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Abstract
In this work, a study of epitaxial growth was carried out by means of the wavelets formalism.
We showed the existence of a dynamic scaling form in a wavelet discriminated linear molecular
beam epitaxy (MBE) equation where diffusion and noise are the dominant effects. We
determined simple and exact scaling functions involving the scale of the wavelets when the
system size is set to infinity. Exponents were determined for both correlated and uncorrelated
noise. The wavelet methodology was applied to a computer model simulating linear epitaxial
growth; the results showed very good agreement with analytical formulation. We also
considered epitaxial growth with the additional Ehrlich–Schwoebel effect. We characterized the
coarsening of mounds formed on the surface during the nonlinear phase using the wavelet
power spectrum. The latter has an advantage over other methods, in the sense that one can track
the coarsening in both frequency (or scale) space and real space simultaneously. Wavelets
analysis also provides a quantitative tool for the characterization of the mounded surfaces
through its concise scale discrimination. We showed that the averaged wavelet power spectrum
(also called scalegram) over all the positions on the surface profile identified the existence of a
dominant scale a∗, which increases with time following a power law relation of the form
a∗ ∼ tn , where n � 1/3.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the last two decades, many aspects of molecular beam
epitaxy (MBE) have been investigated theoretically within
a phenomenological framework [1–4]. Phenomenological
continuum models consider the surface of the growing film as
a continuous variable of the position where overhangs are not
allowed. They are credited with explaining many aspects of
the surface morphology of growing films [5, 2]. The MBE
process can be described as follows. Atoms are deposited
on the film surface from the gas phase, where they undergo
a thermally activated diffusion or desorption back to the gas
phase. Once absorbed, atoms can combine to form a dimer, or
attach to the steps of existing islands on the surface. A whole
atomic layer is completed once all islands on the surface have
coalesced. Smooth surfaces are obtained in a layer-by-layer
growth mode in which a new layer starts to form only when
the layer underneath is fully grown. However, experiments
provide evidence that the layer-by-layer growth mode does
not occur in many situations (see, for example, [6–8]). This
ideal situation is suppressed by two dominant effects: shot

noise and instabilities that arise from the so-called Ehrlich–
Schwoebel (ES) effect [9]. Shot noise originates from different
mechanisms such as deposition, diffusion or nucleation. The
ES effect is due to the asymmetry in attachment–detachment
kinetics across an atomic step, where atoms have to overcome
an energy barrier when descending the step. This triggers
an ascending atomic current, which is responsible for a
morphological instability. In this case, the amplitude of small
perturbations on the flat surface will increase exponentially in
time. This instability can be balanced by the introduction of
a stabilizing mechanism such as a Mullins-like current arising
from thermodynamic relaxation through surface diffusion [10]
or from fluctuations in the nucleation process of newly forming
islands [11, 12]. The ES effect and diffusion currents will
induce the formation of a mound-like structure on the surface
which coarsens as time progresses.

A phenomenological continuum model describing the
surface growth incorporating the two conserving mechanisms
mentioned above can be formulated in one dimension as:

∂h

∂ t
= −∇ jd − ∇ js + η(x, t) (1)
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where h is the surface height, jd is the ES destabilizing
current, js is the Mullins stabilizing current and η(x, t) is
the noise function representing the stochastic character of the
growth. This function is assumed to be a Gaussian white noise
with zero mean, or a spatially correlated noise (long-range
correlations), i.e.

〈η(x, t)η(x′, t ′)〉 = 2Fδ(x − x′)δ(t − t ′)

〈η(x, t)η(x′, t ′)〉 = 2F |x − x′|2ρ−1δ(t − t ′)
(2)

where F is a constant and ρ (0 < ρ < 1/2) is an exponent
characterizing the decay of spatial correlations. The Fourier
transform of the noise correlators above is given by:

〈η(q, t)η(q′, t ′)〉 = 2Fδ(q + q′)δ(t − t ′)

〈η(q, t)η(q′, t ′)〉 = 2Dρq−2ρδ(q + q′)δ(t − t ′).
(3)

The prefactor Dρ is given by:

Dρ = F

π

∫ ∞

0
u2ρ−1 cos (u) du = F22ρ−1√π� (ρ)

� (1/2 − ρ)
(4)

where � is the gamma function.
A simple model for the currents jd and js can be expressed

as [11]:

jd(m) = ν

(
1 − m

m0

)

js(m) = −K∇2(m)

