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Abstract. Determining the evolutionary history of a given biologickta is an
important task in biological sciences. Given a set of quaof@ologies over a set
of taxa, theMaximum Quartet Consisten€lyIQC) problem consists of comput-
ing a global phylogeny that satisfies the maximum number aftgts. A num-
ber of solutions have been proposed for the MQC problemudticy Dynamic
Programming, Constraint Programming, and more recentmen Set Program-
ming (ASP). ASP is currently the most efficient approach fatiroally solving
the MQC problem. This paper proposes encoding the MQC pmohlith pseudo-
Boolean (PB) constraints. The use of PB allows solving theQoblem with
efficient PB solvers, and also allows considering differaoideling approaches
for the MQC problem. Initial results are promising, and segjghat PB can be
an effective alternative for solving the MQC problem.

1 Introduction

The amount of existing biological data (DNA and protein saees) has increased the
need for larger and faster determination of evolutionasgdny (orphylogeny given

a set of taxa (i.e. a set of related biological species [2]prddver, the availability
of data is not always the same for different taxa. This is kmew the data disparity
problem[11,12]. In recent years, quartet based methodsieaeived greater attention
from the computational biology community as a way to overedhe data disparity
problem. Quartet-based methods are characterized bynfiesting a set of evolutionary
relationships between four taxa, and then from these oglstiips assemble a global
evolutionary tree. Considering only four taxa in the firgpsto build the evolutionary
relationships, leads to a greater confidence on the refdtips produced. Nevertheless,
the relationships obtained may be conflicting or even mgssithe aim of this work
is to obtain the evolutionary tree, under the parsimony ragsion, that respects the
maximum number of these relationships on four taxa.

Given a set of quartet topologies over a set of taxaMagimum Quartet Consis-
tency(MQC) problem consists of computing a global phylogeny adisfies the maxi-
mum number of quartets. A number of solutions have been gexpior the MQC prob-
lem, including Dynamic Programming, Constraint Programgmiand more recently
Answer Set Programming (ASP) [11,9,10]. ASP is currently thost efficient ap-
proach for optimally solving the MQC problem. This papereleps an encoding for
the MQC problem with pseudo-Boolean (PB) constraintsidhiesults are promising,
and suggest that PB can be an effective alternative forrapttie MQC problem.

* This work is partially supported by the European Scholg@rétiogram of Microsoft Research.
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Fig. 1. Graphical representation of the quartet topolodies|c, d], [a, c|b, d] and]a, d|b, c].

Fig.2. Graphical representation of a phylogeny and of the quadeotlogy for the quartet
{a, b, c, f} derived from the phylogeny.

The paper is organized as follows. The first section intredumth the MQC prob-
lem and the MQI problem. The following section develops aldséBoolean Optimiza-
tion (PBO) model for the MQC problem and Section 4 proposesetioptimizations
to the PBO model. Section 5 shows the experimental resuttsraa and Section 6
presents some conclusions and points some directionstioeftesearch.

2 Preiminaries

A phylogenyis an unrooted tree whose leaves are bijectively mapped iven get
of taxa S, where each internal node has degree threquartetis a size four subset
of S. For each quartet there exist three different possibleqgeyies, calledjuartet
topologiesConsider the quartét, b, ¢, d}, the three possible quartet topologies will be
denoted bya, b|¢, d], [a, c|b, d] and[a, d|b, ¢|. Figure 1 gives a graphical representation
of the three possible quartet topologies for the qudrieb, ¢, d}. For example, quartet
topology]a, b|c, d] means that the path that connec&ndb does not intersect the path
connecting: andd.

Given a phylogenyl" on S and a quartey = {a,b, ¢, d}, a quartet topology;t
is said to be the quartet topology @fderived fromT', if ¢t is the topology obtained
from T, by removing all the edges and nodes not in the paths comgettte leaves
that are mapped to taxa in Figure 2 represents a phylogeny, and the quartet topology
derived from the phylogeny for the quartgt, b, ¢, f}. The dotted branches show the
path connecting the taxa in the quartet. Since the path thatects: andb does not
intersect the path that conneetand f, then the derived quartet topology/is b|c, f].

