HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Flexible Service Provisioning
In Multi-Agent Systems

by
Sebastian Stein

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Faculty of Engineering, Science and Mathematics
School of Electronics and Computer Science
Intelligence, Agents, Multimedia Group

May 2008

http://www.soton.ac.uk
mailto:ss04r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
http://www.iam.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Sebastian Stein

Service-oriented computing is an increasingly popular approach fatidang applications,
computational resources and business services over highly distrimdegan systems (such as
the Web, computational Grids and peer-to-peer systems). In this appssaice providers ad-
vertise their offerings by means of standardised computer-readaloiépdiess, which can then
be used by software applications to discover and consume appropméteseavithout human
intervention. However, despite active research in service infrastag;tand in service discov-
ery and composition mechanisms, little work has recognised that serviceffeaesl by inher-
ently autonomous and self-interested entities. This autonomy implies that promidg choose
not to honour every service request, demand remuneration for theitsefind, in general, ex-
hibit uncertain behaviour. This uncertainty is especially problematic forehgcg consumers
when services are part of complex workflows, as is common in many appligitioains, such
as bioinformatics, large-scale data analysis and processing, and caairsepply-chain man-
agement.

In order to address this uncertainty, we propose a novel algorithnrdergoning services for
complex workflows (i.e., for selecting suitable services for the constitusks taf a workflow).
This algorithm uses probabilistic performance information about providersason about ser-
vice uncertainty and its impact on the overall workflow. Furthermore, ppraach actively
mitigates this uncertainty by employing two key techniques. First, it proactivelyigions re-
dundant services for particularly critical or failure-prone tasks (thaseasing the probability
of success). Second, it recovers dynamically from service failuresIprovisioning services
at run-time (without necessarily receiving explicit failure messages)ik&existing work in
this area, our algorithm employs principled decision-theoretic techniquestéontine which
services to provision, whether to introduce redundant services aed telre-provision failed
services. In doing so, it explicitly balances the cost of provisioning wittetpected value of
the workflow.

To show how our algorithm applies to a range of common service-oriensteinsyg, we consider
a variety of different scenarios in this thesis. More specifically, we éxamine environments
where the consumer lacks specific knowledge to differentiate betweerctigivice providers,

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:ss04r@ecs.soton.ac.uk

as is common in highly dynamic and open systems. Despite this lack of detailetekiggywe
demonstrate how the consumer can use redundancy and dynamic isemiog to influence
the outcome of a workflow and to deal with uncertainty. Then, we look inttesyswhere the
consumer has more specific knowledge about highly heterogeneondgyso While existing
work has concentrated on selecting the single best provider for ea&Havotask, we show that
a consumer can often improve its performance by provisioning multiple pnewdéh different
gualities for a single task. Finally, we discuss how our algorithm can betedidpr systems
where consumers and providers reach explicit service contracts aneelv In this context,
we are the first to propose a gradual provisioning approach, wihénebconsumer negotiates
contracts for some tasks in advance, but leaves the negotiation of othetatey time. This
approach allows the consumer to better react to uncertain service outanthsavoid paying
reservation fees that are later lost when services fail.

Throughout this thesis, we compare our approach empirically to curremtspning algo-
rithms. In doing so, we demonstrate that our approach typically achievgaiticeintly higher
utility for the service consumer than approaches that do not reasomh @amertainty, that rely
on fixed levels of redundancy or service time-outs, and approachesetbat single services to
achieve the optimal balance of various performance characteristiadheFuore, we show that
these results hold over a large range of environments and workflow ayypkthat our algorithm
copes well even in highly uncertain environments where most servicesAlgibur approach
relies on fast heuristics to solve a problem that is known to be intractabbalésswell to larger
workflows with hundreds of tasks and thousands of providers. Finaligre it is tractable to
compute an optimal solution, we show empirically that our algorithm achievedaitiigy that
is within 87% or more of the optimal.

Contents

List of Figures iX
List of Tables X
List of Algorithms X
Declaration of Authorship Xi
Acknowledgements Xii
Nomenclature Xiv
1 Introduction 1
1.1 Current Trends in Distributed Computing 2
1.2 Service-Oriented Computing e 3
1.3 Multi-Agent Systems 4
1.4 ResearchRequirements, 6
1.4.1 ModelRequirements 6
1.4.2 Workflow Requirements 8
1.4.3 AgentRequirements 8
1.5 Research Contributions, 9
1.6 ThesisOutline 12
2 Literature Review 13
2.1 Service-Oriented Computing 13
211 WebServices 15
2.1.2 GridComputing e 17
2.1.3 Peer-to-PeerComputing 19
2.1.4 SemanticWeb Services L Lo 20
2.1.5 Quality-of-Service e 22
2.2 Multi-Agent Systems 24
2.2.1 Building Decision-Making Agents 24
2.2.2 Cooperation through Negotiation 27
2.2.3 Trust&Reputation Lo 31
2.2.4 Example Agent-Based Applications 33
2.3 Reliability Engineering 34
2.4 Executing Service Workflows oo Lo 6 3
2.4.1 Manual Service Selection 39

CONTENTS iv

2.4.2 Dynamic Service Composition o0 40
2.4.3 Dynamic Service Provisioning 41
2.4.3.1 Constraint-Based Service Provisioning 42
2.4.3.2 Quality-of-Service Optimisation 43
2.4.3.3 Decision-Theoretic Provisioning 48
25 Summary ... e e 49
2.5.1 ModelRequirements 50
2.5.2 Workflow Requirements 51
2.5.3 AgentRequirements 51
3 Modelling a Service-Oriented System 53
3.1 BasicTerminology 53
3.2 WorkflowModel 55
3.2.1 Workflow Lifecycle 56
3.2.2 Workflow Structure 57
3.3 Service ProviderModel 95
3.4 Basic Service Consumer Algorithm 61
3.5 llustrative Workflow 63
3.6 Model Assumptions and Limitations 64
3.7 SUMMAIY e e 67
4 Service Provisioning with Limited Performance Information 69
4.1 Model EXtension 70
4.2 TheN@veStrategy o i i 71
4.3 Robust Provisioning Strategies o 0o 3 7
4.3.1 Parallel Provisioning 73
4.3.2 SerialProvisioning 75
4.3.3 TheHybridStrategy, 76
4.4 Flexible Service Provisioning 80
4.4.1 ProblemFormulation 80
4.4.2 Generic Algorithm for Flexible Service Provisioning 81
4.4.3 Utility Prediction 85
4431 LocalPrediction 85
4.43.2 Global Prediction 89
4.4.4 lllustrative Example Lo 91
4.5 Empirical Evaluation 95
45.1 Testbedand Methodology 95
452 Hypotheses e 97
4.5.3 Parallel Provisioning (Hypothesis1) 98
4.5.4 Serial Provisioning (Hypothesis2) 99
455 Flexible Provisioning (Hypotheses3and4) 99
4.5.6 Performance in Complex Environments (Hypotheses3and4)1. 10
4.5.7 Optimality of Flexible Provisioning 104
4.6 SUMMANY e e e e e e e e e 105
5 Service Provisioning with Heterogeneous Providers 106

5.1 Model Extension e 107

CONTENTS v

5.2 QoS-based Provisioning e 8 10
5.2.1 Local Weighted Optimisation 109
5.2.2 Global Weighted Optimisation 110

5.3 Flexible Service Provisioning 111
5.3.1 Problem Formulation 111
5.3.2 Updated Generic Algorithm 113

5.3.2.1 Initial Provisioning Allocation Creation 113

5.3.2.2 Neighbour Generation 117
5.3.3 Utility Prediction 117
5.3.4 FastFlexible Strategy 121
5.3.5 lllustrative Example 125

5.4 Empirical Evaluation 130
5.4.1 ExperimentalSetup 130
5.4.2 Hypotheses 133
5.4.3 Hybrid Results (Hypothesis5) 133
5.4.4 Flexible Provisioning Results (Hypothesis6) 134
5.4.5 Non-adaptive QoS-based Provisioning Results (Hypothesis 7) 136
5.4.6 Adaptive QoS-based Provisioning Results (Hypothesis 8) 137
5.4.7 Fast Flexible Search Time (Hypothesis9) 139
5.4.8 Fast Flexible Profit (Hypothesis10) 140
5.4.9 Performance in Complex Environments 141
5.4.10 Optimality of Flexible Provisioning 145

55 Summary 147

6 Service Provisioning with Advance Agreements 149

6.1 Model Extension 149

6.2 Flexible Provisioning 152
6.2.1 Problem Formulation oL 153
6.2.2 TaskProvisioning. 154
6.2.3 High-Level Task Strategies 158

6.2.3.1 StrategylLibrary o 0oL 158

6.2.3.2 Planning for Contingencies 160
6.2.4 ProvisionTiming 163
6.2.5 Utility Estimation., 166
6.2.6 Optimisation Algorithm 168
6.2.7 Dynamic Adaptation 170
6.2.8 Updated Generic Algorithm 171
6.2.9 lllustrative Example 176

6.3 Empirical Evaluation 180
6.3.1 MarketSetup 180
6.3.2 Strategies e 182

6.3.21 LocalStrategy 182
6.3.2.2 Global Weighted Optimisation 183
6.3.2.3 Adaptive Global Weighted Optimisation 183
6.3.2.4 Flexible Provisioning 183
6.3.3 Hypotheses 184

6.3.4 Malicious Providers (Hypotheses 12and13) 4 18

CONTENTS Vi

E

6.3.5 Failures with Refunds (Hypothesis14) 187
6.3.6 Different Market Conditions (Hypothesis15) 891
6.4 Performance in Complex Environments 191
6.5 Summary e e 194
Conclusions and Future Work 195
7.1 ResearchSummary 195
7.2 Research Contributions 6 19
7.2.1 RedundantProvisioning 197
7.2.2 Flexible Re-Provisioning 197
7.2.3 Limited Information Availability 198
7.2.4 Gradual Provisioning with Reservations 199
7.2.5 Adaptive Provisioning e 199
7.2.6 ReviewofRequirements 200
7.2.6.1 Model Requirements 200
7.2.6.2 Workflow Requirements 202
7.2.6.3 AgentRequirements 202
7.3 Comparison of Flexible Strategies 203
7.4 Future Work 205
7.4.1 Addressing Model Assumptions 205
7.4.2 Future EXtensions 206
Sensitivity Analysis 209
Scalability of Flexible Provisioning 214
NP-Hardness of Provisioning Problem 219
Derivations of Equations 223
D.1 Expected Task Cost (Equation4.9) 223
D.2 Expected Task Duration (Equation4.14) 224
D.3 Expected Squared Waiting Time (Equation4.20) 5 22
Acronyms 226

Bibliography 227

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
414
4.15

5.1
52
5.3
5.4
55
5.6
5.7

Service-Oriented System Model 4 1
Negotiation Example 28
Contract NetExample e 29
PhD Workflow 37
Workflow Execution Taxonomy 38
QoS Workflow e 45
Summary of Background Technologies 52
Terminology 54
Workflow Lifecycle 56
Example Workflow 57
Workflow Service Types 58
Utility Function Examples e 59
Bioinformatics Workflow 63
Task Information 70
Invocation Example 85
Provisioned Workflow (Initial) 93
Provisioned Workflow (Final) 39
Provisioned Workflow (Urgent) 94
Example Random Workflows, 96
Profit forparallel(n)Strategy 98
Profit forserial(w)Strategy 99
Profit forflexibleStrategy 100
Success Probability @iExibleStrategyo oL 100
Example Workflowwith50 Tasks 101
Service Durations and Utility Function 210
Profit for Complex Workflows 031
Success Probability for Complex Workflows 103
Flexible/Optimal Comparison 104
Heterogeneous Task Information 107
Service PopulationExamples 0 107
Detailed Provisioning Allocation 112
Allocation Distributions 119
Simplified Provisioning Allocation 122
Detailed FlexibleAllocations 128
Task Success Probabilities oo oL 9 12

Vii

LIST OF FIGURES viii

5.8

59

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

Al
A.2
A3
A4

B.1
B.2
B.3
B.4
B.5

Hybrid(nw)Results 135
ExampleHybrid(nw)Results o 135
Detailed FlexibleResults L 136
Non-Adaptive QoS-based Results 137
Adaptive Local QoS-basedResults, 138
Adaptive Global QoS-basedResults 139
Comparison dfastandDetailed Flexible 140
Adaptive Local QoS-based Results (Large Workflows) 141
Adaptive Global QoS-based Results (Large Workflows) 142
Adaptive Local QoS-based Results (Highly Heterogeneous) 144
Adaptive Global QoS-based Results (Highly Heterogeneous) 144
UpperBoundResults 714
Progressive Provisioning Summary 152
Example Provisioning Decision 154
Task Contingencies 0 i e e e e e 160
Algorithm 6.16 Example 165
Example High-Level Task Strategies 77 1
Initial Workflow 179
Workflow After Provisioning a7
Initial UrgentWorkflow 18
Urgent Workflow After Provisioning 181
Experiments with Malicious Providers (Profit) 185
Experiments with Malicious Providers (Success Probability) 185
Experiments with Refunds (Profit) 881
Experiments with Refunds (Success Probability) 188
Experiments in Different Markets (Profit) 189
Experiments in Different Markets (Success Probability) 190
Experiments with Large Workflows (Profit) 193
Experiments with Large Workflows (Success Probability) 193
Understimating Failure Probabilites 210
Overstimating Failure Probabilities 211
Underestimating Durations, 212
Overestimating Durations 212
Provisioning Time for Smaller Workflows 215
Large Workflow withnp =100 215
Provisioning Time for Larger Workflows 216
Large Workflow withnp =512 oL 217
Large Workflow withnp = 1024 o 218

List of Tables

2.1 Pareto Optimality Example 44
2.2 Suitable Services for QoS Provisioning 5 4
2.3 Redundancy Example e 46
4.1 lllustrative Example Service Types i i 2 9
42 SummaryofResults. 101
4.3 Heterogeneous ServicesSetup e e 102

5.1 Example Performance Characteristics 19 1
5.2 Example Service Types e e 127
5.3 Workflows Provisioned bpetailed Flexible. 127
5.4 Controlled Variables 131
5.5 Examples of Random Service Typeso 31 1
5.6 Examples of Random Service Populations 32 1
5.7 Controlled Variables in Complex Environments 143
5.8 UpperBound Results Summary 147
6.1 ServiceContractTerms o i 015
6.2 Offer Performance Information 151