(5)

where m = ∂h
∂x is the surface slope. The parameters ν and

K are positive constants related to microscopic processes of
deposited atoms on the surface [13]. The parameter m0 is
the so-called magic slope. The form of the destabilizing
current jd predicts slope selection: the mound slopes will
asymptotically reach a constant value m0. Equation (1)
has been investigated by mapping it to the phase ordering
problem [14] or by mapping it to a one-dimensional system
of interacting kinks [15]. The scenario predicted by (1) is
the following. The competition between the ES effect and the
surface diffusion will lead to a mound-like structured surface
with a well-defined period. Later in time, the mounds will
coarsen because of the nonlinearity of the current jd. The
period of the mounds λ(t) scales with time as λ(t) ∼ tn , where
n = 1/3 [15, 2].

The purpose of this paper is to characterize the MBE
process described by (1) using the wavelets formalism. Two
cases are considered here: linear stable growth where only
surface diffusion and noise are taken into account, and growth
incorporating the additional effect of an ES barrier. In
the former case, the scaling functions and exponents are
derived in wavelet space in the presence of both correlated
and uncorrelated noise. In the latter case, the coarsening is
discriminated through wavelet decomposition of the evolving
surface profile and characterized by the wavelet power
spectrum. The advantage of using wavelets is that one can
track the coarsening process in real space and frequency space
simultaneously. Wavelets analysis also provides a quantitative
tool for the characterization of the mounded surfaces through
its concise scale discrimination.

This paper is organized as follows. We first consider
the linear stable MBE growth (section 2) by performing an
analysis of growth in wavelet space. Section 3 is devoted to
the nonlinear unstable MBE process. We close the manuscript
with a conclusion.

2. The linear MBE

When diffusion is the dominant process in surface dynamics,
all other destabilizing effects are neglected and (1) is reduced
to a fourth-order linear form (for simplicity, we set K = 1):

∂h

∂ t
= −∇js + η(x, t) = −∇4h(x)+ η(x, t). (6)

In this section we will use the wavelet formalism in order
to determine the properties of the linear MBE equation (6)
through the scale discrimination of the growth process, that is,
the determination of the scaling function and exponents as a
function of the wavelet scale (see definition below) when the
system size is infinite. The wavelet transform of a profile h(x)
is given by [16]:

T (a, x) = 1√
a

∫ ∞

−∞
h (y)ψ

(
y − x

a

)
dy (7)

where a (a > 0) is the scale parameter and ψ is the
mother wavelet. The transform T (a, x) is a scale-position
decomposition which expands a function h(x) in the wavelets
basis, whose elements are constructed from a single mother
function: the mother wavelet.

2.1. Dynamic scaling

In a previous work [20] we applied the wavelet formalism
to the Edwards–Wilkinson equation. This investigation was
concerned with dynamic scaling in terms of scale a but not the
system size. We derived an exact and simple expression for
the scaling function. The dependence of the surface width σ
at a given wavelet scale was found to be a scaling law of the
form σ(a, t) ∼ a for uncorrelated noise and σ(a, t) ∼ aρ+1

for correlated noise. Here, we will apply the same formalism
to (6). The lateral system size L is taken to be infinite and
therefore the dependence on L is suppressed. Since each
decomposition T (a, x) does not result in a sine wave, it is
possible to calculate its power spectrum. By a simple change
of variable in (7), we compute the Fourier transform of each
decomposition:

T̂ (a, q, t) = −√
aĥ(q, t)

∫
ψ (ξ) eiaqξ dξ

= −√
aĥ(q, t)ψ̂(−aq) (8)

where ĥ and ψ̂ are the Fourier transforms of the height h and
the mother wavelet ψ , respectively. The power spectrum at a
scale a is then:

�(a, q, t) = 〈T̂ (a, q, t)T̂ (a,−q, t)〉 = a P(q, t)|ψ̂(−aq)|2.
(9)

The quantity P(q, t) is the power spectrum of the surface
height. Without loss of generality, one can use Hermitian
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Figure 1. The scaling function f (x).

wavelets [17, 18] which are the successive derivatives of the
Gaussian function g0(x) = e−x2/2. For the second-order
Hermitian wavelet ψ(x) = d2g0(x)/dx2 = −(1 − x2)e−x2/2,
the function ψ̂(q) is given by: ψ̂(q) = √

2πq2e−q2/2. By
Fourier transforming (6), we obtain the solution for a flat initial
condition of the surface profile h(x):

ĥ (q, t) =
∫ t

0
eq4(τ−t)η̂ (q, τ ) dτ (10)

where η̂(q, t) is the Fourier transform of the noise η.

