusion of stress

gave a large improvement. There were no ambisyllabic results in our data (although the

implementation by Fisher is capable of giving them as output).

Insert Figure 2 about here

Insert Figure 3 about here

Insert Figure 4 about here

The pattern of results is consistent across dictionaries. Generally, performance in

the pronunciation domain is well above that in the spelling domain. The rule-based

methods (Hammond and Fisher/Kahn) are vastly poorer than the data-driven methods.

For instance, the performance for Hammond 2 is approximately 30–35% words correct in

the spelling domain. One factor strongly influencing this is the algorithm’s very poor

showing on identifying boundaries between vowel letters (just 20–30%). We do not think

such rule-based methods are at all usable as a complete solution in computational

Comparison of Automatic Syllabification Methods 25

linguistics and/or speech technology, although hybrid rule-based/data-driven systems may

possibly be useful.

Of the data-driven methods, it is difficult to choose between the best table look-up

and exemplar-based results: the latter does better on two of the three dictionaries in the

spelling domain, but this is reversed in the pronunciation domain. The most striking

result, however, is the obvious superiority of SbA.

Although the statistical significances of the observed performance values has not

been assessed, the very large number of degrees of freedom involved (there are thousands

of words in each corpus) means that even apparently quite small differences in percentages

of words correct can be enormously significant. See Marchand and Damper (2007) for

more detailed argument on this point.

For all methods and both spelling and pronunciation domains, non-syllable

boundary identification is less error prone than syllable boundary detection (results not

shown in detail). For example, for SbA and the Overlap lexicon in the spelling domain,

correct syllable boundary placement rate was 87.53%, whereas for non-syllable boundary

placement, it was 97.52%. It seems that all methods are conservative in their placement of

syllable boundaries, which are rarer than non-syllable boundaries, resulting in a

preponderance of false negative errors over false positives.

We also looked at the pattern of errors that each procedure made. In the spelling

domain, the most common cause of errors was incorrect identification of the boundary

between letters <a> and <t>. This was also the most common bigram having a syllable

boundary, see Table A1. Taking table look-up, version 13, and the S&R database as an

illustrative example, there are 1270 instances of <a ∗ t> of which 93.46% were correctly

identified as non-syllable boundaries (cf. 95.16% across all non-syllable boundaries). There

were 632 instances of <a | t> of which 81.65% were correctly identified as syllable

boundaries (cf. 76.70% across all syllable boundaries). As an example of errors made,

Comparison of Automatic Syllabification Methods 26

S&R has the entries <cat | al | yst> and <sa | tire> but the look-up table method gave

<ca | tal | yst> and <sat | ire>, respectively.

In the pronunciation domain, the most common cause of errors was incorrect

identification of the boundary between phonemes /x/ (the schwa vowel in S&R notation)

and /s/. As can be seen in Table A2, the schwa vowel is very common adjacent to a

syllable boundary, although /x | s/ is not itself especially common. For /x ∗ s/, there were

853 instances of which 95.19% were correctly recognised as non-syllable boundaries

(cf. 96.70% in the general case). For /x | s/, there were 331 instances of which just 83.69%

were correctly recognised (cf. 90.51% in general). As an example of errors made, S&R has

the entries /x | sAd/ (<aside>) and /kxs |Et/ (<cassette>) but the look-up table method

gave /xs |Ad/ and /kx | sEt/, respectively.

In a speech technology application, specifically in synthesis, a syllabification error in

the orthography is likely to result in a wrong pronunciation of the word; whereas a wrong

syllable boundary inserted in the (already given) phone symbol string may result in wrong

segmental durations and/or inappropriate aspiration. It is unknown which of these would

be the more harmful for intelligibility and/or quality of the synthetic speech.

Discussion and Conclusions

Automatic syllabification is an important but difficult problem bearing on issues

such as pronunciation generation for text-to-speech synthesis and pronunciation modeling

in speech recognition. As yet, there is no accepted method for automatic syllabification in

the literature. Part of the difficulty stems from the lack of a sound definition of the

syllable in linguistic theory, making it hard to design and evaluate algorithms for this

purpose. Objective evaluation requires that we have some reasonably-sized corpus of

already-syllabified words that can act as a ‘gold standard’ against which to assess

correctness of the algorithm’s output. At present, no widely-accepted gold standard exists.

