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Abstract—In this paper we consider the problem of max-
imising the efficiency of a sensor network deployed for wide-
area surveillance, by coordinating of the sense/sleep schedules of
power constrained energy-harvesting sensor nodes. We propose a
formal model of the wide-area surveillance problem that we face,
and theoretically analyse the performance of a sensor network
(i.e. the probability that an event within the environment is
detected) in the case of (i) continuously powered, (ii) randomly
coordinated, and (iii) optimal coordinated sensors. We show that
coordinating the sense/sleep schedules of the sensors can yield a
significant increase in the performance of the network. Hence,
we demonstrate that we can appropriately decompose the system
wide goal of maximising the probability that events are detected,
in order that we can optimise it using generic decentralised agent-
based coordination algorithms (specifically, one based on the
max-sum algorithm) that use only local communication and com-
putation. We empirically evaluate our approach in a simulated
environment and show that this decentralised algorithm is able to
successfully coordinate the sense/sleep schedule of sensors, while
attaining results close to the theoretically indicated optimum.

I. I NTRODUCTION

The availability of small battery-powered wireless devices that
can be deployed in the environment to acquire and integrate
information opens the field to the use of wireless sensor
networks for applications such as rescue robotics [1], wide-
area surveillance [2] and environmental phenomena monitor-
ing [3]. A key challenge for the successful deployment of
such networks is to provide the individual sensors with the
capability to perform efficient power management in order that
they can meet the system wide requirements of maximising
the lifetime of the sensor network while also collecting the
maximum information possible.

To this end, recent work has begun to address the challenge
of extending the lifetime of individual sensors by giving them
the capability to harvest energy from their local environment;
ideally using multiple sources such as solar cells or micro gen-
erators that can exploit vibrational energy or small temperature
differences in combination [4]. Further work has shown that
when equipped with sufficient energy harvesting resources,
and the ability to model and predict future energy usage and
harvesting, such sensors may then control their duty cycle
(effectively switching between active sensing modes and low-
power sleep modes) in order to operate in anenergy neutral
mode, and hence, exhibit unlimited lifetime [5].

However, in many application scenarios, the system wide

performance of the network is dependent not only on the duty
cycles of the individual sensors, but also on the interactions
between these sensors. For example, within the ‘Adaptive
Energy-Aware Sensor Network’ project that motivates this
work, we aim to use energy-harvesting sensor nodes within a
wide-area surveillance application in which events occurring
in the environment should be detected by sensors randomly
deployed across a wide geographical area. Such deployments
typically exhibit redundancy whereby multiple sensors can
observe the same portion of the environment. Thus, in order to
maximise the efficiency of the sensor network (i.e. to maximise
the probability with which events are detected), the individual
sensors must not only control their own duty cycles (to
satisfy their own individual energy constraints), but mustalso
coordinate with neighbouring sensors (since energy is wasted
when multiple sensors are actively sensing the same area at
the same time). Furthermore, due to the random deployment
of such sensors, and the fact that no single point has complete
information regarding the position or state of each sensor,this
coordination can not be performeda priori, nor in a centralised
computation, but must be performed in a decentralised manner
by the sensors themselves post deployment.

In the light of these requirements, a number of researchers
have begun to tackle the challenge of coordinating the
sense/sleep cycles of sensors within wireless sensor networks.
For example, Hsin and Liu consider coordinating the duty
cycles of non-energy harvesting sensors in order to maintain a
minimum probability of event detection while maximising the
lifetime of the individual sensors [6]. Giusti et al. consider the
problem of coordinating the wake-up time of energy-neutral
sensors, but do not explicitly consider the degree to which the
sensing areas of neighbouring sensors overlap [7]. Conversely,
Kumar et al. explicitly deal with the expected overlap of
neighbouring sensors in a setting where each individual event
must be detected by at leastk sensors in order that it is
identified correctly, but they do not provide a coordination
mechanism. Rather, they provide guidance as to the number
of sensors that should be deployed to achieve a specified
degree of performance in the absence of any coordination
[8]. Unfortunately, this earlier work does not address the
specific wide-area surveillance problem that faces us here,and
furthermore, the coordination approaches that are presented are
problem specific and do not necessarily generalise to other



settings.
In contrast, in this paper we propose an agent-based ap-

proach to satisfy local power management constraints while
also addressing system wide performance goals. In doing so,
we are able to exploit the extensive literature concerning the
decentralised coordination of agent-based systems. Specifi-
cally, we consider each sensor to be represented by an agent
with a state and a utility function. The state of the agent is
the sense/sleep schedule of the sensor, and we decompose the
system wide performance goal into individual utility functions
for each agent, such that maximising the sum of these utility
functions will also maximise the system wide goal.

