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Abstract. Determining the evolutionary history of a given biologicaldata is an
important task in biological sciences. Given a set of quartet topologies over a set
of taxa, theMaximum Quartet Consistency(MQC) problem consists of comput-
ing a global phylogeny that satisfies the maximum number of quartets. A num-
ber of solutions have been proposed for the MQC problem, including Dynamic
Programming, Constraint Programming, and more recently Answer Set Program-
ming (ASP). ASP is currently the most efficient approach for optimally solving
the MQC problem. This paper proposes encoding the MQC problem with pseudo-
Boolean (PB) constraints. The use of PB allows solving the MQC problem with
efficient PB solvers, and also allows considering differentmodeling approaches
for the MQC problem. Initial results are promising, and suggest that PB can be
an effective alternative for solving the MQC problem.

1 Introduction

The amount of existing biological data (DNA and protein sequences) has increased the
need for larger and faster determination of evolutionary history (orphylogeny) given
a set of taxa (i.e. a set of related biological species [2]). Moreover, the availability
of data is not always the same for different taxa. This is known as the data disparity
problem [11, 12]. In recent years, quartet based methods have received greater attention
from the computational biology community as a way to overcome the data disparity
problem. Quartet-based methods are characterized by first inferring a set of evolutionary
relationships between four taxa, and then from these relationships assemble a global
evolutionary tree. Considering only four taxa in the first step to build the evolutionary
relationships, leads to a greater confidence on the relationships produced. Nevertheless,
the relationships obtained may be conflicting or even missing. The aim of this work
is to obtain the evolutionary tree, under the parsimony assumption, that respects the
maximum number of these relationships on four taxa.

Given a set of quartet topologies over a set of taxa, theMaximum Quartet Consis-
tency(MQC) problem consists of computing a global phylogeny thatsatisfies the maxi-
mum number of quartets. A number of solutions have been proposed for the MQC prob-
lem, including Dynamic Programming, Constraint Programming, and more recently
Answer Set Programming (ASP) [11, 9, 10]. ASP is currently the most efficient ap-
proach for optimally solving the MQC problem. This paper develops an encoding for
the MQC problem with pseudo-Boolean (PB) constraints. Initial results are promising,
and suggest that PB can be an effective alternative for solving the MQC problem.

⋆ This work is partially supported by the European Scholarship Program of Microsoft Research.
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Fig. 1. Graphical representation of the quartet topologies[a, b|c, d], [a, c|b, d] and[a, d|b, c].
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Fig. 2. Graphical representation of a phylogeny and of the quartet topology for the quartet
{a, b, c, f} derived from the phylogeny.

The paper is organized as follows. The first section introduces both the MQC prob-
lem and the MQI problem. The following section develops a Pseudo Boolean Optimiza-
tion (PBO) model for the MQC problem and Section 4 proposes three optimizations
to the PBO model. Section 5 shows the experimental results obtained and Section 6
presents some conclusions and points some directions for future research.

2 Preliminaries

A phylogenyis an unrooted tree whose leaves are bijectively mapped to a given set
of taxaS, where each internal node has degree three. Aquartet is a size four subset
of S. For each quartet there exist three different possible phylogenies, calledquartet
topologies. Consider the quartet{a, b, c, d}, the three possible quartet topologies will be
denoted by[a, b|c, d], [a, c|b, d] and[a, d|b, c]. Figure 1 gives a graphical representation
of the three possible quartet topologies for the quartet{a, b, c, d}. For example, quartet
topology[a, b|c, d] means that the path that connectsa andb does not intersect the path
connectingc andd.

Given a phylogenyT on S and a quartetq = {a, b, c, d}, a quartet topologyqt
is said to be the quartet topology ofq derived fromT , if qt is the topology obtained
from T , by removing all the edges and nodes not in the paths connecting the leaves
that are mapped to taxa inq. Figure 2 represents a phylogeny, and the quartet topology
derived from the phylogeny for the quartet{a, b, c, f}. The dotted branches show the
path connecting the taxa in the quartet. Since the path that connectsa andb does not
intersect the path that connectsc andf , then the derived quartet topology is[a, b|c, f ].

The set of quartet topologies derived from a phylogenyT is denoted byQT . If a
quartet topologyq is the same as the quartet topology derived fromT , thenT is said to
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Fig. 3. Graphical representation of a rooted phylogeny and the associated ultrametric matrix.

satisfyq andq is said to beconsistentwith T . In the example of Figure 2,[a, b|c, f ] is
consistent with the phylogeny shown, but[a, c|f, g] is not.