Comparison of Automatic Syllabification Methods 27

There are essentially two possible approaches to automatic syllabification:

rule-based and data-driven. In this work, we have compared two rule sets based on expert

knowledge and three data-driven methods based on automatic inference from a corpus of

already-syllabified words. Hence, in the latter case, the issue of a gold standard arises

once more. To address this important issue, we attempt to use multiple, independent

dictionaries of syllabified words and then to look for consistency or consensus among

results as evidence that the syllabifications are broadly correct. We also use the ‘overlap’

or conjunction of entries in the different dictionaries as a separate corpus which ought to

be closer to a gold standard than any of the individual contributors, since it will not

include words on which the latter disagree (which is likely to point to idiosyncrasies

among dictionaries). In this work, we have used two independent dictionaries (S&R and

Wordsmyth) and their overlap. The five methods studied are the rule sets from Hammond

and Fisher/Kahn, a table look-up method due to Weijters, the exemplar-based method of

Daelemans, van den Bosch and Weijters and syllabification by analogy (SbA) from

Marchand and Damper. In each case, performance is evaluated across the whole of each

available corpus, something which is easier to achieve with rule-based and lazy learning

techniques (as used here) than with eager learning techniques such as decision trees and

neural networks (which require held-out testing data). This is done in both spelling and

pronunciation domains, although it should be noted that the two rule-based methods are

specialised to a particular domain (and cannot be tested on both).

The knowledge-based rule sets perform poorly compared to the data-driven

methods. We do not think such methods are competitive to the extent that there is no

case for using them in practical applications (unless possibly in conjunction with

data-driven approaches). Among the data-driven methods, SbA is easily the best. As far

as the different dictionaries are concerned, best performance is obtained on the Overlap

database. There are probably two reasons for this. First, the Overlap dictionary excludes

Comparison of Automatic Syllabification Methods 28

many polysyllabic words (see Fig. 1), because there is less consensus in the syllabification

of these words. These are harder to syllabify correctly. Second, the overlap process

removes idiosyncratic entries from S&R and Wordsmyth.

We believe there are sound reasons to expect the pattern of results seen here. Our

earlier study of the strongly related problem of automatic pronunciation (Damper et al.,

1999) showed exactly the same trends. Data-driven methods outperformed rule-based

techniques by an enormous margin, lazy learning was superior to eager learning, and the

analogy method outperformed the other lazy learning approach studied (the

exemplar-based IB-IG1 technique). In our opinion, expert rule-based approaches suffer

many drawbacks, including lack of conformance with real data, the limited ability of

human experts to distinguish real from apparent regularities in very large datasets (like

the effectively unbounded whole of natural language), and a tendency to over-rate

dramatically the strength of weak, tentative linguistic theories. There are also good

theoretical and empirical reasons to expect analogy to outperform other methods in

language processing tasks. As Pirrelli and Federici (1995, p. 855) write: “the space of

analogy is . . . eventually more accurate than the space of rules, as the former, but not the

latter, is defined by the space of already attested base objects”. In other words, inference

is based on real and specific examples rather than on imagined, general cases. Unlike the

other two data-driven methods studied here, analogy does not use a fixed-size window on

the input text, but varies the context according to the partial matches found with the

“already attested base objects”. Input/output mappings are modeled together in

variable-size chunks, so handling long-range dependencies easily and naturally. In a real

sense, analogy (at least, as implemented in this work) is the laziest of lazy techniques,

retaining the evidence base in full, with no compression whatsoever. This means that

‘exceptional’ items are kept entire and can be profitably used in inferencing.

An example from automatic pronunciation should help to make the point. Consider

Comparison of Automatic Syllabification Methods 29

the exceptional word of English <quay>. Employing an eager learning technique like

error back-propagation training of Nettalk, which encodes spelling-sound regularities in

terms of network connection weights, we would expect the pronunciation of this atypical

word to be over-regularized. Hence, if we then encounter the unknown word <quayside>

in the input, it will be mispronounced. With analogy, however, the words <quay> and

<side> remain uncompressed in the evidence base, so <quayside> will be pronounced

correctly. In the words of Daelemans, van den Bosch, and Zavrel (1999, p. 42): “keeping

full memory of all training instances is at all times a good idea in language learning”.

This is precisely what analogy does, helping in part to account for its superiority over the

other methods studied in this paper.

