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Abstract—In this paper we consider the problem of max- performance of the network is dependent not only on the duty
imising the efficiency of a sensor network deployed for wide- cycles of the individual sensors, but also on the interastio
area surveillance, by coordinating of the sense/sleep schedules OBetween these sensors. For example, within the ‘Adaptive

power constrained energy-harvesting sensor nodes. We propas , - . .
formal model of the wide-area surveillance problem that we face, Energy-Aware Sensor Network’ project that motivates this

and theoretically analyse the performance of a sensor network WOrk, we aim to use energy-harvesting sensor nodes within a
(i.e. the probability that an event within the environment is wide-area surveillance application in which events odogrr

detected) in the case of (i) continuously powered, (i) randomly in the environment should be detected by sensors randomly
coordinated, and (iii) optimal coordinated sensors. We show that deployed across a wide geographical area. Such deployments

coordinating the sense/sleep schedules of the sensors can vyield ? icall hibit redund hereb ltiol nsor n
significant increase in the performance of the network. Hence, ypically exnhibit redundancy whereby mulliple Sensors ca

we demonstrate that we can appropriately decompose the system observe the same portion of the environment. Thus, in ooder t
wide goal of maximising the probability that events are detected, maximise the efficiency of the sensor network (i.e. to magémi

in order that we can optimise it using generic decentralised agent- the probability with which events are detected), the iralnal
based coordination algorithms (specifically, one based on the sensors must not only control their own duty cycles (to

max-sum algorithm) that use only local communication and com- tisfv their own individual ener nstraints). but maiso
putation. We empirically evaluate our approach in a simulated Satsfy their o ual energy constraints), but ma

environment and show that this decentralised algorithm is able to Coordinate with neighbouring sensors (since energy isesast
successfully coordinate the sense/sleep schedule of sensors, whilwvhen multiple sensors are actively sensing the same area at

attaining results close to the theoretically indicated optimum. the same time). Furthermore, due to the random deployment
of such sensors, and the fact that no single point has coenplet
information regarding the position or state of each senbd,
The availability of small battery-powered wireless desgitieat coordination can not be performedpriori, nor in a centralised
can be deployed in the environment to acquire and integrat@mputation, but must be performed in a decentralised nranne
information opens the field to the use of wireless sensby the sensors themselves post deployment.
networks for applications such as rescue robotics [1], wide In the light of these requirements, a number of researchers
area surveillance [2] and environmental phenomena menitbiave begun to tackle the challenge of coordinating the
ing [3]. A key challenge for the successful deployment afense/sleep cycles of sensors within wireless sensor retwo
such networks is to provide the individual sensors with tHeor example, Hsin and Liu consider coordinating the duty
capability to perform efficient power management in ordet thcycles of non-energy harvesting sensors in order to mairtai
they can meet the system wide requirements of maximisingnimum probability of event detection while maximisingeth
the lifetime of the sensor network while also collecting théfetime of the individual sensors [6]. Giusti et al. considhe
maximum information possible. problem of coordinating the wake-up time of energy-neutral
To this end, recent work has begun to address the challersgmsors, but do not explicitly consider the degree to whieh t
of extending the lifetime of individual sensors by givinggth sensing areas of neighbouring sensors overlap [7]. Coglyers
the capability to harvest energy from their local environine Kumar et al. explicitly deal with the expected overlap of
ideally using multiple sources such as solar cells or mieno-g neighbouring sensors in a setting where each individuatteve
erators that can exploit vibrational energy or small terapge  must be detected by at leakt sensors in order that it is
differences in combination [4]. Further work has shown thadentified correctly, but they do not provide a coordination
when equipped with sufficient energy harvesting resourcesechanism. Rather, they provide guidance as to the number
and the ability to model and predict future energy usage aofl sensors that should be deployed to achieve a specified
harvesting, such sensors may then control their duty cydegree of performance in the absence of any coordination
(effectively switching between active sensing modes amd lo[8]. Unfortunately, this earlier work does not address the
power sleep modes) in order to operate inesergy neutral specific wide-area surveillance problem that faces us laeic,
mode, and hence, exhibit unlimited lifetime [5]. furthermore, the coordination approaches that are pregeme
However, in many application scenarios, the system wigoblem specific and do not necessarily generalise to other