Given a set of quartet topologiesQ on the set of taxaS = {s1, . . . , sn}, if there
exists a phylogenyT that satisfies all the quartet topologies inQ, thenQ is saidcom-
patible. In practice the quartet topologies inQ may be inaccurate or even missing. If
the setQ contains a quartet topology for each possible quartet ofS, thenQ is complete
otherwiseincomplete.

The problem ofMaximum Quartet Consistency (MQC)is the problem where a set of
quartet topologiesQ on a set of taxaS = {s1, . . . , sn} is given, and returns a phylogeny
T onS, that satisfies the maximum number of quartet topologies ofQ.

The MQC problem is NP-hard [1] and ifQ is complete, then MQC admits a poly-
nomial-time approximation scheme [5]. IfQ is incomplete, then MQC is MAX SNP-
hard [5]. The dual problem to the MQC is the problem ofMinimum Quartet Inconsis-
tency(MQI). The MQI problem is the problem that given a set of quartet topologies
Q (as in the MQC problem), returns a phylogeny that minimizes the number of quartet
errors, where the set of quartet errors is the setQ − QT . The rest of the paper assumes
that the set of quartet topologiesQ is complete. In the recent past, different approaches
have been reviewed in the literature for both the MQC and MQI problems. A detailed
review is presented in [10].

3 Pseudo Boolean Model for the MQC Problem

This section develops a Pseudo Boolean Optimization(PBO) model for solving the
MQC problem. The idea of the model is to obtain a rooted phylogeny, from which
it is possible to construct an unrooted phylogeny [6]. Similarly to the existing ASP
solution [10], the PBO model encodes the constraints of representing the rooted phy-
logeny tree as an ultrametric matrix. Moreover, an ultrametric phylogeny satisfies the
maximum number of quartets topologies of a setQ if and only if the corresponding
ultrametric matrixM satisfies the maximum number of quartets topologies inQ [10].

Consider the set of taxaS = {s1, . . . , sn} and a set of quartetsQ. An ultrametric
matrixM is a symmetric square matrixn×n, where for eachi such that1 ≤ i ≤ n then
M(i, i) = 0, for eachi, j such that1 ≤ i < j ≤ n then1 ≤ M(i, j) = M(j, i) ≤ n,
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and for each triple of indicesi, j, k such that1 ≤ i, j, l ≤ n, there is a tie between the
maximum value ofM(i, j), M(i, l) andM(j, l).

The values in the ultrametric matrixM , represent the lowest common ancestor in
the rooted phylogeny, that is the value ofM(i, j) corresponds to the internal node of the
phylogeny that is the lowest common ancestor between taxai andj. Figure 3 presents
a rooted phylogeny, where the internal nodes have been labeled. The labels correspond
to integers in decreasing order from the root to the leaves. On the right side of the figure
is represented half of the associated ultrametric matrix. In [4] it is explored the relation-
ship between rooted phylogenies and ultrametric matrixes and presents an algorithm to
obtain a rooted phylogeny from the associated ultrametric matrix in polynomial time.

It was proven in [10] that in order to obtain an optimal phylogeny, the values of the
entries ofM can be restricted to1 ≤ M(i, j) ≤ ⌈n

2 ⌉. To encode the values ofM(i, j)
the PBO model introduces a set of Boolean variablesMi,j,k where1 ≤ i < j ≤ n and
1 ≤ k ≤ ⌈n

2 ⌉. Mi,j,k has value1 iff M(i, j) = k, otherwiseMi,j,k is 0. To ensure that,
for each pair(i, j), one and only one of the variablesMi,j,k is selected to be true, the
model introduces the following constraint:

⌈n
2
⌉

∑

k=1

Mi,j,k = 1 (1)

The value of eachM(i, j) variable is given byM(i, j) =
∑⌈n

2
⌉

k=1 k × Mi,j,k.
To ensure that the resulting matrixM is ultrametric, one of the following three

conditions must be satisfied, for each1 ≤ i < j < l ≤ n:

M(i, j) = M(i, l) ∧ M(i, l) > M(j, l), or (2)

M(i, j) = M(j, l) ∧ M(j, l) > M(i, l), or (3)

M(j, l) = M(i, l) ∧ M(i, l) > M(i, j) (4)

The PBO model associates three new Boolean variablesc1i,j,l, c2i,j,l, c3i,j,l with
constraints (2), (3) and (4), respectively. Each of the variablescxi,j,l is true iff the
associated constraint is satisfied.