Given this problem representation we can then apply generic
agent-based coordination approaches to optimise the utility
of the system in a decentralised way. In particular, we use
the max-sum algorithm, a general coordination mechanism
which was proposed as a suitable solution for distributed
coordination in [9]. The max-sum algorithm allows agents to
optimise a decomposable global function through distributed
local computation and communication. The algorithm is able
to compute solutions very close to the optimal, exhibits a low
message overhead, is extremely robust to message failures,and
is capable of being deployed on low-power sensing devices [9].

This paper builds on results obtained in [9], applying the
max-sum algorithm for coordinating the sense/sleep cycle of
sensors deployed for event detection. More specifically, we
make the following contribution to the state of the art:

• We propose a formal model of the wide-area surveillance
problem that we face. This model incorporates an ad
hoc deployment of energy-neutral sensors using a fixed
sense/sleep schedule, and we model the deployment of
sensors, and the duration for which events are detectable
as generic Poisson processes.

• We theoretically analyse the performance of the network
in the case of (i) continuously powered, (ii) randomly
coordinated, and (iii) optimally coordinated sensors, in
order to give a theoretical upper bound on the perfor-
mance gain that coordination could potentially yield. In a
specific example we show that the optimally coordinated
sensors detect 50% of the events that the randomly
coordinated sensors fails to detect, or conversely, the
optimally coordinated sensors are able to achieve the
same level of performance as the randomly coordinated
sensors using just 60% of their number.

• We show how we can appropriately decompose the sys-
tem wide goal that we face in our wide-area surveillance
problem (that of maximising the probability that an event
is detected) into individual agent utility functions. Hence,
we show that given this decomposition, we can apply the
max-sum algorithm to optimise this system wide goal
through local calculation and message passing.

• Finally, we evaluate our approach in a simulated environ-
ment. We benchmark the max-sum algorithm against two
other coordination mechanisms (a centralised implemen-
tation of simulated annealing, and a decentralised solution
using local best response). We show that max-sum is

able to successfully coordinate the sensors through decen-
tralised communication and computation, while attaining
results very close to the optimal.

The remainder of this paper is structured as following: in
section II we describe our formal model, before analysing it
theoretically in section III. In section IV we introduce our
agent-based coordination framework, and in section V we
apply the max-sum algorithm to it. In section VI we present
our empirical evaluations, and conclude in section VII.

II. W IDE-AREA SURVEILLANCE PROBLEM

We now describe the formal model of the wide-area surveil-
lance problem that we address in this paper. We assume that
multiple sensors are deployed according to a Poisson process
with rate per unit areaλs (i.e. within a unit area we expect to
find λs sensors)1. Each sensor has a circular sensing radius,
r, and is tasked with detecting transient events within its
sensing radius. We make no assumptions regarding the process
by which events occur2, and we consider a general case in
which events may have a limited duration in which they
remain detectable after their initial appearance. We describe
this duration by an exponential distribution3 such that the
probability of an event lasting timet is λde

−λdt.
We assume that the sensors are able to harvest energy

from their local environment, but at a rate that is insufficient
to allow them to be powered continually. Thus at any time
a sensor can be in one of two states: either sensing or
sleeping. In the sensing state the sensor consumes energy at
a constant rate, and is able to interact with the surrounding
environment (e.g. it can detect events within its sensing radius
and communicate with other sensors). In the sleep state the
sensor can not interact with the environment but it consumes
negligible energy. To maintain energy-neutral operation,and
thus exhibit an unlimited lifetime, sensors adopt a duty cycle
whereby within discrete time slots they switch between these
two states according to a fixed schedule of lengthL. We denote
the schedule of sensori by a vectorsi = {si

0, . . . , s
i
L−1}

where si
k ∈ {0, 1}, and si

k = 1 indicates that sensori is
in its active sensing state during time slotk (and conversely,
it is sleeping whensi

k = 0). We assume that this schedule is
repeated indefinitely, and here we consider schedules in which
∑L−1

k=0 si
k = 1 (i.e. the sensor is in its sense state for one of

L time slots, and in a sleep state for all other time slots).