The set of quartet topologies derived from a phylog&his denoted byQ . If a
quartet topology; is the same as the quartet topology derived fibnthenT is said to
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Fig. 3. Graphical representation of a rooted phylogeny and thecaded ultrametric matrix.

satisfyq andq is said to beconsistenwith 7. In the example of Figure 2¢, b|c, f] is
consistent with the phylogeny shown, Batc|f, g] is not.

Given a set of quartet topologi€$ on the set of taxa' = {s1,..., s,}, if there
exists a phylogen§’ that satisfies all the quartet topologiestinthen( is saidcom-
patible In practice the quartet topologies ¢h may be inaccurate or even missing. If
the set) contains a quartet topology for each possible quartét dfien is complete
otherwiseincomplete

The problem oMaximum Quartet Consistency (MQi8Yhe problem where a set of
quartet topologie§ on a set of tax& = {s1, ..., s, } is given, and returns a phylogeny
T on S, that satisfies the maximum number of quartet topologi€3.of

The MQC problem is NP-hard [1] and @ is complete, then MQC admits a poly-
nomial-time approximation scheme [5].df is incomplete, then MQC is MAX SNP-
hard [5]. The dual problem to the MQC is the problenMihimum Quartet Inconsis-
tency(MQI). The MQI problem is the problem that given a set of qaatbpologies
Q (as in the MQC problem), returns a phylogeny that minimibesrtumber of quartet
errors, where the set of quartet errors is the(get Q). The rest of the paper assumes
that the set of quartet topologi€sis complete. In the recent past, different approaches
have been reviewed in the literature for both the MQC and Mi@bjems. A detailed
review is presented in [10].

3 Pseudo Boolean Model for the MQC Problem

This section develops a Pseudo Boolean Optimization(PB@jeinfor solving the
MQC problem. The idea of the model is to obtain a rooted phstyg from which
it is possible to construct an unrooted phylogeny [6]. Samyl to the existing ASP
solution [10], the PBO model encodes the constraints ofesgting the rooted phy-
logeny tree as an ultrametric matrix. Moreover, an ultraingthylogeny satisfies the
maximum number of quartets topologies of a &eif and only if the corresponding
ultrametric matrix)/ satisfies the maximum number of quartets topologie&3 [d0].
Consider the set of taxél = {s1,...,s,} and a set of quartetg. An ultrametric
matrix M is a symmetric square matrixx n, where for eachi such thai < i < nthen
M(i,i) = 0, for eachi, j such thatl < i < j < nthenl < M(i,j) = M(j,i) < n,
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and for each triple of indices j, k such thatl < i, 4,1 < n, there is a tie between the
maximum value of\/ (4, j), M (i,1) and M (j, [).

The values in the ultrametric matrid/, represent the lowest common ancestor in
the rooted phylogeny, that is the valueMdTf(:, j) corresponds to the internal node of the
phylogeny that is the lowest common ancestor betweenitara . Figure 3 presents
a rooted phylogeny, where the internal nodes have beereldbEhe labels correspond
to integers in decreasing order from the root to the leavegh@right side of the figure
is represented half of the associated ultrametric matmifd]lit is explored the relation-
ship between rooted phylogenies and ultrametric matriregpaesents an algorithm to
obtain a rooted phylogeny from the associated ultrametatrisnin polynomial time.

It was proven in [10] that in order to obtain an optimal phydag, the values of the
entries ofM can be restricted to < M (i, j) < [%]. To encode the values af (i, j)
the PBO model introduces a set of Boolean variablgs ;. wherel <+ < j <nand
1 <k <[%]. M, hasvalud iff M(i,j) = k, otherwise)M; ; . is 0. To ensure that,
for each pair(i, j), one and only one of the variabl@é, ; ;. is selected to be true, the
model introduces the following constraint:

31
M;jr=1 (1)

k=1

nf3

The value of eacld/(i, j) variable is given by (i, j) = ,ﬁ]l kx M; k.
To ensure that the resulting matri¥ is ultrametric, one of the following three
conditions must be satisfied, foreath i < j <[ < n:

M(i,j) = M(i,1) A M(i,1) > M(j,1), or @)
M(i,5) = M(5,1) N M(j5,1) > M(i,1), or 3)
M(j,0) = M(i,1) AN M(i,1) > M(i,7) 4)

The PBO model associates three new Boolean variafiles, ¢2; ;, ¢3; ;; with
constraints (2), (3) and (4), respectively. Each of thealdéscz; ;; is true iff the
associated constraint is satisfied.

