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Abstract— The area, delay and power consumption of functional units
all are dependent on the word-length of the processed data. Since choosing
an optimum word-length is a tradeoff between design costs and accuracy,
it is essential to have an accurate model of computational errors for
each operation. Errors resulting from the output rounding or truncation
of the functional units is generally considered as uniformly distributed
over the error limits regardless to the functionality of the unit. This
work presents an analysis of the probability distribution of a fixed-point
multiplier and its output truncation error. Simulations show that the
uniform distribution assumption is violated in the case of truncation of
a multiplication result of less than 8 bits.
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One of the main objectives of hardware designers is to find an
optimal design in terms of area, latency, throughput, and power
consumption. The Word-Length (WL) of signals is one of the
parameters that designers can modify to improve these metrics. In
contrast to instruction processors, customizable hardware such as
Field Programmable Gate Arrays (FPGAs) and Application-Specific
Integrated Circuits (ASICs) provide freedom for WL-optimization in
a given application. Hardware designers, however, face increasing
difficulties in choosing the best WL. The objective is to find the
minimal number of bits to represent a signal, while satisfying error
constraints. A naive way to optimize WL is to evaluate various
combinations one by one and observe the output for each design.
This technique, however, involves an enormous search space and is
not practical for large designs.

Generally, it is desirable to implement computational algorithms
(DSP algorithms for instance) on cheap Fixed-Point (FP) hardware,
but representing real vales with finite precision FP numbers is an
error-prone practice [1]. From an optimization point of view, reducing
the Word-Length (WL) of functional units means a cost reduction in
the final design [2], [3]. On the other hand, reducing the WL of
functional units to less than some minimum value produces an error
in the output, which normally is modelled as additional white noise
[4].

Multiplication has received significant attention because reducing
the size of multipliers has a considerable impact on area and power
consumption [5]. This issue can be even more important where there
are resource restrictions. WL optimization methods can be divided
into categories with respect to their approach to computational error
modelling. First are methods, such as [3], which consider errors as
additive noise to the data. The second approach deals with errors as
interval or solid symbols which propagate, contract or dilate through
the computation tree of the algorithm, [6]. Symbolic Noise Analysis
(SNA) is based on Probability Density Function (PDF) propagation of
the error. The PDFs of the errors at each point of the computation tree
are modelled as noise symbols which can be combined to calculate
the computational error. Since multiplication is an important and
costly unit in computational algorithms, its output PDF and truncation
error are required for accurate error modelling.

The paper is organized as follows: the background to the study is
briefly reviewed in section two. Section three provides an analysis of
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the output PDF for a fixed-point multiplier. Truncation error of the
multiplier is investigated in section four to provide a more accurate
model and section five presents an application and some results.

II. BACKGROUND

Urabe, [7], presented a PDF for fixed point multiplication by
proving this theorem: “In fixed-point multiplication, divide the range
of the roundoff error into 2" equal intervals. Then the probability for
the roundoff error to fall into any one of these intervals converges to
27" as the number of digits of the factors is increased indefinitely.”
He concluded that roundoff error occurs nearly at random if the
number of digits of the factors is large. Goodman and Feldstein, [8],
[9], also enumerated the round-off errors in fixed-point multiplication
both for rounding by chopping and for symmetric rounding and
computed the mean and variance.

Bareiss and Barlow, [10], constructed probabilistic models of
floating point and logarithmic arithmetic using assumptions with both
theoretical and empirical justifications. These models were applied
to errors from sums and inner products. A comparison was made
between the error analysis properties of floating point and logarithmic
computers. They concluded that the logarithmic computer has smaller
error confidence intervals for roundoff errors than a floating-point
computer with the same computer word size and approximately the
same number range.

Tokaji and Barnes, [11], presented a general statistical analysis
of the roundoff error that is generated when a discrete random
multiplicand, taking only integer values, is multiplied by a real
coefficient and the result rounded back to the nearest integer. Nu-
merical results were provided for mean, variance, correlation with
multiplicand, and correlation between roundoff errors, as functions of
multiplier coefficient value, variance of multiplicand, and correlation
of multiplicands.

In this work we model the roundoff error from the WL optimization
and computational algorithms’ point of view, with more emphasis
on a hardware synthesis approach but also agreement with the
previous mathematical model. The bit-wise distribution of fixed-point
multiplication PDF is discussed in the next section.

III. AN ANALYSIS OF MULTIPLIER OUTPUT PDF

The PDF of a multiplier’s output must be considered in terms of
continuous and discrete distributions. Continuous distributions deal
with real numbers in mathematics while discrete distribution can be
construed as integer numbers or fixed point representations in digital
systems. The distribution of the product of two continuous random
variables can be expressed as in Equation 1, [12].

Fxy(a) = /jw
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where X and Y are continuous random variables and fx,y (z,y) is
the probability density function of (x # 0,y). Finding a closed form
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for this distribution function is not straightforward but some solutions
have been proposed, [13].