III. T HEORETICAL ANALYSIS

Given the model described above, we can theoretically analyse
the performance of the network in three important cases, in
order to calculate an upper bound on the performance gain
that results from coordination:

1The use of Poisson processes to describe these events is commonwithin
the literature, and represents a generic, non-domain specific model [6].

2Our model is independent of assumptions regarding the processby which
event occur, and is not limited to those uniformly distributedin space or time,
as long as we have no prior belief as to when and where events mayoccur.

3This exponentially distributed duration naturally arisesfrom a Poisson
process that describes the departure or disappearance of the events.



1) Continuously Powered Sensors:
We initially ignore the energy constraints of the sensors
and assume that they remain in their sensing state
continuously. This represents an absolute upper bound
on the performance of the network.

2) Randomly Coordinated Sensors:
We assume that the sensors are indeed limited to sensing
for just one in everyL time slots, and that the choice
of which time slot to use is made randomly by each
individual sensor with no coordination with nearby
sensors.

3) Optimally Coordinated Sensors:
As above we again consider sensors limited to sensing
for just one in everyL time slots, but we consider
that they are able to optimally coordinate the choice
of sensing time slot with neighbouring sensors whose
sensing radius overlaps with their own.

In each case, we calculate the efficiency,E, of the sensor
network; expressed as the probability that any event that occurs
within the environment is indeed detected by the network.

A. Continuously Powered Sensors

If we assume that the sensors remain continuously in their
sense state then an event will be detected if it occurs withinthe
sensing radius of at least one sensor. Given the Poisson process
that describes the deployment of sensors, the probability that
an event falls within the sensing radius ofm sensors is given
by (λsπr2)me−λsπr2

/m!. Thus, an event to be detected in all
cases thatm > 0, and thus, the efficiency is given by:

Econtinuous= 1 − e−λsπr2

(1)

Clearly, increasing either the density of the sensor,λs, or the
sensing radius of the sensors,r, increases the probability with
which events are detected.

B. Randomly Coordinated Sensors

In order to calculate the efficiency of the network when sensors
are energy constrained, and use a sensing schedule in which
one time slot is independently randomly selected for sensing,
we first consider the more general case of an area that falls
within the sensing radius of multiple sensors. The effective
sensing schedule of this area is simply given by the logical
OR of the schedules of each individual sensor and is described
by the vectors = {s0, . . . , sL−1}. An event will be detected
within this area, if (i) it occurs while one of the sensors is
currently in its sense state, or (ii) if it occurs when all sensors
are sleeping, but is still detectable when one sensor starts
sensing again.

Given the exponential distribution for the time during which
an event remains detectable after its initial occurrence, the
probability of an event being detectable after timet is given
by

∫ ∞

t
λde

−λdτdτ = e−λdt. Thus, if we consider that an
event occurs within any specific time slot, and definen as
the number of time slots until one of the sensors is again
in its sensing state (wheren = 0 indicates that one of the
sensors is currently in its sense state), then the probability

¾ -
one time period

s1 = {1, 0, 0, 0}

s2 = {0, 0, 0, 1}
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Fig. 1. Example showing the effective schedule for an area that falls within
the sensing radius of three sensors with sensing scheduless1, s2 ands3.

of detecting the event is1 when n = 0, and is given by
L

∫ 1/L

0
e−λd(n/L−t)dt = e−λdn/LL

λd

(

eλd/L − 1
)

when n ≥ 1.
Figure 1 illustrates both cases for an area that falls withinthe
sensing radius of three sensors with sensing scheduless1, s2

ands3.
This result is used in Algorithm 1 to calculate the prob-

ability that an an event is detected if it occurs within an
area whose sensing schedule is described by the vector
s = {s0, . . . , sL−1}. Note that asλd increases (such that the
events become increasingly transient), then the probability of
detection decreases toward only detecting the event duringthe
cycle in which the sensor is in its sense state. Conversely,
as λd decreases toward zero (such that the events become
increasingly long lived), then the probability of detecting the
event approaches one.