Constraint (2) is the logical AND of an equality constraintaa greater than con-
straint. In the PBO model each of these constraints is assabivith additional Boolean
variables, respectively;1; ;, andcl? ;. c1;;, = 1iff M(i,j) = M(i,l), and can
be implemented with a comparator circuit on the unary repreegion of)M (i, j) and
M (i, 1), using variables\l; ;  and M ; . 17 ;, = 1iff M(i,1) = M(j,1), and can
also be implemented with a comparator circuit on the ungpyegentation of\/ (4, 1)
andM (j,1), using variables\/; ; ,, and M, ; .. As a result¢l; ;; is defined as:

cl; ;= AND(clzlyj_’l,clij_’l) (5)

Variablesc2; ;; and¢3; ;,; are encoded similarly. Finally to guarantee that one of
the conditions (2), (3) or (4) is satisfied, the PBO model uisegollowing constraint:

Cliyj —|— 021'_0' + C3i,j Z 1 (6)

As the objective is to compute the phylogeny that maximibesiumber of quartets
that can be satisfied, then with each quartet is associatidanBoolean variable,
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wherel < ¢t < |Q|. ¢; will be true if quartet numbet is consistent, otherwisg is
false. A quarteti, j|I, m] is consistent if and only if one of the following conditiorss i
satisfied [10]:

M(i, 1) > M(i,5) N M(j,m) > M(i,j), or @
M, 1) > M(l,m) A M(j,m) > M(l,m) (8)

Suppose that quartet numbeis the quartefs, j|I, m]. The model associates two
new variables to each of the conditions (7) and (8). dBt;; ,, be associated with
condition (7) andi2; ; ; ., be associated with condition (8). The associated varigble
is encoded as a gate OR:

gt = OR(dL; j1.m,d2; j1m) 9)

Both the conditions (7), (8) consist of logical ANDs of twaegter than conditions.
Thus variableil; ;; ., andd2; ;; », are encoded as gates AND in a analogous way to
variablescl; ; ;.

The cost function of the PBO model is then to maximize the nemobquartets that
are consistent, that is:

el

max : Z Qs (10)
t=1

4 Optimizationsto the PBO Model

This section describes three optimizations to the basic Ri®@el. The first optimiza-
tion aims reusing auxiliary variables that serve for enogddf some of the circuits
associated with the PBO model. The second optimizationlased with the Boolean
variables used for representing the value of each entryarutttametric matrix. The
third optimization sets the values for someldf(i, j) variables when it is known that
s; ands; are siblings.

4.1 First Optimization

The objective of the first optimization is to reduce the numifevariables used in

the encoding. The reduction is achieved by exploiting thiermation provided by the

auxiliary variables used for encoding cardinality constisa In order to implement this
optimization, sequential counters [8] are used. The umigag constraint (1) of the PBO
model in Section 3 is split into two constraints. The first stoaint deals with the need
to have one at least one variable selected by adding theraonist

[

w3

1
Mijk > 1 (11)

The second constraint is:

M;ir <1 (12)
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and is encoded in CNF with a sequencial counter [8]. Thisaetil counter introduces
variabless;, ;. These variables have the property thatff ; , = 1 thenforl <k <a
all variables have, ; = 0 and fora < k < [%] thens, ; = 1. The property enables
the encoding ofM (i, j) < M(l, m) by considering the associated variablgs of
M(i,7) and of M (I, m). In order to better understand, let the variabigs associated
to the sequential counter 8f (¢, j) be denoted by;fg’j. The objective is to encode that
M(i, j) < M(l,m) by re-using the variableg” ands.™. Using the above property,
this can be done by searching for thavheres’’ = 1 ands,™ = 0, which can be
encoded in a varlable(”) (:m) as a gate AND:

e;ﬂi,j)(l.,m) AND(s J’NOT( ™) (13)

Then variableLT; ; ; ., encodes that/(i,j) < M(l,m) by a gate OR:
LT, 50 = OR(ef™ ™ :1 < k < [51) (14)

For this optimization, all the other constraints of the PBOdal of Section 3 are
maintained, but making use of the variabl€s; ;; ., as appropriate.