Comparison of Automatic Syllabification Methods 30

References

Aha, D. W. (1997). Lazy learning. Artificial Intelligence Review, 11 (1–5), 7–10.

Aha, D. W., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms.

Machine Learning, 6 (1), 37–66.

Clements, G. N. (1988). The role of the sonority cycle in core syllabification. (Working

Papers of the Cornell Phonetics Laboratory, WPCPL No. 2, Research in Laboratory

Phonology, Cornell University, Ithaca, NY)

Crystal, D. (1980). A first dictionary of linguistics and phonetics. London: André

Deutsch.

Daelemans, W., & van den Bosch, A. (1992). Generalisation performance of

backpropagation learning on a syllabification task. In M. F. J. Drossaers &

A. Nijholt (Eds.), Twlt3: Connectionism and natural language processing (pp.

27–37). Enschede, The Netherlands: Twente University.

Daelemans, W., van den Bosch, A., & Weijters, T. (1997). IGTree: Using trees for

compression and classification in lazy learning algorithms. Artificial Intelligence

Review, 11 (1–5), 407–423.

Daelemans, W., van den Bosch, A., & Zavrel, J. (1999). Forgetting exceptions is harmful

in language learning. Machine Learning, 34 (1–3), 11–43.

Damper, R. I., & Eastmond, J. F. G. (1997). Pronunciation by analogy: Impact of

implementational choices on performance. Language and Speech, 40 (1), 1–23.

Damper, R. I., & Marchand, Y. (2006). Information fusion approaches to the automatic

pronunciation of print by analogy. Information Fusion, 71 (2), 207–220.

Damper, R. I., Marchand, Y., Adamson, M. J., & Gustafson, K. (1999). Evaluating the

pronunciation component of text-to-speech systems for English: A performance

comparison of different approaches. Computer Speech and Language, 13 (2), 155–176.

Damper, R. I., Marchand, Y., Marsters, J.-D. S., & Bazin, A. I. (2005). Aligning text and

Comparison of Automatic Syllabification Methods 31

phonemes for speech technology applications using an EM-like algorithm.

International Journal of Speech Technology, 8 (2), 149–162.

Goslin, J., & Floccia, C. (2007). Comparing French syllabification in preliterate children

and adults. Applied Psycholinguistics, 28 (2), 341–367.

Goslin, J., & Frauenfelder, U. H. (2001). A comparison of theoretical and human

syllabification. Language and Speech, 44 (4), 409–436.

Hammond, M. (1997). Optimality theory and prosody. In D. Archangeli & T. Langendoen

(Eds.), Optimality theory: An overview (pp. 33–58). Cambridge, MA: Blackwell.

Hoard, J. W. (1971). Aspiration, tenseness and syllabification in English. Language, 47,

133–140.

Kahn, D. (1976). Syllable-based generalizations in English phonology. Bloomington, IN:

Indiana University Linguistics Club.

Kessler, B., & Treiman, R. (1997). Syllable structure and the distribution of phonemes in

English syllables. Journal of Memory and Language, 37 (3), 295–311.

Kiraz, G. A., & Möbius, B. (1998). Multilingual syllabification using weighted finite-state

transucers. In Proceedings of 3rd European Speech Communication Association

(ESCA)/COCOSDA international workshop on speech synthesis (pp. 71–76).

Jenolan Caves, Australia.

Kohler, K. J. (1966). Is the syllable a phonological universal? Journal of Linguistics, 2,

207–208.

Liang, F. M. (1983). Word hy-phen-a-tion by com-put-er. Unpublished doctoral

dissertation, Department of Computer Science, Stanford University, Palo Alto, CA.

Marchand, Y., & Damper, R. I. (2000). A multistrategy approach to improving

pronunciation by analogy. Computational Linguistics, 26 (2), 195–219.

Marchand, Y., & Damper, R. I. (2007). Can syllabification improve pronunciation by

analogy? Natural Language Engineering, 13 (1), 1–24.

Comparison of Automatic Syllabification Methods 32

Müller, K. (2001). Automatic detection of syllable boundaries combining the advantages

of treebank and bracketed corpora training. In Proceedings of 39th annual meeting

of the association for computational linguistics (pp. 402–409). Toulouse, France.

Müller, K., Möbius, B., & Prescher, D. (2000). Inducing probabilistic syllable classes

using multivariate clustering. In Proceedings of 38th annual meeting of the

association for computational linguistics (pp. 225–232). Hong Kong, China.

