
A Visual Approach to Semantic Query Design Using a

Web-Based Graphical Query Designer

Paul R. Smart
1
, Alistair Russell

1
, Dave Braines

2
, Yannis Kalfoglou

1
,

,
Jie Bao

3
 and

Nigel R. Shadbolt
1

1 School of Electronics and Computer Science, University of Southampton, Southampton,
SO17 1BJ, United Kingdom

ar5, ps02v, yk1, nrs@ecs.soton.ac.uk
2 Emerging Technology Services, IBM United Kingdom Ltd, Hursley Park, Winchester,

Hampshire, SO21 2JN, United Kingdom
dave_braines @uk.ibm.com

3 Department of Computer Science, Rensselaer Polytechnic Institute, Troy,

NY 12180, USA

baojie@cs.rpi.edu

Abstract. Query formulation is a key aspect of information retrieval,

contributing to both the efficiency and usability of many semantic applications.

A number of query languages, such as SPARQL, have been developed for the

Semantic Web; however, there are, as yet, few tools to support end users with
respect to the creation and editing of semantic queries. In this paper we

introduce NITELIGHT, a Web-based graphical tool for semantic query

construction that is based on the W3C SPARQL specification. NITELIGHT

combines a number of features to support end-users with respect to the creation

of SPARQL queries. These include a columnar ontology browser, an interactive

graphical design surface, a SPARQL-compliant visual query language, a

SPARQL syntax viewer and an integrated semantic query results browser. The

functionality of each of these components is described in the current paper. In
addition, we discuss the potential contribution of the NITELIGHT tool to rule

creation/editing and semantic integration capabilities.

Keywords: sparql, visual query system, semantic web, graphical query

language, ontology, owl, rdf, semantic integration, ontology alignment.

1 Introduction

Information retrieval is a key capability on the Semantic Web, contributing to both

the efficiency and usability of many semantic applications. The availability of

semantic query languages such as SPARQL [1] is an important element of

information retrieval capabilities; however, query developers are likely to gain

additional benefit from tools that assist them with respect to the process of query

formulation (i.e. the process of creating or editing a query). Ideally, query formulation

tools should avail themselves of user interaction capabilities that contribute to the

efficient design of accurate queries while maximally exploiting the power and

expressivity provided by the constructs of the target query language.

Most attempts to support the user with respect to query formulation have focused

on graphical or visual techniques in the form of Visual Query Systems (VQSs) [2].

VQSs provide a number of advantages relative to simple text editors. Most obviously,

such systems support the user in developing syntactically valid queries: they serve to

constrain or guide editing actions so as to minimize the risk of lexical or syntactic

errors. Other potential advantages include improved efficiency, understanding and

reduced training requirements.

In this paper we introduce a graphical tool for semantic query construction that is

based on the SPARQL language specification [1]. The tool we present is called

NITELIGHT and it enables users to create SPARQL queries using a set of graphical

notations and GUI-based editing actions. The graphical notations supported by

NITELIGHT comprise a SPARQL-compliant Visual Query Language (VQL), called

vSPARQL, which covers all syntactic elements of the SPARQL specification. The

complexity of this VQL makes the tool largely unsuitable for users who have no prior

experience with SPARQL; although this does not preclude the use of the tool in

contexts where users are attempting to familiarize themselves with SPARQL-related

capabilities. In addition, we suggest that the functional applications of NITELIGHT

are not necessarily limited to information retrieval, and that the tool could be used for

a variety of other purposes (e.g. ontology alignment, information integration, rule

creation) which may serve to broaden the user base (see Section 5).

2 Demonstration Ontology

In order to demonstrate the representational and functional capabilities of the

NITELIGHT tool (see Sections 3 and 4) we use an ontology that was developed to

support the processing of terrorist incident data. The ontology we have developed is

called the E-Defence Terrorism Ontology (EDTO) and it draws on previous ontology

design work in the area of terrorist incident analysis [3].