I. INTRODUCTION



settings. able to successfully coordinate the sensors through decen-
In contrast, in this paper we propose an agent-based ap- tralised communication and computation, while attaining
proach to satisfy local power management constraints while results very close to the optimal.

also addressing system wide performance goals. In doing $fie remainder of this paper is structured as following: in
we are able to exploit the extensive literature concermni®y tsection |1 we describe our formal model, before analysing it
decentralised coordination of agent-based systems. fBpegheoretically in section 11l In section IV we introduce our

cally, we consider each sensor to be represented by an agg¥nt-based coordination framework, and in section V we

the sense/sleep schedule of the sensor, and we decompos%lﬁﬁ%mpirical evaluations, and conclude in section VII.

system wide performance goal into individual utility fuiocts
for each agent, such that maximising the sum of these utility Il. WIDE-AREA SURVEILLANCE PROBLEM

functions will also maximise the system wide goal. . . :
: . ; We now describe the formal model of the wide-area surveil-
Given this problem representation we can then apply geneyic

agent-based coordination approaches to optimise thayutili hice problem that we address in this paper. We assume that

of the system in a decentralised way. In particular, we us%umple sensors are deployed according to a Poisson [soces

. S - with rate per unit area, (i.e. within a unit area we expect to

the max-sum algorithm, a general coordination mechani . . .
. . . - ind \, sensors). Each sensor has a circular sensing radius,

which was proposed as a suitable solution for distributed . : . . o
and is tasked with detecting transient events within its

coordination in [9]. The max-sum algorithm allows agents to & . . .
optimise a decomposable global function through distabut >=">""9 radius. We make no assumptions regarding the sroces

. L : ! Pey which events occér and we consider a general case in
local computation and communication. The algorithm is able . L 9 .
which events may have a limited duration in which they

to compute solutions very close to the optimal, exhibitsva lo . S .
message overhead, is extremely robust to message faimes remain dgtectable after their |_n|t|al.appearance. We deescr
' ’Hus duration by an exponential distributforsuch that the

is capable of being deployed on low-power sensing devides [Brobability of an event lasting timeis Age—>at,

This paper builds on results obtained in [9], applying th Wi that th ble 1o h ¢
max-sum algorithm for coordinating the sense/sleep cytle € assume fhat the sensors are able to harvest energy

sensors deployed for event detection. More specifically, Vﬁé)m"tfxl{hlor(;altent;/ |r0nr\r,1ver:t, dbUtr?ttina r"l"lte En‘?‘t IS 'tnsﬁﬁm:t'i?n
make the following contribution to the state of the art: 0 alo em 10 be powered continually. Thus at any time
a sensor can be in one of two states: either sensing or

» We propose a formal mode_l of the W|c_je area survelllan%?eepmg. In the sensing state the sensor consumes energy at
problem that we face. This model incorporates an ad . . : ;

: _a constant rate, and is able to interact with the surrounding

hoc deployment of energy-neutral sensors using a fixed . . R -
eg}/lronment (e.g. it can detect events within its sensingusa

sense/sleep schedule, and we model the deployment : i
. . Pd communicate with other sensors). In the sleep state the
sensors, and the duration for which events are detectable . i : :

. . senhsor can not interact with the environment but it consumes
as generic Poisson processes.

. egligible energy. To maintain energy-neutral operatiammg
» We theoretically analyse the performance of the netwoﬂ%us exhibit an unlimited lifetime, sensors adopt a dutyleyc

'Cno(;?;n(;?:g O;ng) (ﬁsngntl:r?]:?lly fgg‘:g:ﬁg{eg')sgggznl?(/vhereby within discrete time slots they switch betweendhes
! P y ' o states according to a fixed schedule of lengthVe denote
order to give a theoretical upper bound on the perf

of . ; ;

. L . . h hedule of sensar vectors; = {sg,...,s)

mance gain that coordination could potentially yield. In a Eefgsied; e{(;n 1?;}% :Z_y f 1e?n3is;ites Eﬁg& Se’n‘zLOTrlii
k » LS k=

specific example we show that the optimally coordinated | . . o
sensors detect 50% of the events that the random'?y'ts active sensing state during time slo{and conversely,

. . is sleeping whersj, = 0). We assume that this schedule is

coordinated sensors fails to detect, or conversely, the : - . . .