4.2 Second Optimization

For the PBO model described in Section 3, for each pair of taxg, the values of the
variablesM (i, j) are encoded through selection variahlés; , wherel < k < [%].

The first optimization described here replaces the encodiiige selection vari-
ables. Variables\/; ; ; are still going to be used to encodé (i, j), but hereM; ; x
represents thé—th bit of the binary representation @f (i, j). Now k is limited by
0 < k < [logy([5])]. With this encodingM (i, j) can be obtained by/ (i, j) =

Uogz“ D 2k x M; .k Moreover, the constraints used in the encoding need to be
mod|f|ed The constramts in Equation (1) that encode thgueness of the selection
variables are no longer used. All the other constraints ai@tained, but with the new
limit for variable k. Instead of the uniqueness constraints, this optimizatouires
that the encoded variabléd (i, j) are restricted td 1, ..., [5 ]}, thatis1 < M (i, j)
andM (i, j) < [5]. The first part is obtained by adding the constraint:

[logo (T35 1))
> Mijr>1 (15)

For the second part, a new Boolean varidlle ; is introduced, that captures the con-
dition thatM (i, j) is not larger than 5 ]. The variables\/; ; . are used to representing
this constraint as a comparator circuit.

In order to ensure thatb; ; is true, the following constraint is added to the model:

Ith ;> 1 (16)
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4.3 Third Optimization

The optimization described in this section follows [11,8]. T he objective of this opti-
mization is to previously determine the value of some vadesmamely when a pair of
taxa is know to be siblings. The optimization can be usedpeddently of the model
(or optimization) used.

Let S = {s1,...,s,} be a set of taxa an@ be a complete set of quartets . A
Bipartition of S'is a pair(X,Y") of nonempty subsets df, such thats = X UY and
X NY = (. Consider a bipartitiofi.X,Y") of S, such thai{X| > 2 and|Y| > 2, let
Q(x,y) be defined a8) x y) = {[z1, z2|y1,42] : ©: € X Ay; € Yfori € {1,2}}.
Suppose that three taxa frorhare fixed and also thak | = . An [-subsetwvith respect
to (X,Y) is the set ofl quartets front) that contain the three fixed taxa frorhand
one taxa fromX. There are a total of";*) of I-subsets.

An [-subset s said to bexchangeablen X, if by ignoring the difference of the taxa
from X on the quartets in thesubset, it produces a unique quartet topology, otherwise
thel-subset is said to beonexchangeablén the case where= 2, then both taxa in
X are said to be siblings and the following corollary holds:

Proposition 1 (Corollary 2.5 from [10]). Let S = {s1,...,s,} be a set of taxa@)
be a complete set of quartets on ta%aFor the pair of taxa(s;, s;) from S, letp; =
|Q({s:,5,3,v) — @I, p2 be the number of nonexchangeable paird e s; }. If 2p; +p2 <
n — 3 thens,, s are siblings in an optimal phylogeny.

In the optimization described in this section, for every pditaxa, the condition of
the corollary is tested. When the condition is true, for eghaiior taxai andj, then the
PBO model is augmented with the following constraints:

M1 =1 17)

—1xM;;r>0 ,ke{2,...,upperLimit} (18)

Theupper Limit in Equation (18) is dependent on the encoding of varials)g
(either as described in Section 3 or as described in Sect®)n 4

5 Experimental Results

This section presents experimental results comparing Bt model proposed in Sec-
tion 3 and the ASP model described in [10]. The instancesidered were obtained
from [10]. These instances correspond to quartet topadadgeived from random gen-
erated trees with a percentage of quartet topologies ralydatered. The percentage
of altered quartet topologies introduces errors in the tgtiaopologies. Higher per-
centage of altered quartet topologies means a higher fplidgsih errors in the quartet

topologies of the instance.

