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Abstract.  Weighted voting games are a popular model of col- those described above, the threshold can be significantly smaller than
laboration in multiagent systems. In such games, each agent has58% of the total weight, and several winning coalitions may be able
weight (intuitively corresponding to resources he can contribute), antb form simultaneously. Moreover, in this situation the formation of
a coalition of agents wins if its total weight meets or exceeds a giverthe grand coalition may not, in fact, be a desirable outcome: instead
threshold. Even though coalitional stability in such games is impor-of completing several tasks, forming the grand coalition concentrates
tant, existing research has nonetheless only considered the stability all agent resources on finishing a single task. In contrast, the overall
the grand coalition. In this paper, we introduce a model for weightecefficiency will be higher if the agents formaaalition structure (CS)
voting games with coalition structures. This is a natural extension in.e., a collection of several disjoint coalitions.
the context of multiagent systems, as several groups of agents may beTo model such scenarios, in this paper we introduce a model for
simultaneously at work, each serving a different task. We then prowVGs with coalition structuredVe then focus on the issue sfa-
ceed to study stability in this context. First, we define the CS-core, dility in this setting. A structure is stable when rational agents are
notion of the core for such settings, discuss its non-emptiness, and reet motivated to depart from it, and thus they can concentrate on
late it to the traditional notion of the core in weighted voting games.performing their task, rather than looking for ways to improve their
We then investigate its computational properties. We show that, ipayoffs. Therefore, stability provides a useful balance between indi-
contrast with the traditional setting, it is computationally hard to de-vidual goals and overall performance. To study it, we extend the no-
cide whether a game has a non-empty CS-core, or whether a givaion of thecore—a classic notion of stability for coalitional games—
outcome is in the CS-core. However, we then provide an efficiento our setting, by defining the€S-corefor WVGs. We then provide a
algorithm that verifies whether an outcome is in the CS-core if alldetailed study of this concept, comparing it with the classic core and
weights are small (polynomially bounded). Finally, we also suggestnalyzing its computational properties.
heuristic algorithms for checking the non-emptiness of the CS-core. Our main contributions are as follows: (1) we define a new model
that allows weighted voting games to admit coalition structures
. (Sec. 3); (2) we define the CS-core for such games, relate it to the
1 Introduction classic core, and describe sufficient conditions for its non-emptiness

Coalitional games [8] provide a rich framework for the study of co- (Sec. 4); (3) we show that several natural CS-core-related pruble

. . . . re intractable—namely, it is NP-hard to decide the non-emptiness of
operation both in economics and politics, and have been successful . .
S . e CS-core and coNP-complete to check whether a given outcome is
used to model collaboration in multiagent systems [11, 3]. In such

games, teams (soalitions of agents come together to achieve a in the CS-core (Sec. 5). Interestingly, this contrasts with what holds

common goal, and derive individual benefits from this activity. in weighted voting games without coalition structures, where both

A particularly simple, yet expressive, class of coalitional gamesof these problems are polynomial-time solvable; (4) we provide a

. . i . ~polynomial-time algorithm to check if a given outcome is in the CS-
IS that ofweighted voting games (WVE[QJ. 3. In a ngh.t?d YOt core in the important special case of polynomially-bounded weights.
ing game each player (@gen) has a weight, and a coalitiomins

if its members’ total weight meets or exceeds a certain thresholdWe then show how to use this algorithm to efficiently checkifa given

and loses otherwise. Weighted voting has straightforward applic coalition structure admits a stable payoff distribution, and suggest a

tions in a plethora of societal and computer science settings rangizl]%gu”snc algorithm to find an allo_catlon_ in the core (Sec. 6). We begin
iy ith some background and a brief review of related work.

from real-life elections to computer operating systems, as well as
variety of settings involving multiagent coordination. In particular,
an agent's weight can be thought of as the amount of resources aval-  Background and Related Work
able to this agent, and the threshold indicates the amount of resources _ . . . . . . .
necessary to achieve a task. A winning coalition then corresponds tJ(S] this section, we provide an overview of the basic concepts in coali-
a team of agents that can successfully complete this task. Uonal game theory. L(?I.’ 1] = n,_l_)e a set of p'?‘yers' A subset
Originally, research in weighted voting games was motivated by aC, g I IS cglled acpalltlon. A goglltlona! gameIW|th transferable
desire to model decision-making in governmental bodies. In such seflllity is defined by itcharacteristic functior : 2° — R that spec-