2.1.1. Uncorrelated noise. Using (10) and (3), the power
spectrum of the surface profile is given by:

P(q) = 2F
(1 − e−2q4t )

q4
. (11)

We can now calculate the surface width at each scale. From (9)
we get:

σ (a, t)2 =
∫ qmax

0
�(a, q, t) dq

= a5 Fπ
∫ qmax

0

(
1 − e−2q4t

)
e−a2q2

dq. (12)

The upper cutoff qmax is of the order of the inverse lattice
constant; we assume that the correlation length is larger than
1/qmax and we set qmax to infinity in (12). Performing the
integration, we arrive at:

σ (a, t)2 = a4 Fπ

(
2
√
π −

√
a4

2t
e

a4

16t K

(
1/4,

a4

16t

))

∝ a4 f

(
t

a4

)2

= a4 f

(
t

az

)2

(13)

where the dynamic exponent z = 4,

f (x) =
√

2
√
π − 1√

2x
e

1
16x K (1/4, 1/(16x)) and K (n, x) is the

Bessel function of the second kind of order n. The saturation
value of the width scales as σsat ∝ aα, with α = 2. The scaling
function f (x) is not defined at x = 0, but has the asymptotic
limit f (x) ≈ x1/2 for x 
 1 (this is easily shown by per-
forming a series development to the second order of f (x)) and
f (x) ≈ √

2π1/4 for x � 1. This function is displayed in
figure 1.

Table 1. Values of the exponents in the two cases: the EW equation
and the linear MBE equation in one dimension. Between the brackets
are values of the exponents observed in the scaling with system size.

α z

EW 1(1/2) 2
MBE 2(3/2) 4

In one dimension, the scaling law dependence of the
surface width at a scale a involves integer exponents in the two
cases, the EW [17] and the linear MBE equations, unlike the
scaling exponents observed in the dependence with the system
size, which are fractional. Table 1 summarizes the value of
exponents in both cases in one-dimensional space.

2.1.2. Correlated noise. Similar to the above calculations, we
will determine a different set of exponents by computing the
surface width corresponding to each wavelet scale a taking the
substrate size to be infinite, in the case of spatially correlated
noise. We have the power spectrum of the surface profile h:

Pρ(q) = 2Dρq−2ρ (1 − e−2q4t )

q4
. (14)

Using (9), we get, for the surface width at the scale a:

σρ (a, t)2 =
∫ ∞

0
�(a, q, t) dq

= 2a5 Dρπ

∫ ∞

0
q−2ρ

(
1 − e−2q4t

)
e−a2q2

dq. (15)

In this integration we have taken the upper cutoff to be infinite.
By a simple change of variable we have:

σρ (a, t)2 = πDρa4+2ρ
∫ ∞

0
ξ−ρ−1/2(1 − e−2ξ 2t/a4

)e−ξdξ

∝ a4+2ρ fρ

(
t

a4

)2

= a4+2ρ fρ

(
t

az

)2

. (16)

Here, fρ(x)2 = ∫ ∞
0 ξ−ρ−1/2(1 − e−2ξ 2 x)e−ξdξ is a scaling

function which has the limit fρ(x) ≈ √
x for x 
 1 and

fρ(x) ≈ √
�(1/2 − ρ), for x � 1, where � is the gamma

function. The result for the uncorrelated case is retrieved for
ρ = 0. Thus, for correlated noise, the roughness exponent
is α(ρ) = 2 + ρ while z = 4, independent of ρ. For the
EW growth model, the roughness exponent was found to be
αEW = 1 + ρ [20].

2.2. Application to a computer model of the linear MBE

In this section we will apply the wavelets analysis to a
computer model that simulates linear molecular beam epitaxy
in the case of uncorrelated noise. This model was developed
in [21] to simulate linear growth where diffusion is the
dominant process. In this model, atoms are randomly deposited
on a linear substrate and undergo diffusion to neighboring sites
in order to maximize their curvature κ . If the height at a site
i is h(i), then the deposited atom at this site will move to a
site j with the maximum value of κ = h j+1 − 2h j + h j−1.
The diffusion length l is such that i − l � j � i + l.
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Figure 2. Computer simulation results showing the evolution of the
surface width for three different scales: a = 2 (◦), a = 3 (��) and
a = 4 (�). Full lines are the fits to the analytical expression (13).
The inset shows the data collapse to a single curve, confirming
dynamic scaling form (13).