The centre-point of the EDTO ontology is, perhaps not surprisingly, the notion of a

terrorist attack (see Fig. 1). Multiple types of terrorist attack are represented as

subclasses of the edto:TerroristAttack class and, in most cases, these classes are

defined, meaning that they are associated with restrictions that define the necessary

and sufficient conditions for membership of the class. One such condition is

illustrated in Fig. 1. In this case we see the definition of the

edto:MiddleEastTerroristAttack class. The class is defined in terms of a terrorist

attack that occurs in a spatial (geographic) region that is either the Middle East or the

Persian Gulf.

Each edto:TerroristAttack class is associated with a number of properties that

provide further information about the attack. In the context of the EDTO ontology,

these properties capture information about the spatial and temporal location of the

attack, the organizations and individuals involved in the attack, the number of

fatalities and causalities associated with the attack, and so on.

Fig. 1. Protégé-OWL editor showing the taxonomic hierarchy associated with terrorist incidents

and the definition of one particular type of edto:TerroristAttack, namely

edto:MiddleEastTerroristAttack.

3 vSPARQL Visual Query Language

The development of a graphical tool for SPARQL query formulation necessarily

entails the development of a set of graphic notations that support the visual

representation of SPARQL query components. Following an analysis of the SPARQL

syntax specification [1], we developed a set of graphical notations to support the

representation of SPARQL queries. These notations comprise the basis of a SPARQL

VQL that we refer to as vSPARQL.

3.1 Core SPARQL Features

Because SPARQL queries exploit the triple-based structure of RDF models, graph-

based representations comprising a sequence of graphical nodes and links can be used

to represent the core of most SPARQL queries. The nodes in this case correspond to

the subject and object elements of an RDF triple, while the links correspond to the

predicates.

vSPARQL uses colour to differentiate between the three types of graphical node

(i.e. Bound Variable Node, Unbound Variable Node and Non-Variable Node) that are

used by vSPARQL to represent the subject or object elements of a triple (see Fig. 2).

Bound Variables, in this case, represent variables whose value bindings are returned

as part of the query resultset, Unbound Variables are variables that are not returned in

the resultset (they are used as part of the query execution process) and Non-Variable

Nodes are nodes that represent a URI, literal value or blank node. Nodes are

associated with a label that indicates the URI, literal value or query variable

represented by the node.

Fig. 2. Core vSPARQL graphical notations.

The predicate part of a triple is visually represented by a graphic link between the

subject and object nodes. As with the graphic objects representing the subject or

object parts of the triple, the graphical object representing the predicate is associated

with a text label that specifies either the URI of the predicate or the query variable

(see Fig. 2).

3.2 Triple Patterns

Fig. 3. vSPARQL representation of a basic triple pattern.

The fundamental component of a SPARQL query is the triple pattern. Collections

of triple patterns within a query are matched in sequence against the target RDF

model in order to establish variable bindings and return query resultsets. Graphically,

a triple pattern can be represented by a subject node connected to an object node by a

predicate link. An example of this graphical representation using vSPARQL

constructs is shown in Fig. 3. The variable „?x‟, in this case, matches against any

object in the EDTO ontology that is an instance of edto:Activity.

Subject and object nodes within the triple pattern are identified by their connection

with the Predicate Label: a graph edge protruding from the right hand side of a node

into the left hand side of the Predicate Label is the „subject‟ of the RDF triple; a graph

edge protruding from the left hand side of a node to the right hand side of the

Predicate Label is the „object‟ of the RDF triple.

3.3 Simple Select Query

Fig. 4. vSPARQL representation of a SPARQL SELECT query. Note that nodes that occur in

more than one triple pattern (e.g.?activity) are represented using a single graphic node.

In vSPARQL a SELECT query comprises graphical representations of the triple

patterns that are ultimately matched against the target RDF model (see Fig. 4). The

query variables that are returned as part of the SELECT query are represented by the

Bound Variable Nodes (coloured green), while the query variables that are used

internally as part of the vSPARQL query are represented by Unbound Variable Nodes

(coloured blue, but not shown in Fig. 4).

The order in which Bound Variables are returned in query resultsets can sometimes

be important. This ordering information is represented in vSPARQL using a numeric

value in an orange circle added to the top left of the (Bound or Unbound) Variable

Node. The order in which triple patterns appear within the SPARQL WHERE clause

is defined by a similar order indicator on the label associated with predicate link (see

Fig. 4).

