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Abstract Repetitive processes are characterized by a series of sweeps, termed passes,
through a set of dynamics defined over a finite duration known as the pass length. On each
pass an output, termed the pass profile, is produced which acts as a forcing function on,
and hence contributes to, the dynamics of the next pass profile. This can lead to oscillations
which increase in amplitude in the pass to pass direction and cannot be controlled by standard
control laws. Here we give new results on the design of physically based control laws for the
sub-class of so-called discrete linear repetitive processes which arise in applications areas
such as iterative learning control. The main contribution is to show how control law design
can be undertaken within the framework of a general robust filtering problem with guaran-
teed levels of performance. In particular, we develop algorithms for the design of an /7%,
and £,—{, dynamic output feedback controller and filter which guarantees that the resulting
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controlled (filtering error) process, respectively, is stable along the pass and has prescribed
disturbance attenuation performance as measured by 7%, and £2—€~, norms.

Keywords Control - Discrete time - Filtering - Lyapunov method - Repetitive process

1 Introduction

The operation of a repetitive process, i.e. a series of sweeps, termed passes, through a set of
dynamics defined over a fixed finite duration known as the pass length can lead to oscilla-
tions in the output sequence of pass profiles which increase in amplitude in the pass to pass
direction. These are caused by the fact that the previous pass profile acts as a forcing function
on, and hence contributes to, the dynamics of the next pass profile and so on.

To introduce a formal definition, let « < 400 denote the pass length (assumed constant).
Then in a repetitive process the pass profile (or process output) yx(p), 0 < p < o — 1, gener-
ated on pass k acts as a forcing function on, and hence contributes to, the dynamics of the next
pass profile yg+1(p), 0 < p <o —1, k > 0. The source of the unique control problem then
appears (if at all) in the output sequence generated, i.e. the collection of pass profile vectors
{vk }x- Note that for repetitive processes, as opposed to 2D systems, information propagation
in one of the independent directions, along the pass, only occurs over a finite duration—the
pass length. Also the boundary conditions are reset before the start of each new pass and the
structure of these can be somewhat complex. For example, if they are an explicit function of
points on the previous pass profile then these alone can destroy the most basic performance
specification of stability.

Physical examples of repetitive processes include long-wall coal cutting and metal roll-
ing operations (see, for example, the references cited in Rogers and Owens 1992). Also
in recent years applications have arisen where adopting a repetitive process setting for
analysis has distinct advantages over alternatives. Examples of these so-called algorithmic
applications include classes of iterative learning control (ILC) schemes (see, for exam-
ple, Moore et al. 2005) and iterative algorithms for solving nonlinear dynamic optimal
control problems based on the maximum principle (Roberts 2002). In the case of itera-
tive learning control for the linear dynamics case, the stability theory for differential (and
discrete) linear repetitive processes is one method which can be used to undertake a stabil-
ity/convergence analysis of a powerful class of such algorithms and thereby produce vital
design information concerning the trade-offs required between convergence and transient
performance.

In terms of control laws for repetitive processes, it is necessary to use feedback control
action on the current pass and/or feedforward control from the previous pass (or passes). The
critical role of the previous pass profile dynamics means that current pass feedback control
alone is not enough and it must be augmented by feedforward control. This approach has
been the subject of significant research effort and results have emerged on how to undertake
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control law design in the presence of uncertainty. For example, Paszke et al. (2006) give
results on control law design in an /%, setting. The control laws used in some of this work
are based on the use of feedback of the current state vector which, of course, requires that all
entries in this vector can be measured to allow control law implementation. Often, however,
this assumption is not valid for various reasons.

There are two commonly used methods to deal with the control design problem when all
entries in the state vector cannot be measured. One is to design an observer to estimate the
unmeasurable state vector entries and use this to implement an observer-based control law.
The other is to design a controller, or control law, which is only activated by pass profile (or
output) information where such controllers are usually classified as either static or dynamic,
respectively.

Generally speaking, dynamic output feedback is the more flexible since the control law
or controller introduces additional dynamics. Also it is known that the problem of designing
such control laws can be formulated as a convex optimization problem over linear matrix
inequalities (LMIs) (see, for example, Paszke et al. 2006) and hence the possibility of numeri-
cally reliable computation using numerical optimization packages. This work also shows that
there are two complementary approaches to problem formulation. These are the well known
variables elimination procedure and the use of linearizing variable transforms, respectively.

This latter approach provides a general framework to formulate control law synthesis as
a convex optimization problem involving LMIs. It is based on applying specific invertible
transforms of the controller parameters to achieve LMI conditions in terms of the new set of
variables. When the resulting LMIs have a solution, the control law parameters can be com-
puted by applying inverse transforms. This approach becomes less computationally effective
as the number of decision variables increases and hence elimination of some of these can
be still required, but this can only be achieved by application to specific structures within
the underlying matrix inequalities. The known results on designing a so-called .7%, dynamic
pass profile controller are based on this approach, see Paszke et al. (2006).

Clearly, there is still much research which needs to be done on the development of alterna-
tive design algorithms based on linearizing variable transform methods, with the overall aim
of providing a general set of control law/controller design tools for the designer to chose the
one most appropriate to the particular application under consideration. In particular, to-date
only %, and % (and mixed % /.#%,) settings have been addressed and also this analysis
assumed full access to either the current pass state or pass profile vectors, an assumption which
may not be particularly relevant to physical cases where the pass profile vector (the process
output) is corrupted by noise etc. Here we develop significant new results with such a case
in mind using %, and £>—{~, performance measures which can be split into two main parts.

The % and £r—{, (or £5— % for continuous-time systems) settings have been exten-
sively used in optimal control/filtering for many classes of systems, see, for example, Du and
Lam (2006), Wang et al. (2006), Wu et al. (2008, 2006, 2007). In particular, they are known
to be particularly well suited to cases when noise is present whose stochastic content is not
precisely known. In an .7, sense, the control (filter) minimizes the worst-case energy gain
from the noise inputs to the controlled output (estimation error) (Wu et al. 2008, 2006, 2007);
while in an €l (or £5—%) sense, the control (filter) minimizes the worst-case energy
to peak gain from the noise inputs to the controlled output (estimation error) (Du and Lam
2006; Wu et al. 2006, 2007).

The first set of new results developed in this paper give control law (or controller) design
algorithms to guarantee stability and disturbance rejection, as measured by %%, and £,—{,
norms for one version of so-called discrete linear repetitive processes which arise in the rep-
resentation of both physical and algorithmic examples. These results are the first for the latter
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performance measure and in both cases we do not assume full access to either the current
pass state or pass profile vectors—in Paszke et al. (2006) this assumption was made for the
o case.

There is clearly also a need to develop a filtering theory for these processes which can
be (eventually) used to enable the implementation of control laws and/or enable (as one of
many possible uses) reliable estimates of key signals to be obtained from measured data. The
second set of major results here solves the underlying problem of the design of a full order
filter which gives a stable filter error and has prescribed disturbance attenuation performance
as measured by either an %, or an {,—{,, norm measure. This leads to the formulation
of the filter existence problem in an LMI setting for each case and hence the corresponding
design task as a convex optimization problem which can be computed using well known inte-
rior-point algorithms. Two numerical examples are given to highlight the potential offered
by these new results.