Constraint (2) is the logical AND of an equality constraint and a greater than con-
straint. In the PBO model each of these constraints is associated with additional Boolean
variables, respectively,c11

i,j,l and c12
i,j,l. c11

i,j,l = 1 iff M(i, j) = M(i, l), and can
be implemented with a comparator circuit on the unary representation ofM(i, j) and
M(i, l), using variablesMi,j,k andMi,l,k. c12

i,j,l = 1 iff M(i, l) = M(j, l), and can
also be implemented with a comparator circuit on the unary representation ofM(i, l)
andM(j, l), using variablesMi,l,k andMj,l,k. As a result,c1i,j,l is defined as:

c1i,j,l = AND(c11
i,j,l, c1

2
i,j,l) (5)

Variablesc2i,j,l andc3i,j,l are encoded similarly. Finally to guarantee that one of
the conditions (2), (3) or (4) is satisfied, the PBO model usesthe following constraint:

c1i,j + c2i,j + c3i,j ≥ 1 (6)

As the objective is to compute the phylogeny that maximizes the number of quartets
that can be satisfied, then with each quartet is associated with a Boolean variableqt,
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where1 ≤ t ≤ |Q|. qt will be true if quartet numbert is consistent, otherwiseqt is
false. A quartet[i, j|l, m] is consistent if and only if one of the following conditions is
satisfied [10]:

M(i, l) > M(i, j) ∧ M(j, m) > M(i, j), or (7)

M(i, l) > M(l, m) ∧ M(j, m) > M(l, m) (8)

Suppose that quartet numbert is the quartet[i, j|l, m]. The model associates two
new variables to each of the conditions (7) and (8). Letd1i,j,l,m be associated with
condition (7) andd2i,j,l,m be associated with condition (8). The associated variableqt

is encoded as a gate OR:

qt = OR(d1i,j,l,m, d2i,j,l,m) (9)

Both the conditions (7), (8) consist of logical ANDs of two greater than conditions.
Thus variabled1i,j,l,m andd2i,j,l,m are encoded as gates AND in a analogous way to
variablesc1i,j,l.

The cost function of the PBO model is then to maximize the number of quartets that
are consistent, that is:

max :

|Q|
∑

t=1

qt (10)

4 Optimizations to the PBO Model

This section describes three optimizations to the basic PBOmodel. The first optimiza-
tion aims reusing auxiliary variables that serve for encoding of some of the circuits
associated with the PBO model. The second optimization is related with the Boolean
variables used for representing the value of each entry in the ultrametric matrix. The
third optimization sets the values for some ofM(i, j) variables when it is known that
si andsj are siblings.

4.1 First Optimization

The objective of the first optimization is to reduce the number of variables used in
the encoding. The reduction is achieved by exploiting the information provided by the
auxiliary variables used for encoding cardinality constraints. In order to implement this
optimization, sequential counters [8] are used. The uniqueness constraint (1) of the PBO
model in Section 3 is split into two constraints. The first constraint deals with the need
to have one at least one variable selected by adding the constraint:

⌈n
2
⌉

∑

k=1

Mi,j,k ≥ 1 (11)

The second constraint is:
⌈n

2
⌉

∑

k=1

Mi,j,k ≤ 1 (12)
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and is encoded in CNF with a sequencial counter [8]. This sequential counter introduces
variablessk,1. These variables have the property that ifMi,j,a = 1 then for1 ≤ k < a
all variables havesk,1 = 0 and fora ≤ k ≤ ⌈n

2 ⌉ thensk,1 = 1. The property enables
the encoding ofM(i, j) < M(l, m) by considering the associated variablessk,1 of
M(i, j) and ofM(l, m). In order to better understand, let the variablessk,1 associated
to the sequential counter ofM(i, j) be denoted bysi,j

k . The objective is to encode that
M(i, j) < M(l, m) by re-using the variablessi,j

k ands
l,m
k . Using the above property,

this can be done by searching for thek wheres
i,j
k = 1 ands

l,m
k = 0, which can be

encoded in a variablee(i,j)(l,m)
k as a gate AND:

e
(i,j)(l,m)
k = AND(si,j

k , NOT (sl,m
k )) (13)

Then variableLTi,j,l,m encodes thatM(i, j) < M(l, m) by a gate OR:

LTi,j,l,m = OR(e
(i,j)(l,m)
k : 1 ≤ k ≤ ⌈

n

2
⌉) (14)

For this optimization, all the other constraints of the PBO model of Section 3 are
maintained, but making use of the variablesLTi,j,l,m as appropriate.