. . . epeated indefinitely, and here we consider schedules iohwhi
optimally coordinated sensors are able to achieve t

: Yo sk =1 (i.e. the sensor is in its sense state for one of
same level of performance as the randomly coordinatéd?=9 . i
o . time slots, and in a sleep state for all other time slots).
sensors using just 60% of their number.
o« We sh_ow how we can appr(_)prlately_ decompose the Sys- 1. THEORETICAL ANALYSIS
tem wide goal that we face in our wide-area surveillance ) ]
problem (that of maximising the probability that an everfgiven the model described above,. we can Fheoretlcally aealy.
is detected) into individual agent utility functions. Henc the performance of the network in three important cases, in
we show that given this decomposition, we can apply ifder to calculate an upper bound on the performance gain
max-sum algorithm to optimise this system wide godhat results from coordination:
th_mUQh local calculation and mes_sage _passmg. . 1The use of Poisson processes to describe these events is comithion
« Finally, we evaluate our approach in a simulated envirofre literature, and represents a generic, non-domain specifdel [6].
ment. We benchmark the max-sum algorithm against two?Our model is independent of assumptions regarding the pragessich
other coordination mechanisms (a centralised imp|eme(w_ent occur, and is not limited to those uniformly distribuitedpace or time,
. . . . .as long as we have no prior belief as to when and where eventontay.
tat_mn of simulated annealing, and a decentralised swiqu_ 3This exponentially distributed duration naturally arisesm a Poisson
using local best response). We show that max-sum décess that describes the departure or disappearance efi¢ints.
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1) Continuously Powered Sensors n('i 0 n :é )n -1
We initially ignore the energy constraints of the sensors |
and assume that they remain in their sensing state l l
continuously. This represents an absolute upper bound s={1001y T Y [
on the performance of the network. ss ={1,0,0,0} [ |

2) Randomly Coordinated Sensors 1
We assume that the sensors are indeed limited to sensing s2={0,0,0,1}
for just one in everyL time slots, and that the choice ~ s1 = {1,0,0,0}

of which time slot to use is made randomly by each - one time period
individual sensor with no coordination with nearby
sSensors Fig. 1. Example showing the effective schedule for an aregféia within

. . the sensing radius of three sensors with sensing schedules andss.
3) Optimally Coordinated Sensors

As above we again consider sensors limited to sensin(f; ) ) .
for just one in everyL time slots, but we consider © détecting the event i¢ whenn = 0, and is given by

. . . /L n/L— _ e Man/Lp
that they are able to optimally coordinate the choick Jo e /P~ 0dt = &=L (e*/F — 1) whenn > 1.

. . a -
of sensing time slot with neighbouring sensors whodgdaure 1 illustrates both cases for an area that falls withe
sensing radius overlaps with their own. sensing radius of three sensors with sensing schedyles

In each case, we calculate the efficiendy, of the sensor ands?,. ) ) ,
network; expressed as the probability that any event thatrsc 1 1S result is used in Algorithm 1 to calculate the prob-

within the environment is indeed detected by the network. ability that an an event is detected if it occurs within an
area whose sensing schedule is described by the vector

A. Continuously Powered Sensors s = {sp,...,s.—1}. Note that as\; increases (such that the

If we assume that the sensors remain continuously in th&ifents become increasingly transient), then the probylofi
sense state then an event will be detected if it occurs witten detection decreases toward only detecting the event dthing
sensing radius of at least one sensor. Given the Poissoagzo€ycle in which the sensor is in its sense state. Conversely,
that describes the deployment of sensors, the probaHiléty &S Ad decreases toward zero (such that the events become
an event falls within the sensing radiusef sensors is given increasingly long lived), then the probability of detectithe

by (A,mr2)™me=*7* /m!. Thus, an event to be detected in alfvent approaches one.

cases thatn > 0, and thus, the efficiency is given by: We can then use this result to calculate the probability
of detecting an event assuming that each sensor individuall