3.4 Graph Patterns

In SPARQL, there are multiple types of graph patterns (e.g. basic graph pattern,

group graph pattern, etc.). The query presented in Fig. 4 is an example of a basic

graph pattern that comprises one or more triple patterns. Graph patterns influence

variable bindings because each variable has local scope with respect to the (basic)

graph pattern in which it is contained. This means that the same variable could be

bound to different values in different graph patterns.

In SPARQL, a group graph pattern is a collection of two or more basic graph

patterns. Graphical support for the representation of group graph patterns in

vSPARQL is accomplished by grouping triple patterns into separate graphical groups

(see Fig. 5).

Fig. 5. vSPARQL representation of group graph patterns. Note that in contrast to the strategy

adopted with recurring nodes in basic graph patterns, nodes that appear multiple times in
multiple basic graph patterns are not represented by a common graphic node; they are

duplicated within each basic graph pattern.

Two further types of graph pattern are encountered in SPARQL: optional graph

patterns and union graph patterns. Optional graph patterns, as their name suggests, are

optional; they allow a user to extend the query solution with respect to additional

triple patterns that may or may not match against the RDF model. Union graph

patterns (or alternative graph patterns) allow a user to specify alternatives for graph

pattern matching. In this case, one of several graph patterns may match the target

graph; the failure of one graph pattern to match successfully will not necessarily result

in the failure of the query, as a whole, to return a solution. Optional graph patterns are

represented in vSPARQL by graphically grouping triple patterns and assigning a

unique colour (brown) to the group (see Fig. 6). Union graph patterns are represented

using a graphic link between two graph patterns.

The specification of a default RDF graph, or the retrieval of a graph as part of a

query, is represented in vSPARQL by using a link to a (Bound/Unbound) Variable

(graph retrieval/specification) Node or Non-Variable Node (graph specification) (see

Fig. 6).

Fig. 6. vSPARQL representation of union graph patterns.

3.5 Solution Sequence Ordering

In SPARQL, the ORDER BY clause establishes the order of a solution sequence,

i.e. the order in which the elements of the query resultset are returned. A direction

indicator (either Ascending or Descending) specifies whether the query resultset

should be ordered in an ascending or descending sequence with respect to the relevant

ordering variable. In vSPARQL, solution sequencing is realized by the use of an

arrow icon within a (Bound/Unbound) Variable Node (see Fig. 7). The arrow icon

uses a numeric value to indicate the order in which variables will be evaluated with

respect to the ORDER BY clause; the direction of the arrow specifies the order

direction, Ascending (up) or Descending (down).

Fig. 7. vSPARQL representation of the SPARQL ORDER BY clause.

3.6 Filtering

SPARQL filtering is used to restrict the resultsets returned by a query using a

variety of expressions, e.g. SPARQL operators, SPARQL functions and XPath

casting functions [1]. The visual representation of a filter expression is based on the

addition of „Filter Field Boxes‟ beneath (Bound/Unbound) Variable Nodes (see Fig.

8). Because of the complexity of some SPARQL filters expressions, it is not always

practical to display all the terms of the filter expression in the Filter Field Box.

Instead, the Filter Field Box displays a short summary of the filter expression which is

subsequently expanded in the NITELIGHT tool using a tooltip display mechanism.

Fig. 8. vSPARQL representation of a SPARQL query that includes a filter on the ?date query

variable.

3.7 SPARQL CONSTRUCT Queries

SPARQL has a number of query forms, namely SELECT, CONSTRUCT, ASK

and DESCRIBE [1]. All the examples we have encountered so far are of the SELECT

query form variety. CONSTRUCT queries are different from SELECT queries

because they define both a set of triple patterns to match against the RDF graph, as

well as a template for RDF graph construction. The RDF graph generated as a result

of query execution is formed by taking the values of variable bindings associated with

the triple patterns (in the WHERE clause) and substituting these into the RDF graph

template (see [1] for more details).