tings, the threshold is usually at least 50% of the total weight, and thdfies thevr?luev(_C) Olf eact;fcaalitiorcb[li]j.;tntui_ti\{el?/, U(C). re%-
issues of interest relate to the distribution of payoffs withingrend resents the maximal payoff the members.bean jointly receive by

coalition, i.e., the coalition of all agents. Perhaps for this reason, tocooperating, and itis assumed that the agents can distribute this pay-

date, all research on weighted voting games tacitly assumes that tt?gv?/f]t,‘l'veﬁn tr;]emselvgs n fany \{vay(.j ibes th ” ilabl
grand coalition will form. However, in multiagent settings such as lle the characteristic function describes the payofis available to

coalitions, it does not prescribe a way of distributing these payoffs.

1 School of Electronics and Computer Science, University aftSampton, ~ WWe say that arallocationis a vector of payoffee = (z1,..., )
UK; email: {ee, gc2, nf@ecs.soton.ac.uk assigning some payoff to eacghe I. We write z(S) to denote




> ics Ti- An allocation isfeasiblefor the grand coalition ifc (1) < (coalition structure, allocation) rather than just an allocation. Further-

v(I). An imputationis a feasible allocation that is aledfficient i.e., emore, in the traditional model, any allocation of payoffs among the
z(I) =v(I). participating agents is required to be an exhaustive partition of the
A weighted voting game (WV@® a coalitional gamé& given by  value of the grand coalition. In other words, it is always an impu-

a set of agents = {1,...,n}, theirweightsw = {ws,...,w,}, tation, i.e., an allocation of payoffs that is feasible and efficient for

w; € RY, and athresholdT” € R; we writeG = (I; w; T). We use  the grand coalition/. As we now allow WVGs to admit coalition
w(S) to denote)_, _ , w;. For a coalitionS C 1, its valuev(S) is 1 structures, we replace the aforementioned requirement with similar
if w(S) > T; otherwisew(S) = 0. Without loss of generality, the requirements with respect to a coalition structure:

value of the grand coalitiofis 1 (i.e.,w(I) > T). First, we no longer require an allocation to be an imputation in the
One of the best-known solution concepts describing coalitionatlassic sense. Instead, we demand that, for a given out¢6isier),
stability is thecord8]. the allocationz of payoffs for! is feasible forCS. In this way, C'S

may contairzero or morawinning coalitions. Furthermore, we define
an imputation for a coalition structureC'S as a vectorp of non-
negative numberép1, ..., pn) (one for each agent if), such that
If an allocationz is in the core, then no subgroup of agents canfor everyC € CS it holdsp(C) = v(C) < 1; we writep € Z(CS).
guarantee all of its members a higher payoff than the one they reFhat is, an imputation is now a feasible and efficient allocation of the
ceive in the grand coalition under. This definition of the core can payoff of any coalitionC' € CS.
therefore be used to characterize the stability of the grand coalition.
The setting where several coalitions can form at the same time cap
be modeled usingoalition structures Formally, a coalition struc-

Definition 1. An allocationz is in thecoreof G iff z(I) = v(I)
andfor any S C I we haver(S) > v(S).

Core and CS-core of weighted voting games

ture (CS) is an exhaustive partition of the set of agerds(G) In this section we define the core of WVG games with coalition struc-
denotes the set of all coalition structures 6t Given a struc- tures, relate it to the “classic” core of WVG games without coalition
ture CS = {Cy,...,Cx}, an allocationx is feasible for CS if structures, and obtain some core characterization results for a few
x(C;) < v(C;) fori = 1,..., k andefficient for CS if this holds  interesting classes of WVG games.

with equality. The definition of the core (Def. 1) takes the following simple form

Games with coalition structures were introduced by Aumann andn the traditional WVGs setting (see, e.g., [6]):
Dreze [2], and are obviously of interest from an Al/multiagent sys- )
tems point of view, as illustrated in Section 1. Indeed, in this con-Definition 2. The core of a WG gam@ = (I; w; T') is the set of
text dealing with coalition structures other than the grand coalitiofmPutationsp such thaty's € 1, w(S) = T' = p(S) = 1.