Throughout this paper, the null matrix and the identity matrix with appropriate dimen-
sions are denoted by 0 and /, respectively. Moreover, M > 0 (>0) denotes a real symmetric
positive definite (semi-definite) matrix. Similarly, M < 0 (<0) denotes a real symmetric
negative definite (semi-definite) matrix, and * is used to denote transposed block entries in
these matrices. We also require the signal space ¢> {[0, c0), [0, 00)}, i.e. the space of square
summable sequences on {[0, 00), [0, c0)} with values in RY, written Eg for short.

2 A And £2—L 4 performance
2.1 Process description and preliminaries

As essential background for the rest of this paper, this section defines what is meant by 7%,
and ¢>—{, performance for discrete linear repetitive processes described by the following
state-space model over0 < p <a — 1, k >0,

Xk+1(p + 1) = Axp41(p) + Boyk(p) + Biowg+1(p)
Yi+1(p) = Cxp+1(p) + Doyi(p) + Diw+1(p) (D

where on pass k, xx41(p) € R” is the state vector; yx(p) € R™ is the pass profile vector;
wk+1(p) € R/ is the disturbance vector which belongs to Elz.

Remark 1 1t is important to note that the pass-to-pass updating structure in this model is the
simplest possible, i.e. at any point on the current pass the contribution from the previous pass
is only from the same point, i.e. only yx(p) contributes to xx41(p) and hence to yr4+1(p)
for any 0 < p < «a — 1. It is also possible that (in the most general case) all points along
the previous pass profile contribute to the state and pass profile vectors at any point on the
current pass. Indeed this can arise in physical examples such as long-wall coal cutting where
it is known as inter-pass smoothing (Rogers and Owens 1992). Given that no work has pre-
viously been reported on filtering problems for discrete linear repetitive processes we focus
on the model above with extension to inter-pass smoothing, which could well be a non-trivial
problem, left as a topic for further work (see also the conclusions section for more discussion
of this general point).

Often in practical applications it cannot be assumed that the current pass state (xx41(p))
and pass profile (yx(p)) vector are fully accessible. In the first case, this often arises phys-
ically as sum or all of the entries in this vector may not be available for measurement and
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hence control law implementation cannot be achieved unless it is possible to design a suitable
observer structure to estimate the missing state variables.

The pass profile vector is the process output, but from the Roesser type 2D linear systems
state-space model point of view, it has also the interpretation of the system vertical state
sub-vector (and the state vector is the horizontally transmitted state sub-vector) and hence
it could be the case that all elements in this vector are not available for measurement. More
likely is the situation where measurements are corrupted by noise. In such cases, one option
is to assume availability of a so-called measured output signal vector given by

Zk+1(p) = Exg1(p) + Foyr(p) + Frog1(p) ()

where zx+1(p) € R”. The controlled output signal, or signal to be estimated, can be written as

Vk+1(p) = Gxi+1(p) + Hoyr(p) 3)

where viy1(p) € RY.

To complete the process description, it is necessary to specify the boundary conditions,
i.e. the state initial vector on each pass and the initial pass profile (i.e. on pass 0). Here we
consider the case when

Xp+1(0) = di41, k=0
yop) = f(p), 0<p=<a-—1 @

where di+1 € R" has known constant entries and f(p) € R™ is an vector whose entries are
known functions of p over [0, @ — 1]. This overall state-space model description allows for
disturbances which affect both the state and pass profile dynamics on each pass.

Remark 2 The boundary conditions assumed here are the simplest possible. In some applica-
tions, however, there is a need to consider boundary conditions where the state initial vector
on each pass is an explicit function of points along the previous pass profile. An example
here is the optimal control application (Rogers et al. 2007). Such boundary conditions are
termed dynamic and they can have a very critical effect on the process dynamics. Indeed they
alone can cause instability—see Rogers et al. (2007) and the relevant cited references for a
complete treatment of this key point. Here we leave the problem of filtering in the presence
of such boundary conditions as a topic for further work.

The stability theory (Rogers and Owens 1992) for linear repetitive processes such as those
considered here is based on an abstract model in a Banach space setting which includes a wide
range of such processes as special cases, including those described by (1) and (4). In terms
of their dynamics it is the pass-to-pass coupling (noting again the unique control problem for
them) which is critical. This is of the form y;+1 = Ly yi, where y, € Ey (E, a Banach space
with norm || - ||) and L, is a bounded linear operator mapping E, into itself. At least two
distinct forms of stability can be defined and the first of these, known as asymptotic stability,
holds if, and only if, there exist numbers M, > 0 and A, € (0, 1) independent of « such
that ||L§ || < Ma)»f;, k > 0 (where || - || also denotes the induced operator norm) and can be
interpreted as bounded-input bounded-output stability over the finite pass length.

If asymptotic stability holds then the sequence of pass profiles generated converge strongly
to a so-called limit profile, i.e. after a sufficiently large number of passes have elapsed, the
pass profiles converge in the k direction but the finite pass length means that there could be
unacceptable along the pass dynamics. Stability along the pass prevents this from arising by,
in effect, demanding the bounded-input bounded-output property for any possible value of
the pass length. This holds if, and only if there exist numbers Mo, > 0 and Ao € (0, 1)
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independent of « such that ||L’; [ < Mook’go, k > 0. (Note also that stability along the pass
can be analyzed mathematically by letting « — oo and we make no further explicit reference
to this fact for the remainder of this paper).

It is of interest to relate this theory to a physical example in the form of long-wall coal
cutting where the pass profile is the thickness (relative to a fixed datum) of the coal left
after the cutting machine has moved along the pass length, i.e. the coal face. The stability
problem here is caused by the machine’s weight as it rests on the previous pass profile during
the cutting of the next pass profile. The undulations caused can be very severe and result in
productive work having to stop to enable them to be removed.

For the processes considered here (see Rogers and Owens 1992 for the original analysis),
asymptotic stability holds if, and only if, all eigenvalues of the matrix Dy have modulus
strictly less than unity, i.e. p(Dg) < 1 where p(-) denotes the spectral radius of its matrix
argument. This condition is trivially checked and if it holds then the resulting limit profile is
governed by a standard, or 1D, discrete linear systems state-space model with state matrix
A+ By(I — Do)~ C. It is, however, easy to find examples where asymptotic stability holds
but the resulting limit profile is unstable as a 1D discrete linear system, i.e. the dynamics
in the along the pass direction are bounded but not uniformly bounded (i.e. independent of
the value of the pass length o). Stability along the pass prevents this from arising and the
following is one set of necessary and sufficient conditions for this stronger property where
we note that it is independent of the disturbance terms.

Theorem 1 (Rogers and Owens 1992) A discrete linear repetitive process described by (1)
and (4) is stable along the pass if, and only if,

(i) p(Do) <1;
@) p(A) < 1;and
(iii) all eigenvalues of G(z) = C (zI — A)_] Bo+ Dg forall |z| = 1 have modulus strictly
less than unity.

Note here that examples can be found which show that p(A) < 1 is also only a necessary
condition for stability along the pass.

In terms of testing a particular example for stability along the pass, it is clearly the third
condition here which is the most intensive computationally. Also this result has not proved
to be a general purpose way to undertake control law design for stability along the pass or
stability along the pass plus performance objectives. One alternative is to use LMIs for which
the following is the basic result.