We can then use this result to calculate the probability
of detecting an event assuming that each sensor individually
selects one of theL time slots in which to sense. We do
so by summing over the probabilities that any point in the
environment is within the sensing radius ofm sensors, and
that the sensing schedules of thesem sensors combine to
give any of the2L possible sensing schedules (denoted byS).
In the latter case, the probability of any sensing schedule,s,
arising from the combination ofm individual schedules, each
of length L with a single active sensing time slot, is given
by

∑n
k=0(−1)k

(

n
k

)

(n − k)m/Lm, wheren is the number of
sensing time slots in the combined schedule4. Algorithm 2
shows this calculation in pseudo-code.

C. Optimally Coordinated Sensors

Finally, we can calculate an upper bound for the effectiveness
of coordination between sensors. To do so, we assume that if
any point in the environment is within the sensing radius of
m sensors, then these sensors are able to perfectly coordinate
their sensing schedules in order to maximise the probability
that an event is detected at this point. This represents a
strict upper bound on the efficiency of the network, since we
ignore the real constraints on achieving this coordinationfor

4Note that the numerator in this expression is a standard result in probability
theory regarding the number of ways in whichm balls may be placed intoL
cups such that exactlyn of them are not empty, and the denominator is the
total number of ways in whichm balls may be placed inL cups.



Algorithm 1 P (detection|λd, s)
1: value ← 0
2: for i = 0 to L − 1 do
3: n ← 0; j ← i
4: while sj = 0 do
5: j ← mod(j + 1, L); n ← n + 1
6: end while
7: if n = 0 then
8: value ← value + 1/L
9: else

10: value ← value + e−λdn/L
(

eλd/L − 1
)

/λd

11: end if
12: end for
13: return value

Algorithm 2 Erandom(λs, λd, r, L)
1: value ← 0
2: for m = 1 to ∞ do
3: P (m) = (λsπr2)me−λsπr2

/m!
4: for s ∈ S do
5: n ←

∑L−1

k=0
sk

6: if n ≤ m then
7: P (s) =

∑n

k=0
(−1)k

(

n
k

)

(n − k)m/Lm

8: value ← value + P (m) × P (s) × P (detection|λd, s)
9: end if

10: end for
11: end for
12: return value

Algorithm 3 Eoptimal(λs, λd, r, L)

1: value ← 0
2: for m = 1 to ∞ do
3: P (m) = (λsπr2)me−λsπr2

/m!
4: if m < L then
5: value ← value + P (m) × P (detection|λd, s∗m,L)
6: else
7: value ← value + P (m)
8: end if
9: end for

10: return value

any given sensor network configuration5. Thus, if m ≥ L
we assume that the area is continually sensed, and when
1 < m < L we assume an optimal sensing schedule,
s
∗
m,L, that can be automatically derived through exhaustive

search using algorithm 1, or more simply, by noting that
the detection probability is maximised when the schedule
containsm sensed time slots that are maximally separated. For
example, ifL = 4, thens

∗
1,4 = {1, 0, 0, 0}, s

∗
2,4 = {1, 0, 1, 0}

and s
∗
3,4 = {1, 1, 1, 0}. Algorithm 3 shows this calculation,

and in Section VI we show that a centralised solution to
the optimisation of the sensor network does in fact closely
approximate this upper bound.

D. Network Performance Comparison

Using the three theoretical results presented in this section we
can calculate the maximum gain in system wide performance
that coordination may yield. Figure 2 shows an example of
this calculation in the case that sensors may only actively

5Note that this is equivalent to the statement that zero clashes is a strict
lower bound for solutions to a graph colouring problem, even though in any
specific problem instance may not be colourable.
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Fig. 2. Theoretical results showing sensor network efficiency for three
different coordination cases (L = 4, r = 0.2 andλd >> 1/L.)