FEcontinuous= selects one of thd. time slots in which to sense. We do
Clearly, increasing either the density of the sendor,or the SO Py summing over the probabilities that any point in the
sensing radius of the sensors,ncreases the probability with €nvironment is within the sensing radius of sensors, and

2
1— ef/\57rr

which events are detected. that the sensing schedules of thesesensors combine to
. give any of the2” possible sensing schedules (denotedShy
B. Randomly Coordinated Sensors In the latter case, the probability of any sensing schedyle,

In order to calculate the efficiency of the network when senscrising from the combination af. individual schedules, each
are energy constrained, and use a sensing schedule in wisithength L with a single active sensing time slot, is given
one time slot is independently randomly selected for sepsiy >, _o(—=1)*(})(n — k)™ /L™, wheren is the number of
we first consider the more general case of an area that faignsing time slots in the combined schefulglgorithm 2
within the sensing radius of multiple sensors. The effectishows this calculation in pseudo-code.

sensing schedule of this area is simply given by the logical

OR of the schedules of each individual sensor and is destrit@. Optimally Coordinated Sensors

by the vectors = {sq,...,s5—1}. An event will be detected _ )
within this area, if (i) it occurs while one of the sensors i§inally, we can calculate an upper bound for the effectisene
currently in its sense state, or (i) if it occurs when all sers of coordination between sensors. To do so, we assume that if

are sleeping, but is still detectable when one sensor sty Pointin the environment is within the sensing radius of
sensing again. m sensors, then these sensors are able to perfectly co@dinat

Given the exponential distribution for the time during whic their sensing schedules in order to maximise the probgbilit
an event remains detectable after its initial occurrenbe, ttha_lt an event is detected ‘?‘t, this point. This reprgsents a
probability of an event being detectable after time given strict upper bound on the eff|C|enc_y O_f the _network,. since we
by [ M\e=*47dr = e~ Thus, if we consider that an ignore the real constraints on achieving this coordinat@m

event occurs within any specific time slot, and defineas

the number of time slots until one of the sensors is again4N°te that the numerator in this expression is a standardtieguiobability
theory regarding the number of ways in whighballs may be placed intd

In its sensing state (Wh_em = 0 indicates that one of the_ cups such that exactly of them are not empty, and the denominator is the
sensors is currently in its sense state), then the probabiliotal number of ways in whichn balls may be placed if. cups.



Algorithm 1 P(detectiof)\y, s) Sensor Network EfficiencyE)

1: value — 0 1= ' ' ' ! : :

2 fori=0to L —1do
n+«—0;j«—1
while s; =0 do 0.75!

j—modj+1,L)n—n+1
end while
if n =0 then

value «— value + 1/L 0.5}
else e — continuous
10: value — value + e~ an/L (e*d/L - 1) /A e - - -optimal
11:  endif S-- random

: 0.25L:
12:end for 10 15 20 25 30 35 40 45 50
13: return wvalue
Sensor DensityXs)

Algorithm 2 E YN Fig. 2.  Theoretical results showing sensor network efficyefor three
9 randon{ As; Ad, 7 L) different coordination cased.(= 4, »r = 0.2 and \q >> 1/L.)

1: value «<— 0
2: for m =1 to co do

3 P(m) = (Asmr2)™e 2™ /] sense for 1 in every 4 time slots (.. = 4), and the

4 forsesdo departure rate of events is much greater thah (i.e. events

> "= kg S are very short lived) The plot shows the efficiency of

6: ifn<m then y P . y

7 _ Dk (™) (n— k) /Lm the network when all sensors are continuously sensing (the

: = oD () =R/

8: mlue — value + P(m) x P(s) x P(detectiofy, s) absolute upper bound on performance), when they randomly

9: end if coordinate their sense/sleep cycles, and when they cadedin

1‘1’5 eng?grfor their sense/sleep cycles optimally. Clearly, as the dgosithe

12 return value sensor deployment),, increases then the overall efficiency
of the network increases, and in the limit, all events that

Algorithm 3 Eoptmal(As, Aa, 7, L) occur W|th|n_ the enwronr_‘nent are detected. Furthermortg no