6.3 Task Strategy Parameters e 9 15
6.4 Average Strategy Performance Statistics 159

6.5 Simulated Annealing Parameterso 173
6.6 Bioinformatics Service Distributions 0oL 176
6.7 Service Type Parameters 2 18
6.8 Results with Advance Agreements (Summary) 1 19
6.9 Performance Distributions L L 191
6.10 Service Typesin Complex Environments 92 1

List of Algorithms

3.1
4.1
4.2
4.3
4.4
4.5
4.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
6.16
6.17
6.18
6.19
6.20

Service Consumer Behaviour oL 2 6
NaiveStrategy e e 72
Parallel(n)Strategy 74
Serial(w)Strategy e 77
Hybrid(n,w)Strategy e 79
Hill-Climbing Provisioning Algorithm 83
FlexibleStrategy e 84
Detailed LocalSearch, 411
Detailed Neighbour Generation 511
Detailed FlexibleStrategy 116
FastLocal Search 122
Allocation Converstion e 123
Fast Allocation Generation 312
Fast Allocation Truncation, 412
Simplified Neighbour Generation 412
Optimal Upper Bound Computation 146
Provisioning Time Determination 164
Local Search 816
High-LeveDynamic FlexibleSummary 172
Dynamic FlexibleStrategy (Main Procedures) 174
Dynamic FlexibleStrategy (Service Negotiation) 175

Declaration of Authorship

I, Sebastian Stein, declare that the thesis entfledible Service Provisioning in Multi-Agent
Systemsind the work presented in this thesis are both my own, and have beeatgergy me
as the result of my own original research. | confirm that:

this work was done wholly while in candidature for a research degreésdtittiversity;

where any part of this thesis has previously been submitted for a degreagy @ther
gualification at this University or any other institution, this has been cleadgdta

where | have consulted the published work of others, this is alwayd\chktaibuted:;

where | have quoted from the work of others, the source is alwagnghWith the excep-
tion of such quotations, this thesis is entirely my own work;

| have acknowledged all main sources of help;

where the thesis is based on work done by myself jointly with others, | have oladr
exactly what was done by others and what | have contributed myself;

parts of this work have been published in a number of conference anthjqapers (see
Section 1.5 for a list).

Signed:

Date:

Xi

Acknowledgements

When | first met my supervisors, Nick Jennings and Terry Payne, tl@dame whether | had
any idea what pursuing a PhD degree would entail. At the time, | had a visispemding
months immersed in books, reading scientific papers and studying equadidinglly emerge
with a groundbreaking idea that would change the field of computer sciereer.

Clearly, |1 had no clue of what lay ahead of me. Working on a PhD thesigea$yra straight-

forward process, nor does it lead to a single solution to all problems in its fiRelther, it

involves many long hours of hard work, incremental improvements and muselead ends
(which are all offset by the occasional breakthrough).

Therefore, | am all the more grateful for Nick and Terry’s invaluahlpport and guidance
throughout this process. Initially, they left me plenty of freedom to exporéde subject area,
but also pulled my feet onto the ground when it became necessary taksticeand manageable
research goals. Whenever | reached a dead end, they offereddiiie and nudged me in the
right direction. At the same time, they looked critically at any half-baked idgasstioned
every unusual pattern in my results and thereby helped me on my path toserdsiing a
researcher. Finally, Nick and Terry invested a tremendous amountiofithe, both during our
weekly meetings and while correcting my papers (often over weekendsadiddys). In short,
this thesis would not have been possible without their support and exg=aent.

I would also like to thank all the members of the IAM group who have offeredt fieedback
on my work and helped improve it. While there are too many to list here, | am planti
grateful for the comments and suggestions of Enrico Gerding, who hassdid with me many
aspects of my work, and David Yuen, who has patiently helped me with evandketrivial
mathematics problems. Furthermore, the weekly research seminars orbagedteomputing,
organised first by Raj Dash and then Alessandro Farinelli, have a¢ésodmeimportant influence
on my work, both by introducing me to pertinent research issues and byirdjone to present
my own research to a supportive audience.

Additionally, | am grateful for feedback from the wider research comitguand in particular
for the constructive comments | have received from the reviewers oA@id TOIT journal,
and from the reviewers and participants at the ECAI-06, AAMAS-07 AAB7 and AAMAS-
08 conferences, and the EUMAS-06 and SOCASE-07 workshoyas/el &iso benefited greatly

Xii

ACKNOWLEDGEMENTS Xiii

by attending the SSSW-05 and EASSS-05 summer schools and the AAMASEDRAAI-07
doctoral mentoring programmes.

This thesis has been supported financially by the EPSRC and by BAE Systaurisvould like
to express my sincere gratitude to both organisations. As a represemtathe latter, Andy
Wright in particular, has shown interest in my research and he gave mestitgy pointers for
my early work.

| am also thankful for the support of my friends. They provided welcaliversions when
| needed to get away from work, shared my passion for board gamesdjme in exploring
Southampton and its surroundings on weekends and introduced me tolhewsand countries
that | would not have experienced otherwise.

Last but not least, | have received enormous support from my family.pstents, Axel and
Brigitte, and my sister, Philine, have always given me love and encouragerbDeiring my
PhD, they provided me with a second home in Germany, called me frequentlgaamel to
Britain for regular visits (patiently putting up with my increasingly busy schediy thanks
also go to my girlfriend, Shanna, who has shared with me many happy momeeis, nge
strength and faced with me a particularly challenging time in the last months of mgstud

Nomenclature

General

N Natural numbers with zerd\(= {0, 1,2,...})

R Real numbers

Rt Positive, non-zero real numbers

Ry Positive real numbers with zero

Z Integer numbers4 = {...,-2,-1,0,1,2,...})

zt Positive, non-zero integer numbe® (= {1,2,...})

P(A) Powerset ofd (P(A) = {a|a C A})

Uc(a,b) Continuous uniform distribution over the intervil, b]
(includinga andb)

Uq(a,b) Discrete uniform distribution over the integers in the in-
terval[a, b] (includinga andb)

Chapter 3

D:(§xR)—R
E:P(T xT)

S = {51,52,...,5‘5|}
Si = p(7(t:))

T = {t1,t2,... .t}
T ={NT»,....Ti7}
T;

W =(T,E,T,u)

A

c:S—R

d: (SxR)—R
f:8—10,1]

5

t:N

Cumulative density function of the duration of a service
Task precedence constraints of a workflow

Set of service instances

Set of services that can be invoked for a given task
Tasks of a workflow

Set of all service types

Service type

Workflow

Consumer’s high-level objective

Maps service instances to their costs

Probability density function of the duration of a service
Maps service instances to their failure probabilities
Service instance

Current time step

Xiv

NOMENCLATURE

XV

ti Task

tmax: Ra Deadline of a workflow (for receivingmax)

tzero: RY Earliest time step for which(#zer) = 0

u:R—R Workflow utility function

Umax : Ry Maximum utility of a workflow

§:RT Cumulative penalty for late completion of a workflow

w:T — P(S) Maps service types to sets of matching services

T: T —T Maps tasks to associated service types

Chapter 4

C; Random variable denoting the duration of a single task

D;:R— [0,1] Non-conditional probability that a single invocation for
taskt; is successful by a given time

Diate : [0, 1] Estimated probability that workflow will complete after
tmax @nd DYt ast

Diax: [0, 1] Estimated probability that workflow will complete by
tmax

E:N Number of direct, non-transitive edgesiin

¢:R Estimated expected cost of a provisioned workflow

é(i,w) : R Expected cost of followingi andw

¢ R Cost of a service instance froff)

¢ R Expected cost of a provisioned tagk

d; :R—R Probability density function of a service instance fréin

dy R Expected completion time of a task if it is successfully
completed during théth invocation

dw :R—R Estimated probability density function of workflow dura-
tion

fi:[0,1] Failure probability of a service instance frasp

fi:0,1 Failure probability of a single invocation for task(f; =
1—pi)

i - NIT| Vector containing number of parallel services for each
task

n; : N Number of parallel services provisioned for tagk

p:[0,1] Success probability of workflow

pi : [0, 1] Success probability of a provisioned task

pi :10,1] Success probability of a single invocation for tagk

u:R Estimated expected utility of a provisioned workflow

Expected utility when followingi andw

NOMENCLATURE

XVi

(7, W) : R Expected reward when following and

7: R Estimated expected reward of a provisioned workflow

Ts : Estimated reward of workflow completion (conditional on
success)

i« [0, 1] Probability that task; is reached during workflow execu-
tion

tiast: R Smallest real parameter whereu(x) = 0

iR Expected completion time of a provisioned tasKcon-
ditional on success)

tlate Estimated expected completion time given that workflow
is completed betweetax andt|ast

v = |Si] Number of service instance available for a given task

v i R Estimated variance of workflow duration

w; : N Waiting time until re-provisioning task

@ : NI7I Vector containing waiting times for each task

Aw R Estimated expected workflow duration

wi: R Expected completion time of a single invocation for task
t; (conditional on success)

52 : R Completion time variance of a provisioned taskcondi-
tional on success)

Chapter 5

A=T — (S§—N)
D: (S xN)—[0,1]

Set of all provisioning allocations

Probability that a given service has completed success-
fully by a certain time (not conditional on overall success)
Probability that task; has been completed successfully
after a given amount of time and a given provisioning al-
location

E;: (AxN)—|[0,1]

P={P,P,,...,Pp} Set of populations (partition &)
P A service population

Qi:S—[0,1] As ¢;, but each value is normalised to the interj¢all |
Qi: S —[0,1] As ¢;, but each value is normalised to the interjall]
® : [0,1] Average failure probability in a simulated service-ori-

ented system
bii:{0,1,..., tzero} Number of time steps to wait before provisioning the first
ny,; services fot;
éla): R Expected cost of following allocatiom

NOMENCLATURE

XVii

g {0,1, ..., | Pyl}

g :S —R
G :S—R

Wk 4 - {]-7 2,... 7tzero}

ﬁ:((ZXZ)HZ)?’

Number of services from populatioR; that are provi-
sioned in parallel for task

Maps services to theith quality parameter

Maps vectors of services to thih quality parameter, ag-
gregated over a workflow

Service selected bylacal strategy for a given task
Expected reward of following allocatiam

Weight factor used by QoS-based strategies

Number of time steps to wait before re-provisionimg;
more services from populatiaf, for taski;

Detailed provisioning allocation that maps each task to its
provisioned services and their relative invocation times
Fast provisioning allocation containing, ;, wy, ; andby, ;

for each task and population

p*: ST Vector of services selected bygtobal strategy
Chapter 6
C Set of all offers
O = {succ. ,
unavail. ,fail. } Set of strategy outcomes
C,CcC Response of the market {0
C;cC All offers received during time step
E' :P(TxT) Temporary workflow edges
E:R—-R Cumulative probability that the predecessorstohave
finished
P;:C—0,1] Offer defection probabilities
Py :C—0,1] Offer failure probabilities
B; : P(N) Indices of tasks that precede
P,:C—0,1] Offer success probabilities
T, CT Completed tasks
Ts CT Uncompleted tasks with offers
T,CcT Provisioned tasks without offers

U = (T,,13,Ty,ds,d, E')

Q

a:C,;—>T
c:N—=R

A provisioning strategy
Set of all high-level strategies

Acknowledgement, maps offers to workflow tasks
Strategy costs

NOMENCLATURE

XVviii

c.:C—R
Ce : R
Ce: 2 — R
Cei - R
cnv : C— R
¢ :C—R

Et:R
d:C—7Z"
d:(Qx0)—R

2:(Qx0)—R

di - R

1T — P(Q)
Oafter - 7 — P(C)

opre : (Z x Z) — P(C)

n:Q— 7t
0:C

p:(Qx0)—10,1]

py:[0,1]

pinv: (CxZ)—R

pr: [0’ 1]

ﬁl : [07 1]
Pmi - [0, 1)
ps ¢ [0,1]

Offer execution costs

The expected execution cost of a provisioning decision
Strategy execution costs

Expected execution cost of

Offer expected invocation costs

Offer reservation costs

The expected reservation cost of a provisioning decision
Strategy reservation costs

Expected reservation cost if

The expected cost of a provisioning decision

Offer durations

Strategy outcome times

Strategy squared times

Maps tasks to provisioned offers and high-level contin-
gency plans

Expected time at which failure becomes known

Maps tasks to high-level strategies and maximum late
probabilities

Predicted completion time @f

Largest predicted completion time of any predecessor of
t;

Expected time at which late outcome becomes known
Expected time at which successful outcome becomes
known

Strategy library (maps service types to sets of strategies)
Maps a time slots to all offers in a provisioning decision
that start no earlier than it

Maps a time interval to the offers in a provisioning deci-
sion that are completely enclosed by it

Strategy maximum offer numbers

An offer

Strategy outcome probabilities

Probability that some offers in a provisioning decision are
invoked, but all fail

Offer invocation probability, given a task starting time
Probability that the predecessors of a provisioned task
complete late

Actual late probability

Maximum late probability of a task

Probability that a provisioning decision completes suc-
cessfully

NOMENCLATURE

XiX

Ps: Z — R
s: C—1T
§:7—7

sp:Q
s1: Q)
sp 1 82
Sy - 0

t:C—N

t, : 2 — N
tend: P(C) = R
tsi: R

tw: Q— 77T
0:(2x0)—R
’Uz‘,end3R
Ui7pre3R

v R

vy R

0y:C—R
7 C€C
ecO
9:Q —

{cost ,unrel.

end. , balanced }

p:7T xN

Probabilities of starting at the time given By

Offer service types

Ascending sequence of unique starting times in a provi-
sioning decision

Provisioning strategy if, failed

Provisioning strategy if task is late

Main provisioning strategy

Provisioning strategy ik, did not result in provisioned
offers

Offer starting times

Strategy advance times steps

Maps set of offers to offer with largest end time
Expected squared duration f

Strategy time intervals

Strategy time variances

Predicted completion time variancepf

Variance associated witf} pre

Variance of time at which late outcome becomes known
Variance of time at which failure becomes known
Variance of time at which successful outcome becomes
known

Waiting time when task is provisioned in advance

Offer failure penalties
Provisioning decision for task
An outcome of a high-level strategy

Strategy selection techniques

Call for proposals

To Axel, Brigitte, Philine and Shanna
for their love, support and encouragement.