Lemma 1 (Galkowski et al. 2002) A discrete linear repetitive process described by (1)
and (4) with wi41(p) = Ois stable along the pass if there exists a matrix W =diag(W1, W) >
0 such that the following LMI holds:

_ T
[*W IYWW]<0 )

where M = |:A Bo ]

C Dy
To assess performance using /%%, and £,—{~, measures, we introduce the following defi-
nition.

Definition 1 A discrete linear repetitive process described by (1) with zero boundary con-
ditions is said to have /%, performance level y2 2 > O if it is stable along the pass with
wk+1(p) = 0 and for all nonzero wy4+1(p) € Elz
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lvk+1(P)Nag < V2.2 lok+1(P)log (6)
and ¢»—{ performance level y» o > 0 if

[vk4+1(P) oo, < V2,00 lkt1(P)Il2,o (N

for the 7%, and £,—{~, cases, respectively where

1fi(p) oo 2 \/ DI SN AV

AP loge 2 \/k sip T () fi(p)

=0, pe[0,a—1]

Remark 3 Since we consider only linear dynamics, the process response consists (in the
absence of control inputs) of two parts, one of which arises from the boundary conditions
and the other from the disturbance terms. Since the performance measure above seeks to
address the response to disturbances the boundary conditions are set to zero. In applications,
of course, many aspects will be important and there is no attempt to achieve the maximum
possible benefit over all measures. For some applications, disturbance rejection may be the
major consideration and in such a case the most emphasis would be placed on this aspect of
overall performance.

The ¢2—¢~ performance measure here is the minimization of the maximum peak ampli-
tude amplification, measured by the €+, norm for a signal with finite energy as measured by
the £> norm. In particular, the design task here is to find a control law which gives stabil-
ity along the pass and also minimizes the worst case amplification effect of a finite energy
disturbance on the controlled output (for further background on these norms and their use
in other areas of systems theory see, for example, Gao and Wang 2003; Palhares and Peres
2000). The .#%, performance measure is the ratio of the energy in the output signal to the
energy in the disturbance signal as measured by the ¢> norm. In all applications the pass
length « is finite and this means that we are dealing with a subspace of the usual ¢> space,
but, for notational simplicity, the performance is still referred to as the ¢, measure. Its
main advantage is the fact that it is insensitive to the exact knowledge of the statistics of the
disturbance signals. The relevance of these measures for discrete linear repetitive processes is
well founded physically by noting the conditions in which physical examples have to operate,
e.g. long-wall coal cutting and iterative learning control applications such as using a gantry
robot to synchronously place objects on a chain conveyor (for details in this last case see the
references listed in Rogers et al. 2007).

2.2 7% Performance

The following result on 7%, performance for discrete linear repetitive process can now be
established.

Theorem 2 A discrete linear repetitive process described by (1) with zero boundary condi-
tions is stable along the pass with %, performance level y> 2 > 0 if there exist matrices
P > 0and Q > 0 such that the following LMI holds:
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-P 0 0 ATp c'o &7
* -0 0 Blp Dlo H]

2 T T
* * v, BP DiQ O 0 3
* * * —-P 0 0 = ®)
* * * * -0 0
* * * * * —1

Proof First, we establish the stability along the pass using the candidate Lyapunov function

V(k, p) = Vi(p, k) + Va(k, p),
Vi(p, k) £ x[ (p)Pxiy1(p),
Va(k, p) £ y[ (p)Qyi(p) )
where P > 0, Q > 0, with increment AV (k, p) defined by
AV (k, p) £ AVi(p, k) + AVa(k, p) (10

Hence

AVi(p.k) = x[ 1 (p+ DPxi1(p+ 1) — X1y (p) Pxpy1(p)
= [Axes1(p) + Boye(p)]" P [Axis1(p) + Boyi(p)]
— X1 (D) Pxis1(p) (11)
AVa(k, p) = Yi1(P) Qyis1(p) — ¥ (p) Qv (p)
= [Cxes1(p) + Doye(p)]" Q [Cxir1(p) + Doyi(p)]
— L () Oy (p) (12)

and it follows that
AV p) =6l () (ATPA+CTOC P = 0) ap) 2l (¥a(p)  (13)

where

o | xrs1(p) s | A B =2|00 sa| PO =200
q(;:)-[yk(p) ]’A_[oo ee2len P2 lool 22|00
Application of the Schur’s complement formula to the LMI (8) now leads immediately to
W < 0. Hence for any ¢ (p) # 0, we have AV (k, p) < 0 and it follows immediately from

results in Rogers et al. (2007) that stability along the pass holds.
We also have

oo a—1 a—1 o0
DD AV p) 2D AVI(p. k) + D AVa(k, p) (14)
k=0 p=0 p=0 k=0

which will be used in establishing the ./, performance bound for a stable along the pass
example.
Consider the associated performance index:

I 2 i (DIBy — Vi o1 (P34 (15)
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Then (on making use of (14))
I < o1 (P 3.0 = V3 00 l0ks1(PI3 4 + V (00, @) = V(0, 0)

oo a—1

a—1 o0
=23 [l w0 el o D]+ AVip. k) + Y AVatk, p)
k=0 p=0 p=0 k=0
oo a—1

=33 [oh Pt (0) = V20fs (Dora () + AV, p)]
k=0 p=0

oo a—1

£ > il (»nk(p) (16)

k=0 p=0

where ni(p) =[x, (p) ¥ (p) wkTH(P)]T,V(OO,Ot) £ Vi(a, k)+Va(c0, p), V(0,0) =
V10, k) + V2(0, p) and

PO 0 AT AT rer cr 1’
Hé*—Q02+B§PB§+D§QD§
* * —V301 By B D; D;
GT1re’ 1"
+| H || H]
0 0

By the Schur’s complement formula, (8) implies [T < 0 and hence for all n;(p) # 0, we
have 7 < 0,ie. [[vk+1(P) 20 < 2.2 lok+1(p) I, for all nonzero wy41(p) € le and the
proof is complete. O

2.3 £y~ Performance

In the case of £,—¢, performance, we have the following result.

Theorem 3 A discrete linear repetitive process described by (1) is stable along the pass with
lr—Lo performance level y2 oo > 0 if there exist matrices P > 0 and Q > 0 such that the
following LMIs hold:

-P 0 0 ATP  CTQT
* -0 0 Blp Dlo
* * -1 B/P D{Q|<0 (17)
* * * —P 0
* * * * -0 |
P 0 GT 7
x Q HJ >0 (18)
* * y22,001_

Proof The proof of stability along the pass is identical to that in the previous result and hence
the details are omitted here. To establish (noting again the assumption on the boundary con-
ditions) the £,—¢~, performance bound for a stable along the pass process described by (1),
consider the associated performance index:

k—1p—1

I =V p) =D D ol (Bosti(B) (19)

5=0 =0
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Then, we have

k—1 p—1
I =V p)=V0,00= > > ol (B (h)
s=0 =0
p—1 k—1 k—1 p—1
=D AVI(B.K) + D AVals, p) — D D ol {(B)wsti(B)
B=0 s=0 s=0 B=0
k—1 p—1
<> > [ave.p - ol Brem®)]
s=0 =0
k—1 p—1
£ > BB (20)
s=0 =0
where ns(B) 2 [xL 1 (B) yI(B) I, (B)]. V(0,0) 2 Vi(0,k) + V2(0, p) and
PO 0 AT AT7D T cT 1"
Q2|x -0 0 |+|B|P|Bl| +|Dl|0]|Df
x ok =1 Bl B! Dr pr