IR A that the optimally coordinated network always out performs

2t for m = 1 to oo do the randomly coordinated network, and as the density of

3. P(m) = (Asmr2) e 2™ I the deployment increases, the gain increases. Indeedjsin th

4: if m < L then ; i

e value — value + P(m) x P(detectiomg,s. |) example, whem\; > 35 the optimally coordinated r_1etwork

6 else ' detects 50% of the events that the randomly coordinated net-

7: value — value + P(m) work fails to detect, or conversely, the optimally coordath

8: endif network is able to achieve the same level of performanceeas th

9: end for . L

10" return  value randomly coordinated network with just 60% of the sensors

deployed. Similar results are observed for other valueg,of
with coordination having great potential benefitiasicreases.

any given sensor network configurattoriThus, if m > L

we assume that the area is continually sensed, and when
1 < m < L we assume an optimal sensing scheduldhe above results indicate that significant gains can bésesal
sy, 1, that can be automatically derived through exhausti¥grough coordination in this setting. However, they do not
search using algorithm 1, or more simply, by noting thdedicate whether or not these gains can be achieved using
the detection probability is maximised when the schedufe decentralised coordination mechanism. In previous work,
containsm sensed time slots that are maximally separated. Fé@main specific solutions have been proposed to address
example, ifL = 4, thens} , = {1,0,0,0}, s5 , = {1,0,1,0}  similar problems [6], [7], [8]. However, here we advocate a
ands;, = {1,1,1,0}. Algorithm 3 shows this calculation, general agent based approach to satisfy local constrahits w
and in Section VI we show that a centralised solution t@lso addressing system wide performance goals.

the optimisation of the sensor network does in fact closely We first note that since sensors can not communicate
approximate this upper bound. when they are in sleep mode, a natural way to address the
) coordination problem is to have an initial negotiation has

D. Network Performance Comparison in which all the sensors are active, and exchange messages to
Using the three theoretical results presented in this@eete devise a sense/sleep schedule that they will maintain foed fi

can calculate the maximum gain in system wide performangge [7]. This negotiation phase can be repeated to account

that coordination may yield. Figure 2 shows an example @r possible sensor failures or topology changes. Howefer,
this calculation in the case that sensors may only actively
6As discussed in Section llI-B, this represents the lowertliafi perfor-
SNote that this is equivalent to the statement that zero ciagha strict mance of the network, where events are very short lived, andoody be
lower bound for solutions to a graph colouring problem, evesugh in any detected if a sensor is in its active sensing state when et @ccurs. It also
specific problem instance may not be colourable. represents the case where coordination can have the mo#tcsighimpact.

IV. AGENT BASED COORDINATION
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Fig. 3. Diagram showing (a) the position of three sensorhiéenvironment, (b) the resulting factor graph with agengsegenting each sensors, and (c)
subset of the messages exchanged over the factor graph beimgaix-sum algorithm.

frequency with which the negotiation phase is repeated willhich other agents’ sensing radii overlap with that of agent
be problem specific, and thus, we do not address it here. (again from Figure 3(a) we hawd; = {2}, N, = {1,3} and
Hence, to apply agent-based coordination techniqueswitiiN; = {2}) andk is any subset olN; (including the empty
this negotiation phase, we must first decompose the systset). A;;,ux is the area that is overlapped only by ageand
wide goal that we face (that of maximising the probabilitgtth those agents ik. For example, with respect to Figure 3(a),
an event is detected) into individual agent utility funosoWe the aready, , is the area that is sensed only by agentnd
can then directly apply a number of algorithms that seek fo
maximise the sum of the utilities of all agents in the system, We define a functionG : 2* — S such thatG(x ;i)
through local computation and communication. is the combined sensing schedule of ageanhd those agents
To this end, we represent each sensor as an agent, andiglée (calculated through the logical ‘OR’ of each individual
compose this agent into a function and a variable that reptesschedule, as shown in Figure 1). The utility of agért then
its state and utility. The utility of any agent represents thgiven by:
probability that it will detect an event within the enviroent,
and the state Qf the agent € X represents the sense/_sleep U(x;) = Z A.{i}uk % P(detectioy, G(xyi)) (3)
schedule that it has selected. The utility of the agent is thu e, i VK|
dependent on its own state, and also on the state of the B
agents that represent neighbouring sensors whose seasling Where P(detectiom\s, G(x;yuk)) is given by Algorithm 1.
overlap with its own. Such interactions can conveniently H¥ote, that we scale the area by the number of agents who can
represented as factor graphcontaining variable (state) andsense it to avoid double-counting areas which are repregent
function (utility) nodes [9]. Figures 3(a) and 3(b) show aRy multiple sensors. Also, note that when the ket empty
example of this decomposition in which three sens¢i%,, We consider the area covered only by the single sensor.
Sa2, S3}, are represented by three agdmt;, Az, A3} with
utilities {U;, Uz, Us} and stateqxzq, 22, x3}.
Now, given a seiN of agents (sensors) that form a sensor V. THE MAX-SUM APPROACH TOCOORDINATION
network, each of which can select a state from a discretef Set@ e yocomposition described above is very general, and in
options (equivalent to selecting a sensing schedule), oaf gpractice, we can now apply any agent-based decentralised