XX

Chapter 1

Introduction

The digital computer has been one of the most important inventions of the @0tilnrg. Since
its inception in the 1940s, it has had a profound impact on the developmeonht#mporary
society, supporting the large-scale automation of business activitiegyglsgientific progress
and controlling the tools and appliances that we rely on in our daily livesinButs history,

the computer has evolved quickly, from being an isolated and indepecalentating device, to
one that is now often part of complex distributed networks that span the.glob

This ubiquitous connectivity is revolutionising the usage of the computer, ialipusers un-
precedented access to a vast range of resources and serviceldinmmformation reposito-
ries, remote computing facilities and even traditional business servicesatihdegrocured on
the World Wide Web. In this context, there is a growing interest in building soapplications
that automatically discover and engage these resources, e.g., to exaoptexcbusiness pro-
cesses that rely on services by external suppliers, or scientific warkthat use data processing
services hosted on remote mainframes.

However, building such software applications is posing new challenge®teetiearch com-
munity, as traditional software engineering approaches are often inaieip addressing the
heterogeneity, dynamism and openness inherent in large distributechsydtaportant issues
that are already being addressed include appropriate methods forttmeaded discovery of
distributed resources using computer-readable description langu@gepgsition techniques
that automatically combine several services into larger workflows, andastdised frameworks
that allow heterogeneous applications to communicate and exchange data.

Furthermore, an important challenge is the need to deal with fundameatatypomousoft-
ware components. As applications begin to outsource functionality aagessisational bound-
aries, they also start to rely on different stakeholders that have theigoals and agendas. Con-
trary to traditional software models, distributed components no longer oleey @struction,
nor act in a deterministic manner. Instead, they follow their own decision-makimcedures,
which are opaque to the consumers and primarily represent the intergkhrabwners. As

Chapter 1 Introduction 2

such, these components may fail without warning or respond later thaipaidid, thus pos-
ing significant risks to consumers that rely on them for important, perhagisdss-critical,
services.

This critical, but so far largely unexplored, feature of large-scaleibigd systems is the prin-
cipal focus of this thesis. In particular, we investigate how a softwardicapipn can select,
provision and monitor the services of external providers in a flexible maormeduce service
failures, meet workflow constraints and react to problems.

We begin in this chapter by outlining the background to our work and by sedtiresearch
agenda. More specifically, in Section 1.1, we discuss current trendstiibdted computing.
Then, in Section 1.2, we introduce service-oriented computing, a poppaoach for building
applications in distributed systems. Following this, Section 1.3 outlines the field lafagent

systems, which we believe is central to achieving flexible service-oriegstdras. From the
preceding discussion, we then motivate our research and outline tHeeraqats of our work
in Section 1.4. This is followed by an overview of our research contribat{&ection 1.5) and
an outline of the remainder of this thesis (Section 1.6).

1.1 Current Trends in Distributed Computing

The proliferation of large-scale computer networks, such as the Intdrag made it possible
for computer systems across the world to communicate and exchange data(098ti¢). Both
in offices and at home, this new medium has enabled human users to commurstatdy
via electronic messages (Morris and Ogan (1996)) and to access etedented amount of
information via the World Wide Web (Berners-Lee et al. (1994)).

Given this widespread connectivity, there is growing interest in building coen@pplications
that interact automatically with each other over networks, in order to skaceirces and data
without human intervention. On one hand, such automation promises ingdrefiseency and
economic rewards as applications are able to procure goods and seangtantly, according
to their current requirements and the market environment. On the otherdnandhation sim-
ply becomes a necessity as systems are increasingly complex, with potentialbaris of
heterogeneous and constantly changing components. Already, socessutapplications ex-
ist, where data and functionality are distributed over large distances apssamrganisational
boundaries (Timmers (1999); Anderson (2004)).

Such large-scale distributed systems can offer advantages to a wideafamgers. In industry,
companies are now interested in automating their business processesariyle to make
supply-chains more agile and interoperable across different organiséJohnson and Whang
(2002)), to automate trading between businesses (He et al. (2003))sel farocessing time
and specialised services, such as video rendering (Byde (2006¥act, in 2005, 7.6 % of
all UK businesses with 10 or more employees already used software to digtmipanteract

Chapter 1 Introduction 3

with and order from suppliers, and for businesses with 1000 or more eagdpyhat figure
was 42.1 % (Avery et al. (2007)). In a similar vein, researchers inean&dexpect to benefit
from sharing experimental results and expensive hardware (Bufi@8J}, an idea epitomised
by the Grid (Foster et al. (2001)). Even home users already commottigipate in large-scale
peer-to-peer networks to share idle processing time (Anderson eD@R)j2or data (Matei et al.
(2002)).

However, applications in large distributed systems are fundamentally diffiecen traditional,

monolithic software. Rather than being self-contained, deterministic progthsse applica-
tions access software components that are written and maintained by extgpauaisations.
Furthermore, those components reside on remote machines, may not becueflehted, con-
tain bugs and are subject to change at any time.

In particular, this means that the interacting software components in thedeudesirsystems are
typically highly heterogeneousThat is, they are implemented by different programmers, written
in a variety of languages and execute on many distinct platforms. Hengeoftea display
different performance characteristics, such as reliability, responseatisheost. Furthermore,
there is considerablencertaintyin the behaviour of components, as these are usually opaque
and outside the consumer’s direct control. For example, the computemsysfea service
provider may break down without warning due to a local power failureigh lhemand by
many concurrent consumers. Finally, many large distributed systenmparnen nature, as is
the case with the Internet, where new entities are free to join at any time. Thissniest
the level of demand for software components can change as more usetsijocalso that new
and better offerings may become available over time. Similarly, such opeafteasmplies
that entities may also leave at any time, which requires software to adaptyqaiwk make
alternative provisions for critical components.

Clearly, the above characteristics of distributed systems demand a fleXitwlarsoengineering
approach, that is able to discover and engage heterogeneous wiod flseunseen components
at run-time. One prominent engineering paradigm with this aim is servicatedeomputing,
which we discuss in the following section, and which forms the primary applicatiea of this
thesis.

1.2 Service-Oriented Computing

Service-oriented computing has been suggested as an appropriatigmpaiar systems where
many heterogeneous software components interact. In this approscbraes, software func-
tions and other behaviours are offered by their providers as comgrrigcegHuhns and Singh
(2005)). These services encapsulate key functionalities that consgareprocure in order to
fulfil their own aims and objectives.

Chapter 1 Introduction 4

An important feature of service-oriented computing is the dynamic selectomegs between
services and their consumers. Rather than being explicitly specified alpriarprogrammer,
services that achieve a given task are discovered by an applicatian-titrre. For this rea-
son, providers use public registries to publish the necessary integadagescriptions of their
services, which are then interpreted and engaged automatically by theeseowsuming ap-
plication. Such dynamic binding offers some resilience against the dynanfiardistributed

system as an application does not need to rely on the availability of a singid@rof a partic-

ular service. Rather, it can choose the most appropriate service erdkat is available when
needed.

In most realistic application scenarios, including those mentioned in the [imgcsetLtion, ser-
vice consumers will need to execute complexrkflows composed of many services (Deelman
et al. (2003b)). Here, each service contributes some atomic unit dfidaatity to the overall
goal of the consumer. Often, the output of one service may be passetydio the next ser-
vice, creating interdependencies between the constituent servicesarkfiow. Such service
compositions may also contain conditional branches, loops or other pdtiatrzsse commonly
found in generic workflow languages (van der Aalst et al. (2003)).

So far, service-oriented computing has largely focussed on basicpretnd standardised data
formats that enable applications to discover and communicate with each othsuch, it is a
vital enabling technology for distributed systems, but there has been littkeamagxploring the
inherent uncertainty of services in these systems and the fundamentaliymaos nature of
service providing agents. However, when relying on external provie vital services, appro-
priate mechanisms and strategies are needed to deal with the associated tskertainty. In
the following section, we introduce the field of multi-agent systems, becagdeleve that its
methods and models are critical to understanding and addressing thisegd®s

1.3 Multi-Agent Systems

When many heterogeneous and independent entities (i.e., the servicenesasnd providers)
interact in an open system, it is vital to recognise that these often repaisenct stakehold-

ers with different, perhaps conflicting, aims. For example, these entitiéd tmlude several

service consuming applications, executed by different researctalabies, that all require the
same highly specialised service for their workflows. Likewise, severapanies might sell the
same type of service and compete with each other for customers.

A fitting metaphor for such entities is the notionagients These are self-interested entities that
act autonomously in order to achieve their own goals (Jennings (20@@)pvitige (2002)). Re-
searchers in the field of multi-agent systems have developed powerfelsmaidhow such agents
interact, and how computational agents and distributed systems can beseadittedisplay de-
sirable properties despite their fundamentally self-interested nature (\\29®)(Wooldridge
and Ciancarini (2000); Dash et al. (2003)).

Chapter 1 Introduction 5

A central concept of agent-based research is the rationality of indivayents. In order to
meet their goals and objectives (or those of their owners), agents norseglkyto maximise
their private utility, a measure of their personal welfare. Acting in suchyaailaws the agent
to make appropriate decisions that balance the risks and potential beféfitsactions. It
also implies that a rational agent would not generally offer servicesréarivhen there is an
associated cost to itself, and that it may act to the detriment of other ageesthik increases
its own utility. As an example, the provider of a scientific supercomputer may pfbcessing
time to other agents on a Grid, but withdraw these without warning when theutemg needed
by members of its own department.

As a result, the behaviour of an autonomous agent is inherently uncentaxtérnal observers,
including the consumers of its services. Such uncertainty could be maditastae failure of
a provider to deliver its service (for example, because it can offerghdce to a better cus-
tomer, because the service is no longer profitable or simply becauseeitexl#f system crash).
Even when a service is delivered, there will still be uncertainty aboutvithie completed and
about the quality of the result, as the provider may try to minimise costs to itsel& several
customers at the same time and possibly rely on third parties for parts of itseserv

Furthermore, it is important to realise that when self-interested agentsdntiérey do so gen-
erally on a mutually beneficial basis, i.e., agents only interact when this sesdlaeir own util-
ity. Hence, it is usually necessary to place these agents into an appreamuaiemic context,
where they exchange services for other resources. To this emeéssikge mechanisms, such as
negotiation protocols or auctions, have been developed to allow agentctomeitually bene-
ficial agreements about the provision of services, usually in exchandedncial remuneration
(Sandholm (1999); Jennings et al. (2001)). These mechanisms migitderaxivance provision-
ing and negotiation over various parameters of a service, including itsdaastline and quality
parameters.

Viewing service providers and consumers as self-interested agenistératt through market
mechanisms is highly appropriate for the type of large distributed systems ng&leo here.
As these agents belong to distinct companies or organisations, they wautéllyohave a
considerable interest in making rational decisions that maximise their own utiitbydamot
lead to situations that are detrimental to themselves. This is highlighted espegitiby durrent
interest by companies in automating their business processes and offeeiciglised services
to paying customers, in order to gain some economic benefit (as discusSection 1.1).

Despite this, the field of service-oriented computing has often failed to viexiceeconsumers
and providers as fully autonomous and self-interested agents. Rathehabe been treated as
loosely coupled, but mostly cooperative entities that honour servicesegjwithout question.
This is unrealistic, because such an approach neglects the inherentaimty of autonomous
agents and fails to acknowledge the need for providers and consumeasktomutually benefi-
cial agreements over the provision of services.

Chapter 1 Introduction 6

Due to these considerations, designing computational agents that relyesnadservices for
their workflows remains a critical challenge for service-oriented computBgcause of the
unreliability and potential cost of procuring services, such agents must raéiknal decisions
at run-time according to the interests of their owners. This means that ahrsgps to react
to failures in a timely manner to meet its deadlines and that it should minimise costpdmnat
extra resources when appropriate, for example to ensure the sotegsarticularly critical part
of a workflow. To this end, in the following section we outline the researghirements that
we aim to address in order to build such agents.

1.4 Research Requirements

In this thesis, we are interesteddasigning principled tools and methods for building a compu-
tational agent that is capable of executing complex workflows in highlyrdimand uncertain
service-oriented environments particular, we aim to use appropriate techniques and method-
ologies from the field of multi-agent systems to extend the currently prevatraeption of
service-oriented computing. In carrying out this work, we devise teclesigpplicable to real-
istic applications that will be common in large distributed systems and that will depesavily

on remote services. These applications might include scientific workfloasuted on a Grid
infrastructure, business workflows that acquire goods and serfvim®sexternal providers, or
workflows in peer-to-peer systems, where the consumer relies on ehfastiing population of
providers (for example in an ad hoc network of wireless devices (Qatal. (1999))). As such,
our work focusses on efficient and scalable techniques that prastiesisults in a dynamic set-
ting. This means that we are interested in building boundedly rational agahtscthieve good,
“satisficing” results, where it would be impractical to achieve optimality (SIm@3T7)).

To frame the thesis, we begin by outlining a set of requirements that detailghs 6f prob-
lems and system features that we expect our methods to deal with. Watpresse asnodel
requirements, which pertain to general features of the systems that ve¢igate (drawn from

the discussion aboveyyorkflow requirements, which describe the types of problems that we
expect to cover; andgentrequirements, which outline properties of the techniques that we will
develop.

1.4.1 Model Requirements

This section contains requirements for an appropriate model of a distribateate-oriented
system. These requirements deal mostly with the inherent autonomy of spreidgders that
we intend to address.

M.1. Uncertain Service Behaviour
As discussed in Section 1.3, service outcomes are generally uncertaime ¥ary least,
the model must assume uncertainty along the following dimensions:

Chapter 1 Introduction 7

M.2.

M.3.

M.4.

a. Service Success
Service success cannot be guaranteed. Even when a providegrbad #o offer a
service or has already started execution, there is still a possibility that dkier
fails to honour the service request.

b. Service Duration
Services do not normally take a fixed amount of time. Rather, this time varies due
to uncertainty in the task itself, the network traffic and the current workédale
provider.

