
System architecture induces document architecture
Peter Henderson, Nishadi De Silva

School of Electronics and Computer Science, University of Southampton
Southampton, UK

p.henderson@ecs.soton.ac.uk, n.desilva@ecs.soton.ac.uk

Abstract

The documentation of an architecture is as important as
the architecture itself. Tasked with communicating the
structure and behaviour of a system and its constituent
components to various stakeholders, the documentation is
not trivial to produce. It becomes even harder in open,
modular systems where components can be replaced and
reused in each progressive build. How should documenta-
tion for such systems be produced and how can it be made
to easily evolve along with the system it describes? We
propose that there is a close mapping between the system
architecture and its documentation. We describe a rela-
tional model for the architecture of open systems, paying
close attention to the property that certain components can
be reused or replaced. We then use ideas from storytelling
and a discourse theory called Rhetorical Structure Theory
(RST) to propose a narrative-based approach to architec-
ture documentation; giving both a generic narrative tem-
plate for component descriptions and a RST-based rela-
tional model for the document architecture. We show how
the two models (system and documentation) map onto each
other and use this mapping to demonstrate how document
fragments can be stored, automatically extracted and col-
lated to closely reflect the system’s architecture.

Keywords
System architecture, documentation, narratives, RST

1. INTRODUCTION
An architecture is the partitioning of a whole into parts
(components), with specific relationships between these
parts [1-3]. There is an increasing need for faster software
development, and much of this is now dependent on modu-
lar architectures with reusable components that allow for
quicker evolution and localised updates [4]. Documenting
the architectures of such evolving systems is not trivial. Of
all the potential stakeholders, we are concerned primarily
with the documentation required by developers who are
charged with evolving the product. So, the question we ask
is - how does one produce documentation for a developer
who has to revise the software and thus use most of its
documentation?
There are various techniques and guidelines on how to
document architectures [1, 5-7]. Our approach, however,
looks at this problem from a narratives perspective based
on the hypothesis that ‘saying it like a story’ improves
document coherence and readability. There are two issues
that need to be considered: each component needs to be

documented well and coherently; and, secondly, these
component descriptions need to be collated in some way to
produce the documentation for a system. For the first, we
argue that a document conveys an implicit narrative (or
story) to the reader, and that fine-tuning this improves the
overall document. We use ideas from Rhetorical Structure
Theory (RST) [8] to study and enhance the coherence of
this implicit narrative (which we call a document narra-
tive or DN) [9]. In this paper, we present a generic DN to
document a component’s structure and behaviour.
To address the second issue, we develop a relational model
for the system architecture (comparable to other relational
models in this field [10]) and a RST-based relational model
for the document architecture, and show how the two map
onto each other. We use this mapping to describe how as-
pects of the system architecture can be used to guide the
structure and sequence of the documentation.
A mapping between the two models as shown here has two
major benefits. Firstly, it allows a database to be created
that can store the architecture details and the set of associ-
ated document fragments. When queried, it is able to return
a narrative-based document that reflects the system archi-
tecture. Better still, it allows documentation to be reused or
replaced where appropriate. Secondly, since there is a
strong correlation between the models, system architects
will be forced to think of the accompanying documentation
from an early stage which will benefit both the system and
the documentation. We conjecture that architectures that
are easier to document using our technique are better archi-
tectures.
The rest of this paper is set out as follows: Section 2 gives
some background information; section 3 introduces the
relational model for the system architecture and a generic
DN for documenting a component; section 4 presents the
RST-based relational model for the documentation and
illustrates the mapping between the two models; in section
5, we demonstrate our ideas using a simple example and
section 6 concludes the paper and discusses future work.