Fig. 9. vSPARQL representation of the SPARQL CONSTRUCT query form.

In vSPARQL, when a CONSTRUCT query is created, the graph pattern that

comprises the graph template is highlighted using a colored box (blue in Fig. 9). This

distinguishes the graph template from graph patterns specified as part of the WHERE

clause (Fig. 9).

3.8 Other SPARQL Features

There are some features of the SPARQL specification that do not easily lend

themselves to a visual representation. These features are supported in the

NITELIGHT tool, but they are not part of the vSPARQL specification. They include,

ASK and DESCRIBE query forms, as well as DISTINCT, LIMIT and OFFSET

solution modifiers.

4 NITELIGHT Tool

The NITELIGHT tool is a Web-based application written entirely in JavaScript.

The main user interface (see Fig. 10) has five elements, each of which works together

to provide a visually compelling environment for graphical query formulation. The

main user interface components are briefly described in subsequent sections.

Fig. 10. The NITELIGHT tool main user interface.

4.1 Query Design Canvas

The Query Design Canvas (see Fig. 11) is the center-piece of the NITELIGHT

tool. It provides a canvas for the graphical rendering of SPARQL queries using the

graphical constructs of the vSPARQL language. Many of the vSPARQL constructs,

once rendered on the Query Design Canvas, are selectable objects that can be edited

using either the Quick Toolbar or a context menu. Both the Quick Toolbar and the

context menu allow users to define filtering, ordering and grouping information for

the selected object. The design canvas itself can be zoomed and panned to view the

entire query at different levels of visuo-spatial resolution.

Fig. 11. NITELIGHT Query Design Canvas.

4.2 Ontology Browser

To facilitate the process of query formulation, and to provide users with a starting

point for query specification, the NITELIGHT tool includes an Ontology Browser

component (see Fig. 12). The first column of the Ontology Browser is a persistent list

of currently loaded ontologies (the „Ontologies‟ column in Fig. 12). New ontologies

can be loaded into the browser, and the selection of one of the loaded ontologies will

result in the enumeration of top-level classes (root classes) in the second column of

the Ontology Browser („edto Root Classes‟ in Fig. 12). Selecting a class from this

column causes an adjacent column to appear to the right of the root classes column.

This new column contains the subclasses of the currently selected root class. This

pattern of subclass enumeration is repeated as the user progressively selects classes

from the right-most column.

Fig. 12. The NITELIGHT Ontology Browser, showing a path through the EDTO ontology to

the „City‟ class.

In addition, to enabling users to navigate the class hierarchy associated with the

ontology, the Ontology Browser also provides access to information about the

properties associated with each class in the ontology. In this case, the user can expand

a class node in the Ontology Browser to view a list of properties associated with the

class.

The Ontology Browser enables a user to drag and drop classes (and properties)

onto the Query Design Canvas. A new node can be created by dragging a class item

from the Ontology Browser onto the canvas; a new link can be created by dragging a

property from the Ontology Browser and attaching it to a node that is already located

on the canvas.

4.3 Quick Toolbar

The Quick Toolbar provides access to commonly used tools for manipulating the

Query Design Canvas and its graphical query contents. Example tools include pan and

zoom buttons, grouping functions and node editing utilities.

4.4 Properties Inspector Panel

The Properties Inspector Panel allows the user to view and edit the properties

associated with a selected vSPARQL object. Common properties include node type,

node value, order value etc. However, the exact properties that are displayed in the

Properties Inspector Panel ultimately depends on the type of vSPARQL object that is

selected.

When no node is selected, the Properties Inspector Panel displays a general set of

properties (Fig. 10) that allows the user to change the type of query (SELECT,

CONSTRUCT, ASK, DESCRIBE) and to specify the value of solution sequence

modifiers (e.g. DISTINCT, OFFSET, LIMIT, etc.)

4.5 SPARQL Syntax Viewer/Query Results Viewer

The SPARQL Syntax Viewer provides a text-based view of the SPARQL query

being edited in the NITELIGHT tool. At the present time, the SPARQL Syntax

Viewer is read-only, i.e. the user cannot edit the SPARQL syntax directly. Any

changes to the SPARQL query must therefore be implemented via the NITELIGHT

tool interface. Future work could explore the possibility of bi-directional translation

capabilities in which the user would be permitted to modify the graphical

representation of a SPARQL query by interacting directly with the SPARQL Syntax

Viewer.