Remuneration for Service Provision

The model must not assume that services are provided free of clsgally, some form
of financial remuneration should be given to providers for their sesviceparticular, the
model should explore the impact of the following common pricing models:

a. Fixed Pricing
Providers charge for services based on a fixed, public price thatowrkiby all
consumers.

b. Flexible Pricing
Providers produce individual quotes for each service requesthwhay change
between requests and may be valid for short time periods only.

Service Interaction Models

While most current frameworks consider on demand invocation as the mahamism
for engaging services, more expressive interaction models have lggessed and should
be considered by the model. These become especially relevant whemesgprocure
expensive, complex services that have to be provisioned ahead of teneeHan appro-
priate model should explore the following mechanisms:

a. On Demand Invocation
Services are only procured when they are needed. This offers bofumers and
providers high flexibility, but could prove to be too unreliable when a comesu
needs some assurance that a given service is available at a certain time.

b. Advance Provisioning
Agents might negotiate in advance over the provision of a service. Sumppaoach
would provide the consumer with some assurance that a provider intendélta f
service at a negotiated future time (although not necessarily a guarantee)

Provider Heterogeneity

As services are usually offered by distinct agents with varying ressuaad different
interests, their characteristics can vary considerably. Hence, the sameftgervice
might be offered by several agents at a different price, responseticheith a different
level of reliability.

Chapter 1 Introduction 8

M.5. Dynamism
Over time, the characteristics of service providers and the system asla aradikely
to change due to varying levels of demand or availability and the changingstdeof
individual agents.

1.4.2 Workflow Requirements

In this section, we identify the requirements for the types of workflows #raice consuming
agents may face in the environments that we consider.

W.1. Workflow Expressivity
To cover common task compaositions, a workflow model must include some basie w
flow patterns, including:

a. Parallel Task Ordering
Workflows may contain services that can be executed in parallel, for dzamngn
they are completely independent.

b. Sequential Task Ordering
Workflows may also contain dependencies between services, for exatmgle the
output of one service provides the input for another.

W.2. Use of Appropriate Reward Model
An appropriate reward model should be present to express the vatuearkflow. This
should take into consideration not just whether a workflow has beeessfatly executed
or not, but also the timeliness of this event.

1.4.3 Agent Requirements

This section contains an overview of the requirements that a succegsiuessonsuming agent
must meet in a distributed environment.

A.1. Principled Decision Framework
The techniques developed in this thesis must allow an agent to make autondewdus
sions with little or no human intervention. To this end, they should be based wnci p
pled framework (such as probability and decision theory), in order to wgjdneric and
widely applicable model that deals effectively with a range of scenarioshd context
of such a framework, we will strive to maximise some objective performaritzia, but
not necessarily obtain optimality where this would be impractical.

A.2. Failure Handling
The agent must be able to handle service failures in an appropriate maiiseshould
include:

Chapter 1 Introduction 9

a. Reactive Failure Handling
When failures occur, it is vital to respond accordingly and minimise the dismp
to a workflow.

b. Proactive Failure Avoidance
When an agent is faced with tight deadlines or when it has to rely on eivpearsd
time-consuming services, it must deal with failures proactively by takingogpp
ate actions to reduce their probability of occurrence. This might includarady
provisioning, using more reliable providers or including redundancy irkfiaws.

A.3. Scalability
The strategies that an agent employs must be scalable to large systems. ageitihe
might potentially interact with huge numbers of providers, any strategieswuauktwell
in systems of varying sizes. This similarly applies to workflows consisting ofyrteesks.
More specifically, we expect our strategies to handle systems with thaeaprbviders
and workflows consisting of hundreds of interdependent tasks

A.4. Adaptivity
Our techniques must be able to adapt to new events as they occur, evey ifi¢he
not initially planned for. Such adaptation might include selecting faster, mqrensive
services when a workflow begins to fall behind schedule, or, coelesicking cheaper
services when the agent does better than expected.

1.5 Research Contributions

Given the above requirements and our aim of developing suitable metholsiliding a ser-
vice consuming agent, we have identified the proceggmifisioningservices as a key area to
investigate. Provisioning, i.e., the selection of particular service instancepécific tasks of
a workflow, has received comparatively little attention in the research literatufar, but we
believe that it is vital for controlling and mitigating nondeterministic service perémce. Pro-
visioning providers in an appropriate manner will allow a service consunwdiffezentiate be-
tween providers that offer a service at differing levels of quality or bditgt and to invest extra
resources in tasks that are particularly critical. Furthermore, re-pooig providers on-the-
fly enables the service consumer to respond quickly to failures andeepattially complete
workflows without starting from scratch.

To this end, we develop a novel model for a distributed system and for simgplélows, which
can be used in a wide range of application areas — from Grid to Web semicepeer-to-peer
systems. In the context of this model, we describe a number of provisiomaigges, and, in
doing so, advance the state of the art in service provisioning as follows:

We believe these numbers represent a challenging scenario givempita tyumbers of providers and tasks in
complex workflows (Li et al. (2004); Stevens et al. (2004); Zeng e2004)).

Chapter 1 Introduction 10

1. We present the first algorithm that provisions multiple services redhtiydi@mr partic-
ularly critical workflow tasks in an automatic and principled manner, baseskorice
performance information and the predicted benefit of doing so. Intiodwstich redun-
dancy allows the consumer agent to decrease the probability of worldlwefs, and we
show empirically that our algorithm outperforms existing approaches thadtdmonsider
uncertainty or use redundancy in a static manner.

2. We explicitly consider the problem ofashfailures in service workflows, where services
appear to work on an assigned task, but in fact never return a reshilie @xisting work
assumes either timely error messages or manually fixed time-out values, seaipfer
the first time, a method for flexibly determining how long to wait for service®taef
re-assigning a task to a different provider.

3. In developing the above two contributions, we show how our technicare®e applied
in environments where different amounts of performance information itabl@ about
service providers. When this is extremely limited, the agent can use taskisEor-
mation to make fast decisions within a restricted decision space. In this casgewhe
first to describe how the consumer can address uncertainty proactithlyut specific
information to distinguish between providers. On the other hand, when tiseioter has
detailed knowledge about each provider, it can harness this to notelekt the most ap-
propriate one, but also to rely on multiple heterogeneous providers fogla sask where
this is beneficial.

4. When services are provisioned using advance agreements, wetstidhe service con-
sumer can benefit significantly by gradually provisioning its workflow dyerecution,
rather than provisioning all tasks at once (as is done by existing worken@ble such
behaviour, we present a novel strategy that predicts the benefivaheg provisioning
and balances this with the risk of losing agreed services due to task conflicts

5. We discuss a highly adaptive provisioning strategy that continuouslypocates new
information about service performance into its decision-making procedutedime,
and changes its behaviour accordingly. In this context, it is the first gyréhhat uses such
information not only to react to outright failures, but also to make additioralipions
when the workflow begins to fall behind schedule, to reduce its investmérs services
perform better than expected, and to realise when to completely abandofeasible
workflow.

These contributions have led to a number of peer-reviewed publications:

e Stein et al. (2006): Stein, S., Jennings, N. R., Payne, T. R. 2006. Flexible provision-
ing of service workflows. IrProceedings of the 17th European Conference on Artificial
Intelligence (ECAI-08)pp. 295-299. IOS Press.

Chapter 1 Introduction 11

This paper describes a provisioning algorithm that uses redundanagt(i@ution 1) and
flexible service time-outs (Contribution 2) to address uncertainty in enviemts where
highly limited performance information is available (part of Contribution 3).

e Stein et al. (2007a): Stein, S., Jennings, N. R., Payne, T. R. 2007. Provisioning het-
erogeneous and unreliable providers for service workflowsPrbteedings of the 6th
International Conference on Autonomous Agents and Multi-Agent Sy$fehMAS-07)
pp. 523-525. ACM Press.

This short paper presents a new algorithm for provisioning services wiese are highly
heterogeneous (Contribution 3).

e Stein et al. (2007b):Stein, S., Jennings, N. R., Payne, T. R. 2007. Provisioning heteroge-
neous and unreliable providers for service workflowsPtaceedings of the 22nd AAAI
Conference on Artificial Intelligence (AAAI-Qfp. 1452-1458. AAAI Press.

This is an extended version of Stein et al. (2007a), presenting a mtaedediscussion
of the algorithm, further empirical results and an improved algorithm thatsfimdolution
in less time.

e Stein et al. (2007c¢):Stein, S., Payne, T. R., Jennings, N. R. 2007. An effective strat-
egy for the flexible provisioning of service workflows. Rroceedings of the Interna-
tional Workshop on Service-Oriented Computing: Agents, SemantidsEagineering
(SOCASE-07)LNCS 4504. pp. 16-30. Springer.

This paper extends the work in Stein et al. (2006) by improving the te@wmigsed to
predict the expected utility of a provisioned workflow. It also shows ecafli that our
algorithm is robust in the presence of inaccurate information about sewioviders.

e Stein et al. (2008a):Stein, S., Payne, T. R., Jennings, N. R. 2008. Flexible provisioning
of web service workflowsACM Transactions on Internet Technolo@y4). ACM Press.
(in press).

This article is a long journal version of the contributions described in Steal.2006)
and Stein et al. (2007c). In addition to these, it contains further empirieallts, a
comparison of our heuristic to the optimal strategy, a bioinformatics applioati@ample
and a significantly extended discussion of the context and limitations ofanlt w

e Stein et al. (2008b):Stein, S., Payne, T. R., Jennings, N. R. 2008. Flexible service provi-
sioning with advance agreements.Rroceedings of the 7th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMASAT@Y Press. (in press).

This paper describes a strategy that gradually provisions serviceg @&ldance agree-
ments (Contribution 4) and continuously adapts its decisions as new informatmmes
available (Contribution 5).

Chapter 1 Introduction 12

The research results presented in the above publications are summads®ganded upon by
this thesis. To guide the reader through the remaining chapters, the folleedtign contains a
brief outline of the thesis structure.

1.6 Thesis Outline

The remainder of this thesis is structured as follows: In Chapter 2, waucoadhorough survey
of current research in the context of our requirements. We are particinterested in the extent
to which our requirements are already met by current work, what moddi$rameworks we

can build upon and where further improvements are needed.

Following this, Chapter 3 establishes a formal background for our wargarticular, we pro-
vide a formal model of a service-oriented system, we describe the wesk#in agent faces, and
we outline an example application scenario for our work, based on a himiafics workflow.

Then, in Chapter 4, we develop a novel provisioning algorithm for enwirents where limited
performance information is available about service providers. In the shaper, we conduct
a thorough empirical evaluation and show that the algorithm performs seymifycbetter than
existing approaches. This chapter collates the results published in Stei(260&), Stein et al.
(2007c) and Stein et al. (2008a).

This is then followed in Chapter 5 by an extended system model that incledei$ed perfor-

mance information about heterogeneous service providers (i.e., whaseprwviders offer the
same type of service at varying levels of quality). In that chapter, wenebaar algorithm for

such environments and show that it outperforms other approachesch@péer includes the
results published in Stein et al. (2007a) and Stein et al. (2007b).

Next, in Chapter 6, we consider service-oriented systems, where prexadd consumers reach
explicit advance agreements about the provision of services. Againutliae a flexible pro-
visioning algorithm to address uncertainty in these systems and demonsttaiteptirforms
better than the current state of the art. This chapter contains the resulshpdbn Stein et al.
(2008b).

We conclude in Chapter 7 with a summary of our research and an outloakwe fvork. This
is finally followed by the appendices, which provide further backgrounfidrmation on our
work. In particular, Appendix A investigates how sensitive it is to inadeusgrvice perfor-
mance information, Appendix B discusses its scalability, Appendix C showshigroblems
we consider are NP-hard, Appendix D derives in more detail some ofjtiens presented in
the main body of the thesis and Appendix E lists the acronyms we used thrdumirovork.

Chapter 2

Literature Review

In this chapter, we provide a comprehensive overview of currepareh in the area of service
provisioning, and evaluate this with respect to our specific requiremetiisezliin Chapter 1.
The literature review is divided into four main sections. The first thredj@ex2.1-2.3, contain
a survey of the background technologies that our work builds upoecifsgally, we discuss in
more detail the paradigms of service-oriented computing (Section 2.1) andageii-systems
(Section 2.2), motivate their use in the context of this research and preeide example ap-
plications. In Section 2.3, we briefly cover reliability engineering as a sooftechniques for
addressing uncertainty. In the fourth part of the chapter, Section 24¢eus on our overall
research aim of executing complex workflows in service-oriented emvienmts. To this end, we
investigate current approaches and algorithms for provisioning araligxg services that are
part of workflows. Finally, we conclude in Section 2.5 by summarising odirigs and relating
them back to our original requirements.

2.1 Service-Oriented Computing

As stated in Section 1.2, service-oriented computing is a methodology foingfiend consum-
ing resources and functionality over a distributed computer system. Hidtgrittee sharing
of resources between distributed computers has often been consigher¢iaus it is not a new
concept in itself. However, most early systems were built for a specigloge and so they
usually employed ad hoc mechanisms in order to interoperate (Kahn (Iaight (1972);
Kang et al. (1988); Neches (1993)). This meant that the systems vilevabie, relied on static
links between components and used application-specific protocols anchddéds (Singh and
Huhns (2005)). When taken together, these factors led not only todai@gion costs, but also
required complicated and expensive maintenance when componentsdserkta or removed
from a system (Casati et al. (2001)).

The Service-Oriented Computing (SOC) approach addresses theseostings by allowing
services to be discovered and invoked automatically at run-time rather twgkthmanually

13

Chapter 2 Literature Review 14

Service
Registry

Publish

Service
Consumer

Service
Provider

FIGURE 2.1: Basic model of the participants in a service-orienteiesn and their interactions
(arrows originate from the usual initiators of the corragiag interactions).

specified and fixed application interfaces. To illustrate this and to furthenéxour brief intro-

duction in Section 1.2, Figure 2.1 shows the basic interactions betweeneseovisumers and
providers that are a central feature of most contemporary servieeted systems (Agrawal
et al. (2001); Papazoglou (2003); Huhns and Singh (2005)). llysaaservice provider will

publish descriptions of its services on some registry, which is accessibdéeiotial consumers.
When a consumer requires a certain service, it will then search the yegibtain the rele-
vant information about providers offering the service, and start to camoate directly with a

chosen provider.