4.2 Second Optimization

For the PBO model described in Section 3, for each pair of taxa(i, j), the values of the
variablesM(i, j) are encoded through selection variablesMi,j,k where1 ≤ k ≤ ⌈n

2 ⌉.
The first optimization described here replaces the encodingof the selection vari-

ables. VariablesMi,j,k are still going to be used to encodeM(i, j), but hereMi,j,k

represents thek−th bit of the binary representation ofM(i, j). Now k is limited by
0 ≤ k ≤ ⌊log2(⌈

n
2 ⌉)⌋. With this encodingM(i, j) can be obtained byM(i, j) =

∑⌊log
2
(⌈n

2
⌉)⌋

k=0 2k × Mi,j,k. Moreover, the constraints used in the encoding need to be
modified. The constraints in Equation (1) that encode the uniqueness of the selection
variables are no longer used. All the other constraints are maintained, but with the new
limit for variable k. Instead of the uniqueness constraints, this optimizationrequires
that the encoded variablesM(i, j) are restricted to{1, . . . , ⌈n

2 ⌉}, that is1 ≤ M(i, j)
andM(i, j) ≤ ⌈n

2 ⌉. The first part is obtained by adding the constraint:

⌊log
2
(⌈n

2
⌉)⌋

∑

k=0

Mi,j,k ≥ 1 (15)

For the second part, a new Boolean variableltbi,j is introduced, that captures the con-
dition thatM(i, j) is not larger than⌈n

2 ⌉. The variablesMi,j,k are used to representing
this constraint as a comparator circuit.

In order to ensure thatltbi,j is true, the following constraint is added to the model:

ltbi,j ≥ 1 (16)
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4.3 Third Optimization

The optimization described in this section follows [11, 9, 10]. The objective of this opti-
mization is to previously determine the value of some variables, namely when a pair of
taxa is know to be siblings. The optimization can be used independently of the model
(or optimization) used.

Let S = {s1, . . . , sn} be a set of taxa andQ be a complete set of quartets . A
Bipartition of S is a pair(X, Y ) of nonempty subsets ofS, such thatS = X ∪ Y and
X ∩ Y = ∅. Consider a bipartition(X, Y ) of S, such that|X | ≥ 2 and|Y | ≥ 2, let
Q(X,Y ) be defined asQ(X,Y ) = {[x1, x2|y1, y2] : xi ∈ X ∧ yi ∈ Y for i ∈ {1, 2}}.
Suppose that three taxa fromY are fixed and also that|X | = l. An l-subsetwith respect
to (X, Y ) is the set ofl quartets fromQ that contain the three fixed taxa fromY and
one taxa fromX . There are a total of

(

n−l
3

)

of l-subsets.
An l-subset is said to beexchangeableon X, if by ignoring the difference of the taxa

from X on the quartets in thel-subset, it produces a unique quartet topology, otherwise
the l-subset is said to benonexchangeable. In the case wherel = 2, then both taxa in
X are said to be siblings and the following corollary holds:

Proposition 1 (Corollary 2.5 from [10]). Let S = {s1, . . . , sn} be a set of taxa,Q
be a complete set of quartets on taxaS. For the pair of taxa(si, sj) from S, let p1 =
|Q({si,sj},Y )−Q|, p2 be the number of nonexchangeablepairs on{si, sj}. If 2p1+p2 ≤
n − 3 thensi, sJ are siblings in an optimal phylogeny.

In the optimization described in this section, for every pair of taxa, the condition of
the corollary is tested. When the condition is true, for example for taxai andj, then the
PBO model is augmented with the following constraints:

Mi,j,1 ≥ 1 (17)

−1 × Mi,j,k ≥ 0 , k ∈ {2, . . . , upperLimit} (18)

TheupperLimit in Equation (18) is dependent on the encoding of variableMi,j,k

(either as described in Section 3 or as described in Section 4.2).

5 Experimental Results

This section presents experimental results comparing the PBO model proposed in Sec-
tion 3 and the ASP model described in [10]. The instances considered were obtained
from [10]. These instances correspond to quartet topologies derived from random gen-
erated trees with a percentage of quartet topologies randomly altered. The percentage
of altered quartet topologies introduces errors in the quartet topologies. Higher per-
centage of altered quartet topologies means a higher possibility of errors in the quartet
topologies of the instance.