However, in the case of integer numbers, this distribution is differ-
ent. To compare the continuous and discrete distributions for fixed-
point numbers, a set of simulations over a large number of random
numbers (> 10'°) were performed to determine the frequency of
the output numbers of a 16-bit multiplier for inputs with uniform
distribution. The output distribution is shown in Figure (1).
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Fig. 1. PDF of 16-bit multiplier output with integer uniform distributed
inputs

It can be seen from Figure 1 that multiplication results are sparser
for larger numbers. In other words, to represent multiplication result
of two n-bit and m-bit fixed-point numbers, we normally require an
(m+n)-bit fixed-point number. An (m+n)-bit number can represent
2(m+") distinct numbers, where the number of distinct multiplication
results of two n-bit and m-bit fixed-point numbers is far less than
this value. It has been proved, and can be observed by an exhaustive
search, that the multiplier’s output does not cover the output range in
full. The results of these investigations are in Table I where the first
column shows the multiplier bit-width, the second column shows
the number of distinct results, the third column indicates the total
variation range of the output and the last column indicates what
percentage of these possible numbers appear in the output of the
multiplier. According to Table I, increasing the bit-width makes the
output more sparse. The next section shows how this issue affects
the truncation error PDF of the output.

TABLE I
MULTIPLIER OUTPUT COVERAGE FOR DIFFERENT WORD-LENGTHS

N xN-bit Number of Total number | Output coverage

Multiplier | distinct outputs | of outputs %
1 2 4 50.00%
2 7 16 43.75%
3 26 64 40.63%
4 90 256 35.16%
5 340 1024 33.21%
6 1238 4096 30.23%
7 4647 16384 28.37%
8 17578 65536 26.83%
9 67592 262144 25.79%
10 259768 1048576 24.78%
11 1004348 4194304 23.95%
12 3902357 16777216 23.26%
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IV. TRUNCATION ERROR MODEL

The sparsity of the outputs in larger numbers suggests a non-
uniform distribution for the bit pattern of the multiplication result.
A set of simulations with random numbers were performed which
gives a bitwise view of the matter. Figure 2 gives the probability of
each bit of a 16 x 16 bit multiplier being “1”. According to this
graph, the probability is not identical for all the bits of the output.
Our results show that in an m-bit truncation of the multiplier with an
N-bit output, the probability of a “1” occurring in the the k** place
of the output is:

2F —1

Py(k) = TokH1

@)
and accordingly the probability of a “0” occurrence in the the k"
place of the output is:
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Po(k) = "5 3)

where in the both formulas & < 7. Practical results confirm these
equations. Thus, a uniform PDF should not be expected for the output
of a multiplier.
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Fig. 2. Probability of each bit being “1” in the output of a 32-bit multiplier.

Figure 3 shows the PDF of the output error for an 8-bit truncation
from 16-bits, derived from an exhaustive simulation of the truncated
output of a multiplier for random uniform distributed inputs. It can
be observed that this distribution is not uniform. Applying Equations
2 and 3 and according to the symmetry of the graph, the probability
function can be formulated as:

P(z) 4

(1+27),
ami2. 27 i
where k is the biggest integer number in the range 0 < k < m that

2F divides z, which formally means:

where N represents the set of positive integer numbers. In other
words, the probability of the number z occurring in the output
depends on the place of the first “1”, from the right hand side, in the
base-2 representation of x, this PDF is depicted in Figure 3.
According to [14], quantization noise for a wide range of number
distributions can be approximated by a random uniform distributed
input. So in the case of multiplication, as shown in Figure 4, the
m-bit truncation error of the output is only dependent on the least

k=max{i € N,0<i<m,2
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Fig. 3. PDF of 8-bit truncation error for 16-bit multiplier output with uniform
distributed input.

significant m-bits of the inputs, and since m-bits of the inputs can
be approximated by uniform distributed inputs, the multiplication
truncation noise for a wide range of the inputs can be modelled as
in Figure 3.
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Fig. 4. Truncation error depends only on the LSB part of the inputs.

V. APPLICATION

In the digital representation of data, reducing the data bit-width has
a direct effect on the accuracy, which is construed as computational
error or noise. From this viewpoint, WL optimization methods can be
categorized as range analysis or noise analysis. The former approach
considers how the maximum/minimum values of signals propagate
through the system from every input to every output. Accordingly,
the result of the analysis is a range in which the output falls. Several
methods have been introduced in this category such as Interval
Arithmetic(IA) [15], Affine Arithmetic (AA) [6] and the Taylor
Model [16]. These sub-categories differ in range representation and
approximation. In the noise analysis approach, on the other hand, the
outcome of the accuracy reduction is represented as a random process,
which also called computational noise. Different characteristics of the
computational noise has been investigated and they are commonly
assumed to be Wide Sense Stationary (WSS) signals [14]. Inspired
by analogue signal processing, most existing work utilizes the Signal-
to-Noise Ratio (SNR) error criterion as the accuracy cost.