The fundamental advantage of this process is that it is fully automated gode® no hu-

man intervention. This is achieved by using computer-readable descrigtigervices, so

that consumers can automatically match their requirements with service offenmmugadapt to
service-specific interfaces and protocols. In order to enable suomation, service-oriented
frameworks normally rely on standardised data formats to describe searidgheir interaction
protocols (e.g., WSDL and SOAP, which are discussed in Section 2.1.1).

In more detail, Huhns and Singh (2005) give several reasons wiyasuapproach is appropri-
ate for building large open systems consisting of many interacting computagigaals. These
include:

e Services are suitable abstractions of the functions that agents providehgher (not
least due to the analogous use of the word in the real world). Specifitadly,are at a
higher level than components in traditional software modelling approaelgs ¢bjects
or procedures), they enforce loose coupling and, hence, simplify thiermeatation of
complex applications.

e Shared data formats, protocols and computer-readable service iatedlbmy heteroge-
neous software components to communicate and interoperate, even if treynvpe-
mented in different programming languages, reside on various platfordnwene never
specifically designed to exchange data with each other.

Chapter 2 Literature Review 15

e By publishing service descriptions in public registries, providers ar@nigtable to ad-
vertise their services to a wide audience, consumers, in turn, benefiaftarge choice of
potential services to meet their needs. This allows them to provision ajgieopervices
dynamically, depending on non-functional selection criteria, including, cesability,
guality or trustworthiness.

These reasons, coupled with the more general trends outlined in Sectitviadeled to a surge

of interest in service technologies. Several major companies offefagement platforms and
tools for building service-oriented applications (such as Sun'$,Jicrosoft’s .Net platform

and IBM’s Webspher). At the same time, a number of standardisation efforts have emerged to
enable the interoperation of services, including CORBA (Yang and D(B6)), Web service
standards (Kreger (2003)) and the Grid service architecture (TAIG2{2.

Because of these trends and the reasons given above, we adoptsSOfonceptual model for
our own work. In the following sections, we introduce several repriegize service-oriented
frameworks to give an indication of the current state of the art and tageadarget applications
for our research.

2.1.1 Web Services

Web services have become a popular technology for enabling the intesastiown in Fig-
ure 2.1 by providing common protocols and data formats for service comswmd providers
to communicate over the Internet. In more detail, two core technologies gtverase of
Web services: the Web Service Description Language (WSDL) and thdeS@igect Access
Protocol (SOAP). The former is a language for describing how to ineokéeb service, the
operations it provides, and, in particular, the data types that the sempeets and returns
(Christensen et al. (2001)). Messages to and from service previdaerbe sent using SOAP, a
protocol for exchanging XML documents over the Internet, usually ugiegHypertext Trans-
fer Protocol (HTTP) (Mitra (2003)). To complement these technologfiesUniversal Descrip-
tion, Discovery and Integration (UDDI) specification defines a suitablderegistry to allow
providers to advertise their WSDL descriptions and other relevant intavmo potential con-
sumers (Curbera et al. (2002)).

There are several reasons for the growing popularity of Web servidee ubiquity of TCP/IP
and the potential for worldwide interconnectivity of applications certainlgtiGoute to their
success. Additionally, they can be built using free technologies andargehdata using the
Extensible Markup Language (XML), which is widely supported on a eaoigplatforms and
programming languages (Bray et al. (2004)). Legacy applicationslsareasily be exposed as
Web services, as usually only a small overhead is needed to create Widicedeto existing

http://www.sun.com/software/jini/
2http://www.microsoft.com/net/
Shttp://www.ibm.com/websphere/

Chapter 2 Literature Review 16

applications (Coyle (2001)). Another advantage is the fact that spaiis for describing and
invoking Web services have been developed in a communal effort leceByW8C*, resulting in
increased standardisation and interoperability.

At this time, Web services are being widely adopted by a range of orgamisatidis can be

witnessed by an increasing number of companies that offer their seorieethe Internet using

the specifications described above. These include services that fathigad@tomatic trading

of goods (e.g., services offered by Ama2@mnd eBa$), information providing services (e.g.,
Web services by Googieand Yaho8) and data processing services (e.g., BC2

In particular due to its spreading popularity, the Web services framewaaknigtural target
domain for our research. Furthermore, it aligns well with the broad trehdistributed systems
we identified in Section 1.1:

e Common protocols and platform-independent data formats di&terogeneouservices
to communicate.

e Services are not directly under the control of their consumers and mesfahe display
uncertainty in their behaviour.

¢ Using the Internet as a basic infrastructure results in an inherepéy system.

Moreover, there has been considerable work on addressing sdsatigs within the Web ser-
vices framework, which is a key concern in distributed systems (Naede@8)YR Languages
such as WS-Security and WS-Trust allow service providers and o@rsuo specify security
mechanisms that they require for their interactions (Nadalin et al. (200@&)R0These mech-
anisms typically refer to well-established standards and protocols, e.fpetder(Neuman and
Ts'o (1994)) or X.509 (Cooper et al. (2008)), and address iskke¢he authentication of in-
teraction partners, message encryption, message integrity preservatianaess policies. As
such, they are essential in providing a basic level of robustness to maliaitacks or eaves-
dropping by third parties. However, they do not directly address thertainty and autonomy
of service providers, which may still defect or behave in an erratic nrgjalespite adhering to
specified security policies).

Given the popularity of Web services, their suitability for open distributestesys and the
existence of a robust infrastructure that already addresses basiityéssues, we develop an
abstract model of a service-oriented system in Chapter 3 that is basadlyoon the current
Web services framework. Although not explicit in the specifications, ugieh services as a
basis allows us to construct a model that includes uncertain serviceibefsagRequirement

“http://www.w3.0rg/2002/ws/
Shttp://aws.amazon.com/
Shttp://developer.ebay.com/
"http://code.google.com/
8http://developer.yahoo.com/
%http://aws.amazon.com/ec2/

Chapter 2 Literature Review 17

M.1), heterogeneity (M.4) and dynamism (M.5). Already, the Web senfieesework meets
our requirement for covering on demand service invocation (M.3.a) twiging a mechanism
that depends largely on just-in-time invocation of services.

However, Web services do not readily provide mechanisms that satisif@llr requirements.
In particular, current Web services are either provided free ofgehar use ad hoc payment
mechanisms, often external to the service framework (i.e., consumanrgapayment manually
and through separate systems, as is the case for most companies mertioveld &uch a
process is labour-intensive and incompatible with the vision of servicetedesystems where
services are discovered and selected dynamically depending on ther@rsneeds.

Additionally, Web services typically use simple on demand invocation (Cumtesh (2002)),

much like remote procedure calls (Nelson (1981)). This widely used mat&pmappropriate

for services that are offered by autonomous agents, because it im@ied/d services are,
like software procedures, dependable and predictable componentgéed in Section 1.3,
this is an unrealistic assumption. Furthermore, on demand invocation pre¢helpossibility

of provisioning services in advance — one of our requirements (M.3.b).

In the following sections, we continue to outline some of the most prominent @mgeagplica-
tions of SOC. Specifically, we descrilBrid computingto highlight an important target domain

of our work and show how service remuneration is beginning to be asktidSection 2.1.2),

we briefly mentiorpeer-to-peesystems as a particularly dynamic and open environment (Sec-
tion 2.1.3), and, finally, we give an overview of how the Semantic Web is agetsto influence
SOC (Section 2.1.4).

2.1.2 Grid Computing

Grid computing is an approach for sharing heterogeneous computatesmalrces (services,
data or simply spare processing cycles) across distributed systems osinga protocols and
data formats (Foster and Kesselman (1999); De Roure et al. (2003)hdét et al. (2005)).
For this reason, it is closely related to the field of service-oriented compuiihigh shares
similar goals. However, Grid computing is a more specialised area that targedsitiain of
high-performance applications and inter-organisational collaboratiose §pecifically, Grid
systems aim to allow companies and research institutes to pool their resdynzesically in
order to collaborate on large projects or offer specialised servicestoother.

This vision is outlined in detail by Foster et al. (2001), who introduce the natfanVirtual
Organisation (VO) Here, a VO is a set of individuals and/or institutions that have agreed to
collaborate and share resources, according to a set of well-deficedsapolicies. These VOs
are formed when the need for collaboration arises, for example as ongaog requires a high-
performance image processing service or as several service pwoem@bine their offerings

to produce a new product. This VO formation process might involve agmtsrigat are made

Chapter 2 Literature Review 18

by humans outside the Grid system (Verma et al. (2002)), or it might beedayut automati-
cally by software agents that search for and make agreements with appecervice providers
(Norman et al. (2004)).

These concepts of high-performance distributed computing and the fonm@tddOs among
heterogeneous resource providers are central to Grid computinghianid what defines the
field, rather than a particular implementation. However, several systemesaadhave emerged
(Baker et al. (2002)). One prominent example is the Open Grid Serviggstécture (OGSA)
(Foster et al. (2002)), which is based on the Web services framewtliked in the previous
section. In this model, Grid resources are offered as Web servicésh Whve been extended
to facilitate the formation of VOs. In particular, this is achieved by definingquals for man-
aging the lifecycle of services (so that service consumers can claimroesoand release them
as needed) and natification mechanisms that keep the consumers inforowtdhegbstatus of
its services. The Globus toolkit (Foster (2005)) provides additional tmoisplement Grid
systems and includes a set of Grid services for common tasks (sucheaiief), monitoring
and discovery services), a messaging infrastructure, security nmsgisaand service containers
that facilitate the deployment of new services. Many current Grid implemengatise these
technologies to manage increasingly large systems, from the Open Sciedd®&des et al.
(2007)), the D-Grid (Gentzsch (2006)) to the National Grid Servicel@@e (2006)).

As such, Grid computing has so far concentrated on building the negesfastructure to
allow large numbers of users access to shared resources. Thishisedén systems that are
scalable and secure, but that are also tightly regulated by human adminssénadithat assume
essentially cooperative participants. Foster et al. (2004) argue th#&aldisto considerable in-
flexibility, especially as Grid systems become increasingly heterogenedugpan. To address
this, they propose a synergy of the robust Grid infrastructure with the riexible decision-
making, coordination and negotiation procedures of multi-agent systenassiimilar spirit as
the overall aim of this thesis, such procedures would allow software apiplirs to take deci-
sions autonomously in open Grid systems, where service providerstayerrerally cooperative
and where there is some competition between users.

Against this background, there has already been some interest bystarale community in
dealing with competition amongst service consumers. In particular, som@rapesed the use
of appropriate economic models to allocate Grid resources to consumeng(Bual. (2001)).
While no standards or widely-used market mechanisms currently exist in ridled@main,
emerging work is addressing the need to account for the financial reatiomeof service use.
For example, the Grid resource broker Nimrod-G (Buyya et al. (20@2gats tasks from Grid
users and then allocates them to distributed resources that chargdrfsethizes. The current
implementation uses a simple pricing model that employs either fixed prices or ddrased
functions to charge consumers, but the authors discuss at length ty eduiaeher mechanisms,
such as auctions or bilateral negotiation to determine prices. UnfortunielMimrod-G bro-
ker is not directly applicable to our work, because it relies on a centraiisszhanism that
expects truthful service descriptions, does not take into accouniabiesproviders and offers

Chapter 2 Literature Review 19

little scope for customised reward functions to guide its decisions (it minimises eitseor

execution time). Nevertheless, the pricing models discussed by the auffeora first step to-
wards satisfying our requirement for addressing service remunef@&egquirement M.2), and
we will use a similar fixed pricing scheme in our own model in Chapter 3.

While the emphasis of Grid computing has been on building large systems fepargdrmance
computing with well-defined access policies, security and authentication meofswand clear
hierarchies and boundaries of VOs, in the following section we examing@amach to dis-
tributed computing that does not rely on such a well-defined infrastructure.

2.1.3 Peer-to-Peer Computing

Another emerging paradigm for designing distributed systems is Peeretgf#®&P) computing
(Oram (2001); Schoder and Fischbach (2003); Chawathe et &3)R0In a similar vein to
SOC and Grid computing, its goal is to enable the sharing of data or resdugbeeen large
numbers of heterogeneous agents (Foster and lamnitchi (2003))evdgwhe characterising
feature of P2P systems is their self-organising and highly dynamic natulteougyh initial
systems such as Napster used central servers to track participantseargh#ived resources
(Saroiu et al. (2003)), current P2P systems are often entirely datisatt. Rather than relying
on a fixed infrastructure or central servers, these systems formadédtaorks that connect
each participating agent to a setgsers(Zhao et al. (2004)). Each peer is, in turn, connected to
others, forming armverlaynetwork that is independent from the underlying transport network
(such as the Internet). In these networks, various techniques areyeupto allow agents

to discover shared resources. They inclideding where queries for resources are sent to
all neighbours and then propagated through the network (Saroiu &0&i3)), ordistributed
hash tableswhich structure the network such that queries can be efficiently routedleant
participants (Ratnasamy et al. (2001); Stoica et al. (2001)).

While initial applications for P2P systems were restricted to file sharing betingrar computer
users (Matei et al. (2002)), the area has spawned several efforésl at exploiting processing
cycles of idle desktop computers (Richards (2002); Anderson etG02)2. Furthermore, some
work has been carried out to establish generic service frameworkp @i R2P systems (Gong
(2001); Anderson (2004); &ber and Niller (2007)), but none has so far been widely adopted
and most applications in this field remain specialised to one particular purposk &s file
sharing).

As P2P systems have seen wide deployment with large numbers of particjEthts than
the small-scale Grid prototypes in use today), they most clearly show some tktids we
predicted in Section 1.3. In particular, they highlight the self-interestedaafuparticipants,
the need to deal with failures and the requirement of employing appropriateamems to
incentivise providers to offer their services (Golle et al. (2001)).tRese reasons, P2P systems
first offer some simple techniques that may help satisfy our Requirement Application

Chapter 2 Literature Review 20

failures, for example when an agent leaves the network before complstsegvice, are usually
addressed either by trying to contact a different provider or by mgethe same service
redundantly from several providers (Milojicic et al. (2002); Friesalet2005)). However, these
approaches are specific to the application, do not take into accountttrgipbcosts of service
failures (or unnecessary redundancy), nor do they use domainédagato react appropriately
to particularly failure-prone tasks or untrusted service providers.eilesless, these methods
form the basis of a more flexible service provisioning strategy that wdagire Chapter 4.