is of uttermost importance: simply put, there is a plethora of realis- |nq,itively, an imputatiorp is in the core whenever the payoffs de-
tic application scenarios where the emergence of the grand coaI|t|0ﬁ1ned byp are such that any winning coalition already receives col-

is either not guaranteed, is plainly impossible, or might be perceivigctive payoff of1 (and therefore no coalition can improve its payoff
ably harmful (for instance, it usually makes little sense to aIIocataDy breaking away from the grand coalition).

all available robots on a single task). In particular, in the context of “this notion of the core cannot be directly used for coalition struc-
WVGs, by forming several disjoint winning coalitions, the agentsres: indeed, it demands that an allocation is an imputation in the
generate more payoff than in the grand coalition. Additional motiva-pjitional sense, and therefore no imputation for a coalition struc-
tion from an economics perspective is given in [2], which contains &yre \yith more than one winning coalition can ever be in the core. We
thorough and insightful discussion on why coalition structures ariseyij now extend this definition to the setting with coalition structures.

Now, there exists a handful of approaches in the multiagent ”teraNamer, we define theore of weighted voting games with coalition
ture that do take coalition structures explicitly into account. Sand-,

h - “ structures or CS-core as follows:

holm and Lesser [11] discuss the stability of coalition structures

when examining the problem of allocatisgmputational resources Definition 3. The CS-core of a WVG gante = (I;w;T) with

to coalitions. Apt and Radzik [1] also do not restrain themselves tacoalition structures is the set of outcon{&sS, p) such thatv'S C 1,

problems where the outcome is the grand coalition only. Insteadw(S) > T = p(S) > 1andVC € CS it holdsp(C) = v(C).

they introduce various stability notions for abstract games whose

outcomes can be coalition structures, and discuss simple transfor- INtuitively, given an outcome that is in the CS-core, no coalition

mations by which stable partitions of the set of players may emergdas an incentive to break away from the coalition structure.

Dieckmann and Schwalbe [5] also propose a version of the core with NOW, itis well-known (see, e.g., [6]) thatin weighted voting games

coalition structures when studying dynamic coalition formation, andth® core is non-empty if and only if there existsetoplayer, i.e., a

so do Chalkiadakis and Boutilier when tackling coalition formation Player that belongs to all winning coalitions, and an imputation is in

under uncertainty [4]. None of these papers studies WVGs, howevelhe core if and only if it distributes the payoff in some way between
A thorough discussion of weighted voting games can be foundhe veto players. This directly implies the following result.

in [13]. The stability-related solution concepts for WVGsithout

coalition structures) have recently been studied by Elkind et al. [6]

who also investigate them from computational perspective. Howeve

there is no existing work in the literature studying WVGs with coali-

tion structure—a class of games that we now proceed to define. However, it turns out that the CS-core may be non-empty even

when the core is empty.

Observation 1(An imputation in the core induces an outcome in the
rCS-core) LetG = (I;w;T). If the core ofG is non-empty, then,
for anyp in the core, the outcomg 7}, p) is in the CS-core of G.

3 Coalition structures in WVGs Example 1. Consider a weighted voting gan@® = (I;w;T),

We now extend the traditional model for WVGs to allow for coali- wherel = {1,2,3}, w = (1,1,2) andT = 2. It is easy to see that
tion structures. First, anutcomeof a game is now a pair of the form none of the players ity is a veto player, s6/ has an empty core. On



the other hand, the outcom&'s, p), whereCS = {{1, 2}, {3}}, given in binary. As any rational weights can be scaled up to integers,

p = (1/2,1/2,1) isinthe CS-core of;. Indeed, agent is gettinga  this can be done without loss of generality.

payoff of1 under this outcome, so his payoff cannot improve. There- In the previous section, we explained how to verify whether the

fore, the only deviation available to the other two players is to formcore is non-empty or whether a given outcome is in the core. Itis not

singleton coalitions, and this is clearly not beneficial. hard to see that this verification can be done in polynomial time: e.g.,
to check the non-emptiness of the core, we simply cheak(if \

We now show that if the thresholf is strictly greater thai0% {i}) > T foralli € I.In WVGs with coalition structures, the
the CS-core and the core coincide. situation is very different. Namely, we will show that it is NP-hard to
decide whether a given WVG has a non-empty CS-core. Moreover,
even if we are given an imputation, it is coNP-complete to decide
whether it is in the CS-core of a given WVG. We now state these
computational problems more formally.