In the experiments four models were considered, three mdaderom the PBO for-
mulation and one from the ASP formulation. The first PBO mantelsiders the first
optimization described in Section 4.1 and will be referredP80+fst The second
PBO model includes both the optimizations of Section 4.2 &action 4.3. This sec-
ond model will be referred aBBO+(scd+trd) The last PBO model, calleedBO+trd,
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N. Variables N. Constraints

% Altered PBO+fs{PBO+(scd+trd)PBO+trd PBO+fstPBO+(scd+trdPBO+trd
01 5760 4514.4 6276.6| 19890 16238.8 24464
05 5760 4537.2 6310.8| 19890 16301.5 |24568.5
10 5760 4566.4 6354.4| 19890 16385.2 24708
15 5760 4587.6 6386.4 | 19890 16448.8 24814
20 5760 4611.2 6421.8| 19890 16519.6 24932
25 5760 4628.4 6447.6| 19890 16571.2 25018
30 5760 4648.4 6477.6| 19890 16631.2 25118

Table 1. Average number of variables and number of constraints &iaices with 10 taxa.

CPU Time

% Alteredphy+SModelsPBO+fstf PBO+(scd+trd)PBO-+trd
01 0.0464 0.7696 0.4704 0.7316
05 0.3048 2.2673 1.686 7.0885
10 1.3264 5.7819 5.8872 28.8291
15 2.4324 12,7119 11.78235 |52.6487
20 9.0915 |32.2536| 17.78277 |68.7796
25 28.4901 |60.7041 28.0254 |117.683
30 65.4176 |121.3564 52.75086 |239.205

Table 2. Average CPU time in seconds for instances with 10 taxa.

includes only the third proposed optimization (Section) 43 all the PBO models an
encoder was implemented that receives as input the quapelogies and returns as
output a file in PB format. The generated file was then givenpistito the PBO solver.
For all experiments the PBO solver used wasisat+[3].

The fourth model is the ASP model described in [10]. Py program, that en-
codes the quartet topologies into answer set programmiagpbtained from [10]. The

instances were given fohy, and for each, the parameters given were the number of

taxa involved and the maximum number of quartet errors kniomthe instance. This
last parameter was set as the number of quartet topologfies instance. After obtain-
ing the encoded instance, the encoded file was given to thesd&®@r SModels [7]

SModels was configured to obtain all the stable models inrdodmaximize the num-
ber of quartets satisfied.

The results were obtained on an Intel Xeon 5160, 3GHz semitr4 GB of RAM.
The results comparing the average number of variables amb@uof constraints be-
tween the three PBO models is shown in Table 1. As can be seen thie table
the model that requires more variables and more constrairitee PBO+trd model,
whereas, the model that requires less variables and lesgamts is the PBO+(scd+trd).

Table 2 compares the average CPU times on the instancedewmtsifor all the
PBO models and the phy+Smodes model.

A few conclusions can be drawn from the results. First coingahePBO+fstand
the basid®BO+trd model. The sharing of auxiliary variables introduced byftrst op-
timization is an important aspect in this problem. This wyitiation reduces the number
of variables used by the encoding as well as the number otreamis. This reduction
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leads to lower CPU time spent by the PBO-solver. NevertsetaedePBO+(scd+trd)
reduces even further the model by considering the seleetiaables as bits of the bi-
nary representation of values M. Again, it can be seen from Table 2, that the reduc-
tion on the number of variables and constraints used by tbedng resulted in lower
CPU times spent by the PBO-solver, where the m&eD+(scd+trd)is on average
approximately 4 times faster than tR8O+trd and 1.6 times faster thaBO+fst
Comparing the best of our PBO modePBO+(scd+trd) with the ASP model, the
ASP model is more effective when the percentage of modifietdtgts is small, but
the PBO+(scd+trd) model becomes more when the percentage of modified quartets
increases.

6 Conclusions

This paper proposes a first attempt at solving the MQC probigim PBO. The new
PBO model is compared with a recent solution based on ASR {tfith is currently
the most efficient for the MQC problem. Despite the numbeheftaxa considered be-
ing modest, the results show that the PBO model can be baeficen the number of
expected quartet errors is high. The PBO model is still re@erd additional modeling
insights and corresponding performance improvementsoabe expected in the near
future.

Future research will involve developing optimizations lhe PBO model. For ex-
ample, by encoding with PB constraints some of the optiranatproposed in the
literature for the MQC problem. Furthermore, experimenitsaonsider larger sets of
taxa as well as real world data.
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