On applying the Schur’s complement formula, the LMI of (17) implies that & < 0. Hence,
for all ni(p) # 0, we have .¥ < 0, i.e
k—1p—1
(P Pxepi(p) + Y (P Oy(p) = Vik. p) < DD ol [ (Bogi (B (21)
5=0 p=0

Conversely, by applying the Schur’s complement formula again, (18) is equivalent to

G’ PO
[HOT}[GHO]<V§OO[O Q} (22)

Hence we can conclude from (3), (21) and (22) that for any k > 0 and p € [0, «]

ol (e (p) = [Gxig1 (p) + Hoye(p)]" [Goxus1 (p) + Hoye ()]

< Voo [ (DY Pxic () + 5] () Qi) |
k—1 p—1

< Voo 2 2 0l (Bossi (B)
5=0 f=0
oo a—1

< Vi 2. D ol (Bogi(B) (23)

s=0 B=0

Taking the supremum over k > 0 and p € [0, @ — 1] yields (7) and the proof is complete. O

Remark 4 Repetitive processes are defined over the finite pass length «, and in practice
the process will only complete a finite number of passes, say, N. Hence the corresponding
cost function in this last result should be evaluated as given in (19). However, it is routine to
argue that the signals involved can be extended from [0, «] to the infinite interval in such a
way that projection of the infinite interval solution onto the finite interval is possible. Likewise
from the infinite set to [0, NV ], and hence we will work with (19).
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3 Dynamic output feedback control
3.1 Problem formulation

The process state-space model is that of (1) augmented by control input terms, i.e.

X1 (p+ 1) = Axpy1(p) + Bugs1(p) + Boyi(p) + Birwgs1(p)
Yk+1(p) = Cxg41(p) + Dugy1(p) + Doy (p)+Diwi+1(p) 24

where on pass k, ux41(p) € R’ is the control input vector.
Here, we seek to design a (full-order) dynamic output feedback controller of general
structure described by

Vk+1(p + 1) = Ac@r+1(p) + Bocpr(p) + Bezi+1(p)
Pk+1(P) = Cey1(p) + Docdr (p) + Dezr1(p)
ug+1(p) = Gewry1(p) + Hoepr(p) + Hezp+1(p) (25)

where gr1(p) € R" and ¢ (p) € R™ are the controller state vectors in the along the pass
and pass-to-pass directions, respectively, and zx1 () is the measured output vector defined
by (2).

Remark 5 Inthe control design analysis in this paper we assume that a control law of the form
considered can be found to give the required properties and characterize this in terms of LMI
based sufficient conditions which if they hold lead immediately to the required numerical
parameters. It would, of course, be much better to have necessary and sufficient conditions
for the existence of a given control law, e.g. a result equivalent to that which states that con-
trollability of 1D discrete linear systems state-space model is equivalent to a solution of the
state feedback based pole placement problem. No such general result exists for discrete linear
repetitive processes due, for example, to the fact that controllability for these processes and
what a pole means are still relatively open questions—for progress on this area see Rogers
et al. (2007).

Augmenting the model of (1) to include the states of dynamic output feedback control-
ler (25) and using (2)—(3) gives the following state-space model for the controlled process

Er1(p+1) = A& 1(p)+Boti(p)+ Brogs1(p)
G+1(p) = C&1(p)+ Dol (p)+Dywg1(p)
ver1(p) = GEy1(p)+Holk(p) (26)

where &41(p) 2 [x () oF (0] () 2 [y (p) ¢7 (p)]" and

fo[A+BHE BG.| 5 »[Bo+BHFo BHo| 5 »[Bi+BHF
B.E A, |" "7 | B.F, Bo. |° ! B.F, ’
& o [CH+DHE DG:| 5 o [Do+DHFo DHoc| f o [ Di+ DHF:
D.E c. " 7T DRy Do |"7' T | DRy ’
~é[GO],I‘NI()é[HOO] (27)

The problem considered in this section is the design of a controller of the form (25), with
either 7%, or £,—{~, performance, subject to the following two requirements:
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1. The controlled process is stable along the pass.

2. The controlled process has disturbance attenuation level y» 7 in an J#, (or level y o
in an ¢>—{ ;) sense. In particular, for all nonzero wy41(p) € Elz, (6) holds for the 7%,
case and (7) for £p—f .

Remark 6 The controller defined in (25) uses local information at (k + 1, p), (k, p) to deter-
mine the control signal at (k+ 1, p). Itis possible to utilize information of the whole previous
profile, namely, information from (k, 0), (k, 1), ..., (k, @ — 1) to determine the control signal
at (k+ 1, p) but clearly this should only occur if the extra complexity involved produces clear
performance advantages over the simpler structures considered here. A detailed investigation
of this general point should be undertaken once the full potential of controllers, such as those
considered here, which only make the minimum use of previous pass information has been
established.

3.2 s Dynamic output feedback control design

First, we state the following preliminary result whose proof follows identical steps to that of
Theorem 2 and is hence omitted here.

Theorem 4 A discrete linear repetitive process with state-space model (26) is stable along
the pass with 7, performance level y; 2 > 0 if there exist matrices P > 0 and Q > 0 such
that the following LMI holds:

—-P 0 0 ATp CcTgo GT

* -0 0 Bfp Dfo HS

* * ~y5,0  BfP Dfo 0 | _, 28)
* * * —P 0 0

* * * * -0 0

* * * * * -1

This result however does not allow us to achieve the controller required, but it provides
the frame to solve effectively the 772, the dynamic output feedback control problem together
with the design procedure.

Theorem 5 Consider a discrete linear repetitive process described by (1) and let y » > 0 be
a prescribed scalar. Then for such a process there exists a full-order dynamic output feedback
controller of the form (25) for which the resulting controlled process (26) is stable along the
pass and (6) holds if there exist matrices & > 0, Z > 0, 2 > 0, & > 0, o, Boc, B¢, Ce,
D¢, Dey Yy e and H. such that the following LMI holds:

(-2 -1 0 0 0 vl wl o wlo wll GT 7

x —Z0 0 0 gl vl ¢l vl %GT

x ok -2 -1 0 vl vl wl wli HI

x ok  x =70 Bl vl gl vl sH!