Having discussed several important target domains for our work, weeramine a recent field
that addresses some critical shortcomings of current SOC apprdacheswving on research in
the Semantic Web.

2.1.4 Semantic Web Services

The current state of the art in SOC, as exemplified by the Web servicgesvrark in Section
2.1.1, addresses some fundamental issues concerning the interopeséhiityrogeneous soft-
ware components by standardising shared protocols and data formateveétpthe facilities
for dynamically selectingervices are severely restricted. As discussed, WSDL descriptions
published on UDDI registries provide the main mechanism for discoveripgppate services.
Unfortunately, these descriptions contain information only about the da¢a that the service
accepts and returns and are hence purely syntactic in nature. Yetjegeadinamic selection,
a computational agent needs to understandrbaningof a service in relation to its own goals,
i.e., whether a given service is actually sufficient for the task at hani i Iparticularly im-
portant as services are offered across organisational boundagesritten and maintained by
different programmers and hence follow different usage conventions

To address these shortcomings and to enable the dynamic discoveryioésethe area of Se-
mantic Web services is concerned with employing logical formalisms for dé@sgréervices
(Mcllraith et al. (2001); Burstein et al. (2005)). These formalisms arged in technologies
emerging as part of the Semantic Web, an effort to present knowledgeamputer-readable
format across distributed information sources (Berners-Lee et &@1]P0At the core of these
fields areontologies formal specifications of conceptualisations (Gruber (1993)) (exmlgsit
scriptions of abstract concepts and their logical relationships), andjbets that populate them
(concrete instantiations of abstract concepts).

Itis envisaged that providers will be able to describe their services in a expressive way than
has hitherto been possible by using such ontologies. This is due to sateaaltages that these
formalisms offer over the purely syntactical WSDL description. First, ogiekallow service
providers to use common service vocabularies, which describe unaraklgube characteris-
tics that all services share, including how to specify the inputs and ouipté&saction protocols
and the effects of services (Martin et al. (2004a)). Second, as Sergelicechnologies are
specifically designed to allow the distributed representation of knowledgécs descriptions

Chapter 2 Literature Review 21

can refer to concepts and objects that are defined elsewhere (H&@ba)). This means that
services can use the vocabulary of other domains, for example to detdwibypes of data they
accept, how they interact with real objects or even how they relate to athdce instances.
Third, the use of logical formalisms allows consumersstsonabout services. Hence, the con-
sumers can pose complex queries about the types of services theynoaating specific con-
straints, and then use reasoning algorithms to find matching instances @aolakc (2002)).
Even when the service providers and consumers use different om®lagpresent incomplete
information, as is likely in such heterogeneous scenarios, appropriatddage and mapping
rules from distributed sources may help the consumer reason acrasemtiffocabularies and
find appropriate matches (Noy and Musen (2002)).

To date, several approaches have been proposed for descrilghgs&Wices using ontolo-
gies. OWL-S is a service ontology (Martin et al. (2004b)), expressdtiériwWeb Ontology

Language (OWL), a popular description language developed in thedafthe Semantic Web
(McGuinness and van Harmelen (2004)). As such, it builds on par#itet®to describe knowl-

edge on the Semantic Web, and OWL-S, as well as its predecessor, AMave been widely
used in research on Semantic Web services (Narayanan and Mcllr@@B)(Z5ibbins et al.

(2003); Sirin et al. (2003); Wu et al. (2003)).

Another approach, the Web Service Modeling Ontology (WSMO) (Romah €2005)), also
provides an ontology for describing services. However, while theadivaims of these efforts
are similar, WSMO differs from OWL-S both in the formalism employed and itsallvecope.

WSMO uses its own family of logical modelling languages, most of which arecbas Frame
Logic (Kifer et al. (1995)). Furthermore, it includes an associatedwi@n environment, re-
sponsible for discovering, aligning and invoking services. While this esdime functionality
of the approach, it also removes the autonomy of the service consumavdsecits preferred
services and control the reasoning process.

Finally, a generic language for specifying Semantic Annotations for WSRL&@ML Schema
(SAWSDL) has recently been published as a W3C recommendation (Kpe¢ak. (2007)).
This language allows WSDL descriptions to refer to semantic concepts frdotogies, for
example to formally define Web service operations or their input and ougrateters. As
such, it builds closely on an established technology and can therefsile lea used to extend
existing service descriptions. However, unlike OWL-S and WSMO, it do¢suggest a generic
service ontology and it is agnostic towards any specific formalism foesgmting semantic
concepts.

In summary, semantic descriptions of services are an important step tosveakling the dy-
namic discovery and selection of services. While the research outlineddbes not satisfy
any of our requirements directly, we mention it because it is developing aevitdlling tech-
nology for our work, and we envisage our techniques to extend andleorapt methods in
this area. It should also be noted that significant work on the dynamic citigooof services

Chapter 2 Literature Review 22

has emerged from the field of Semantic Web services. As this topic is related goal of
executing workflows of multiple services, we will return to it separately iniSe@.4.2.

As we have seen so far, most work in the area of service-oriented ¢mghas concentrated
on describing the functional properties of services and on enablingolgetgeous applications
to communicate over a common network infrastructure. However, there ig@aging interest
in describing the non-functional characteristics of services, in orden#dble consumers to
provision suitable services and to reach explicit contracts with provid&eswill outline this
research in the following section.

2.1.5 Quality-of-Service

A growing body of research is beginning to address Quality-of-Se(@Qos) issues in service-
oriented computing (Menasce (2002); Ran (2003)). This resealcioatedges that relying
only on functional service descriptions is insufficient for the widespradoption of service-
oriented computing in large distributed systems, and so considers how tibdestonitor and
publish the non-functional properties of services. In particular, méthyeoservice technologies
described earlier have been extended to include properties such astheslability, response
time, availability and privacy or security guarantees of a service. Fanpbea D’Ambrogio
(2006) describes an appropriate extensions for WSDL, Wang et0816§Zhow how a QoS on-
tology can be added to WSMO and Zhou et al. (2004) develop a similar ogtido@AML-S.
These formalisms allow consumers to reason about the non-functioretasy services and
formulate more expressive service requests than in frameworks thatongjder functional
properties.

There have been several proposals on how this QoS information caggbegated and made
available to consumers. Ran (2003) describes an extended UDDI ydagstrallows providers
to publish their non-functional service characteristics and suggestsséhefua neutral third
party to certify that these are in fact truthful. In the Web Services AgesmhEwork (WSAF),
Maximilien and Singh (2004) use service proxies that automatically seleob@igte service
implementations based on a consumer’s service request with QoS constiidietse proxies
then monitor the performance of the selected service, collect feedlankifie consumer and
use this information to build up more accurate performance profiles forefsenvice selection.

While the above technologies are used to describe the general Qo$tehatizs of services,
the Web Service Level Agreement (WSLA) language allows a servicgucoer and provider to
express specific terms for their interactions in the form of a machine{sadantract (Ludwig
et al. (2003)). Besides covering standard performance terms (etighility, response time
and so on), such a Service Level Agreement (SLA) specifies howdtiermance metrics are
calculated and monitored at run-time (possibly enlisting the support of a thitg)@nd how
the parties should respond in case the terms are violated (e.g., by notifyicgrtsiemer or even
by paying a financial compensation).

Chapter 2 Literature Review 23

Generally, there has been some interest in enabling explicit advanaaragres between con-
sumers and providers for the provision of services. Web Servicesefmgnt (WS-Agreement)
also provides a language for specifying SLAs, but additionally corsitter overall lifecycle
of an agreement, including its initial negotiation, possible re-negotiation guidyedAndrieux
et al. (2007)). However, both WS-Agreement and WSLA only define #wessary languages
and protocols to reach an agreement, without describing how computeradiops might make
automatic decisions about these at run-time (in Section 2.2, we will discuss endatail how
technologies from the field of multi-agent systems may help automate these dggisio

In the context of Grid computing, Czajkowski et al. (2005) argue thatace provisioning
will become more important over the coming years and gradually replace thentpractice
of on-demand provisioning, where resources are made available oy thiey are actually
needed by the consumer. The authors believe that this will lead to highdsiligliand quality

of services, and allow consumers a higher degree of control andiliigxithen choosing their
services. This view is supported by an empirical study conducted by ®irgh(2007). Here,
the authors propose a strategy that provisions Grid resources incadfa@ra workflow, given
a set of offers from all service providers (which are assumed to li@bie). They show that
their strategy begins to outperform an approach based on on-denwisiqgming as workflows
become increasingly parallel and there is an increasing load on the syspemificlly, their

strategy completes workflows in a shorter and more predictable amount of tansgnailar cost.

In summary, the current work on QoS in service-oriented computing ismaigirtgy development
that will help consumers address the uncertainty and dynamism in large utistrigystems. In
particular, consumers can use the performance information availablegthfoS ontologies
and repositories to select more reliable services that are appropriateefoworkflows, and
we will discuss a number of current approaches for this in Section 2.48itidnally, explicit

service contracts and advance provisioning further reduce thetamtgrin service-oriented
systems, as consumers can negotiate over the time-scales of servicasygrehalties that
should be imposed in case of failure. However, using such a contraalmods not in itself
provide a reliable system — providers may still fail or defect maliciouslysiodg leaving the
system without paying the agreed penalties.

The work mentioned here is vital for addressing our model requiremeings, oS ontologies

and related work on monitoring service behaviour over time allows us to &pon-functional

service parameters of hetergeneous providers (Requirements M.1, M.2.and M.5). Sec-

ond, work on advance provisioning and SLAs (along with the negotiatidmigues that we

discuss in Section 2.2.2) is an important enabling technology for reachwamesl agreements
and to provide flexible pricing mechanisms (Requirements M.2.b and M.3.b).

Now, having discussed service-oriented systems, applications andireabmologies, we turn
towards the field of multi-agent systems. This research area has attisgsse issues that are
central to our research, but that have so far been largely oveddnkesork on SOC. These in-
clude the need to make rational decisions in uncertain environments, to neodeegproviders

Chapter 2 Literature Review 24

as automous agents that do not always behave as they are told, andetonpdaactions of
self-interested agents in the context of appropriate remuneration metisanis

2.2 Multi-Agent Systems

In Section 1.3, we introduced the notion of autonomous agents and outlinedhpertance
in the context of large-scale distributed systems. Specifically, we usedatemnmetaphor for
service providers and argued that such providers are self-intér@stetherefore inherently un-
reliable. While autonomous agents provide the general motivation for o, vinathis section,
we turn our attention towards particular research topics and techniquasedtreborne out of
research into multi-agent systems.

To this end, in Section 2.2.1, we first look at general techniques for bgildimputational
agents that make decisions on behalf of their human users. Then, in S2&idnwe examine
the economic mechanisms and protocols that have been developed to halesetited agents
reach mutually beneficial agreements. In Section 2.2.3, we discusstcapm@oaches for mod-
elling the trustworthiness of agents and exchanging this using reputatioranigets. Finally,
in Section 2.2.4, we highlight some existing work that already employs agsatthiachniques
to build distributed service-based systems.

2.2.1 Building Decision-Making Agents

The autonomous self-interested agent is a metaphor suitable not onlydi@ctérising ser-
vice providers, but also for helping build a service-consuming agetintaites decisions in
uncertain, dynamic environments (recall our overall objective giveneicti® 1.4). Several
approaches exist for building agents in generaili{bt (1996); Wooldridge (2002); Russell and
Norvig (2003)), includingeactiveapproaches that display emergent behaviour by applying sim-
ple rules (Brooks (1986)) or logic-baseshsoningagents that manipulate symbolic knowledge
in order to produce plans that fulfil their goals (Georgeff et al. (1R99Yhile each of these
techniques has seen some successful applications (Luck et al. (Be&)heanu et al. (2006)),
neither applies directly to our work, because we need to take into accooettainty (Require-
ment M.1) and an economic setting where agents are self-interested aad same financial
remuneration (M.2).

Instead, we turn towards a field that has been widely applied in settings wilodédecisions
with uncertain consequenceatecision theoryRaiffa (1968)). This field has recently emerged as
an important source of techniques for building computational agentsudecd its solid math-
ematical foundation for making the “best” decision under uncertainty ¢Rarand Wooldridge
(2002)).

Chapter 2 Literature Review 25

At the core of this work is the concept of a privaiiity function« : S — R that maps a given
situations from the set of all situation§' to a real number(s) — the decision-maker’s value,
or utility, of being in the situatiors. Such a utility function represents the preferences of the
decision-making agent, so that the agent prefers being in situatiorbeing ins, if and only if
u(s1) > u(s2). The existence of this function arises from several basic assumptigasineg

the agent’s preferences (Von Neumann and Morgenstern (194dgseTassumptions (such as
orderability and transitivity of preferences) furthermore allow us to dateuheexpecteditility

of a gamble that involves several probabilistic outcomes. This is simply donibg tidne sum

of the utility values of all potential outcomes, multiplied by their respective fritiias. Hence,

we can write thiexpecteditility as follows:

u([p1, 813 .. Pns Sn)) = Zpiu(sz') (2.1)

where[p1, s1;. .. ; pn, sp] denotes a gamble that results in situatipavith probability p; (with

Zz‘pi =1).

Now, given this utility function to express preferences between situatiodggambles with
uncertain outcomes, decision theory includes the decision maker’s actithis imodel. This is
done by treating each decision as a gamble with different outcomes aribasdgrobabilities.
Hence, a decisioti; is treated as a gamb|g;;, s1;; . . . ; Dnj, Snj], Wherep;; is the probability
that the decision will lead to situation;. We can then express the expected utility of a decision
d; as follows:

u(d;) = Zpiju(si) (2.2)

Attaching such utility values to decisions offers an obvious tool for chgosite member of

a set of several possible decisiobs(a decision problem the principle of maximum expected
utility (Lindley (1971)). According to this, a decision-maker should alwayssk the decision

d* that maximises the expected utiliiyfd*):

d* = argmax u(d;) (2.3)
djED
This leads us to the definition ofrational agent:

Definition 1 (Rational Agent) When faced with a decision problef, a rational agent always
chooses a decisiaff € D that maximises its expected utilityd*).