In our method a partially known quantity « is represented in SNA
form as in Equation 5, [17].

z=Tn(E), %)

where T'(+) is a polynomial of order N with M known coefficients
(z1,22, -+, znm); and E is an array as in Equation (6).

E=[z,e1,60,,m), (©)

where z is the right-hand side of the Equation(5) and &; are symbolic
representation of random values.

This model, called an algebraic representation, [16], covers a
wide range of nonlinear relationships which can be expressed as

algebraic relations. By eliminating z from Ein Equation 6, Equation
5 will be reduced to an ordinary Taylor Model. Furthermore, the AA
representation can be achieved with a first order Taylor Model as in
Equation 7.

m
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where the zo is the original value, z is the rounded value, z; € R
are constants and —1 < g; < +1 are noise symbols. As in the AA
analogy, these noise symbols are unknown symbolic variables in the
range [—1,+1]. Every noise symbol has a known Source (S) in the
computation DFG and a known Probability Density Function (PDF).
Accordingly, in this study, any noise symbol is defined by two other
symbols ¢; = (S, P), in which S represents the noise source and
P indicates the PDF type. Extending symbol variables ¢; into two
symbols provides more information about noise at every point of the
system, however it necessitates more computational effort during the
optimization process, [17].

VI. RESULTS

There is a variety of design techniques that can be used to
implement a digital multiplier. Here a truncated Booth multiplier is
used to evaluate the probabilistic characteristics of the output error.
Area and power consumption dependency of the multiplier and its
bit-width are given in Figure 5; this data is extracted for ST 130nm
technology.
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Fig. 5. Multiplier cost dependency to the word-length [2].

The mean value and variance of the truncation noise for different
numbers of truncated bits are compared in Table II, these values
are for positive integers when the truncation error is scaled up to
0 < Err < 2™, In Table II, the third column represents the variance
of the error with a uniform PDF assumption and the fifth column
gives the real value of the variance which is equal to the calculated
value of our model. According to the table, by increasing the number
of truncated bits, the uniform distribution model gets closer to the
actual model. This result confirms the results in [10], where it is
suggested that the roundoff noise of the fixed-point multiplication
can be approximated by a uniform distribution for a large number of
truncated bits m, and N, word-length of the multiplier output.

Another issue to be considered is the error PDF in the case of inputs
with non-uniform distributions. Gaussian random number generators
(GRNG) are used in a large number of computationally intensive
modelling and simulation applications. A widely used method is
Box-Muller, [18], in which a random number is produced with
standard normal distribution from a standard uniform distributed
random number by inverting the distribution function. A hardware
implementation of this algorithm can be found in [19]. The truncation
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TABLE II
COMPARING MEAN VALUE AND VARIANCE OF THE TRUNCATION NOISE
FOR DIFFERENT NUMBERS OF TRUNCATED BITS.

m-bit Uniform Distribution Proposed Distribution

Truncate | Mean | Variance Mean | Variance
1 0.5 0.083333333 0.25 0.1875
2 1.5 0.75 0.999969 1.249939
3 35 4.083333333 2.750153 5.687454
4 7.5 18.75 6.501007 23.004912
5 15.5 80.08333333 14.252628 90.197059
6 31.5 330.75 30.005785 353.203323
7 63.5 1344.083333 61.769383 1392.149538
8 127.5 5418.75 125.486034 5518.875694
9 255.5 21760.08333 253.234952 21960.62686
10 511.5 87210.75 508.976108 87624.61602
11 1023.5 349184.0833 1020.686764 | 350021.5419
12 2047.5 1397418.75 2044.548389 1399220.573
13 4095.5 5591040.083 4092.004452 | 5594182.905
14 8191.5 22366890.75 8188.349327 | 22372861.38
15 16383.5 | 89473024.08 16379.13195 | 89482935.01

error for x and y is evaluated using extensive data inputs to find the
PDF of the error. Figure 7 shows the error PDF for an 8-bit truncation
of a 20-bit multiplier; error values are scaled to set 1 as the value of
the LSB. It is observable that this distribution is symmetrical but not
uniform.
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Fig. 6. Block diagram of the Box-Muller Gaussian random number generator
[19].
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Fig. 7. Multiplier 8-bit truncation error after 20-bit multiplication.

VII. CONCLUSION

This study presents an investigation of fixed-point multiplication
output and its truncation error PDE. Simulation results show deviation
of the truncation error from a uniform PDF. This model is utilized
in the SNA error analysis method for WL-optimization. It can be
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concluded that in word-length optimization, the PDF of the truncation
error in N-bit fixed-point multipliers should be assumed uniform
where the number of truncated bits, m, is greater than or equal to
8 and smaller than % For N-bit fixed-point multipliers with m-bits
(m < %) truncation, which m < 8, the PDF is different and needs
to be considered for more precise error analysis.
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