Simulation is carried out for l = 2 and a substrate size
L = 106 sites. Periodic boundary conditions were imposed.
In figure 2 we show the plot of the surface width calculated
at wavelet scales a = 2, 3 and 4 by performing the wavelet
transform of the simulated profile and by using the expression
σ(a, t) = 〈(T (a, i) − T (a))2〉i , where T (a) is the spatial
average of T (a, i), i = 1, . . . , L. As can be seen, there is
excellent agreement between the simulated value of σ(a, t)
and the scaling form (13). The inset of figure 2 shows good
data collapse, confirming the scaling form (13).

3. Growth with Ehrlich–Schwoebel barrier

The current form jm in (5) represents a continuous uphill
current leading to a slope selection, i.e the mound’s slope
converges to a constant value m0. This current is countered
by the diffusion current jd, preventing an indefinite increase
in the mound’s height. A simple linear stability analysis
of (1) shows that this growth process is unstable against small
perturbations with wavenumbers smaller than a critical value
qc = √

ν/K . This implies that the initial growth stage is
characterized by the formation of mounds on the surface with
the typical size λ = 2π

√
2/qc. After this initial phase,

nonlinearities become relevant, triggering the coarsening of
mounds. The scaling hypothesis implies that the coarsening
behavior is statistically self-similar, i.e. surface mounds are
similar in time domain up to a scaling by the average mound
size λ. Under the scaling hypothesis, structure functions such
as the height–height correlation function can be written as
C(r) = σ(t)2θ(r/λ(t)), where σ is the surface width and θ
is a scaling function. The evolution of λ and σ is expressed as:

λ ∼ tn σ ∼ tβ. (17)

The current form given by (5) leads to slope selection, and the
value of the scaling exponent is n = 1

3 [4].
We will show in the following that the coarsening

process can be well characterized by the wavelets formalism.
The advantage of this formalism is that one can track the
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Figure 3. Color map plots showing the time evolution of the
wavelet’s power spectrum of the evolving profile for three different
times: t = 100, 500 and 1000. The early stage (t = 100) shows the
power concentration in a small band of scales surrounding the
dominant scale as a result of linear instability. As time advances, the
formed pattern moves towards larger scales as a result of the
coarsening of mounds. The color scale is in arbitrary units.

coarsening in both scale (or frequency) and the spatial position
simultaneously. In addition, we can quantify the coarsening
process by computing the evolution of a quantity called the
scalegram [17], which is the counterpart of the power spectrum
in Fourier analysis. We first start by solving (1) numerically
using the third-order Adams–Bashforth scheme [19], where
the time step is chosen to be small enough to ensure stability
and convergence (the spatial resolution was set to �x = 1).
The current functions (5) were used and the periodic boundary
conditions were imposed. The wavelet transform of the
generated profiles is then computed at different times. The
wavelet’s power spectrum is defined as the squared magnitude
of the wavelet transform, which is the analog of the power
spectrum in Fourier analysis. Figure 3 displays the time
evolution of the wavelet power spectrum at t = 100, 500 and
1000 for ν/K = 2 and L = 500; the result is averaged over
100 independent runs. For simplicity, the Hermitian wavelet of
order one is used in these calculations. We can clearly notice
the pattern formed at the early stage of growth where the power
is concentrated around the dominant scale as a result of the
linear instability. As time advances, the pattern that is formed
moves towards larger scales, indicating the coarsening process.

In general, the mound’s coarsening is characterized by
the determination of the lateral correlation length or by
determining the wavenumber corresponding to the maximum
of the Fourier power spectrum. The latter is related to the
mound size λ via the relation qmax = 2π/λ. One can
efficiently characterize the coarsening process by performing
the calculation of the scalegram [17]. The scalegram is the
spatial average of the wavelet power spectrum, i.e.