In practice, rationality can be difficult to achieve — it may be impossible to eratmexl|
possible decisions in a given situation or there may simply not be sufficientaintieef required

Chapter 2 Literature Review 26

deliberation. Simon (1957) describes this problem (in the context of a hdesion-maker)
as the principle obounded rationality

The capacity of the human mind for formulating and solving complex problems is
very small compared with the size of the problems whose solution is required fo
objectively rational behavior in the real world — or even for a reaskEnapproxi-
mation to such objective rationality. (Simon, 1957, page 198)

Furthermore, he argues that, as a consequence of this boundedlitgtidwanans construct
highly simplified models of the world when making decisions. They then makeidesithat
are rational with respect to this model, but not even approximately optimahlegdaken into
account all options and information available to them. Essentially, these madeige de-
cisions that are “good enough”, satisficing for the purposes of the decision-maker without
maximising the overall achievable outcome.

Such a view of decision-making processes is similarly applicable when buitdimgutational
agents. Many seemingly simple decision problems are known to be intractabkodhus-
trate the difficulty of finding an optimal solution within limited time (Brassard and Byatle
(1996)). Yet, in many applications, computer agents need to arrive atsdwithin a rea-
sonable amount of time, using only the memory and information that is curreiikabhe.

For example, an agent controlling a spacecraft may detect a deviatiritf@ourse and must
decide whether to activate its thrusters and at what power (Muscettdla(£#998)). Now, the
agent’s decision making process is not only bounded by limited memory,gsiogespeed and
inaccurate sensor information, it is effectively situated in a dynamic envieot. While delib-
erating, the spacecraft continues to move, perhaps deviating furtmerits course. Similarly,
the agent could take more sensor readings to improve its information, batlaga valuable
time (and deplete its energy).

In our work, we face similar challenges as outlined by the example above.sydtems we
consider are dynamic (Requirement M.5), workflows may have strict timgicints (W.2) and
our methods must be scalable (A.3). More explicitly, Requirement A.1 statesuhagent must
make good decisions within the bounds of its limited computational capacity anddage.

In order to tackle such difficult problems, Simon and Newell (1958) pseddhe use dieuristic
methods. They modelled these on human problem-solving processes diadgar¢hat such
methods would enable computers to deal with problems previously deemedahtea(such as
chess-playing). In the current literature, heuristics are usually algwsittased on simplified
models of complex domains (Russell and Norvig (2003)). While heuristinshedp derive
optimal solutions without the need for an exhaustive search (Pear#i)}138ey often solve
simpler, tractable problems or iteratively improve a candidate solution until fesatisy answer
is found without necessarily guaranteeing this to be the overall maximumé@eldl. (1980);
Kirkpatrick et al. (1983); Michalewicz and Fogel (2004)). Such tios resemble very closely

Chapter 2 Literature Review 27

the bounded rationality that Simon observed in human decision-making, andlwsersimilar
techniques in this thesis to tackle difficult decision problems.

Now, heuristics are often successful in reducing the complexity of pmoislglving algorithms.
This might be achieved, for example, by suggesting a polynomial-time appriainta a prob-
lem for which all known exact algorithms have an exponential running-ti@aden et al.
(1980)). Furthermore, there has been considerable effort in ta@éaaytimealgorithms (Dean
and Boddy (1988)). These can be interrupted after an arbitrary arobtimte ¢ to provide a so-
lution whose quality is a monotonically increasing functiort.0buch heuristics are particularly
well suited for the problem we consider (and in particular our Requiremehfak scalabil-
ity), as they can be applied in complex environments where time is a criticalroesdtinally,
there has also been substantial work on determining decision-theoretioallgnbich timet to
allocate to the solving of a problem (Horvitz (1988); Boddy and Dean4)9%uch work is a
promising approach for building boundedly rational agents that take gtgbssible decisions
within a computationally limited framework.

The techniques discussed in this section will help us build a flexible decisi@mgiagent
capable of operating in the dynamic and uncertain environments we consigerticular, we
outlined some general methodologies employed to enable agents to make deimsians, and
thus satisfy our Requirement A.1. In the following section, we examine hosmiagent-based
research may help us address Requirements M.2 and M.3.

2.2.2 Cooperation through Negotiation

As discussed in Section 2.1.1, current approaches in Web serviceallygissume that pro-
viders offer their services unquestioningly and free of charge thraamote procedure calls.
Although we described some work in Section 2.1.5 that is beginning to adtieeksmation of
advance agreements, it has so far mostly looked at the syntactic definitiontediats and not
how they can be formed automatically by service consumers and provideésaneans that such
contracts are typically drawn up manually by human administrators. This isnadilesin highly
dynamic environments, where service providers and consumers asagaw to discover and
engage each other automatically, and where they are self-interestdd afpenseek to benefit
from their interactions (as argued in Section 1.3).

In order to reach mutually beneficial agreemeatgpmated negotiatiohas been suggested as
a powerful technigue in multi-agent systems (Rosenschein and Zlotkin ;1394nhings et al.
(2001)). This is essentially a distributed search through the space otijpbtgyreements among
several autonomous agents, involving the interchange of relevanimafian and ultimately
aiming to find an agreement that is acceptable to all participants.

In more detail, Figure 2.2 shows an example negotiation between a provider @ansumer
that demands service X to be performed immediately. Because the providelikeuo fulfil
this request, it responds by making a counter-offer for the same seivtwith a delay of ten

Chapter 2 Literature Review 28

minutes. Also, because it expects remuneration for its effort, it includes/dssae in its offer
— the price for the service. Now, the prospective consumer concgdaesciepting some delay
and a payment for the service, but it does not agree with the amounizsgapy the provider,
and so it makes another counter-offer. This is then agreed to by théderand becomes
binding for both agents.

Consumer Provider

“I want service X now”

\

“You can have X in 10 minutes for £5”

“I want X in 5 minutes for £2.50”

Y

f—-——t-———-—-1t - L _

“Accepted”

N Wi i’ S R

FIGURE 2.2: Example of two agents negotiating over the provisiosasfice X.

As illustrated by this example, there are several key advantages that e@ddtation a suitable
model for the interactions of self-interested agents in a service-orieatgext. First, it makes
explicit the need to find mutually beneficial agreements and includes the fibssitat ser-
vice providers are unwilling to cooperate. Second, it offers condidiefexibility by allowing
agents to explore the space of possible agreements. Hence, new asuesintroduced that
one agent did not consider, the agents can seek compromises and rthegocdinate if they
have incompatible goals or other commitments.

One of the first negotiation protocéfsfor computational agents was teentract net(Smith
(1980)). Figure 2.3 shows an example negotiation using this protocol. &sstyice-consum-
ing agent announces its requirements for a specific task to a set of plopeatiaers. If they
are available and willing to carry out the task, the providers then bid for gieltg replying
to the consumer with their individual characteristics (e.g., the expected qobthgir services
and associated costs). Finally, the consumer chooses the most promisiagdnd awards the
task to it.

This protocol has been popular due to its simplicity, distributed nature and $s @semblance
to non-automated contract procurement (especially in the public sectereshch a procedure
is often mandatory). For these reasons, it has been successfullgddiop variety of domains,

10A negotiationprotocol is the mechanism that governs how agents can exchange informatike, praposals
and reach an agreement.

Chapter 2 Literature Review 29

Consumer Provider 1 Provider 2 Provider 3

“I want service X”

-
N
Y __

A\

PR S . AN

“I offer X in 10 minutes for £5”

A iy W S

“I offer X in 20 minutes for £1”

“I offer X in 5 minutes for £5”

“Accepted”

é__'______ [RS R S——
é__'______ —— ek

FIGURE 2.3: Example negotiation using the contract net to prowisiervice X.

from transportation (Kuhn et al. (1993)), to the management of manuifagtsystems (Matu-
rana and Norrie (1997)) and robotics (Botelho and Alami (1999)). Eumtbre, in the context
of Web services, Paurobally and Jennings (2005) use the conttgarobecol to exemplify how
agents can negotiate about WS-Agreement contracts.

Nevertheless, the contract net protocol has a number of disadvantidgeas originally sug-
gested in the context of a system where agents are not self-interestediher fully cooper-
ative. Hence, service providers are assumed to report truthfully encugabilities, there are
no formal clearing rules that determine the winner of a contract and thies@onsumer is not
required to accept any bids (nor to notify those bidders that it rejects)tamay even cancel
accepted bids at any time before they are completed. For these reasaw)ttaet net proto-
col may discourage self-interested service providers from participagmgilarly, there is no
obvious strategy for submitting bids — instead, bidders are forced to lspe@bout the bids
of other agents and any potentially better offers they might receive fther consumers in the
future (Sandholm (1999)).

Now, in order to develop more suitable negotiation mechanisms for self-itedragents, there
has recently been considerable interest in applying game theoretic printwpiaulti-agent in-
teractions (Sandholm (1999)). In particularechanism desigibash et al. (2003)) is concerned
with designing protocols that can be proved to show certain desirableniex such as stabil-
ity (rational agents will act in a predictable manner), individual rationaligye(ds are better off
by joining the protocol) and Pareto efficiency (it is not possible to improvetiteome for one
particular agent without decreasing the utility of another).

In this context, several protocols for bilateral (“one-to-one”) negiotiehave been proposed.
These include simple mechanisms such as the monotonic concession pretsarigchein and
Zlotkin (1994)) or thealternating offersmechanism suggested by Rubinstein (1982) (where

Chapter 2 Literature Review 30

alternating offers are exchanged as shown in Figure 2.2). Some of hlagsealready been
successfully applied in service-oriented systems. For example, Faratin®#98) modify the
alternating offers mechanism to allow agents to negotiate over the terms on avhalhice is
provided.

Another prominent negotiation mechanism that involves many participatingparéeuctions.
In an auction, a seller usually offers some item or service for sale, whitkefsbid for by the
buyers. Associated with such an auction are strict rules about howlmddédsbe placed, when
the auction finishes and how it should be cleared (who receives the i@t avhat price). As
for other types of negotiation, these rules can be engineered to gueacantain game theoretic
properties, and auction theory provides a vast array of auction tgpeffferent requirements
(Krishna (2002)). In the context of service-oriented computing, Mulaad Jennings (2000)
describe how reverse auctions can be used by consumers to solicitdidsiany competing
service providers.

A problem with the negotiation schemes presented so far is that agreeneatsays binding.
That is, once a seller agrees to provide a service, it must do this exagiigmssed. However,
in realistic scenarios, resource availability changes, services takgain@mounts of time and
a service provider may not have sufficient time to evaluate all contingebefese agreeing to
provide a service. For this reason, binding agreements may discouagdqps from partic-
ipating in the mechanism or result in extremely pessimistic strategies, wher&idegsronly
agrees to provide a service if it is certain of its success.

To address this problem, Sandholm and Lesser (1995a) describevéhed commitment con-
tracting protocol Here, the agents include explicit decommitment penalties in their negotia-
tions. Rather than acting as deterrents for defection (as is common in theltegaln), these
penalties allow each agent to drop its commitment to the contract by paying aafednt
of money. To demonstrate the value of this approach, the authors pravé dhaws agents
to reach agreements in scenarios where this would otherwise not havpdassble. Further-
more, they show that both agents can benefit (derive a higher expéititggl from agreeing to
a leveled commitment contract rather than a fully binding one. In other wankdi®Im and
Lesser (1995b) modify the contract net protocol to include leveled commigmbemthis modi-
fied protocol, consumers and buyers are committed to any offers they mekel{ng the initial
announcement), but may decommit by paying the appropriate penalty.

We believe that this contracting protocol is a realistic and practical negotiatgmimanism for
the uncertain distributed systems that we consider. Partly for this reasanoptit in Chapter 6
to model the automatic negotiation of advance agreements in a service-oggsieh. Further-
more, it is simpler than some of the other protocols we have discussed, add@ing it allows
us to concentrate on building a more generic decision-making agent thaecaxtended (in
future work) to more specialised market mechanisms.

To summarise this section, carefully engineered negotiation protocols galaydes number
of desirable properties that can entice self-interested agents to partizight®me to mutually

Chapter 2 Literature Review 31

beneficial agreements. However, it should be noted that they often estkieting assumptions.
These might include particular types of cost and utility functions that all jyaatits share or it
might be the need for agents to be perfectly rational. In particular, mechaeisign often relies
on agents that never deviate from a given protocol. For example, whagemt fails to provide
its service in the leveled commitment protocol, it is assumed to notify its consumeguagnd
the appropriate penalty. This is a reasonable assumption for contracesepeman traders,
which are enforceable through legal measures. However, as wedyhegued in Section 2.1.5,
such legal enforcement may be difficult or too costly to pursue in largkesgpen systems,
where agents continuously join and leave, where identities may be hidderhanel services are
offered across national boundaries. Therefore, it is conceivhatanalicious agents may enter
contracts that they cannot honour or that later turn out to be infeasib@uBe we envisage this
to be a critical problem in large distributed systems, we made the treatmenttofisoertain
provider behaviour a central requirement of our research (M.1 agd A

Against this background, a large body of work in the area of trust epdtation has looked at
how to model such uncertain and possibly malicious behaviour. We disdass thore detail
in the following section.

2.2.3 Trust & Reputation

Current online marketplaces identify unreliable traders by using ratirtgregs where the hu-
man users leave feedback for each other (e.g., ¥BayAmazon Marketpladg). Such systems
allow users to trust each other even if they have not previously interaatetito avoid per-
sistently malicious participants. Against this background, recent work in agdtiit systems
has been concerned with building similar mechanisms to assist autonomous iagaaking
decisions about their potential trading partners (Ramchurn et al. (2004))

At the simplest level, trust in these models is based purely on past interagitbrigher agents.
When an agent honours a contract, this will be remembered and has ageféct on any fu-
ture decisions to interact with that agent, while defection produces thesibppaegative effect.
However, relying solely on such experience is of limited use, because it Issifpe to judge
the behaviour of potential partners with whom no previous interactiorsstia&ten place. Hence,
a second level of trust, usually referred to as reputation, is placed ysteng whereby agents
exchange their experiences to form public opinions of others in the sy{Sebater and Sierra
(2002)). This approach is non-trivial and remains an open reseaialenge, because agents
can lie and collude to influence the reputation of other agents. They musthawncentive to
share their experience, and care must be taken not to prejudice againentrants to the sys-
tem, but at the same time discourage agents with a bad reputation history toreaeeenter
the system. These issues are typically overlooked by the work on Qofofs2cl.5), and so

Uhttp://www.ebay.co.uk/
2http://www.amazon.co.uk/marketplace/

Chapter 2 Literature Review 32

it is vital that we consider current approaches for modelling trust gmgtaéion in multi-agent
systems.