IS to f|fndh the.lc.)ptlmafl itate of ea_ch age-m*-,, S;_Ch that the coordination algorithm to determine the individual seskssp
sum of the utilities of the agents Is maximised: schedules that maximise the sum of the agents’ ultilities.

N In this paper, we use a message passing technique based
x" = arg m)?XZUi(Xi) (2) upon the max-sum algorithm. The rationale for this choice
i=1 is that this technique represents an ideal combination of

wherex; is a vector representing the states of all the ageritee best features of complete algorithms and approximate
that determine the utility of agemt For example, from Figure stochastic algorithms. It can make efficient use of constai
3(b) we havex; = {x1,22}, xo = {z1,22,23} andxs = computational and communication resources, and yet it is
{z2,23}. able to effectively represent and communicate compleiyutil
The utility of each agent is determined by its ownelationships through the network and attain close to ogitim
sense/sleep schedule, and by those of agents whose sersihgfions. Such message passing techniques are widely used
radii overlap with its own. This can easily be determinedithin graphical model for belief propagation [10], [11hc
by each agent assuming that it knows the relative positiotite max-sum algorithm has previously been demonstrated to
of these other agents (a strong assumption common in fmeduce decentralised solution to graph colouring problem
literature [6], and one that we intend to relax in our futuréa canonical coordination problem very similar to that vihic
work). Thus, we definéN,; to be a set of indexes indicatingfaces us here) that are close to the optimal. The algorithsn ha



a low communication overhead, is robust to message fajluresessagey»_.3(z2) is given by:
and has been demonstrated on low-power devices [9].
The max-sum algorithm operates directly on the factor G23(72) = Z Tr—2(22)
graph representation of the global function to be optimised REM:\3
(as shown in Figure 3(b)). When this graph is cycle fre€onsidering that in our casé, \ 3 = {1,2}, then we can
the algorithm is guaranteed to converge to the global optimexpand the summation to obtain:
solution of the welfare maximisation problem (i.e. it findiet
combination of states that maximises the sum of the agents’ G2-3(22) = T11-2(22) + r2—2(22)

utilities). When applied to cyclic graphs (as is the case hergherefore, for variable to function messages each agest onl
there is no guarantee of convergence but extensive enlipiriggeds to aggregate the information received from all the
evidence demonstrates that this family of algorithms geeer nejghbouring functions, without considering the receioér
very good approximate solutions [10], [11]. the message (i.e. function node of agent 3 in our case). The
The max-sum algorithm solves this problem in @&ggregation is performed simply by summing the messages.
decentralised manner by specifying messages that shouldNagice that messages in the max-sum algorithms are not
passed from variable to function nodes, and from function t@lues, but functions. In our case, since the agents have a
variable nodes. These messages are defined as: discrete variable state, we represent each message asoa vect
with d components where is the number of states the variable
can take on. When we consider a sensing schedule of ldngth
such thatzﬁ;g st = 1, we consider that there ate discrete
Gi—j(@i) = a5 + Z rh—i(:) (4) possible schedules (each corresponding to the time slot in
keEM;\j which the sensor is actively sensing), and thds= L. In
where «;; is a scaler chosen such that more complex setting, with heterogeneous sensing schedule
EIi ¢i—j(r;) = 0, and M; is a vector of function across sensors, we can simply use a more complex mapping
indexes, indicating which function nodes are connected between the state and the schedule.
to variable node. As for the message,_.; (x1) from Equation 5 we have:

From variable to function:

From function to variable:
ra—1(z1) = max | Up(xz) + > aea(k)

x2\ kEN2\1
risi(w) =max |U;(x5) + > ae—j(ar)|  (5)

x;\i b and considering that in our case; \ 1 = {2,3} and that
i\t

xo \ 1 = {x2, 23} we then have:

where, NV is a vector of variable indexes, indicating

which variable nodes are connected to function ngde 21 (@) = hax [Ua(21, 22, 3) + ga—2(22) + g3-2(23)]

andx;\i = tk e N\ i} , ,
X\ = {2 i\ Therefore, for function to variable messages each agent

At any time during the propagation of these messages, ag@ﬁﬁds to maximise a function which results from the summa-

i is able to calculate the marginal function,(z;), from the tion of its utility and the messages received from neightmgur
messages flowing into agefis variable node: variables. The maximisation step is the one that requira® mo

computational effort. Since the variables are discretecare
perform this maximisation step simply computing the above
zi(zi) = Z rj—i(2:) (6)  function for all the possible values of the argument of the
JEN message (i.er; in our sample message) maximising over all
the possible combination of the variables that are the aegiim
Then by computingarg max,, z;(;), each individual agent of the maximisation (i.ez» and x5 in our sample message).
is able to determine which state it should adopt such thgbte that this computation is exponential only in the nundfer
the sum of the agents’ utilities is maximised. Note thateighbours. This is typically much less than the total numbe
although the max-sum algorithm is approximating a globak agents within the system, and thus the algorithm scaldis we
optimisation problem (in this case the coordination of sensas the number of agents is increased.
sense/sleep schedules) it involves only local commuminati  The messages described above may be randomly initialised,
and computation. and then updated whenever an agent receives an updated
Figure 3(c) shows a subset of the messages for the faatoessage from a neighbouring agent; there is no need for a
graph of Figure 3b. To better illustrate the functioning loé t strict ordering or synchronisation of the messages. Intewidi
max-sum algorithm we can consider the computation ofthe calculation of the marginal function shown in Equation
sample variable to function message,.3;(x2), and a sample 6 can be performed at any time (using the most recent
function to variable message,_.1(x1). For ease of exposition messages received), and thus, agents have a continuously
we ignore the scalerwys; and then using Equation 4 theupdated estimate of their optimum state. In our application
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Fig. 4. Coverage value against lambda where 0.20, A\; = 20 varying L (from 2 to 4), and the update model (sequential or simultajeous

scenario, this is not necessary, and we continue to propagat
messages throughout the initial negotiation phase, ana the
compute the optimum state.

As for communication overhead, the max-sum exchanges
messages of fixed size, where the size of each message B)
dependent on the domain of the varidbl@he number of

message indicating their preferred sense/sleep schedule,
and this preferred schedule is calculated to be the best
response to that of the overlapping sensors (based on
earlier messages received from these sensors).
Centralised Simulated Annealing Rather than perform
decentralised optimisation, we implement a centralised

messages that the agents need to exchange increases only version of simulated annealing. This algorithm has com-

linearly with the number of neighbours and the number of
algorithm iterations. As for the number of iterations, ngaxm
usually is able to compute solutions of good quality in few
cycles (see [9] for a quantitative evaluation of converggnc

In any case, the number of iteration of the algorithm can be
tuned by the system designer addressing the trade-off batwguyrt
solution quality and energy consumption. two

VI. EXPERIMENTAL EVALUATION 1)

To evaluate our approach we have developed a Java based sim-
ulation environment where sensors can be deployed on arplana
Cartesian space according to the Poisson process described
in Section Il. Each sensors is represented by an agent that
exchanges messages with its neighbours during the negnotiat
phase in order to devise a coordinated sense/sleep schedule
Given the sensor deployment and the sensor schedules, thf)
efficiency of the system is then evaluated. To simplify the
experimental setting we consider homogeneous sensingsang
and power constraints for all sensors. However, we note that
these are not requirements of our approach.