* * * * _V22,2] \IJST6 \115T7 \IIST8 lIJ5T9 0 <0 (29)
* * * * * - -1 0 0 0

* * * * * * —-% 0 0 0

* * * * * * * -2 -1 0

* * * * * * * * -7 0

L * * * * * * * * * e
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where

PA+ BE, V36 = PBy+ BFy, Vs¢ = PB| + BF, V172 A+ BHE
AR + BY,., V37 £ By + BAFy, V47 £ By + By, V57 2 By + BALF,
2C + 9.E, V33 £ 2Dy + D Fy, Vsg & 2D\ + D.F1, V19 = C + DHAE
CH + DY, W39 £ Dy + DAFy, Va9 & Dy + Dy, Vs9 = D1 + DALF,

S
=
oo
1 | [

Moreover, a desired %5, dynamic output feedback controller can be found by solving the
following equations:

He = He,
Moo = HeFos + HoeSt,
4. = H.EZ + G.R},,
9. = 2DH.+ Q12D,,
B. = PBH. + P1»B,,
Joc = 2 (Do + DH:Fo) & + Q12D Fo.” + 2D Ho ST, + Q12Doc ST,
% = 2(C+ DH.E)Z + Q12D:EZ + 2DG R, + 012CR},,
PBoc = P (Bo + BH-Fy) ./ + P1aB.Fo.” + P BHy:Sl, + P12Boc S},
A = P (A+ BH.E) % + P12B.EZ + #?BG.Rl, + P12 AR, (30)

where P13, R12, Q12 and Sy, are defined by any full rank factorization of PlleT2 =1-P%
and Q12S1T2 = 1 — 2.7, respectively (derived from P11 Ry + P12R1T2 =1 and Q1811 +
leSsz = I, respectively).

Proof 1t follows immediately from Theorem 4 that the matrices P and Q are nonsingular

if (28) holds since P > 0 and Q > 0. Also introduce R = P 0= S—! and partition P,
R, Q and § as follows:

pa [Pll P12] R_p-la [Rn Rlz]

* P22 X R22
a | Q11 On2 —1 a | S Si2
= s S = =
Q [* sz] Q [* 522]

Then since we are considering a full-order controller, Pj> and Rj; are square and without loss
of generality we also assume that these matrices are nonsingular. (If this is not the case , Pj»
and Rz may be perturbed by matrices A P and A R|7, respectively with sufficiently small
norms such that Pj2 + A Py and P2 + A Py are nonsingular and satisfy (28)). Similarly, we
assume that Q1> and S are nonsingular and hence we can define the following nonsingular
matrices

Py I a |1 Ri Al On 1 a1 Sn
Fpé[ i|7FR:|: :|,F :[ ],FS:[ 31
PL 0 0 RL =10 o 0 Sh

Note that

PTgr =Tp, RTp=Tg, PRy + PR, =1,
Qs =Ty, ST =Ts, Q1S+ QnsShL =1 (32)
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and also pre- and post-multiplying (28) by the diagonal matrix diag(T'g, I's, I, T'r, I's, 1),
gives

—I'klp 0 0 rEATrp 18CT'ry riGT
T T RT T /T T T
* —-I'sTp 0 , I:STBO 'p lisTDO I'g IgHy
* —)/2,21 Bl I'p D] FQ 0 <0 (33)
* * * —FITQFP 0 0
* * * * —FgFQ 0
* * * * * —1I

Now introduce & £ P, Z £ Ry1, 2 £ Q11,7 £ S1; and the following matrices:

. = P11 (A+ BH.E) Ry + P12B.ERy1 + PllBGcR1T2 + P12AcR1T2
Boc = P11 (By + BH.Fp) S11 + P1aB:.FoSi1 + P113H0c51T2 + PIZBOCSsz
%. 2 Q11 (C+ DH.E) Ry + Q12D:ERyy + Q11 DGeR{, + Q12CcRY,
Do £ Q11 (Do + DH Fy) S11 + Q12D FoSii + Q11 DHoeS{, + Q12 Doc ST,
%. £ P11BH, + P12 B,
9. £ QuDH; + 012D,
9. & H.ERi1 + G.R],
%c = HCFOSII + HOCS1T2
A, = H, (34)
Then, noting (27), we have the following in (33):
~ [ 2A+ B.E 4, 2 1
T N c c T N
PPATR = | 4y BE A@+Bs¢c] FPFR_[I 92]’
- [ ?By+ B.Fy B 2 1
T N 0 cl’0 Oc T A
PpBol's =\ g, + Bt Fy BOY+B%C:|’ FSFQ‘[I y]
FTErn 2 [2C+2.E . [T f & | 2B+ %k
= R= | Cc+DA#E C%+DY. | PTVT | B+ BAF |
7 Dol 2 [ 2Dy + 2.Fy  Zoc T p & 2Dy + 9. F
0PN S T Do+ DAFy  DoS + DA |0 2T T | D+ DALF |
GIr 2 [G GZ], Hol's 2 [ Hy Ho.? | (35)

Substituting (35) into (33) now gives (29). Conversely, substituting &2 £ Py, Z £ Ry,
24 Q1 and.¥ £ Sy into (34) gives (30). Hence on applying Theorem 4 we have that the
controlled process is stable along the pass with J#, performance level y» >. O

Remark 7 Note that Theorem 5 gives a sufficient condition for solvability of /%%, dynamic
output feedback control problem for the discrete linear repetitive processes. Since the obtained
condition is in LMI form, a desired controller can be determined by solving the following
convex optimization problem:

min o} subject to (29) (where o1 = V22,2) (36)
3.3 ¢,—{~, Dynamic output feedback control

In a similar manner to the 7%, case, the following result can be established using, in effect,
the arguments required in the proof of Theorem 3 and hence the details are omitted here.
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Theorem 6 A discrete linear repetitive process described by (26) is stable along the pass
with £r—Cs performance level vy oo > O if there exist matrices P > 0 and Q > 0 such that
the following LMIs hold:

-P 0 0 ATP CTQ7
-0 0 BlP Dfo
x * —1 BI'p DIQ|<0 (37)
* * * —P 0
* * % ok -0 |
-P 0 GT
x —Q H <0 (38)
* * _V22,oo[_

This result however again does not allow us to achieve the controller required, but it pro-
vides the setting to solve the £,—{~, the dynamic output feedback control problem together
with the controller design procedure.

Theorem 7 Consider a discrete linear repetitive process described by (1) and let y2 oo > 0
be a prescribed scalar. There exists a full-order dynamic output feedback controller of the
form (25) such that the controlled process (26) is stable along the pass and (7) is satisfied if
there exist matrices & > 0, % > 0, 2 > 0, .7 > 0, o, Boc, Be, Ce, 2ocy Der Yo, e and
. such that the following LMIs hold:

(-2 -1 0 0 0 vl vl vl vl
x -2 0 0 0 I vl ¢l vl
x o« -2 -1 0 vl o wl wl wl
* * * -7 0 %gc \IJ4T7 .@g; \IJZQ
« ok ox o« =1 wlowl o wloowlil <0 (39)
* * * * * -2 —1 0 0
* * * * * ok % 0 0
* * * * * % * -2 -1
| * * * * * ok * * - |
-2 -1 0 0 G' 7
x  —Z 0 0 ZGT
* *x -2 -1 HJ <0 (40)
* * * - YHOT
* * * % _sz,ool_

where W;; (i =1,2,3,4,5;j =6,7,8,9) are defined in Theorem 5. Moreover, a desired
lr—L o dynamic output feedback controller can be computed from (30).