The SPARQL Syntax Viewer can also be used as a Query Results Viewer to

display the results of query execution (Fig. 13)1. The functionality of the Results

Viewer is limited to displaying the raw output of the query processor (e.g. SPARQL

Query Results XML Format2). NITELIGHT, however, is easily extensible and the

outputs of query execution could be easily co-opted into applications supporting more

sophisticated forms of information visualization, e.g. the display of geo-located events

on a Google maps display.

1 vSPARQL queries can be executed in NITELIGHT using a user-selected SPARQL endpoint.
2 http://www.w3.org/TR/rdf-sparql-XMLres/

Fig. 13. Query results displayed in the NITELIGHT Query Results Viewer.

5 Additional Application Areas

Thus far, we have described the functionality of the NITELIGHT tool with respect

to one particular application area, namely the use of the tool to design semantic

queries that retrieve information from a back-end repository. This is clearly the most

common use of query languages, semantic or otherwise. There are, however, a

number of additional application areas that we are exploring as part of our current and

future work. In subsequent sections we focus on just two of these application areas:

the use of NITELIGHT to create, edit and visualize domain-specific rules, and the use

of the NITELIGHT tool to facilitate the development of information integration and

interoperability solutions.

5.1 Rule Creation

The fact that SPARQL supports a number of query forms (i.e. SELECT,

CONSTRUCT, ASK, DESCRIBE) means that the functional application of

NITELIGHT is not necessarily limited to information retrieval; it can also be used to

create „queries‟ that contingently modify and extend (perhaps multiple) knowledge

bases according to the presence of information detected from one or more information

sources (sources that may, of course, also subtend multiple nodes of a distributed

information network). This use of the tool (to create SPARQL queries that

contingently assert new information) is consistent with its use as a rule editor. In such

cases, we argue, the tool is being used to capture (and represent) knowledge-rich

contingencies that could be modeled using either rules or SPARQL CONSTRUCT

queries. Consider, for example, one inference that can be made in the context of the

EDTO ontology (see Fig. 14). In this case, we are using the Semantic Web Rules

Language (SWRL) [4, 5] to represent the implied involvement of a terrorist

organization in a particular terrorist attack based on the organizational affiliation of

individuals responsible for the attack. This contingency can also be expressed in

SPARQL using the CONSTRUCT query form (see Fig. 15) and, as such, it can be

created, edited and visualized using the NITELIGHT tool.

Fig. 14. A SWRL rule representing a knowledge-rich contingency in the domain of terrorist

incidents. The rule states that “If a terrorist attack is perpetrated by an individual who is a

member of a known terrorist organization, then that organization is, in all likelihood, involved
in the terrorist attack.”

Fig. 15. SPARQL CONSTRUCT query representing the relationship between the perpetrators
of an attack, their membership of a terrorist organization and the (inferred) involvement of the

organization in the attack.

5.2 Information Integration and Interoperability

One implication of the aforementioned ability to use NITELIGHT as a rule editor

is that we can use the tool to represent the semantic mappings or ontology alignments

between ostensibly disparate ontologies. In the case of the terrorist incident domain,

for example, we see a number of differences in the way in which supposedly common

domain-relevant conceptualizations are represented in ontologies (see [6] for one

specific example).

One approach to representing semantic mappings between two ontologies, while

simultaneously supporting bidirectional information exchange or transfer, is to use a

SPARQL CONSTRUCT query [see 7]. Such a query effectively implements an

information exchange or information transfer solution that is grounded in ontology

alignments that may have been derived using manual and/or automatic methods. A

CONSTRUCT query that represents the mapping between the EDTO ontology and a

PREFIX edto: <http://www.e-defence.org/ontologies/terrorism.owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

CONSTRUCT

{

 ?z edto:hasSuspectedResponsibilityFor ?x

}

WHERE

{

 ?x rdf:type edto:TerroristAttack .