sense for 1 in every 4 time slots (i.e.L = 4), and the
departure rate of events is much greater than1/L (i.e. events
are very short lived)6. The plot shows the efficiency of
the network when all sensors are continuously sensing (the
absolute upper bound on performance), when they randomly
coordinate their sense/sleep cycles, and when they coordinate
their sense/sleep cycles optimally. Clearly, as the density of the
sensor deployment,λs, increases then the overall efficiency
of the network increases, and in the limit, all events that
occur within the environment are detected. Furthermore, note
that the optimally coordinated network always out performs
the randomly coordinated network, and as the density of
the deployment increases, the gain increases. Indeed, in this
example, whenλs > 35 the optimally coordinated network
detects 50% of the events that the randomly coordinated net-
work fails to detect, or conversely, the optimally coordinated
network is able to achieve the same level of performance as the
randomly coordinated network with just 60% of the sensors
deployed. Similar results are observed for other values ofL,
with coordination having great potential benefit asL increases.

IV. A GENT BASED COORDINATION

The above results indicate that significant gains can be realised
through coordination in this setting. However, they do not
indicate whether or not these gains can be achieved using
a decentralised coordination mechanism. In previous work,
domain specific solutions have been proposed to address
similar problems [6], [7], [8]. However, here we advocate a
general agent based approach to satisfy local constraints while
also addressing system wide performance goals.

We first note that since sensors can not communicate
when they are in sleep mode, a natural way to address the
coordination problem is to have an initial negotiation phase
in which all the sensors are active, and exchange messages to
devise a sense/sleep schedule that they will maintain for a fixed
time [7]. This negotiation phase can be repeated to account
for possible sensor failures or topology changes. However,the

6As discussed in Section III-B, this represents the lower limit of perfor-
mance of the network, where events are very short lived, and can only be
detected if a sensor is in its active sensing state when the event occurs. It also
represents the case where coordination can have the most significant impact.
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Fig. 3. Diagram showing (a) the position of three sensors in the environment, (b) the resulting factor graph with agents representing each sensors, and (c)
subset of the messages exchanged over the factor graph using the max-sum algorithm.

frequency with which the negotiation phase is repeated will
be problem specific, and thus, we do not address it here.

Hence, to apply agent-based coordination techniques within
this negotiation phase, we must first decompose the system
wide goal that we face (that of maximising the probability that
an event is detected) into individual agent utility functions. We
can then directly apply a number of algorithms that seek to
maximise the sum of the utilities of all agents in the system,
through local computation and communication.

To this end, we represent each sensor as an agent, and de-
compose this agent into a function and a variable that represent
its state and utility. The utility of any agent represents the
probability that it will detect an event within the environment,
and the state of the agentxi ∈ X represents the sense/sleep
schedule that it has selected. The utility of the agent is thus
dependent on its own state, and also on the state of the
agents that represent neighbouring sensors whose sensing radii
overlap with its own. Such interactions can conveniently be
represented as afactor graphcontaining variable (state) and
function (utility) nodes [9]. Figures 3(a) and 3(b) show an
example of this decomposition in which three sensors,{S1,
S2, S3}, are represented by three agent{A1, A2, A3} with
utilities {U1, U2, U3} and states{x1, x2, x3}.

Now, given a setN of agents (sensors) that form a sensor
network, each of which can select a state from a discrete set of
options (equivalent to selecting a sensing schedule), our goal
is to find the optimal state of each agent,x

∗, such that the
sum of the utilities of the agents is maximised:

x
∗ = arg max

x

|N|
∑

i=1

Ui(xi) (2)

wherexi is a vector representing the states of all the agents
that determine the utility of agenti. For example, from Figure
3(b) we havex1 = {x1, x2}, x2 = {x1, x2, x3} and x3 =
{x2, x3}.

The utility of each agent is determined by its own
sense/sleep schedule, and by those of agents whose sensing
radii overlap with its own. This can easily be determined
by each agent assuming that it knows the relative positions
of these other agents (a strong assumption common in the
literature [6], and one that we intend to relax in our future
work). Thus, we defineNi to be a set of indexes indicating

which other agents’ sensing radii overlap with that of agenti
(again from Figure 3(a) we haveN1 = {2}, N2 = {1, 3} and
N3 = {2}) and k is any subset ofNi (including the empty
set).A{i}∪k is the area that is overlapped only by agenti and
those agents ink. For example, with respect to Figure 3(a),
the areaA{1,2} is the area that is sensed only by agents1 and
2.