2. BACKGROUND
A significant proportion of a software architect’s time is
spent interacting with stakeholders and communicating the
architecture [11]. A majority of this communication is done
via documentation. Architecture documentation is expected
to cater to three categories of readers: those selecting this
system, those learning to develop typical applications using
this system and those intending to modify its architecture

contains

[6]. The work presented in this paper addresses documenta-
tion targeted at the third category (even though it could be
of use to the first group too).
Because architectures can be so complex, several practitio-
ners and researchers have developed techniques that divide
the documentation into views which help separate the dif-
ferent aspects of the architecture [1, 5, 12]. The documen-
tation is then composed of the relevant views along with
any documentation that applies to more than one view (the
‘glue’ that binds the views together). Similarly, Kruchten
introduced a 4+1 model for an architecture [5] which is a
generic way to describe architecture using five concurrent
views, each addressing a specific set of concerns important
to different stakeholders: the logical view, process view,
physical view, development view and a fifth view that con-
tains use cases or scenarios.
We recognise from these previous approaches that it is im-
possible to capture everything about an architecture in one
document. We, therefore, abstract away from development
and physical details to a much higher level. At this level,
we only focus on descriptions about the software compo-
nents, what they are made up of and how they interact with
other components. We recognise that other audiences may
require other types of documentation but they are beyond
the scope of this paper.
We are also not the first to employ documenting strategies
from another domain in architecture documentation. The
pyramid principle [13], for instance, has been used to
structure architecture documentation [6]. The pyramid
principle is based on structuring the document around de-
veloping a question-answer dialogue with the reader. So,
information is exposed incrementally as answers to ques-
tions that arise in the reader’s mind. Also, storyboarding
has been used to identify requirements and select COTS
components [14]. In this paper, we make use of our previ-
ous work on narrative-based writing [9] and apply it to
architecture documentation. This combination of narratives
and RST in this domain is a novel approach. (A brief in-
troduction to RST is given in section 4 and the features of
narrative-based writing required for this paper are included
where necessary. More can be found in [9].)

3. A RELATIONAL MODEL FOR SOFTWARE
As with most architectural descriptions, the central concept
in our model is a component. A component can either be
atomic or have subcomponents plugged into appropriate
slots1. These subcomponents, in turn, can be made of sub-
subcomponents and so on. This continues until a level is
reached where the components can be considered as ‘black
boxes’ (i.e., it is unnecessary and beyond the scope of the
documentation to dwell deeper into the hierarchy of de-

1 The idea of a ‘slot’ gives us a the flexibility to have multiple subcompo-

nents of the same type plugged into different slots within the same com-
ponent.

composition). This leads us to the first relation in our
model:

contains (container:component, slot, component:component)

Components also have dependencies on other components.
This is, in fact, essential for modular systems where the
behaviour of the whole is only realised when the constitu-
ent components work together. We call this the uses rela-
tion. Component A uses B if A (user) uses an interface
provided by B (service).

uses (user:component, service:component)

A particular benefit with open, modular architectures like
the ones we focus on is that a component can be replaced
by another component if it provides the similar functional-
ity and interfaces. This can happen, for example, when two
suppliers manufacture comparable components leaving the
implementer to pick one depending on other criteria such
as price and reliability. Of course, this option to replace
usually works only in one direction. A superior component
B’ that can perform all the functions of an inferior compo-
nent B (and more) can be used to replace B. However, B
cannot be used in situations where a B’ is required. This
brings about the third relation replaces:

replaces (superior:component, inferior:component)

A diagrammatic representation of the three relations is
shown below.

Fig. 1. Diagrammatic representation of our relational model for
the system architecture

We realise that, when compared to languages such as UML
with numerous relations, our model may appear limited.
However, for the purposes of this paper, the model given
above is sufficient.