Proposition 1 (In absolute majority games, the cores coincidiegt

G = (I;w;T) be aWVG game witl' > w(I)/2. Then there is an
outcome(CS, p) in the CS-core o7 if and only ifp is in the core
of G. Consequentlyz has a non-empty core if and only if it has a

non-empty CS-core. Name: NONEMPTYCSCORE.
Instance: Weighted voting gamé&! = (I; w; 7).

Proof. Suppose that an outconi€'S, p) is in the CS-core ofi. As Question: DoesG have a non-empty CS-core?

T > w(I)/2, CS can contain at most one winning coalitich and
hencep(I) = 1. Consider any player € C such thap; > 0. If p; Name: INCSCORE.

is not a veto player, we have(/ \ {i}) > T’ p(I \ {i}) < 1,80 |hstance: Weighted voting gamé' = (I;w;T'), a coalition struc-
(CS, p) is not in the CS-core of, a contradiction. Hence, undpr ture CS € CS(G) and an imputatiop € Z(CS).

only the veto players get any payoff, which implies tipais in the Question: Is (CS, p) in the CS-core of?

core of G. Conversely, ifp is in the core ofG, it is easy to see that

({I},p) isin the CS-core ot O Both of our reductions rely on the well-known NP-complet&P
TITION problem. An input to this problem is a pdid; K), whereA
is a list of positive integersl = {a1,...,a.} suchthaly""  a; =
2K. Itis a “yes”-instance if there is a subset of indicésuch that

Theorem 1. Any WVGGE = (I;w;T) that admits a partition of 2 ies @i = K and a“no’instance otherwise [7, p.223].

We can also prove the following sufficient condition for non-
emptiness of the CS-core.

players into coalitions of weight' has a non-empty CS-core. Theorem 2. The problemNONEMPTYCSCORE is NP-hard.

Proof. Let CS = {C1, ..., Cx} be the corresponding partition such Proof. We will describe a polynomial-time procedure that maps
thatw(C;) = T foralli = L,..., k. Definep by settingp; = wj/T  a “yes™instance of RRTITION to a “yes™-instance of MNEMP-
forall j = 1,...,n. Consider any winning coalitioy. We have  1yCsCoRE and a “no™-instance of ARTITION to a “no’-instance

w(S) = T, sop(S) = w(S)/T > 1, and hences does notwantto  of NONEMPTYCSCORE. Suppose that we are given an instance
deviate. As this holds for an§ with v(S) = 1, the outcoméC's, p) (a1,...,an; K) of PARTITION. If there is ani such thata;, > K,
is in the CS-core of. O then obviously it is a “no™instance of ARTITION, so we map it

. . . to a fixed “no™-instance of MNEMPTYCSCORE, e.g., by setting
However, it is not the case that the CS-core of a weighted voting _ ({1,2,3,4,5}: (1,1,1,1,1); 2) as in Example 2. Otherwise

game is always non-empty. In particular, this follows from the factWe construct a S . -

o . : . gamé& = (I;w;T) by settingl = {1,...,n},
thagthe hCS-core comc;]des with thetcore in %?Imes Wltl; w(tlh)/t2t,h i = fori = 1,....n, T = K. Note that in this case we have
and such games may have an emply core. ¥ve now show that the a7 7\ {i}) > T for anys, so there are no veto playersih

w
core can be empty alsot < w(1)/2: Suppose that we have started with a “yes”-instancexgfTPrion,
Example 2. Consider a WWGG = (I;w;T), where ] = and letJ be such thaEiEJai = l_(.Co_nsiderthe coalition structure
{1,2,3,4,5}, w = (1,1,1,1,1) and T = 2. We now show that S = {J,/\ /} and animputatiomp given byp; = w;/K fori =
this game has empty CS-core. Indeed, consider@fye ¢S(G)  1:---»n-Notethaw(J) = w(I\J) = K, sop(J) =p(I\J) =1,
and anyp € Z(CS). Clearly, CS can contain at most two win- 1-€-P/S avalid imputation. Itis easy to see tH{&ts, p) is in the CS-
ning coalitions, s(I) < 2. Now, if there is a coalitiorC' € ¢, ~ €Ore ofG. Indeed, for any winning coalitios we havew(s) > K,
|C| > 3, such thatp; > 0forall i € C, any two players, j € C sop(S) > 1, i.e., the members o would not want to dewat_e.
can deviate by forming a winning coalition and splitting the surplus  ON the other hand, suppose that we have started with a *no”
p(C'\ {i,5}). If all coalitions have size at most 2, then there is a iInstance of RRTITION. Consider any outcom@’'s, p) in the result-
playeri that forms a singleton coalition (and hengg = 0). There N9 game. Clee}rI.yQS can contain at most one winning coalition: if
also exists another playsrsuch thatp; < 1 (otherwisep(I) > 4). there are two disjoint winning coalitions, each of them has weight