For the initial negotiation phase, in addition to the max-
sum algorithm described in the last section we implement and
compare two additional coordination algorithms:

1) Local Best ResponseRather than apply the max-sum

message passing algorithm, sensors simply exchal

7In particular in our case, the size of each messagg. is

plete knowledge of the topology of the network, and
acts as a practical upper bound for the effectiveness of
coordination given any particular sensor network (and
as a comparison between the theoretical upper bound
calculated in Section 11I-C).

hermore, during the initial negotiation phase we odeisi

different update models:
Sequential Update Only one sensor executes its co-
ordination algorithm while the others are waiting. The
messages that have been sent by the executing sensor are
received by all the other neighbouring sensors before
they start their execution phase. The order in which
agents execute is randomised at each time step. This
setting models a situation where computation and com-
munication are nearly instantaneous.
Simultaneous Update All sensors execute their coor-
dination algorithm at the same time, and they receive
messages from the other sensors only when all sensors
have completed this computation. This setting models
a situation where communication is significantly slower
than computation.

Finally, we also simulate the two results calculated in Bect
Ill. Specifically, the case where sensors randomly cootdjna

when they remain in their sensing state continuously.
e evaluate each case for a range of sensor densities,

As, and schedule lengthd,, and in each case perform 100



repetitions over randomly deployed sensor networks. THéwus, rather than calculate the probability of detecting an
results of these evaluations are shown in Figure 4, where #\eent based on aa priori model of the environment, we
error bars indicate the mean and the standard error in the.mdatend to investigate algorithms that are capable of learni
First note that the simulation and theoretical results féhe probability with which two sensors will observe the same
the continuously powered and randomly coordinated sensek&nt, if both are actively sensing at the same time. A simple
agree perfectly, confirming the accuracy of the simulatioand effective way to do this is to have an additiocaibration
Second, note that the centralised simulated annealingiaolu phasebefore the negotiation phase, in which individual sensors
closely approximates the theoretical optimal coordimatiase are all active and learn mutual relationships through olisgr
calculated in Section IlI-C, indicating that this is a udefuand exchanging information regarding events in the environ
theoretical result since it closely reflects what is possibl ment. This will typically require events to be identifiabkd.
practice under ideal conditions. by their times of arrival, positions or other charactecs}i
The results of the max-sum and best response algorithivghin the data fusion and tracking literature, this proble
are clearly dependent upon the update model. Considereng th commonly known as data or track association and various
sequential update model first (top row of Figure 4), we see thachniques have been developed to address such issuese Noti
both max-sum and best response attain values which are Vgt in the calibration phase we are not interested in ateura
close to the optimal. This is an interesting result sincelevhitracking, we need only a reasonable estimates of the utility
there is much empirical evidence for the good performantieat a set of sensors will gain by being powered at different
of the max-sum algorithm, best response will clearly becontienes. Finally, note that this change in the way the utilify o
trapped in local maxima, and thus, potentially provide ltssuthe agent is calculated has no affect on the operation of the
arbitrarily far from the optimal. The behaviour of best respe agent-based algorithm used to actually coordinate thecehoi
in our domain suggests that for this particular problem llocaf sense/sleep schedule, and we believe that the decowgdling
maxima are not a major problem from a practical point of viewhe two is a key advantage of our approach.
Note also that as the sensor spends longer sleeping (ik. as

increases), then the performance of best response (wiiile ﬁlh
ble) d H . il o e work reported on here was undertaken as part of the Data
acceptable) decrease. However, max-sum is still very didse|nformation Fusion Defence Technology Centre (DIF DTC) Phase i
the optimal solution, and thus, becomes increasingly stiperadaptive Energy-Aware Sensor Networks’ project and is joint feahd
(since increasingd. corresponds to an increase in the size of tHgy MoD and General Dynamics UK Ltd.
search space, and thus local maxima have a more significant REFERENCES
impact on the performance of best response). . - .
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