@ Springer



250 Multidim Syst Sign Process (2009) 20:235-264

Proof Defining I'p, T'g, I'g and I's as in (31) and then pre- and post-multiplying (37)
and (38) by matrices diag (I'g, I's, I, 'g, I's) and diag (I'r, I's, 1), respectively yield

—-I'frp 0 0 TFATTp TECTTp 7]
T T pT T nT
* ~T§To 0 TgBiTp TgDiTo
* * -1 BIrp  DITy <0 (41)
* * * —F1€Fp 0
* * * ok —FSTFQ |
~Ifrpy 0 rkGT 7
* -rire rfay | <o (42)
* * _sz,ool_

Substituting (35) into (41) and (42), we obtain (39) and (40), respectively. The second part
of proof follows the same argument as the corresponding part in Theorem 5 and hence the
details are omitted here. O

Remark 8 Theorem 7 provides a sufficient condition for solvability of £,—£, dynamic output
feedback control problem for the discrete linear repetitive processes. As in the 7%, case, a
desired controller can be determined by solving the following convex optimization problem:

min oy  subject to (39) and (40) (where or = yz% o) (43)

4 % and £—L filtering

Suppose that the example under consideration is stable along the pass. Then the problem
considered in this section is the estimation of the signal vi11(p) € R? of (3) for a discrete
linear repetitive process described by (1) based on the measured output vector zx+1(p) € R”
defined by (2). The aim is to construct a linear full-order dynamic filter

Gk+1(p+ 1) = Arory1(p)+Bofr e (p)+Bfzr+1(p)

&k+1(p) = Crok+1(p)+Dofdx(p)+Dyzi+1(p)

Vk+1(p) = G rory1(p)+Hordr(p)+Hrzir1(p) 44)
where on pass k, gr+1(p) € R" and ¢ (p) € R™ are the state vector and the profile vector
for the filter, respectively.

Augmenting (1) to include the states of filter (44) and using (2)—(3) gives the following
description of the filtering error process
E+1(p + 1) = Aes1(p) + Botk(p) + Biows1(p)
Gk+1(p) = C&k1(p) + Dol (p) + Diwk+1(p)
ei+1(p) = G&k11(p) + Hobi(p) + Hiwe1(p) 45)

where & 41(p) =[x/, (p) wkTH(P)]T, a(p) 2 [y (p) ¢;<T(P)]T, err1(p) £ veg1(p) —
Ug+1(p) and

T a A 0 = A By 0 SN By

A [BfE Af]’ fo= [BfFO BOf]’ o _[BfFJ’

N C O SN D() 0 nN A Dl

“” [DfE Cf] o= [DfFO DOf]’ o= [DfFl]’
Gé[G—HfE—Gf], [:Ioé[HO—HfFO—Hof], H 2 —HpF, (46
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The problem now is to develop a full-order 7%, (or £2—{) filter of the form (44) such
that the resulting filtering error process (45) is stable along the pass with noise attenuation
level 2,2 in an J% (Or ¥2,o0 in an £p—€s;) sense. More specifically, under zero boundary
conditions and for all nonzero wy1(p) € 212, we require that

lext1(Pll2,e < V22 o+ 1(P) 2,4 (47)

for the /%%, filtering problem, and

lek+1(P)loo,e < V2,00 l@kt1(P) 12,0 (48)
for the ¢r—{ , filtering problem.
4.1 % Filtering

The following result is proved using identical steps to that of Theorem 2 and hence the details
are omitted here.

Theorem 8 The filtering error process described by (45) is stable along the pass with
performance level y» » > 0 if there exist matrices Py > 0 and P> > 0 such that the following
LMI holds:

-P 0 0 ATpp CTp, GT

* —P2 0 égpl Dgpz ﬁOT

* * -vi,I  BIP DfP, HI <0 49)
* * * — P 0 0

* * * * P 0

* * * * * —1I

Similarly as in previous sections for the control problem, this result cannot be directly
used for the respective filter design, but provides the setting for this the .7 case.

Theorem 9 Consider a discrete linear repetitive process described by (1) and let y> 2 > 0
be a prescribed scalar. Then a full-order filter of the form (44) can be designed such that the
filtering error process (45) is stable along the pass and (47) is satisfied if there exist matrices
w >0,7M>0 % >0, 7 >0, Mf, 330]’, %’f, Czo”f, @()f, _@f, gf, Jff)f and fff such that
the following LMI holds:

% -7 0 0 0 YL yL vk vl Y[,

* - 0 0 0 o) a6l ¢ 9]

s * —% —¥ 0 Y YL Yk YL Y,

x ok k=% 0 B s 9393 Dor Doy —H

x ok ox o« —yh Y L YL vl -Fll | _ (50)
* * * * * - -7 0 0 0

* * * * * * -7 0 0 0

* * * * * * * % -7 0

* * * * * * * * - 0

* * * * * * * * * -1/
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where

Yi6 £ UA+BrE, Y62 UBo+ BrFo, Yse¢ = U By + BrF,
Y17 £ NA+BGE, Y312 ViBo+%BsFo, Ys12 B+ B(F,
Tig £ %C+9rE, Y33 = %UDo+Z¢Fy, Yss = %D+ Ik,
Tio £ %5C + Z¢E, Y39 = %3Do+ ZrFo,  Yso = 2D+ D¢k,
Tio £ G = H7E, Y30 = Hy — 5 Fo ©h

Moreover, the filter can be computed from

Ay Bor By w0 O|[er Sop By
Cy Doy Df|=|0 ' 0|6 Zoy 25 (52)
Gy Hor Hy 0 0 |9 %y HF

Proof From Theorem 8, P; and P, are both nonsingular if (49) holds since P; > 0 and
P> > 0. Now, compatibly partition these matrices as

P11 P2 a | P21 P2
P2 P2 53
1 [Psz Pls] ? [Psz P23] &)

Then since we are considering a full-order filter, Pj> and Pj, are square and without loss
of generality we assume Pj> and Pp; are nonsingular (if not, P12 and P> may be perturbed
by matrices A Pj> and A P>, with sufficiently small norms respectively such that P + A P>
and P>y + A Py, are nonsingular and satisfy (49)). Also introduce the following matrices:

r A[[ 0 ] r A[[ 0 ]
= —1 pT |> 2= —1pT
0 P3P 0 Py Py

M E Py, N2 P12P1_3]P1€, U & Py, V52 P22P2_31P2T2 (54)
and
dr Boy By . P O O0|| Ay Bor By P1_31P1€ 0 0
¢ oy 7y | 2|0 Pn 0|| Cr Doy Dyfl0 Py Py 0 (55
Gy Iy Hy 0 0 I\l G Hor Hyf]|0 0 1

Pre- and post-multiplying (49) by diag (I'y, I'2, I, I'1, "2, 1) now gives

-r7’pr; 0 0 rrATpiry rfctpr, it
* - Py 0 riBlpr, ripfper, 1Al
2 RT NT 7T
* —)/2’21 Bl P1F1 Dl Pzrz H <0 (56)
* * * —FlTPlI‘l 0 0
* * * * —F2TP2F2 0
* * * * * -1

@ Springer



Multidim Syst Sign Process (2009) 20:235-264 253

where

~ [ 1A + % /+E o, 5
T A 1 f f TPBF A
Py PiAls = | 1A + B/E (fo]’ I'{ P1BoT

-?/1Bo+,%’fF() Bo
| "1Bo+ ZrFo Zoy |
UC + DyE Gy
NWC+DrE €f |’

~ . [2%B +%F -
T a 1561 rr T
Fl PlBl = _7/]B] +=%fFl i|, FZ P2CF1

[I>

~ [ %Dy + 27 Fy % ~
T A 240 o 2o0f T S
F2 P,DoI', = _%BO‘l‘@fFO 20]‘]’ FZ P,D; =

[ 2% D, + ¢ Fy
| 2D+ 9¢F1 |’