Pirrelli, V., & Federici, S. (1995). You’d better say nothing than something wrong:

Analogy, accuracy and text-to-speech applications. In Proceedings of 4th european

conference on speech communication and technology, Eurospeech’95 (Vol. 1, pp.

855–858). Madrid, Spain.

Pulgram, E. (1970). Syllable, word, nexus, cursus. The Hague, The Netherlands: Mouton.

Rumelhart, D. E., Hinton, G. E., & Williams, R. (1986). Learning representations by

back-propagating errors. Nature, 323 (9), 533–536.

Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that learn to pronounce

English text. Complex Systems, 1 (1), 145–168.

Selkirk, E. (1982). The syllable. In H. van der Hulst & N. Smith (Eds.), The structure of

phonological representations (Vol. 2, pp. 337–383). Dordrecht, The Netherlands:

Foris.

Treiman, R., Bowey, J. A., & Bourassa, D. (2002). Segmentation of spoken words into

syllables by English-speaking children as compared to adults. Journal of

Experimental Child Psychology, 83 (3), 213–238.

Treiman, R., & Zukowski, A. (1990). Toward an understanding of English syllabification.

Journal of Memory and Language, 29 (1), 66–85.

Weijters, A. (1991). A simple look-up procedure superior to NETtalk? In Proceedings of

international conference on artificial neural networks (icann-91) (Vol. 2, pp.

1645–1648). Espoo, Finland.

Comparison of Automatic Syllabification Methods 33

Appendix

Insert Table A1 about here

Insert Table A2 about here

Insert Table A3 about here

Insert Table A4 about here

Insert Table A5 about here

Insert Table A6 about here

Comparison of Automatic Syllabification Methods 34

Author Note

Y. Marchand, Institute for Biodiagnostics (Atlantic), Halifax, Nova Scotia; C.R.

Adsett, Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada;

and R. I. Damper, School of Electronics and Computer Science, University of

Southampton, UK.

Correspondence concerning this article should be addressed to Y. Marchand,

Institute for Biodiagnostics (Atlantic), National Research Council Canada, Neuroimaging

Research Laboratory, 1796 Summer Street, Suite 3900, Halifax, Nova Scotia, Canada B3H

3A7.

Electronic mail may be sent to Yannick.Marchand@nrc-cnrc.gc.ca.

Comparison of Automatic Syllabification Methods 35

Footnotes

1But see Kessler and Treiman (1997, p. 295) who argue for replacing the notion of

“absolute, inviolable restrictions” on allowable phoneme sequences by a probabilistic

account.

2In this paper, we will use the terms evidence base, lexical database, dictionary ,

corpus, and lexicon more or less interchangeably. Note, however, that we refer to the

public-domain resources used here as ‘dictionaries’ and reserve the term ‘database’ for

dictionaries that have been pre-processed, e.g., by the removal of homonyms.

3See Damper, Marchand, Marsters, and Bazin (2005) for extensive discussion of this

alignment process and an algorithm for doing it automatically.

4Defined by <a>, <e>, <i>, <o>, and <u>.

5In Fisher’s software package, there is no explicit reference to the English lexical

source that was used to define these clusters except a brief mention of June Shoup’s

dictionary in the early 1960’s.

6. . . designated as syllabic by Fisher. These are: ‘ux’, ‘ih’, ‘ix’, ‘ey’, ‘eh’, ‘ae’, ‘aa’,

‘aax’, ‘s’, ‘ao’, ‘ow’, ‘uh’, ‘uw’, ‘ay’, ‘oy’, ‘aw’, ‘er’, ‘axr’, ‘ax’, ’ah’, ‘el’, ‘em’, and ‘en’ using

his phoneme notation.

7. . . using Borda counting, see Damper and Marchand (2006).

Comparison of Automatic Syllabification Methods 36

Table 1

Examples of stress and syllabification patterns.

Word accumulate adaptation albatross

Stress pattern 0 <> 1 > 0 > 2 << 2 < 2 <> 1 > 0 << 1 <> 0 >> 2 <<

Syllabification ac | cu |mu | late ad | ap | ta | tion al |ba | tross

Digit stress 00 | 11 | 00 | 2222 22 | 22 | 11 | 0000 11 | 00 | 22222

Comparison of Automatic Syllabification Methods 37

Table 2

Letter types (consonant/vowel) surrounding syllable boundaries.