 ?x edto:isPerformedBy ?y .

 ?y edto:isMemberOf ?z .

 ?z rdf:type edto:TerroristOrganization

}

comparison ontology (called ITO), specifically with respect to the notion of a suicide

bomb attack, is represented in Fig. 16 (see [6] for more information about this specific

example). Based on this example, one could clearly imagine the future use of

NITELIGHT as a tool for expressing ontology alignment information and effecting

information exchange/transfer solutions via the execution of SPARQL CONSTRUCT

queries.

Fig. 16. SPARQL CONSTRUCT query implementing an information exchange solution for
EDTO and ITO ontologies. Note that the query creates a new edto:TerroristAttack instance

rather than an edto:SuicideBombAttack. This is because, in EDTO, all terrorist attacks are

instantiated from the edto:TerroristAttack class. The actual task of computing the type of OWL

individuals in the ontology is delegated to a subsumption reasoner.

6 Usability and User Evaluation

We have not, at the present time, evaluated the tool with respect to particular user

groups (details of our proposed user evaluation studies are presented in [8]). As stated

at the outset of the paper, the complexity of the representational formalisms used for

graphical query construction largely precludes the use of the tool by novice users, i.e.

those unfamiliar with semantic query languages. We suspect the tool may be useful to

users who are in the process of acquiring SPARQL expertise, but we have not

evaluated this claim in the context of controlled empirical studies. The tool has, in

general, been favorably received by end users; however, controlled empirical analyses

are required to fully evaluate the tool with respect to task performance and user

satisfaction criteria (see [8]).

7 Related Work

There have been a number of attempts to support graphical modes of query

formulation in the context of the Semantic Web. Notable examples include OntoVQL

PREFIX edto: <http://www.e-defence.org/ontologies/terrorism.owl#>

PREFIX ito: <http://www.ito.org/terrorism.owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

CONSTRUCT

{

 _:t rdf:type edto:TerroristAttack .

 _:t edto:isSuicideAttack xsd:true .

 _:d ref:type edto:ExplosiveDevice .

 _:t edto:uses edto _:d

}

WHERE

{

 ?x rdf:type ito:TerroristIncident .

 ?x ito:hasType ito:Bombing .

 ?x ito:involvesWeapon ito:Explosive .

 ?x ito:hasVictim ?victim .

 ?victim ito:isFatality xsd:true .

 ?victim rdf:type ito:Terrorist .

 ?x ito:perpetratedBy ?victim

}

[9], SEWASIE [10], SPARQLViz [11], and iSPARQL [12]. One tool that has similar

functionality to NITELIGHT is the visual query builder associated with the iSPARQL

framework [12]. The iSPARQL Visual Query Builder supports the user with respect

to the specification of all SPARQL query result forms (i.e. SELECT, CONSTRUCT,

etc.). It also supports the creation of optional graph patterns as well as UNION

combinations of graph patterns in a manner similar to that described for vSPARQL.

Despite these similarities, a number of differences exist between the iSPARQL Visual

Query Builder and NITELIGHT tool. These include the following:

 Ontology Browsing. The iSPARQL tool relies on a Treeview component that

groups ontology elements into „Concepts‟ and „Properties‟. This differs from

NITELIGHT, which provides access to concepts and properties using a

column-based ontology browser. NITELIGHT also highlights the domain and

range of properties in the ontology browser; iSPARQL simply displays the

property name. In general, the NITELIGHT ontology browser provides more

information about the loaded ontologies than iSPARQL3.

 Graphical Formalisms. A number of differences exist in the graphical

formalisms used to represent query elements. NITELIGHT, for example, uses

different formalisms to represent literal and variable nodes.

 Interactive Query Construction. NITELIGHT updates the textual

representation of a query in an interactive fashion; every change to the

graphical representation of the query is associated with a corresponding

change to the textual representation.

 Look and Feel. NITELIGHT uses Cascading Style Sheets (CSS) to style all

components. As such, its look and feel can be easily modified to meet specific

design requirements.

