Semi-Blind Spatial Equalisation for MIMO Channels with Quadrature Amplitude Modulation

S. Chen, L. Hanzo and W. Yao

School of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ, UK
Outline

- Motivations for semi-blind detection of quadrature amplitude modulation MIMO
- MIMO signal model and proposed semi-blind spatial equalisation scheme
- Simulation investigation and performance comparison
Motivations

- Knowledge of **channel state information** is critical to achieve capacity enhancement promised by MIMO, but perfect CSI is often unavailable.

- Estimating MIMO channel matrix is a tough job, and **training**-based channel estimation is simple but it reduces achievable throughput.

- **Blind** joint channel estimation and data detection does not reduce achievable throughput but is computationally complex.

- To resolve **ambiguities** in channel estimation and symbol detection, a few pilot symbols, i.e. some training, are necessary.

 ⇒ Various **semi-blind** joint maximum likelihood (ML) channel estimation and data detection schemes.
Motivations (continue)

- Semi-blind iterative least squares channel estimation (LSCE) and ML data detection has attract much attention
 \(\downarrow\) difficult to extend to high-order quadrature amplitude modulation MIMO systems

- Semi-blind **spatial equalisation** offers potentially low-complexity scheme for such MIMO systems

Existing work (Ding, Ratnarajah & Cowan, 2008, TSP)

- We propose a semi-blind spatial equalisation based on **constant modulus algorithm** assisted **soft decision directed** scheme
 \(\uparrow\) low-complexity **high-performance** \(\rightarrow\) approaches **minimum mean square error** solution based on perfect channel state information
Signal Model

- MIMO system of n_T transmitters/n_R receivers, flat fading channels

$$x(k) = Hs(k) + n(k)$$

Transmitted symbol vector $s(k) = [s_1(k) \ s_2(k) \cdots s_{n_T}(k)]^T$, received signal vector $x(k) = [x_1(k) \ x_2(k) \cdots x_{n_R}(k)]^T$, channel AWGN vector $n(k) = [n_1(k) \ n_2(k) \cdots n_{n_R}(k)]^T$, $n_T \leq n_R$

- $n_R \times n_T$ channel matrix $H = [h_{p,m}]$, $1 \leq p \leq n_R$ and $1 \leq m \leq n_T$

 $h_{p,m}$ is a complex Gaussian process with zero mean and $E[|h_{p,m}|^2] = 1$

 Block fading, where $h_{p,m}$ is kept constant over small block of N symbols

- M-QAM constellation: $s_m(k) \in \mathcal{S} \triangleq \{s_{i,q} = u_i + ju_q, \ 1 \leq i, q \leq \sqrt{M}\}$

 with $\Re[s_{i,q}] = u_i = 2i - \sqrt{M} - 1$ and $\Im[s_{i,q}] = u_q = 2q - \sqrt{M} - 1$
Spatial Equalisation

- Bank of **spatial equalisers** for detecting transmitted symbols $s_m(k)$

$$y_m(k) = w_m^H x(k), \ 1 \leq m \leq n_T$$

- Given **initial training data** $X_K = [x(1) x(2) \cdots x(K)]$ and $S_K = [s(1) s(2) \cdots s(K)]$, **LSCE** of channel H

$$\hat{H} = [\hat{h}_1 \cdots \hat{h}_{n_T}] = X_K S_K^H (S_K S_K^H)^{-1}$$

with estimated noise variance $2\hat{\sigma}_n^2 = \frac{1}{K \cdot n_R} \|X_K - \hat{H} S_K\|^2$

- **Initial** spatial equalisers’ **weight vectors**

$$w_m(0) = \left(\hat{H} \hat{H}^H + \frac{2\hat{\sigma}_n^2}{\sigma_s^2} I_{n_R} \right)^{-1} \hat{h}_m, \ 1 \leq m \leq n_T$$

- For full rank $S_K S_K^H$, $K \geq n_T \Rightarrow$ **minimum training pilots** $K = n_T$
Concurrent Blind Adaptation

- **Concurrent** CMA and SDD equalisers: \(w_m = w_{m,c} + w_{m,d} \) with initial
 \(w_{m,c}(0) = w_{m,d}(0) = 0.5w_m(0) \)

- **Constant modulus algorithm:**

 - Given spatial equaliser’s output \(y_m(k) = w_m^H(k)x(k) \) at sample \(k \)

 \[
 \begin{align*}
 \varepsilon_m(k) &= y_m(k) \left(\Delta - |y_m(k)|^2 \right), \\
 w_{m,c}(k+1) &= w_{m,c}(k) + \mu_{\text{CMA}} \varepsilon_m^*(k)x(k),
 \end{align*}
 \]

 - \(\Delta = E[|s_i(k)|^4] / E[|s_i(k)|^2] \) and \(\mu_{\text{CMA}} \) is step size