Structure S&R Wordsmyth Overlap

Consonant |Consonant (%) 37.65 38.56 43.33

Vowel |Consonant (%) 31.54 36.68 33.78

Consonant |Vowel (%) 23.95 19.30 17.48

Vowel |Vowel (%) 6.86 5.46 5.41

Comparison of Automatic Syllabification Methods 38

Table 3

Example of look-up table construction with the word <kid |ney>.

N -gram structure Juncture

Left context Focus character Right context class

– k id NSB

k i dn NSB

i d ne SB

d n ey NSB

n e y – NSB

e y – – NSB

Comparison of Automatic Syllabification Methods 39

Table A1

Letter bigrams that most often surround syllable boundaries.

S&R Wordsmyth Overlap

Bigram Percentage Bigram Percentage Bigram Percentage

A |T 2.39 A |T 3.16 A |T 2.77

T | I 2.12 N |T 2.66 N |D 1.95

N |D 1.65 I |T 2.54 N |T 1.92

I |A 1.64 S |T 1.74 L |L 1.84

L |L 1.61 I |A 1.61 S |T 1.71

N |T 1.59 I |C 1.51 I |A 1.65

S |T 1.44 L |L 1.50 I |C 1.51

E |R 1.40 N |D 1.46 C |T 1.47

T |E 1.40 A |B 1.30 N |S 1.46

R | I 1.40 L | I 1.26 N |C 1.34

Total 16.64 18.74 17.62

Comparison of Automatic Syllabification Methods 40

Table A2

Phoneme bigrams that most often surround syllable boundaries.

S&R Wordsmyth Overlap

Bigram Percentage Bigram Percentage Bigram Percentage

x | r 2.82 x | t 3.33 e |S 2.25

l | x 1.97 n | t 2.28 i | x 1.92

i | x 1.96 I | x 2.00 n |d 1.92

e |S 1.72 i | x 1.96 x | l 1.89

x | l 1.68 e |S 1.73 l | x 1.86

x |b 1.68 r | x 1.72 n | s 1.84

r | i 1.62 s | t 1.70 s | t 1.77

n |d 1.62 x |b 1.67 x |n 1.62

t | x 1.60 n | s 1.54 x | r 1.61

x | t 1.59 x | l 1.48 x |b 1.52

Total 18.26 19.41 18.20

Comparison of Automatic Syllabification Methods 41

Table A3

Harmonization scheme used to map S&R phoneme set onto Fisher’s set.

Phoneme Phoneme in Phoneme Phoneme in

in S&R Fisher’s system as in . . . in S&R Fisher’s system as in . . .

i iy beat n n night

u ux blue N en button

I ih bit G nx king

I ix woes s s sigh

E eh bet p p pet

@ ae bat b b bet

a aa bob t t tot

a aax calm t dx batter

c ao bought d d dot

o ow boat k k kite

U uh book g g got

u uw boot e ey bait

A ay bite C ch check

O oy boy ! ts tse-tse

W aw bout J jh jet

R er pert f f fed

R axr butter v v vote

x ax abut T th thigh

^ ah abut D dh thy

* wh which z z zoo

w w witch S sh shed

y y yet Z zh measure

r r right h hh hot

l l light m m might

L el bottle M em bottom

Comparison of Automatic Syllabification Methods 42

Table A4

Phoneme recodings used in this study.

S&R Number of occurrences Two phonemes Recoding

phoneme Example S&R and Wordsmyth Overlap in Fisher in S&R

K seXual 15 10 k + sh k + S

X eXcess 336 263 k + s k + s

Y cUte 959 648 y + uh y + U

eXamine 43 24 g + z g + z

+ memOIr 20 12 w + axr w + R

Comparison of Automatic Syllabification Methods 43

Table A5

Two examples of recoded pronunciations. New phonemes and stress digits are shown in bold.

Initial coding in S&R New coding for Fisher’s system

Pronunciation Stress pattern Without stress With stress

I#@mxn- <examine> 0 < 1 < 0 < < Igz@mxn 0Igz1@m0xn

mEm+-r <memoir> > 1 < 2 < < mEmWRr m1EmW2Rr

Comparison of Automatic Syllabification Methods 44

Table A6

Weight vectors used in the look-up procedure.