4. A RELATIONAL MODEL FOR
DOCUMENTATION
In our previous work, we have researched and developed a
technique called narrative-based writing [9] to improve the
coherence of technical documents such as research propos-
als. The technique required authors to first formulate a
“document narrative” (DN): an explicit précis of what the
authors wanted to convey to the readers in a story-like

replaces

uses

Component

form. The DN is then analysed using a discourse theory
called Rhetorical Structure Theory (RST) [8]. RST helps
add more meaning and supportive reasoning to the DN and
also gives an indication of how well it is structured. The
DN and the corresponding RST analysis are then used to
produce the document. The technique was particularly use-
ful in collaborative writing where multiple authors had
differing opinions about the document’s objectives and
structure.
We use this technique here to compose fragments of docu-
mentation corresponding to the components in the architec-
ture. However, before proceedings, it is necessary to give a
brief overview of RST and how it can be applied to text.

Rhetorical Structure Theory (RST)
RST was developed in 1988 by Mann and Thompson [8].
The theory attributes the coherence of a text to implicit
logical relationships that exist between parts (usually called
segments) of that text. So, for instance, segment A and B
can be involved in a MOTIVATION relationship which
means that segment B provides some information to moti-
vate the action(s) in segment A. In Mann and Thompson’s
original paper, they define 23 such relationships with pre-
cise definitions of the sorts of text that can be involved in
each.
In RST, the segments of text are classified as nuclei or sat-
ellites. Nuclei are considered essential to the understanding
of the text. Satellites provide supporting material to the
nuclei but are not absolutely necessary. Most relationships
exist between a nucleus and a satellite. Returning to the
example of the MOTIVATION relationship before, it can
be illustrated using the diagram below. Note that the arrow
always goes from the satellite to the nucleus.

Fig. 2. A MOTIVATION relationship in RST

Some relationships like SEQUENCE can exist between
more than two segments of equal importance (so, two or
more nuclei). We have briefly described the RST relation-
ships that appear in this paper in Table 1.
In order to do a RST analysis, the first step is to divide the
text into segments. Each segment should have functional
integrity and is often a clause or a sentence. The next step
in a bottom-up analysis is to identify relationships that exist
between pairs of segments. Segments involved in a rela-
tionship can, in turn, become involved in another relation-
ship. Hence, the process is recursive and continues until all
the segments can be assembled into a tree of relationships
called a RS-tree. Mann and Thompson conjecture that if a

RS-tree can be formed involving all the segments, then the
text is coherent. However, if there are non-sequitors or
difficulties producing this tree, then the text may need re-
structuring. This is a valuable guide when evaluating the
structure and coherence of a text [8].

Relationship Description

Background Satellite provides background information to the
nucleus

Elaboration Satellite elaborates the information in the nu-
cleus

Justify Satellite justifies the information presented in
the nucleus

Motivation Satellite motivates the reader to perform the
action in the nucleus

Sequence Multiple nuclei that follow each other in se-
quence

Restatement Satellite is a restatement of the information in
the nucleus

Table 1. The RST relationships used in this paper

A Narrative-based Component Description
We look first at applying the narrative-based writing tech-
nique to describing each component. What we want to end
up with is a generic structure that can be used for all com-
ponents. Bearing in mind that a ‘component’ in our case
can mean anything from a composite system to an atomic
sub-component, some of the key concepts that need to be
conveyed in the documentation are its behaviour, subcom-
ponents (if any), whether it is able to interact with other
components and, if appropriate, brief comparisons to simi-
lar products that are available. However, what is the best
order to place this information in? This is where a DN can
help. Trying to construct a narrative helps identify the natu-
ral sequence to the information and even recognise seg-
ments that are missing. A generic DN for the component
descriptions (divided into 7 segments) is presented below
along with a possible RST analysis of it. We say “a possi-
ble analysis” because it is viable that different analysts will
produce different RS-Trees. The important point is to agree
with the co-authors on the analysis and be able to form a
tree (see Figure 3) which helps gauge the level of coher-
ence of the text.