- **Soft decision directed equaliser:** maximise marginal PDF

 \[
 J_{\text{LMAP}}(w_m, y_m(k)) = \rho \log (\hat{p}(w_m, y_m(k)))
 \]

 of spatial equaliser’s output based on **stochastic gradient** optimisation
Soft Decision Directed Scheme

- Phasor plane is divided into $M/4$ regions

\[S_{i,l} = \{ s_{p,q}, \quad p = 2i - 1, 2i, \quad q = 2l - 1, 2l \} \]

- If $y_m(k) \in S_{i,l}$, local approximation of marginal PDF of $y_m(k)$ is

\[\hat{p}(w_m, y_m(k)) \approx \sum_{p=2i-1}^{2i} \sum_{q=2l-1}^{2l} \frac{1}{8\pi \rho} e^{-\frac{|y_m(k) - s_{p,q}|^2}{2\rho}} \]

- SDD weight updating:

\[w_{m,d}(k + 1) = w_{m,d}(k) + \mu_{\text{SDD}} \frac{\partial J_{\text{LMAP}}(w_m(k), y_m(k))}{\partial w_{m,d}} \]
\(\mu_{\text{SDD}} \) is step size and \(\rho \) cluster width: when equalisation is done,
\(y_m(k) \approx s_m(k) + e_m(k) \), where
\(e_m(k) \) is Gaussian distributed with zero mean and variance \(2\sigma_n^2 w_m^H w_m \)

\[\rho \propto 2\sigma_n^2 w_m^H w_m \]

- **Soft DD nature**

\[
\frac{\partial J_{\text{LMAP}}(w_m, y_m(k))}{\partial w_{m,d}} = \frac{1}{Z_N} \sum_{p=2i-1}^{2i} \sum_{q=2l-1}^{2l} e^{-\frac{|y_m(k) - s_{p,q}|^2}{2\rho}} (s_{p,q} - y_m(k))^* x(k)
\]

with normalisation

\[
Z_N = \sum_{p=2i-1}^{2i} \sum_{q=2l-1}^{2l} e^{-\frac{|y_m(k) - s_{p,q}|^2}{2\rho}}
\]
Stationary MIMO Example

- **Stationary** 4×4 MIMO with 64 QAM, training pilots $K = 4$

- **Learning curve** of semi-blind CMA+SDD averaged over 10 runs and over all four spatial equalisers: average SNR ≈ 29 dB, $\mu_{\text{CMA}} = 4 \times 10^{-7}$, $\mu_{\text{SDD}} = 2 \times 10^{-4}$

<table>
<thead>
<tr>
<th></th>
<th>$-1.4 - 0.6j$</th>
<th>$0.5 + 1.1j$</th>
<th>$0.4 - 0.8j$</th>
<th>$-0.6 - 0.3j$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1.7 - 0.3j$</td>
<td>$1.3 - 0.3j$</td>
<td>$-0.1 - 1.4j$</td>
<td>$-0.6 - 0.5j$</td>
</tr>
<tr>
<td></td>
<td>$1.0 + 0.5j$</td>
<td>$-0.6 + 0.8j$</td>
<td>$-0.6 - 0.2j$</td>
<td>$-0.3 + 0.2j$</td>
</tr>
<tr>
<td></td>
<td>$1.2 - 1.3j$</td>
<td>$-0.7 + 1.0j$</td>
<td>$0.9 - 0.3j$</td>
<td>$-0.1 + 0.7j$</td>
</tr>
</tbody>
</table>

Average Symbol Error Rate

Sample

4 training symbols
CMA+SDD ($\rho=0.6$)
CMA+SDD ($\rho=0.2$)
perfect channel
Stationary MIMO Example (continue)

Average symbol error rates of spatial equalisation (a) training-based given different numbers of training symbols, and (b) semi-blind CMA+SDD, in comparison with minimum mean square error solution based on perfect channel knowledge.

(a)

(b)
Block Rayleigh Fading MIMO Example

- 5×4 MIMO with 16-QAM, simulated channel taps $h_{l,m}$, $1 \leq l \leq 5$ and $1 \leq m \leq 4$, were i.i.d. complex-valued Gaussian processes with zero mean and $E[|h_{l,m}|^2] = 1$
- Performance averaged over 100 channel realisations
- Number of pilot symbols $K = 5$, $\mu_{\text{CMA}} = 2 \times 10^{-6}$, $\mu_{\text{SDD}} = 5 \times 10^{-4}$ and $\rho = 0.5$
- Blind adaptive process typically converged within 300 samples
Conclusions

- A low-complexity high-performance semi-blind spatial equalisation scheme has been proposed for high-order QAM MIMO.
- Minimum number of pilot symbols, equal to the number of transmit antennas, are used for initial training.
- Constant modulus algorithm assisted soft decision directed scheme is applied for blind adaptation.
- The scheme converges fast and is capable of approaching the optimal MMSE solution based on perfect channel knowledge.
- Effectiveness of proposed semi-blind spatial equalisation scheme has been demonstrated using simulation.
THANK YOU.

The financial support of the United Kingdom Royal Society under a conference grant is gratefully acknowledged.