[ N U ~
r’pr, 2 %17” rgpzrzé[éé], H2 P,

Gy 2 [G—HE —%f]|. HoTy 2 [ Ho— A5 Fo —Hoy | (57

Substituting (53)—(55) and (57) into (56) now yields (50). Conversely, (55) is equivalent to

A; Bos By (P, 0 0 [y Boy %5 [ PL P13 O 0
Cy Doy Dy |20 P, 0|6 Zop 27 ||0O Py Py 0
Gy Hoy Hy L0 0 1LY Ay Hr]|O 0 I
CAT 0 0 [ Bog B[ A0 O
=10 ATV o | Cr Doy 75 || 0 A0 | (58)
L0 0 1 Gy Hop Hy 0 0 1

where A| £ PI_ZT P13 and Ay £ P2_2T P»3. Note also that the filter matrices of (44) can be
written in the form of (58). This, in turn, implies that matrix diag (A1, Aj, I) can be viewed
as a similarity transformation on the state-space realization of the filter and, as such, has no
effect on the filter mapping from zx1(p) to Ux+1(p). Without loss of generality, we can set
A1 = Ay = I, thus obtain (52) and hence the filter in (44) can be constructed by (52). O

Remark 9 Note that Theorem 9 provides a sufficient condition for solvability of the 7%
filter problem and, since the condition which must hold is in LMI form, a desired filter can
be determined by solving the following convex optimization problem:

min 8, subject to (50) (where 81 = y3,) (59)
4.2 £r—l Filtering

The £,—{ filter has the form of (44) with Hy = 0, which is different from the J7% case.
The reason why H ¢ should be set to zero is that now the corresponding filtering error output
ex+1(p) should be independent of the disturbance w1 (p) which enables us to establish the
£2—{~ performance for the filtering error process. Hence, as in % filtering, we first analyze
stability along the pass and £,—{~, performance for filtering error process described above.
The result is the next theorem, whose proof follows from identical steps to the ones given
above and is hence omitted here, which gives a sufficient condition for (7) to hold.

Theorem 10 The filtering error process of (45) is stable along the pass with £2—{ o perfor-
mance level y» o, > 0 if there exist matrices P > 0 and P, > 0 such that the following
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LMIs hold:

-PL 0 0 AP CTPT

x —P, 0 BlP DIP

* * -1 B[P DI'P, | <0 (60)

* * * =P 0

* * % ok -P ]
-Pr 0 GT ]
* =P, H <0 (61)
* * _y22,oo[_

Now, we are in the position to give the final result for the £,—€ filtering problem together
with the filter design procedure.

Theorem 11 Consider a discrete linear repetitive process described by (1) and let y» » > 0
be a prescribed scalar. Then a full-order filter of the form (44) can be designed such that the
filtering error process (45) is stable along the pass and (48) is satisfied if there exist matrices
% >0,7>0,%>0,7 >0, Bor, By, 6, Dof, ¢, 9y and Hyy such that

(i) the LMI obtained from (50) by removing last block row and column and setting

V2,oo:1;
(i1) and

-% -n 0 0 GT
* -7 0 0 _ng
* x =% -7 HJ <0 (62)
* * * ) —%Tf
* * * * _sz,ool

hold.

Moreover, the filter can be computed from (52) with ¢y = 0 and Hy = 0.

Proof Pre- and post-multiplying (60) and (61) by diag(I'y, 2, 1, ', ;) and diag
(I'1, Ta, D, respectively, gives

-ITPTy 0 0 TrTATpry TTCTPI, T
* -rfpr, 0 rIBI'pry TIDIPI,
* * -1 BI'pIy Drp,r, <0 (63)
* * * —l"lTPll"l 0
* * * * —F2TP2F2
-rf'pry o e
* -rfpr, TTAN | <0 (64)
* * _y22,ool_

Substituting (53)—(55) and (57) into (63)—(64) and setting H; = 0 complete the first part
of the proof. In the case of the second, this follows identical steps to that of Theorem 9 and
hence the details are omitted here. O

Remark 10 Theorem 11 provides a sufficient condition for the solvability of the £,—¢, filter
problem. As in the /%, case, a desired filter can be determined by solving the following
convex optimization problem:

minédy  subject to (i) and (62) in Theorem 11 (where &, = sz,oo) (65)
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5 Illustrative examples

In the remainder of this paper we provide two numerical examples which illustrate the control
and filtering results respectively developed in this paper.

Example 1 (Control Problem) Consider the case of (24) when o« = 20, k > 0 and

[—0.21 —0.42 0.00 073  0.15 ~0.43 —0.13
A=060 156 —0.10|, By=|-022 0.64 |, B=]023 048
| 030 0.00 043 033 041 021  —0.18
B _g';g c [—0.40 —0.28 0.37 }
1= . , = .
01 052 038 —0.15
[1.18 0.31 0.18
bo=10.15 0.54]’ Dr= [0.35]
p_[024 052 _[-0.21 026 0.10 _[-0.15 0.26
“l-011 032 " T T 004 032 011 "°T 006 020
[ —0.30 025 —0.20 0.61 0.15 0.30
Fi= _—0.22]’ G= [0.18 0.12 0.40] Ho = [0.42 0.35]

This example is asymptotically unstable (and hence unstable along the pass) since
p(Dg) > 1 (use Theorem 1). Hence the aim is to design an .7, (or £,—{~,) dynamic output
feedback controller which will result in stability along the pass, where we first consider the
A% dynamic output feedback control problem.

Choose Ri2 = I and S12 = I, solve LMI (29), we obtain the minimum y» > as V2*,2 =
1.2826 and the associated matrices for the %%, dynamic output feedback controller are
given by

[ —30.6612 —15.5813 21.9663 —122.9863 103.6883
Ac= 51333 3.6007  —3.5220 |, Bo. = | 159588  —13.4455 |,
| —38.4054 —19.7032 27.4851 —151.2636 127.5249
79587 76.2177 ~0.7358 3.0024 0.8312
Be= 89239 1201021, Ce=1 0677 36472 1.1549 |
| —72.0967 95.3568 ' ’ '
Do — [16.8350 —14.0734 ] D — [4.1180 —9.2435 |
0= 118.5725 —15.5148 | 7° 7 | 4.6027 —10.8674 |
G _ [ 34422 05945 2.8307
€7 | ~12.6879 4.7883 10.8503 |’
[ 63555 5.3648 | [—8.4332 13.6340 ]
Hoe = | 267491 225795 |* e = | —9.1956 3.4202 | (66)

Next, under the same conditions, we solve the £,—{~, dynamic output feedback control
problem. In this case, solving the LMIs (39) and (40) of Theorem 6, we obtain the minimum
¥2,00 A8 yz”j o = 0.8388 and the associated matrices for the £,—£~, dynamic output feedback
controller are given by
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[10.3064 —11.2526 —6.5672 114500 —9.0488
Ac=| —2.8925 3.5481  1.9490 |, Bo = | —4.7303 37363 |,
| 222281 —24.9127 —14.3440 272136 —21.5076
24153 - 0.9373 —2.1511 1.6965 1.2334
Be= | —14211 06252 |, Co=| 500 ‘e300 13425 |°
| 5.9460  1.7628 ' ' '
Do _ [ 73:0737 227957 [~1.1915 1.2536]
¢ = | —4.0785 3.0259 |” 7¢ T | —1.5960 1.6031 |
G [—3:2534 21712 17370
©T | -1.7699 0.4185 0.8167 |’
[ —0.7744 0.5946] [ —6.7261 9.7518 ]
Hoe =1 _0.5884 04503 " "= | —43705 1.9787 | 7

To illustrate the response of the controlled process, let the boundary conditions be

xir1(0)=[000]" k=0

. . T
Yo(p) = [sin (57) sin (f7)]" 0<p =19
and take the disturbance input vector w41 (p) as

_ [0k, 1<k<19.1<p<19
wi+1(p) = lo’ otherwise “

where ¥ (k, p) is a random variable drawn from a normal distribution with zero mean and

unit variance.