But thenS = {4, j} satisfiesw(S) > T, p(S) < 1, so it is a suc- i.e., it can be used as a “yes”-certificate faR?ITION. If CS con-
cessful deviatio;l. - tains no winning coalitions, then it is clearly unstableugg) > T,

p(I) = 0. Now, suppose thaf’S contains exactly one winning coali-

. tion S. In this case we havg(S) = p(I) = 1 andp; = 0 for all
5 Non-emptiness of the CS-core: hardness results  ; ¢ . We havep; > 0 for somei € S, sop(I \ {i}) < 1. More-

In the rest of the paper, we deal with computational questions relate@Ver: Py constructionw( \ {i}) > T. Hence,l \ {i} can deviate,

to the notion of the CS-core. This topic is important since in prac-S° (¢S, p) is notin the CS-core of:. O
tical applications age_nts have limited computa_tional resources, an’f‘heorem 3. The problenNCSCOREis coNP-complete.

may not be able to find a stable outcome if this requires excessive

computation. To provide a formal treatment of complexity issues inProof. We will show that the complementary problem on checking
our setting, we assume that all weights and the threshold are integetisat a given outcome is not in the core is NP-complete.



First, it is easy to see that this problem is in NP: we can gues$or INCSCORE, i.e., an algorithm that correctly decides whether a

a coalition S such thatw(S) > T, but p(S) < 1; this coali-
tion can successfully deviate froC'S, p). Now, to show that this
problem is NP-hard, we construct a reduction froaRPITION as
follows. Given an instancéas, ..., an; K) of PARTITION, we set
I={1,...,n,n+ 1,n+ 2} andw; = 2q; fori = 1,...,n.
Define alsol’ = {1,...,n}. The weightsw,+1 and w42 and
the quotal” are determined as follows. We construct a coalitfon
by adding agents, 2, ... to it one by one until the weight of is
at least2K. If the weight of S is exactly2K, this means that we
have started with a “yes”-instance ok®rITION. In this case, we set
Wnt1 = Wnt2 = 0, T = 2K, CS = {I}, andp; = w; /T for all

1 € I. It is easy to see that the outcort€S, p) is not stable: the
agents inS can deviate and increase their total payoff froy2 to 1.
Hence, in this case we have mapped a “yes™-instancerf RION
to a “no”-instance of NCSCORE.

Now, suppose thab(S) > 2K. As all weights are even, we have

w(S) = 2Q for some integer) > K. Also, we havew(I’ \ S) =

4K — 2Q. SetT = 2Q, and letw,4+1 = wnt2 = 2Q — 2K. Now

we havew(I \ ) = 4K —2Q +4Q — 4K = 2Q), i.e., bothS and
I\ S are winning coalitions. Sef'S = {5, '\ S}. Now, p is defined
as follows: for alli € I’ setp; = w; /T, Setpp1+1 = wnt1/(T+1),

and sepp4+2 = 1—p(I'\S) —pn+1. We haven(S) = w(S)/T = 1,

p(I\S) = p(I'\ S) + pn+1 + put2 = 1, SOp is an imputation.
Note also that we have, +1 +pnt2 = 1 —p(I'\ S) =1 —w(I"\

S)/T = (Wn41 + wny2)/T. Moreover, we have,, 11 < wn41/T,

p(I'\ S) =w(I'\ S)/T, and hence,,+2 > wn+2/T.

We now show that ifai,. .., a,; K) is a “yes”-instance of Ar-
TITION, then((I;w;T), CS, p) is a “no”-instance of NCSCORE.
Indeed, suppose there is a sesuch that _,_ ; a; = K. Consider
the coalitionJ’ = Ju{n+1}. We havew(J’') = 2K +2Q—2K, S0
it is a winning coalition. On the other hana,J’) = p(J) + pr+1 =
w(J)/T + wn+1/(T + 1) < w(J")/T = 1. Hence,J' can benefit
from deviating, i.e.(C'S, p) is not in the core.