“[Select component X]1 [because it meets the set requirements and
has some advantages over comparable technologies in the market.]2
[It is also a vast improvement from previous versions.]3 [It can re-
ceive the following instructions and perform the necessary tasks in
response.]4 [The behaviour was grouped as it is done in this compo-
nent for several good reasons.]5 [Furthermore, X can also interact
with other components that it needs to in the following ways to pro-
duce the desired effect.]6 [On closer inspection, X is composed of
multiple subcomponents that, when combined, enable its functional-
ity. These components are x1-xn and they will be described later.]7”

Nucleus: Action to be per-
formed

Satellite: Information to
motivate the performance of
the action in the nucleus.

MOTIVATION

Some parts of the narrative may not apply to all compo-
nents of course. For instance, when describing components
that are not going to be further decomposed, segment 7
about subcomponents is not relevant. Segment 2 is seen to
provide motivation to convince the reader to choose (or
buy) component X in the case where a decision has not yet
been made.
It is worth mentioning that this narrative structure applies
to the body of the document. Additionally, there would be
other sections such as the introduction and conclusions
which are compulsory in most documents. We call the de-
scription of a component adopting this narrative a
FRAGMENT. A fragment is a self-contained description
of an architectural component. Note that a fragment will be
divided into several segments prior to doing a RST analy-
sis. For a structured component, the fragments describing
its contained components will be organised into a narrative
structure where the fragments at the lower level are taken
to be RST segments at the higher level.

A Relational Model for Document Architectures
From the above, we see that, for an architecture involving
many different components at different levels in the hierar-
chy, there will be as many document fragments. For a
document about the architecture, several of these fragments
will need to be placed in a suitable order. Our eventual
target is to develop a system where document fragments
can be automatically extracted according to the architec-
ture. To this end, we have developed a relational model for
the documentation that corresponds to the system architec-
ture. The novelty about this model is that these relations are
also from RST. A fragment is central to our documentation
model. Conceptually, this is similar to the component in the
system architecture model.
Firstly, it needs to be noted that a fragment can be made up
of other fragments. This is similar to the contains relation
in the system architecture except that in the document
model, a fragment’s narrative is composed of other frag-
ments’ narratives. So, the topmost fragment will contain an
description of the system and this is elaborated by frag-
ments about

overview of the system which is expanded by subsequent
fragments (like sub-sections). We equate this to the RST
ELABORATION relationship.
elaboration (fragment, fragment)

For components at the same level, the corresponding frag-
ments need to be presented in an appropriate sequence. We
propose using the uses relationship from the system archi-
tecture to determine the sequence. So, if component A uses
component B, then we propose that the most suitable way
to document it is to make fragment(A) appear before frag-
ment(B). We call this second relationship SEQUENCE
(also a RST relationship). We need to break loops in the
uses relation by a suitable forward-reference mechanism.
We recognise that even then the uses relation is only a par-
tial order, but it seems not to matter which order unrelated
fragments appear, as long as all the descriptions of the
components that use them appear first.
sequence (fragment, fragment)

If components can be replaced by other components, it
must be the case that the corresponding fragments can be
replaced too. However, it is important to note that the re-
placement of document fragments works in the opposite
direction to the replaces in the system architecture. Say, for
instance, a newer component A’ with more functionality is
used to replace component A in a build. However, if frag-
ment(A’) is not yet ready, it is still possible to use frag-
ment(A) in this case because only the capabilities of A are
expected and realised. However, fragment(A) cannot be
used in an instance where A’ is required because it will not
describe the extended functionality. The closest relation-
ship in RST for this is RESTATEMENT. In RST, this
means that one segment says the same thing as another in a
different way.

restatement (fragment, fragment)

3: It is also a vast
improvement from
previous versions.

Background

4-7

Elaboration

4: It can receive the
following instructions
and perform the
necessary tasks in
response.

Sequence
5: The behaviour
was grouped as it is
done in this
component for
several good
reasons.

Justify

6: Furthermore, X can
also interact with
other components
that it needs to in the
following ways to
produce the desired
effect.

Sequence
7: On closer
inspection, X is
composed of multiple
subcomponents that,
when combined,
enable its
functionality. These
components are
x1-xn and they will be
described later.