Version Left context Focus character Right context

-4 -3 -2 -1 0 +1 +2 +3 +4 +5

1 1

2 1 4

3 4 1

4 1 4 1

5 1 4 16 4

6 4 16 4 1

7 1 4 16 4 1

8 1 4 16 4 2

9 1 4 16 64 16 4 1

10 1 4 16 64 16 5 1

11 1 4 16 64 256 64 17 4

12 4 16 64 256 64 16 4 1

13 4 16 64 256 64 17 4 1

14 16 64 256 1024 256 64 16 4 1

15 16 64 256 1024 256 65 16 4 1

Comparison of Automatic Syllabification Methods 45

Figure Captions

Figure 1. Distribution of the number of syllables per word.

Figure 2. Syllabification results (percentage correct) on S&R in (a) spelling and

(b) pronunciation domains. KEY: Ham1, Hammond 1; Ham2, Hammond 2; SbA,

syllabification by analogy; LU10, look-up table, version 10; LU13, look-up table,

version 13; Ex9, exemplar-based, N = 9; Ex11, exemplar-based, N = 11.

Figure (a). Spelling domain.

Figure (b). Pronunciation domain.

Figure 3. Syllabification results (percentage correct) on Wordsmyth in (a) spelling and

(b) pronunciation domains. KEY: Ham1, Hammond 1; Ham2, Hammond 2; SbA,

syllabification by analogy; LU10, look-up table, version 10; Ex9, exemplar-based, N = 9.

Figure (a). Spelling domain.

Figure (b). Pronunciation domain.

Figure 4. Syllabification results (percentage correct) on Overlap in (a) spelling and

(b) pronunciation domains. KEY: Ham1, Hammond 1; Ham2, Hammond 2; SbA,

syllabification by analogy; LU10, look-up table, version 10; Ex7, exemplar-based, N = 7;

Ex11, exemplar-based, N = 11.

Figure (a). Spelling domain.

Figure (b). Pronunciation domain.

Comparison of Automatic Syllabification Methods, Figure 1

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7

Number of syllables

P
e
rc

e
n

ta
g

e

S&R

Wordsmyth

Overlap

Comparison of Automatic Syllabification Methods, Figure 2

27.55 29.91

77.68

63.97 62.28

77.4390.79

92.79

76.09
74.27

0

10

20

30

40

50

60

70

80

90

100

Ham1 Ham2 SbA LU13 Ex11

A
c
c
u

ra
c
y

(%
)

Juncture

Word

(a) Spelling domain.

54.23 54.14

68.97

88.53
80.2 79.36

89.0494.95

96.02

86.41

77.4778.93

0

10

20

30

40

50

60

70

80

90

100

Fisher Basic OCS OCS/Stress SbA LU10 Ex9

A
c
c
u

ra
c
y

(%
)

Juncture

Word

(b) Pronunciation domain.

Comparison of Automatic Syllabification Methods, Figure 3

30.57 32.49

81.89

68.18
74.14

93.74
92.12

94.37

78.2976.87

0

10

20

30

40

50

60

70

80

90

100

Ham1 Ham2 SbA LU10 Ex9

A
c
c
u

ra
c
y

(%
)

Juncture

Word

(a) Spelling domain.

58.02
52.58

63.37

85.88

75.71
82.9

95.54

93.41

94.87

83.40

75.93

81.34

0

10

20

30

40

50

60

70

80

90

100

Fisher Basic OCS OCS/Stress SbA LU10 Ex9

A
c
c
u

ra
c
y

(%
)

Juncture

Word

(b) Pronunciation domain.

Comparison of Automatic Syllabification Methods, Figure 4

34.17 36.88

85.43

73.53 74.36

93.8093.14

95.39

80.38
78.44

0

10

20

30

40

50

60

70

80

90

100

Ham1 Ham2 SbA LU10 Ex11

A
c
c
u

ra
c
y

(%
)

Juncture

Word

(a) Spelling domain.

63.4 60.9

74.42

91.08
83.66 83.12

95.5695.74
96.82

88.14

79.68
83.54

0

10

20

30

40

50

60

70

80

90

100

Fisher Basic OCS OCS/Stress SbA LU10 Ex7

A
c
c
u

ra
c
y

(%
)

Juncture

Word

(b) Pronunciation domain.