We define a functionG : 2X → S such thatG(x{i}∪k)
is the combined sensing schedule of agenti and those agents
in k (calculated through the logical ‘OR’ of each individual
schedule, as shown in Figure 1). The utility of agenti is then
given by:

Ui(xi) =
∑

k⊆Ni

A{i}∪k

|{i} ∪ k|
× P (detection|λd, G(x{i}∪k)) (3)

where P (detection|λd, G(x{i}∪k)) is given by Algorithm 1.
Note, that we scale the area by the number of agents who can
sense it to avoid double-counting areas which are represented
by multiple sensors. Also, note that when the setk is empty
we consider the area covered only by the single sensor.

V. THE MAX -SUM APPROACH TOCOORDINATION

The decomposition described above is very general, and in
practice, we can now apply any agent-based decentralised
coordination algorithm to determine the individual sense/sleep
schedules that maximise the sum of the agents’ utilities.
In this paper, we use a message passing technique based
upon the max-sum algorithm. The rationale for this choice
is that this technique represents an ideal combination of
the best features of complete algorithms and approximate
stochastic algorithms. It can make efficient use of constrained
computational and communication resources, and yet it is
able to effectively represent and communicate complex utility
relationships through the network and attain close to optimal
solutions. Such message passing techniques are widely used
within graphical model for belief propagation [10], [11], and
the max-sum algorithm has previously been demonstrated to
produce decentralised solution to graph colouring problems
(a canonical coordination problem very similar to that which
faces us here) that are close to the optimal. The algorithm has



a low communication overhead, is robust to message failures,
and has been demonstrated on low-power devices [9].

The max-sum algorithm operates directly on the factor
graph representation of the global function to be optimised
(as shown in Figure 3(b)). When this graph is cycle free,
the algorithm is guaranteed to converge to the global optimal
solution of the welfare maximisation problem (i.e. it finds the
combination of states that maximises the sum of the agents’
utilities). When applied to cyclic graphs (as is the case here),
there is no guarantee of convergence but extensive empirical
evidence demonstrates that this family of algorithms generate
very good approximate solutions [10], [11].

The max-sum algorithm solves this problem in a
decentralised manner by specifying messages that should be
passed from variable to function nodes, and from function to
variable nodes. These messages are defined as:

From variable to function:

qi→j(xi) = αij +
∑

k∈Mi\j

rk→i(xi) (4)

where αij is a scaler chosen such that
∑

xi
qi→j(xi) = 0, and Mi is a vector of function

indexes, indicating which function nodes are connected
to variable nodei.

From function to variable:

rj→i(xi) = max
xj\i



Uj(xj) +
∑

k∈Nj\i

qk→j(xk)



 (5)

where,Nj is a vector of variable indexes, indicating
which variable nodes are connected to function nodej
andxj\i ≡ {xk : k ∈ Nj \ i}.

At any time during the propagation of these messages, agent
i is able to calculate the marginal function,zi(xi), from the
messages flowing into agenti’s variable node:

zi(xi) =
∑

j∈Ni

rj→i(xi) (6)

Then by computingarg maxxi
zi(xi), each individual agent

is able to determine which state it should adopt such that
the sum of the agents’ utilities is maximised. Note that
although the max-sum algorithm is approximating a global
optimisation problem (in this case the coordination of sensor
sense/sleep schedules) it involves only local communication
and computation.

Figure 3(c) shows a subset of the messages for the factor
graph of Figure 3b. To better illustrate the functioning of the
max-sum algorithm we can consider the computation of a
sample variable to function message,q2→3(x2), and a sample
function to variable message,r2→1(x1). For ease of exposition
we ignore the scalerα23 and then using Equation 4 the

messageq2→3(x2) is given by:

q2→3(x2) =
∑

k∈M2\3

rk→2(x2)

Considering that in our caseM2 \ 3 = {1, 2}, then we can
expand the summation to obtain:

q2→3(x2) = r1→2(x2) + r2→2(x2)

Therefore, for variable to function messages each agent only
needs to aggregate the information received from all the
neighbouring functions, without considering the receiverof
the message (i.e. function node of agent 3 in our case). The
aggregation is performed simply by summing the messages.
Notice that messages in the max-sum algorithms are not
values, but functions. In our case, since the agents have a
discrete variable state, we represent each message as a vector
with d components whered is the number of states the variable
can take on. When we consider a sensing schedule of lengthL
such that

∑L−1
k=0 si

k = 1, we consider that there areL discrete
possible schedules (each corresponding to the time slot in
which the sensor is actively sensing), and thus,d = L. In
more complex setting, with heterogeneous sensing schedules
across sensors, we can simply use a more complex mapping
between the state and the schedule.