The relative significance of these differences in terms of usability criteria and user

evaluation outcomes is clearly an important focus area for further research (see [8]).

7 Conclusion

This paper has presented a graphical editing environment for the construction of

semantic queries based on the W3C SPARQL language specification. The tool, called

NITELIGHT, is primarily intended for use by those with previous experience of

SPARQL (although it could also potentially serve as a support tool for novice users

who aim to acquire SPARQL expertise). NITELIGHT is a type of VQS that

specifically supports an existing text-based query language; namely SPARQL. In

contrast to the recommendations of some commentators [13] we do not propose to

develop a simplified query language for end-users; rather we aim to support end-users

with respect to the creation of complex queries using supportive user interfaces and

user interaction mechanisms. Our tool is one of growing number of VQSs that are

being developed to support information retrieval in the context of the Semantic Web.

3 This is potentially significant because, in our experience, understanding the structure of the

target ontology, as well as the intended meaning of target ontology elements, is often the
hardest part of the query formulation process.

Acknowledgements

This research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of

Defence and was accomplished under Agreement Number W911NF-06-3-0001. The views and
conclusions contained in this document are those of the author(s) and should not be interpreted

as representing the official policies, either expressed or implied, of the U.S. Army Research

Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The

U.S. and U.K. Governments are authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

References

1. "SPARQL Query Language for RDF", http://www.w3.org/2001/sw/DataAccess/rq23/

2. Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual Query Systems for Databases:

A Survey. Journal of Visual Languages and Computing 8 (1997) 215-260
3. Golbeck, J., Mannes, A., Hendler, J.: Semantic Web Technologies for Terrorist Network

Analysis. In: Popp, R.L., Yen, J. (eds.): Emergent Technologies and Enabling Policies for

Counter Terrorism. Wiley-IEEE Press, Hoboken, New Jersey, USA (2006)

4. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Benjamin, G., Dean, M.: SWRL:
A Semantic Web Rule Language Combining OWL and RuleML. World Wide Web

Consortium (2004)

5. Golbreich, C., Imai, A.: Combining SWRL rules and OWL ontologies with Protégé OWL

Plugin, Jess, and Racer. 7th International Protégé Conference, Bethesda, Maryland, USA
(2004)

6. Smart, P.R., Engelbrecht, P.C.: An Analysis of the Origins of Ontology Mismatches on the

Semantic Web. 16th International Conference on Knowledge Engineering and Knowledge

Management (EKAW'08), Acitrezza, Catania, Italy (2008)

7. Braines, D., Kalfoglou, Y., Smart, P.R., Shadbolt, N.R., Bao, J.: A Data-Intensive

Lightweight Semantic Wrapper Approach to Aid Information Integration. 4th International

Workshop on Contexts and Ontologies (C&O) hosted by the 18th European Conference on

Artificial Intelligence (ECAI'08), Patraz, Greece (2008)
8. Russell, A., Smart, P.R., Braines, D., Shadbolt, N.R.: NITELIGHT: A Graphical Tool for

Semantic Query Construction. Semantic Web User Interaction Workshop (SWUI'08)

hosted by the 26th CHI Conference (CHI'08), Florence, Italy (2008)

9. Fadhil, A., Haarslev, V.: OntoVQL: A Graphical Query Language for OWL Ontologies.
International Workshop on Description Logics (DL-2007), Brixen-Bressanone, Italy (2007)

10. Catarci, T., Dongilli, P., Mascio, T.D., Franconi, E., Santucci, G., Tessaris, S.: An ontology

based visual tool for query formulation support. 16th European Conference on Artificial

Intelligence, Valencia, Spain (2004)
11. Borsje, J., Embregts, H.: Graphical Query Composition and Natural Language Processing

in an RDF Visualization Interface. Erasmus School of Economics and Business Economics,

Vol. Bachelor. Erasmus University, Rotterdam (2006)

12. "OpenLink iSPARQL", http://demo.openlinksw.com/isparql/
13. Hoang, H.H., Tjoa, A.M.: The virtual query language for information retrieval in the

semanticLIFE framework. International Workshop on Web Information Systems Modeling,

Trondheim, Norway (2006)