Sequence

1: Select component
X

2: because it meets
the set requirements
and has some
advantages over
comparable
technologies in the
market.

Motivation

Fig. 3. A possible RST analysis of the generic DN above

The figure above shows the mapping between the system
architecture model and the document architecture model.

5. A SIMPLE EXAMPLE
We demonstrate the storage and extraction of document
fragments using a simple example of a toaster T. T is made
up of two subcomponents: the heating element (H) and the
control module (C) which instructs H to start heating when
the lever is pushed (thus, C uses H). Furthermore, H has a
sub-subcomponent M, the timer.

Toaster (T)
Heating element (H)

Timer (M)

Control (C)

Toaster (T)
Heating element (H)

Timer (M)

Control (C)

Fig. 5. A simple toaster T

Additionally, we know that a newer version of C, C’, that
can respond to changes in the ‘browning level’ made by the
user can replace C. Similarly H’ is more advanced and can
vary the time of heat depending on the browning level.
This information can be recorded using relational tables:

contains

container slot component

T h H

T c C

H m M

uses

user service

C H

replaces

superior inferior

C’ C

H’ H

A sample document fragment structured according to the
DN in Fig 3 for the toaster T is shown below:

T is a basic toaster that can detect when the user has pressed down
the lever and start heating the toast for a set time. Once this time
has passed, the heating is switched off and the lever returned to its
original position. T is composed of two subcomponents: the heat-
ing element (H) and the control module (C). These will be de-
scribed later in the document.

Similar fragments exist for all the components except C’
and H’. However, this does not affect the documentation
for T which will have the fragments in the order shown
below:

Another build of T (T’) is made but since component C is
not available it is replaced by C’. Fragment(C’) does not
exist but since only the functionality of C will be realised
in this build, the documentation can remain unchanged.

A third build is now made based on T’ (T’’) which has H’
instead of H. However, this time the fragment C cannot be
used to describe C’ since the additional functionality can
now be used because the heating element is able to deal
with temperature (browning) changes. Hence, the docu-
mentation cannot be completed until fragment(C’) and
fragment(H’) are ready.
With a data model as the one shown, it is possible to de-
termine whether all the fragments are available to produce
documentation for a given build. For a simple example like
this toaster, this may seem trivial. However, for large sys-
tems with hundreds of components where the documenta-
tion is received from many sources, the searching of frag-
ments and generation of documentation becomes corre-
spondingly hard.

6. CONCLUSIONS AND FUTURE WORK
Previously, we have worked on architectures and software
reuse [15, 16], and more recently on the structure of tech-
nical documentation [9, 17]. In this paper we have brought
these two strands of research together.

fragment (T)
 fragment (C)
 fragment (H)
 fragment(M)

restatement replaces

uses contains

Component

sequence elaboration

Fragment

The hierarchical structure is
obtained by the contains
relation and the sequence
from uses relation.

Fig. 4. The mapping between the system architecture model (left) and the document architecture model (right)

As future work, we will investigate the relevance of this
documentation model in different varieties of system evolu-
tion. So far we have only studied the case where the com-
ponents in a system become progressively more advanced.
Other changes include re-factoring the system functionality
(logically related components can be grouped to form one,
say) and the production of a family of products that are
based on a common core [4]. Is it then the case that the
author starts with a core document that is relevant to all the
products and extends it to fit each product?
The data model in this paper has also been implemented so
that we are able to carry out further experiments with real
systems.
Just as software components are reused to increase produc-
tivity, document fragments should also be reused. How-
ever, traditional documentation does not lend itself very
well to reuse [18]. In order to reuse a component, one has
to understand its functionality and how it can be used in a
specific context. We cater for this requirement by arguing
that successful reuse can be achieved by defining a com-
mon structure, extracting common information and extend-
ing current documentation.
Producing high-quality documentation is a complex task. It
should ideally parallel the development of the artefact [19]
and can benefit from reflecting the structure of the system
being described [20]. We have shown that there is a strong
mapping between the system architecture and the way in
which its documentation is composed and thought about.
We believe this will improve the quality of both the archi-
tecture and the documentation, and increase the extent to
which both can be reused.