S(a, t) = 〈|T (a, x, t)|2〉x . (18)

One of the main advantages of the scalegram over the
Fourier power spectrum is the fact that only few realizations
are required to obtain an accurate scalegram. We can show that
this quantity defines a dominant scale at which it reaches its
maximum value. We can obtain an analytical form of S as a

4
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Figure 4. Plots of the scalegram obtained by numerical simulation at
three different times: t = 1000 (squares), 1500 (triangles) and 3000
(circles). Continuous lines are fits to the analytical form (21).

function of the scale a and the mound size λ = λ(t). Using the
wavelet definition (7), we have:

S(a) = a2
∫∫

〈h(x + ξa)h(x + ζa)〉xψ(ξ)ψ(ζ ) dξ dζ

= a2
∫ ∫

C(ξ, ζ, a)ψ(ξ)ψ(ζ ) dξ dζ . (19)

The kernel C(ξ, ζ, a) ≡ 〈h(x +ξa)h(x +ζa)〉 is the two-point
correlation function which depends only on the difference |(ξ−
ζ )a| for the present process, i.e. C(ξ, ζ, a) = C(|(ξ − ζ )a|).
We will choose the following form for C(r) [22]:

C(r) = σ 2e− r2

l2 cos

(
2πr

λ

)
(20)

where σ is the surface width and l is a parameter characterizing
the decay of the correlations. The lateral correlation length is
defined as C(r) = σ 2/e and it is a function of both l and λ.
To obtain a simple analytical form of S, we use the Hermitian
wavelet of order one (ψ(x) = −xe−x2/2). Integrating (19) in
(−∞,+∞) and using (20), we have:

S(a) = f (a, λ, l)e
− 4π2a2l2

(4a2+l2 )λ2 (21)

where

f (a, λ, l) = 4πa4σ 2l(2π2l4 + l2λ2 + 4a2λ2)

λ2(4a2 + l2)5/2
. (22)

We determined the scalegram from numerical simulations
of (1) by computing the wavelet transform of the obtained
profile and using the definition (18). Figure 4 shows the results
at three different times: t = 1000, 1500 and 3000. The
Hermitian wavelet of order one was used with a system size
of L = 500. The ratio ν/K was set to 1.5, and the result
was averaged over 100 independent runs. As can be seen, the
agreement between numerical solution and the analytical form
of the scalegram is extremely good. Equation (21) predicts
the existence of a dominant scale a∗, which maximizes S,
proportional to λ. Thus, the dominant scale evolves following
the same power law followed by λ, i.e. (17).
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Figure 5. The evolution of the dominant scale (corresponding to the
maximum of the scalegram) obtained from numerical simulations,
showing a power law scaling with an exponent n � 1/3. The inset
shows the same result in a log–log plot.

This result is not surprising, since the continuous wavelet
transform gives information as to the extent to which the
frequency content of the analyzed profile, in the neighborhood
of an arbitrary position x , is close to the frequency content of
the wavelet at a given scale. To check the validity of the above,
we numerically computed the value of the dominant scale as
a function of time. This is shown in figure 5. The power law
nonlinear regression fit is also shown with an exponent n =
0.31 ± 0.01, a value consistent with the coarsening exponent
n = 1/3. A log–log plot of the result is also displayed at the
inset of figure 5, confirming the power law scaling.

4. Conclusion

In conclusion, we investigated epitaxial growth using the
wavelets formalism. Two cases were considered: the linear
case where only atomic diffusion is the dominant process,
and the case where both atomic diffusion and the Ehrlich–
Schwoebel barrier are the dominant processes. In the former
case, the linear equation is decomposed using a wavelet
filter, allowing the discrimination of growth dynamics at
each scale. We determined the scaling functions of the
width corresponding to each wavelet decomposition of the
surface profile in two cases: growth with uncorrelated noise
and growth with correlated noise. Analytical results were
compared to a computer model simulating the linear growth
in the case of uncorrelated noise. Good agreement was found
between theory and computer simulation.

Growth incorporating the ES effect alongside atomic
diffusion is characterized by numerically computing the
wavelet power spectrum. The coarsening process is quantified
by the so-called scalegram, which revealed a time-dependent
dominant scale where the scalegram reaches its maximum. The
dominant scale is proportional to the mound size, i.e. following
a power law with an exponent n � 1/3. An analytical form of
the scalegram is determined as a function of the scale and the
mound size. This analytical form was compared to numerical
results, showing good agreement between the two.
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The wavelet formalism has an advantage over Fourier
methods in the way that one can track the coarsening in the
location (direct space) and at different scales at the same time.
It also provides a quantitative tool for the characterization of
mounded surfaces.
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