On the other hand, suppose th@f; w;7T), CS,p) is a “no”-
instance of NCSCORE, i.e., there is a sef”’ such thatw(J") > T,
p(J") < 1. Suppose thato(J”) > T, ie,w(J") > T + 1.
We havep; > w;/(T + 1) for all i € I (indeed, we have; >
w/T fori # n+1andp; = w/(T + 1) fori = n + 1),
sop(J”) > w(J")/(T + 1) > 1, a contradiction. Hence, we
havew(J”) = T. Moreover, ifn + 1 ¢ J”, we havep(J”) >
w(J")/T = 1, a contradiction again. Therefore,+ 1 € J”. Fi-
nally,if n+2 € J”, we havep(J") = p(J"NI') +prnt1 +Dnt2 =
w(J" NI /T + (Wnt1 + wny2)/T = w(J")/T = 1, also a con-
tradiction. We conclude that(J”") =T, n+ 1€ J' ,n+2¢ J",
and hencev(J”" N I') = 2Q — (2K — 2Q) = 2K, which means

that) . ,npai = K, e, J” NI is awitness that we have a

“yes”-instance of RRTITION. O

6 Algorithms for the CS-core

The hardness results presented in the previous section rely on %{;
weights being given in binary. However, in practical applications itb
is often the case that the weights are not too large, or can be round
down so that the weights of all agents are drawn from a small rangg
of values. In such cases, we can assume that the weights are givg

in unary, or, alternatively, are at most polynomialinlt is there-

fore natural to ask if our problems can be solved efficiently in such

settings. It turns out that foNICSCORE this is indeed the case.

Theorem 4. There exists a pseudopoIynorﬁialgorithm.AIncScOre

2 An algorithm whose running time is polynomial if all numberstie input

%

given outcoméCS, p) is in the CS-core of a weighted voting game
(I; w; T) and runs in timepoly (n, w(I), |p|), where|p| is the num-
ber of bits in the binary representation pf

Proof. The input to our algorithm is an instance of@GSCORE, i.e.,

a weighted voting gamé& = (I; w; T'), a coalition structure’S €
CS(G) and an imputatiorp € Z(CS). The outcomeg(CS, p) is

not stable if and only if there exists a s&tsuch thatw(S) > T,
butp(S) < 1. This means that our problem is essentially reducible
to the classic KIAPSACK problem [7], which is known to have a
pseudopolynomial time algorithm based on dynamic programming.
In what follows, we present this algorithm for completeness.

LetW =w(I).Forj=1,...,nandw = 1,..., W, let P(j,w)
be the smallest total payoff of a coalition with total weightall of
whose members appear{f,...j}: P(j,w) = min{p(J) | J C
{1,...,7},w(J) = w}. Now, if mingy—7,... . w P(n,w) < 1, it
means that there is a winning coalition whose total payoff is less
than1. Obviously, this coalition would like to deviate fro('S, p),

i.e., in this cas¢ C'S, p) is not in the CS-core. Otherwise, the payoff
to any winning coalition (not necessarily fiS) is at leastl, so no
group wants to deviate fror'S, and thug CS, p) is in the CS-core.

It remains to show how to compufe(j,w) forall j = 1,...,n,
w=1,...,W.Forj = 1, we haveP(1,w) = p1 if w = w
and P(1,w) = +oo otherwise. Now, suppose we have computed
P(j,w) forallw = 1,...,W. Then we can compute(j + 1, w)
asmin{P(j,w), pj+1 + P(j,w — wj;)}. The running time of this
algorithm is polynomial im, W and|p|, i.e., in the input size. [

-----

We now show how to use the algorithtAi,cscore 10 check
whether for a given coalition structur@S thereexistsan imputation
p such that the outcomeC'S, p) is in the CS-core. Our algorithm
for this problem also runs in pseudopolynomial time.

Theorem 5. There exists a pseudopolynomial algorith#y, that
given a weighted voting gant@ = (I; w;T") and a coalition struc-
ture CS € CS(G), correctly decides whether there exists an impu-
tationp € Z(CS) such that the outcomgC'S, p) is in the CS-core
of G and runs in timepoly (n, w(I)).