Figures 1(a)—(c) and 2(a)—(c) show the responses of the entries in the current pass state
vector of the controlled process under the controllers (66) and (67), respectively. Figure 3(a)
and (b) show the control input sequence in the 1st and 2nd channels respectively under the
% controller and Fig. 3(c) and (d) the corresponding plots for the £,—¢, controller.

Example 2 (Filtering Problem) Consider the case of (1) with @« = 20, k > 0 and
025 —0.12 0.37 0.27
A= [—0.51 —0.15]’ Bo= [—0.50]’ B = [0.75]
C = [—0.30 —1.09], E = [—0.80 —0.80], G = [0.49 —0.95]
Dy = —-0.20, D;=-0.20, Fy=-0.50, F; =0.33, Hy=-0.20
From Lemma 1, the above process is stable along the pass and now consider the 7%,

filtering problem. Then on solving the convex optimization problem in (59) we obtain the
minimum ;> as ¥, =0.9407 and

A, [F01435 —04013] o T0.0015 ] . [0.4690

F=10.1605 05039 |* % T -0.0009 |* /T [ ~0.9030
Cr=1.0x1072[0.0443 —0.3195], Doy = —5.2874 x 1077, Dy = —1.7681x 10~*
Gy =[-0.7316 0.6850], Hos = 0.0012, H; =0.3915 (69)
f f f

Now, under the same conditions, we consider the £,—{, filtering problem were solving
the convex optimization problem in (65) gives the minimum y» o as )/2*" oo = 0.7037, and
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Fig. 2 States of the controlled process under £2—f~ dynamic output feedback control
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Fig. 3 Control inputs required for %% and £2—{~, dynamic output feedback control

the corresponding ¢,—¢ , filter parameter matrices are:

A, 02158 —05112] o [0.2485 5. _ [ 06127
F = —0.0848 0.4834 | 7% = | 00937 | °/ T | —0.8754

Cy =1[0.0185 —0.0414], Dos =0.0020, Dy = —0.0328
Gy =[-05417 0.7466], Hos = 0.1014 (70)

Consider now the case when the disturbance wy41(p) is again given by (68), and assume
zero boundary conditions (i.e. x;4+1(0) = 0, &k > 0 and yo(p) = 0,0 < p < a —1).
Then Fig. 4(a)—(c) show the responses generated by the first two entries in current pass state
vector and the filtering error respectively for the 7% filter. Figure 5(a)—(c) the corresponding
results for the £,—€ , filter. This confirms that both filters guarantee that the error sequence
generated converges to zero in both cases.

To compare the relative performance of these two filters, first define the following quan-
tities:

e Filtering error energy (&): & é\/ZZio 211;9=0 ekTH (p)ex+1(p)
e Filtering error peak (7). F é\/supv k=0, pel0,19] ekT_i_1 (p)ek+1(p)

e Disturbance input energy (W): W é\/Z;fio 2117920 Wk+1(p)wk+1(p)

We also use 2~ £ %, A % as measures of the achieved /%%, and £,—{~, performance,
respectively. Also we have constructed 50 test cases by using random seed numbers from 1
to 50 to generate (68). Figure 6 shows the actual filtering performance for these 50 random
cases of disturbance signals with a filter obtained from minimizing the 7%, performance
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Fig. 5 States of the ¢,—{ filter and the filtering error
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0.9+ —— H filtering 1
by-L o, filtering
0.8} — . — — Minimum feasible 75 2 =0.9407 g
0.7 4
0.6 B
0.5 B
04 ! ! ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40 45 50

Seed =1,2,...,50

Fig. 6 Achieved .7 performance under 7% and £7—{ filtering

0.8
[ e e B
0.6 B
0.5 B
bl filtering
0.4 - Hoo filtering B
— — — Minimum feasible 73 «=0.7037
0.3 F B
02k /\/\/\’\/\/\/\/\—/\/V\—/\/%
0.1 B
0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Seed =1,2,...,50

Fig. 7 Achieved £>—{~ performance under .7, and £>—{ filtering

with y2,2=0.9407. Clearly, the 7%, filter achieves the better performance under this mea-
sure. Figure 7 gives the corresponding comparison of the performances in the case of a filter
designed under the £,—{, performance with achieved y» o = 0.7037.

The results in this paper provide two performance measures which can, amongst others,
be used in cases where the particular emphasis on, say, control versus filtering is to be
decided by domain specific knowledge of the particular application under consideration. For
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example, if we are more concerned with the output (pass profile) energy rather than the peak
value of the output then the .7%%, performance measure should be used. In this paper, the aim
was to develop, to the level of computational algorithms, at least two performance criteria
for the design engineer to select from.

Consider again Example 2 here. Then Figs. 6 and 7 show illustrate the different perfor-
mance achievable. In particular, Figure 6 demonstrates that for this example a filter designed
using the 7%, performance measure has better performance. Figure7 shows the opposite
conclusion.

6 Conclusion

This paper has developed significant new results on filtering and control law (or controller)
design for discrete linear repetitive processes using %%, and £2—{, settings. In the control
case, the results given extend those previously reported to the case when full access to the
pass profile vector (the output) is not available and all others for both filtering and control are
new. Of course, these results invoke assumptions but it must be noted that physical applica-
tions in particular will require filtering of variables for successful control and the results in
this paper should be interpreted as a first major step towards a general and applicable theory
for onward translation into numerically reliable design algorithms for eventual experimental
verification.

One of numerous areas for further research is to extend the results here to the case
when inter-pass smoothing is present (see Remark 1) and dynamic boundary conditions (see
Remark 2). Also it may be required to use weightings in the performance specifications. For
example, if we wish to introduce a matrix weighting function between the disturbance vector
(w) and the signal to be estimated (v) then this could be achieved using the state-space model

drr1(p+ 1) = Aydrt1(p) + Bowek (p)
©k+1(p) = Cwdr+1(p) + Dower(p)

where on pass ¢k 1 (p) is the state vector and ¢y (p) is the filter output (or pass profile) vector.
The analysis of this case should then be straightforward extension of the results given here.

The results in this paper focus on the basic tools since these must be fully understood
before effective transfer to applications. In iterative learning control it is already known that
zero-phase filtering of the process response on any trial can be undertaken before the start
of the next trial. One longer term application for the theory and algorithms developed here
could be to provide another way of doing this to best advantage.
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