As for the messager2→1(x1) from Equation 5 we have:

r2→1(x1) = max
x2\2



U2(x2) +
∑

k∈N2\1

qk→2(xk)





and considering that in our caseN2 \ 1 = {2, 3} and that
x2 \ 1 = {x2, x3} we then have:

r2→1(x1) = max
x2,x3

[U2(x1, x2, x3) + q2→2(x2) + q3→2(x3)]

Therefore, for function to variable messages each agent
needs to maximise a function which results from the summa-
tion of its utility and the messages received from neighbouring
variables. The maximisation step is the one that requires more
computational effort. Since the variables are discrete, wecan
perform this maximisation step simply computing the above
function for all the possible values of the argument of the
message (i.e.x1 in our sample message) maximising over all
the possible combination of the variables that are the argument
of the maximisation (i.e.x2 andx3 in our sample message).
Note that this computation is exponential only in the numberof
neighbours. This is typically much less than the total number
of agents within the system, and thus the algorithm scales well
as the number of agents is increased.

The messages described above may be randomly initialised,
and then updated whenever an agent receives an updated
message from a neighbouring agent; there is no need for a
strict ordering or synchronisation of the messages. In addition,
the calculation of the marginal function shown in Equation
6 can be performed at any time (using the most recent
messages received), and thus, agents have a continuously
updated estimate of their optimum state. In our application
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Fig. 4. Coverage value against lambda wherer = 0.20, λd = 20 varying L (from 2 to 4), and the update model (sequential or simultaneous)

scenario, this is not necessary, and we continue to propagate
messages throughout the initial negotiation phase, and then
compute the optimum state.

As for communication overhead, the max-sum exchanges
messages of fixed size, where the size of each message is
dependent on the domain of the variable7. The number of
messages that the agents need to exchange increases only
linearly with the number of neighbours and the number of
algorithm iterations. As for the number of iterations, max-sum
usually is able to compute solutions of good quality in few
cycles (see [9] for a quantitative evaluation of convergence).
In any case, the number of iteration of the algorithm can be
tuned by the system designer addressing the trade-off between
solution quality and energy consumption.

VI. EXPERIMENTAL EVALUATION

To evaluate our approach we have developed a Java based sim-
ulation environment where sensors can be deployed on a planar
Cartesian space according to the Poisson process described
in Section II. Each sensors is represented by an agent that
exchanges messages with its neighbours during the negotiation
phase in order to devise a coordinated sense/sleep schedule.
Given the sensor deployment and the sensor schedules, the
efficiency of the system is then evaluated. To simplify the
experimental setting we consider homogeneous sensing ranges
and power constraints for all sensors. However, we note that
these are not requirements of our approach.

For the initial negotiation phase, in addition to the max-
sum algorithm described in the last section we implement and
compare two additional coordination algorithms:

1) Local Best Response: Rather than apply the max-sum
message passing algorithm, sensors simply exchange

7In particular in our case, the size of each message isL.

message indicating their preferred sense/sleep schedule,
and this preferred schedule is calculated to be the best
response to that of the overlapping sensors (based on
earlier messages received from these sensors).

2) Centralised Simulated Annealing: Rather than perform
decentralised optimisation, we implement a centralised
version of simulated annealing. This algorithm has com-
plete knowledge of the topology of the network, and
acts as a practical upper bound for the effectiveness of
coordination given any particular sensor network (and
as a comparison between the theoretical upper bound
calculated in Section III-C).