Proof. SupposeC'S = {C4, ..., Cx}. Consider the following linear

feasibility program (LFP) with variables,, . . . , p»:
pi> 0 foralli=1,...,n

> pi= 1 foralljsuchthat(C;) > T

ieC;

> pi= 0 foralljsuchthat(C;) <T

i€Cy

Zpi > 1 forallJ C I'suchthatw(J)>T 1)
i€J

e first three groups of equations require thad an imputation for

: all payments are non-negative, the sum of payments to mem-
rs of each winning coalition if’S is 1, and the sum of payments

6?members of each losing coalition @S is 0. The last group of
uations states that there is no profitable deviation: the payoff to

ach winning coalition (not necessarily @if5) is at leastl. Clearly,

we can implement the algorithm,, by solving this LFP, as follows:

The size of this LFP may be exponentialrin as there is a con-

straint for each winning coalition. Nevertheless, it is well-known that

such LFPs can be solved in polynomial time by the ellipsoid method

are given in unary is callegseudopolynomial



provided that they have a polynomial-tirseparation oracleA sep- 7 Conclusions
aration oracle is an algorithm that, given an alleged feasible solution, . .
checks whether it is indeed feasible, and if not, outputs a violated” tiS paper, we extended the model of weighted voting games

constraint [12]. In our case, such an oracle will have to verify whethe (WVGSs) to allow for the formation of coalition structures, thus per-
a given vectorp violates one of the constraints in (L): mitting more than one coalition to bveinningat the same time. We

Itis straightforward to verify whether afl; are non-negative, and then studied the problem of stability of the resulting structure in such
whether the payment to each winning coalitiondts' is 1 and the games. Specifically, we introduc€&s-core(the core with coalition
payment to each losing coalition i6iS is 0. If any of these con- structures), and discussed its properties by relating it to the traditional
straints is violated, our separation oracle outputs the violated corEONcept of the core for WVGs and proving sufficient conditions for
straint. If this is not the case, we can use the algoritAmcscore its non-emptiness. Following that, we showed that deciding CS-core

described in the proof of Theorem 4 to decide whether there exist80N-€mptiness or checking whether an outcome is in the CS-core are
a winning coalition such thatw(J) > T, p(J) < 1 this algo- computationally hard problems (unlike what holds in the traditional
fithm can be easily adapted to return such coalition if one exists. F/VVCS setting). However, for specific classes of games, we presented

Amcecore produces such a coalition, our separation oracle output®°lynomial-time algorithms for checking if a given outcome is in
the corresponding violated constraint.Afncscore reports that no the CS-core, and discovering a CS-core element given a coalition

such coalition exists, thefC's, p) is in the CS-core of?, so we can structure. We then suggested heuristics that, combined with these al-
outputp and stop. ' ’ ' O gorithms, can be used to generate an outcome in the CS-core. We

believe that the line of work presented here is important: Weighted

The algorithmA,, described in the proof of Theorem 5 allows us voting games are well unq_erstooq, ?_;md _the addition of c_oalition struc-
to check whether a given weighted voting gaGidhas a non-empty ~ tUres increases the ysablllty of this intuitive framework in multiagent
CS-core: we can enumerate all coalitional structure@SG), and ~ Settings (whgre weights can represent resources and thresholds do
for each of them check whether there is an imputagipwhich, com- Nt necessarily excee®%). _ _
bined with the coalition structure under consideration, results in asta- N térms of future work, we intend, first of all, to come up with
ble outcome. However, the number of coalition structuredSiG) new heurlstlcs to sp(_eeq up our algorlthms. In addlyon, notice _that the
is exponential im, and solving a linear feasibility problem for each algorlthms an.d heurlstlps of Sec. 6 provide essentially cgntrallzed S0-
of them using the ellipsoid method is prohibitively expensive. Welutlon§ to their regpectlve problems. Therefore,lwe are interested in
now describe heuristics that can be used to speed up this process. Studyingdecentralizedapproaches; to begin, we intend to speed up,

First, observe that we can exclude from consideration coalitiori the WVGs context, the exponential decentralized coalition forma-
structures that contain more than one losing coalition. Indeed, ifon algorithm of [5]. Finally, studying other solution concepts in this
any such coalition structure is stable, the coalition structure obtaine8oNtext, such as the Shapley value [8], is also within our intentions.

from it by merging all losing coalitions will also be stable. Moreover, Acknowledgements This research was undertaken as part of the
we can assume that each winning coalit@rin our coalition struc-  ALADDIN (Autonomous Learning Agents for Decentralised Data
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a losing coalition. The argument is similar to the previous case: ify BAE Systems and EPSRC strategic partnership (EP/C548051/1).
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