REFERENCES
1. Clements, P., et al., Documenting Software Architec-

tures: Views and Beyond. 2003: Pearson Education.
2. IEEE, ANSI/IEEE Standard 1471-2000: Recommended

practice for architectural description of software-
intensive systems". (Available online at
http://ieeexplore.ieee.org/servlet/opac?punumber=4278
470; last accessed 5.3.2008).

3. Garlan, D. and M. Shaw, An Introduction to Software
Architecture. Advances in Software Engineering and
Knowledge Engineering, 1993. 1.

4. Müller, J.K., The Building Block Method: Component-
based Architectural Design for Large Software-
intensive Product Families. 2003, Universiteit van Am-
sterdam.

5. Kruchten, P.B., The 4+1 View Model of architecture.
Software, IEEE, 1995. 12(6): p. 42-50.

6. Meusel, M., K. Czarnecki, and W. Köpf, A model for
structuring user documentation of object-oriented
frameworks using patterns and hypertext in ECOOP'97

— Object-Oriented Programming. 1997, Springer Ber-
lin / Heidelberg.

7. Gatzemeier, F., Patterns, Schemata, and Types—Author
Support Through Formalized Experience. 2000. p. 27–
40.

8. Mann, W. and S. Thompson, Rhetorical Structure The-
ory: Toward a functional theory of text organisation.
Text, 1988. 8(3): p. 243-281.

9. De-Silva, N. and P. Henderson. Narrative-based writ-
ing for coherent technical documents. in ACM Special
Interest Group on the Design of Communication. 2007.
El Paso, Texas, USA.

10. Holt, R., Binary Relational Algebra Applied to Software
Architecture, in CSRI Tech Report 345. 1996, Univer-
sity of Toronto, Canada.

11. Kruchten, P., What do software architects do?, in
Available online at
http://www.sei.cmu.edu/architecture/what_architects_d
o.pdf. 2006.

12. Soni, D., R.L. Nord, and C. Hofmeister. Software archi-
tecture in industrial applications. in 17th International
Conference on Software Engineering (ICSE). 1995. Se-
attle, USA: ACM Press New York, NY, USA.

13. Minto, B., The pyramid principle. 3rd ed. 2002, UK:
Pearson Education Limited.

14. Gregor, S., J. Hutson, and C. Oresky. Storyboard Proc-
ess to Assist in Requirements Verification and Adapta-
tion to Capabilities Inherent in COTS. in First interna-
tional conference on COTS-Based Software Systems
(ICCBSS 2002). 2002. Orlando, USA: Springer.

15. Henderson, P. Laws for Dynamic Systems. in Interna-
tional Conference on Software Re-Use (ICSR 98). 1998.
Canada: IEEE Computer Society.

16. Henderson, P. and J. Yang. Reusable Web Services. in
8th International Conference on Software Reuse (ICSR
2004). 2004. Spain: IEEE Computer Society.

17. De-Silva, N., A narrative-based collaborative writing
tool for constructing coherent technical documents, in
School of Electronics and Computer Science. 2007,
University of Southampton: Southampton, UK.

18. Sametinger, J. Reuse documentation and documentation
reuse. in TOOLS 19: Technology of Object-Oriented
Languages and Systems. 1996. Paris, France: Prentice
Hall.

19. Priestley, M. and M.H. Utt, A unified process for soft-
ware and documentation development, in Proceedings
of the 18th annual ACM international conference on
Computer documentation: technology & teamwork
2000, IEEE Educational Activities Department: Cam-
bridge, Massachusetts. p. 221-238.

20. Sametinger, J., Object-oriented documentation. ACM
Journal of Computer Documentation, 1994. 18(1): p. 3-
14.