In the experiments four models were considered, three obtained from the PBO for-
mulation and one from the ASP formulation. The first PBO modelconsiders the first
optimization described in Section 4.1 and will be referred as PBO+fst. The second
PBO model includes both the optimizations of Section 4.2 andSection 4.3. This sec-
ond model will be referred asPBO+(scd+trd). The last PBO model, calledPBO+trd,
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N. Variables N. Constraints
% AlteredPBO+fstPBO+(scd+trd)PBO+trdPBO+fstPBO+(scd+trd)PBO+trd

01 5760 4514.4 6276.6 19890 16238.8 24464
05 5760 4537.2 6310.8 19890 16301.5 24568.5
10 5760 4566.4 6354.4 19890 16385.2 24708
15 5760 4587.6 6386.4 19890 16448.8 24814
20 5760 4611.2 6421.8 19890 16519.6 24932
25 5760 4628.4 6447.6 19890 16571.2 25018
30 5760 4648.4 6477.6 19890 16631.2 25118

Table 1. Average number of variables and number of constraints for instances with 10 taxa.

CPU Time
% Alteredphy+SModelsPBO+fst PBO+(scd+trd)PBO+trd

01 0.0464 0.7696 0.4704 0.7316
05 0.3048 2.2673 1.686 7.0885
10 1.3264 5.7819 5.8872 28.8291
15 2.4324 12.7119 11.78235 52.6487
20 9.0915 32.2536 17.78277 68.77968
25 28.4901 60.7041 28.0254 117.6832
30 65.4176 121.3564 52.75086 239.2057

Table 2. Average CPU time in seconds for instances with 10 taxa.

includes only the third proposed optimization (Section 4.3). In all the PBO models an
encoder was implemented that receives as input the quartet topologies and returns as
output a file in PB format. The generated file was then given as input to the PBO solver.
For all experiments the PBO solver used wasminisat+ [3].

The fourth model is the ASP model described in [10]. Thephy program, that en-
codes the quartet topologies into answer set programming, was obtained from [10]. The
instances were given tophy, and for each, the parameters given were the number of
taxa involved and the maximum number of quartet errors knownin the instance. This
last parameter was set as the number of quartet topologies inthe instance. After obtain-
ing the encoded instance, the encoded file was given to the ASP-solver SModels [7]
SModels was configured to obtain all the stable models in order to maximize the num-
ber of quartets satisfied.

The results were obtained on an Intel Xeon 5160, 3GHz server,with 4 GB of RAM.
The results comparing the average number of variables and number of constraints be-
tween the three PBO models is shown in Table 1. As can be seen from the table
the model that requires more variables and more constraintsis the PBO+trd model,
whereas, the model that requires less variables and less constraints is the PBO+(scd+trd).

Table 2 compares the average CPU times on the instances considered for all the
PBO models and the phy+Smodes model.

A few conclusions can be drawn from the results. First comparing thePBO+fstand
the basicPBO+trd model. The sharing of auxiliary variables introduced by thefirst op-
timization is an important aspect in this problem. This optimization reduces the number
of variables used by the encoding as well as the number of constraints. This reduction
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leads to lower CPU time spent by the PBO-solver. Nevertheless, modelPBO+(scd+trd)
reduces even further the model by considering the selectionvariables as bits of the bi-
nary representation of values inM . Again, it can be seen from Table 2, that the reduc-
tion on the number of variables and constraints used by the encoding resulted in lower
CPU times spent by the PBO-solver, where the modelPBO+(scd+trd) is on average
approximately 4 times faster than thePBO+trd and 1.6 times faster thanPBO+fst.

Comparing the best of our PBO models (PBO+(scd+trd)) with the ASP model, the
ASP model is more effective when the percentage of modified quartets is small, but
the PBO+(scd+trd) model becomes more when the percentage of modified quartets
increases.

6 Conclusions

This paper proposes a first attempt at solving the MQC problemwith PBO. The new
PBO model is compared with a recent solution based on ASP [10], which is currently
the most efficient for the MQC problem. Despite the number of the taxa considered be-
ing modest, the results show that the PBO model can be beneficial when the number of
expected quartet errors is high. The PBO model is still recent, and additional modeling
insights and corresponding performance improvements are to be expected in the near
future.

Future research will involve developing optimizations to the PBO model. For ex-
ample, by encoding with PB constraints some of the optimizations proposed in the
literature for the MQC problem. Furthermore, experiments will consider larger sets of
taxa as well as real world data.
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