Furthermore, during the initial negotiation phase we consider
two different update models:

1) Sequential Update: Only one sensor executes its co-
ordination algorithm while the others are waiting. The
messages that have been sent by the executing sensor are
received by all the other neighbouring sensors before
they start their execution phase. The order in which
agents execute is randomised at each time step. This
setting models a situation where computation and com-
munication are nearly instantaneous.

2) Simultaneous Update: All sensors execute their coor-
dination algorithm at the same time, and they receive
messages from the other sensors only when all sensors
have completed this computation. This setting models
a situation where communication is significantly slower
than computation.

Finally, we also simulate the two results calculated in Section
III. Specifically, the case where sensors randomly coordinate,
and when they remain in their sensing state continuously.

We evaluate each case for a range of sensor densities,
λs, and schedule lengths,L, and in each case perform 100



repetitions over randomly deployed sensor networks. The
results of these evaluations are shown in Figure 4, where the
error bars indicate the mean and the standard error in the mean.

First note that the simulation and theoretical results for
the continuously powered and randomly coordinated sensors
agree perfectly, confirming the accuracy of the simulation.
Second, note that the centralised simulated annealing solution
closely approximates the theoretical optimal coordination case
calculated in Section III-C, indicating that this is a useful
theoretical result since it closely reflects what is possible in
practice under ideal conditions.

The results of the max-sum and best response algorithms
are clearly dependent upon the update model. Considering the
sequential update model first (top row of Figure 4), we see that
both max-sum and best response attain values which are very
close to the optimal. This is an interesting result since while
there is much empirical evidence for the good performance
of the max-sum algorithm, best response will clearly become
trapped in local maxima, and thus, potentially provide results
arbitrarily far from the optimal. The behaviour of best response
in our domain suggests that for this particular problem local
maxima are not a major problem from a practical point of view.
Note also that as the sensor spends longer sleeping (i.e. asL
increases), then the performance of best response (while still
acceptable) decrease. However, max-sum is still very closeto
the optimal solution, and thus, becomes increasingly superior
(since increasingL corresponds to an increase in the size of the
search space, and thus local maxima have a more significant
impact on the performance of best response).

As for the simultaneous update model (bottom row of Figure
4) it is possible to see that in this setting best response
performs very poorly (i.e. worst than random). This is a
well known problem for best response techniques; all sensors
simultaneous computes the best response to their neighbours,
and by updating at the same time, find themselves in another
conflicting setting. Note that the max-sum algorithm is much
less affected by this, since decisions do not depend directly
on the preferred state of neighbouring sensors, but rather on
messages that reflect longer range interactions.

VII. C ONCLUSIONS ANDFUTURE WORK

The empirical results presented above indicate that the the-
oretical benefits of coordination derived in Section III can
actually be realised in practice through the use of decentralised
agent-based coordination algorithms (specifically one based
upon the max-sum algorithm). Our future work consists of
relaxing some of the strong assumptions that we have made
regarding how each individual sensor calculates the probability
that it will detect an event. Specifically, we wish to relax
the assumptions that sensors have regular circular sensing
areas, that they are able to determine the area of overlap
with neighbouring sensors, and that events occur uniformly
distributed over these areas. In reality, sensors may have highly
irregular and obscured sensing areas, they may not be able
to determine the exact position of neighbouring sensors, and
events may be more likely to occur in some area than others.

Thus, rather than calculate the probability of detecting an
event based on ana priori model of the environment, we
intend to investigate algorithms that are capable of learning
the probability with which two sensors will observe the same
event, if both are actively sensing at the same time. A simple
and effective way to do this is to have an additionalcalibration
phasebefore the negotiation phase, in which individual sensors
are all active and learn mutual relationships through observing
and exchanging information regarding events in the environ-
ment. This will typically require events to be identifiable (e.g.
by their times of arrival, positions or other characteristics).
Within the data fusion and tracking literature, this problem
is commonly known as data or track association and various
techniques have been developed to address such issues. Notice
that in the calibration phase we are not interested in accurate
tracking, we need only a reasonable estimates of the utility
that a set of sensors will gain by being powered at different
times. Finally, note that this change in the way the utility of
the agent is calculated has no affect on the operation of the
agent-based algorithm used to actually coordinate the choice
of sense/sleep schedule, and we believe that the decouplingof
the two is a key advantage of our approach.
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