Now, there are many such approaches and models that differ in thedsegpiation and aggrega-
tion mechanisms (Ramchurn et al. (2004); Teacy (2006); Jgsang 20@F)j. Some build their
own frameworks to describe degrees of trust using discrete or consnadues (Abdul-Rahman
and Hailes (1997); Sabater and Sierra (2002)), but these often kgethantic grounding of a
well-established formalism. This is addressed by other work that emplobsalpitity theory to
represent trust. These approaches typically model trust as a probdisiitipution over a binary
event, i.e., the probability that the agent performs the service that is rddwirthe consumer
(Ismail and Jgsang (2002); Wang and Vassileva (2003)).

Specifically, Teacy et al. (2006) outline a particularly interesting apprtizat uses principled
probabilistic methods to combine direct observations with reputation reportsgossibly in-
accurate sources. In particular, their work uses statistical techniqessatolish the confidence
of an agent in its trust values towards other agents based on the nungiseviolis interactions
and then improves these, if necessary, by including the opinions of ajkatsa In so doing, it
filters out opinions that seem improbable, given the agent’'s own expergemd so their mech-
anism achieves some robustness against untruthful or noisy opiniorarther work, Teacy
(2006) shows how this model can be extended to represent continutagsres, such as the
duration of a service invocation.

In summary, the above work on modelling trust is vital as an enabling techn@dogur own
work. It offers feasible solutions for aggregating opinions abowiserproviders who are
possibly unknown to the consumer and for instantiating QoS ontologies withlyirig on a
neutral and centralised observer. For these reasons, informatigidgady a trust model may
help us describe some of the uncertainty that providers display (Requitémg) and distin-
guish between heterogeneous providers that offer the same typerioes@equirement M.4).
Furthermore, research on modelling trust probabilistically provides us witinaal mecha-
nism for describing uncertainty and fits naturally with the work on decisionrtheutlined
in Section 2.2.1. Hence, it will help us build a principled decision making framewoder
uncertainty (Requirement A.1).

We now conclude our summary of multi-agent systems by looking at two systenagply
agent-based techniques to service-oriented scenarios. Both of #sesgah projects aim at
providing a basic infrastructure over which agents can negotiate almoptdkiision of services.
We present these here, because they offer what we believe to be areatistic model of
how services will be provisioned in distributed systems (rather than the rearmtedure calls
predominantly used by Web services).

Chapter 2 Literature Review 33

2.2.4 Example Agent-Based Applications

The first system we highlight is the Multi Agent Negotiation Testbed (MAGNEIollins et al.
(2002)). The aim of this work is to provide a central marketplace, ovérlwdervice consumers
and providers can interact, and which enforces negotiation protocdlsanitors the perfor-
mance of agents. As such, it offers a centralised trust mechanism, lmauoés a single point
of failure and raises the question of whether the mechanism itself can bedtrus

In MAGNET, the market allows for many negotiations to run concurrently betwmany het-
erogeneous agents. While the architecture is intended to eventually sapponber of differ-
ent negotiation protocols, the authors describe only one mechanism modediedmbinatorial
auction. Here, an agent initiates a reverse auction by submitting a requgsiotes to the mar-
ket. This request includes a set of tasks that the agent needs to cetsyropriate precedence
constraints (e.g., tasl§ has to complete before startimg) and time restrictions (e.g., tagk
must be started and completed in a given time interval). Interested servigdgsothen submit
sealed bids on combinations of tasks. Finally, the consumer determines thersvinnmin-
imising the overall cost while satisfying the precedence constraints betaglen As such, the
system demonstrates how a complex service-oriented system can be ibgilansstablished
market mechanism.

However, the system also suffers from a number of weaknessest #fga otherwise being
completely centralised, the responsibility of determining the auction winnersfisdsto the

service consumer. This essentially means that the consumer is not bouedataction proto-
col and can reject any of the offered bids — even if they are in the optieastcost) set of
bids. Furthermore, even if the winner determination problem was solvecehyatlitral market,
this process is notoriously difficult (Sandholm (2002)) and may lead tlalsitity problems.

Nevertheless, some interesting work has emerged from this framewankdieg uncertain ser-
vice providers. We will return to this during our discussion of curreowjsion techniques in
Section 2.4.3.3.

The second multi-agent system we consider is the Advanced DecisioroEmént for Pro-
cess Tasks (ADEPT) (Jennings et al. (1996)). This constitutes adesslised approach for
negotiating over the provision of services. The overall aim of this framlewoto provide
an infrastructure for handling complex organisational workflows. Brising that such work-
flows are usually distributed across several companies, and everatgegapartments within
one organisation, each of which has their own goals and agendasthioesssuggest the use of
autonomous agents as a natural design metaphor. Not only does suclphonetecapsulate the
distribution of responsibilities (each agent manages part of the workflasgibly using the ser-
vices of others), it also deals with conflicts of interest by forcing agernsdaision services in
advance through negotiation. Such a mechanism ensures that sergipesvéded to those that
need them most, it allows agents to coordinate, and it provides some resdigaiost failures,
because services can be renegotiated at run-time.

Chapter 2 Literature Review 34

Now, ADEPT is a good model for our own work for several reasonisst,Ft allows several
negotiations as well as negotiation protocols to operate concurrently aristiibuted manner
(as outlined, for example, by Faratin et al. (1998) and Vulkan and Jgs(@000)). As stated by
our Requirements M.2 and M.3, we envisage a distributed system to offethesach a variety
of negotiation mechanisms. It has also been applied to a real busineasi@éaced by British
Telecom, and so has been shown to work in practice. Finally, negotiatierdeaentralised
(as they would be in a large distributed system) and agents operate dmubsdsp within)
organisational boundaries, a concept that is becoming central to Grigutong in the form of
virtual organisations (as discussed in Section 2.1.2).

However, as a general framework or design metaphor, ADEPT ddedineotly address the
problem of unreliable service providers, which is central to our workthadugh failures are

considered and providers monitored and penalised appropriateliceseonsumers do not an-
ticipate failures proactively or use any form of trust measure. Within aanisgtion, where

agents will generally honour their contracts, this is appropriate, but inysteras we consider,
a purely reactive approach to failures will likely be insufficient.

This concludes our discussion of the agent-based techniques thatildieifson in our work.
Before discussing concrete techniques for provisioning workflowseritarature, we briefly
summarise some results from the field of reliability engineering. This line oarekdas ex-
amined the construction of reliable systems from failure-prone comporemisas such has
tackled a similar problem to ours.

2.3 Reliability Engineering

In Section 2.1.3, we have already briefly discussed the use of redunttaincrease the reliabil-
ity of task execution in a peer-to-peer system. This idea of using multiple ser{ac physical
components) to decrease the overall probability of failure in a system loag) &istory in the
field of reliability engineering. Work in this area has typically been conakmi¢h selecting
an appropriate number of redundant components to build a system with maxiatiability,
given a set of resource constraints. Usually, it is assumed that satns/consist of a series
of connected stages and that a single failure in any stage results in ttedl éaure of the
system. Hence, work in reliability engineering typically considers variatidrieofollowing
optimisation problem (Tillman et al. (1977)):

maximise R = f(ny,ng,...,nN)
subject to S cij(ng) < é ie{1,2,...,r} (2.4)
n; € {0,1,...,mj}

wheren; denotes the number of redundant components introduced atjstéigiee system (out
of N stages)R is the overall reliability, given as a functiohof all n;, ¢;;(n;) is the amount of
a resource (out of r resources) that is spent on usingredundant components at stage;

Chapter 2 Literature Review 35

is the overall amount of this resource available, andis the maximum number of redundant
components that can be introduced at stage

Most commonly, the reliabilityR is simply the product of the success probabilities of all stages,
which again depend on the failure probabilitpf each component:

R = f(nl,ng,...,nN)
N
— H(1 —dnth) (2.5)

=1

B

Generally these optimisation problems are difficult to solve optimally — in fact, tloeeab
formulation of the problem has been shown to be NP-hard by Chern {1982y are usually

solved by finding an equivalent integer linear programming formulation aimdywestablished
techniques for these (Tillman and Liittschwager (1967); Mizukami (1968)re and Taylor

(1969)) or by employing fast heuristics (Gopal et al. (1978); Kuod®f Liang and Smith

(2004)).

While this work on reliability engineering was originally applied in the manufactfiphysical
devices, the idea of using redundancy to deal with failures has alsodoegted by software
engineers in the form of n-version programming or similar approachest(&cal. (1987); Lyu
and He (1993); Adienis (1995)). Here, critical software functionality is implemented several
times independently by a number of developers and then executed in palfatiak version
fails or provides incorrect results, a voting mechanism is used to obtaimthectresults from
the remaining versions. Huhns et al. (2003) describe how severalantus software agents
can use similar mechanisms to cooperate in solving a common task and thusdestter and
more reliably than they could if solving the problem in isolation.

Redundancy has also been applied directly to the problem of offering maligble services in
a distributed system. In particular, traditional Web servers often emplayndashcy to seam-
lessly mask failed components (service failover) and to distribute requestsecal replicated
servers to balance the load on each one (Ingham et al. (1999); iegintth Tamir (2003)). Sim-
ilarly, the use of redundancy has been suggested to build fault-toleetmsgvvices (Keidl et al.
(2003); Li et al. (2005); Merideth et al. (2005)). However, mostha$ work concentrates on
the required infrastructure to build such robust systems. In work thatiie olosely related to
the problem addressed in this thesis, Huang et al. (2006) suggestioglleeveral unreliable,
but functionally equivalent services as part of a larger and morestdbarvice pool”. When a
consumer requests a service corresponding to the functionality offgréte pool, each of its
member services is invoked sequentially in a certain order until one of ttamsesuccessfully.
In this context, the authors present an algorithm for building such sepois, in order to meet
some given minimum reliability while minimising the overall invocation time.

We believe that redundancy is a vital technique for addressing unreliahildistributed sys-
tems, and the widespread availability of many independent services makasdasgible option.

Chapter 2 Literature Review 36

However, none of the approaches discussed here is directly apphkehétebuilding a service-
consuming agent. This is because most tackle the problem from the preyidespective and
are concerned with building a closed system that requires some initial, fixestinent in order
to achieve a desired level of reliability, but whose components remain statigdts lifetime.
A service-consumer, on the other hand, is much more flexible as it may jpmaidditional ser-
vices at run-time only when required. Furthermore, most approachesictrate on minimising
the cost or maximising the reliability of a system given some constraints (asishd@guations
2.4 and 2.5). However, it may not be obvious how such constraints shewdosen and which
quality should be optimised, especially when the consumer seeks to balamsetak reliabil-
ity with the associated cost (e.g., it may be happy to pay $100 for a workflasti90% likely
to succeed, but would also pay $50 for one with a success probabilityly76%).

Nevertheless, we will use ideas from reliability engineering in our worksirav how redun-
dant provisioning of services can be used to proactively addregseéailures in a distributed
system (Requirement A.2.b).

This concludes our discussion of the basic frameworks and technololgiels aur work builds
upon. We have summarised several key infrastructures that are egéngihe context of
service-oriented computing (including Web services, Grid computing;tpegeer systems and
the Semantic Web), we outlined the key technologies that agent-based cayrgarttributes to
our research, and we briefly looked at work in the area of reliability exgging. In the final
part of this chapter, we will now look at particular approaches that desaggent can employ to
execute its workflows in the distributed systems we have discussed so far.

2.4 Executing Service Workflows

Throughout Sections 2.1-2.3, we have concentrated on the main enablingltagies that form
the background of our work. However, as outlined in Chapter 1, agareh is primarily con-
cerned withbuilding a computational agent that is capable of executing complex \warkfl
in highly dynamic and uncertain service-oriented environmeiits this end, we now look at
current approaches for doing exactly that and evaluate their regpeodrits in relation to our
requirements. Specifically, in Section 2.4.1, we begin by looking at cus@ntions for ex-
ecuting workflows in Grid and Web service environments, which havedjrbaen deployed
successfully in distributed systems, but often require a substantial meffordl Then, in Sec-
tions 2.4.2 and 2.4.3, we examine emerging research that aims to automate tsexaic
workflows.

Before proceeding, we briefly elaborate the concept of a workfldwghwve introduced in Sec-
tion 1.2. Essentiallya workflow is a set of tasks and their interdependencies, which collectively
achieve some business objectfiAollingsworth (1995); Georgakopoulos et al. (1995); van der
Aalst (1998)). Tasks usually represent atomic activities that contributestoverall objective

Chapter 2 Literature Review 37

and may generate and consume resources (including data). Thesmtaskave intricate in-
terdependencies, which dictate how data is passed between them, andhrovddc they are
executed. As an example, Figure 2.4 shows a workflow from a domain thatevparticularly
well acquainted with.

(o)

Review literature

Write 9-month
report

Start PhD

Identify research
problem

Do research

Defend thesis

e

Write final
thesis

< (woa

Write transfer
thesis

<

Publish papers

Passed? no @
yes
Receive PhD Terminate
workflow

FIGURE 2.4: Example workflow summarising the tasks faced by a PhOesti

Workflows can be expressed in a variety of languages and formalisrn¢hdse often offer

similar constructs for expressing tasks and their dependencies. In titextovan der Aalst

et al. (2003) describe twenty workflow patterns, which they believeramest scenarios faced
by automated workflow management software. Our example includes theonusion of these

in the form of task sequences (e.g., writing the thesis is followed by its defeparallel tasks

(e.g., the literature review is carried out in parallel with the problem definithoil) alternative

branches (e.g., the choice to re-write the thesis or to abandon the warkflow

In the context of distributed systems, workflows are a natural way taeeggrow services can
be engaged in order to achieve some goal. For example, for a scientifi@@ltation, a
workflow may contain different data acquisition and manipulation servicépdénBorm complex
calculations on behalf of the scientist (we discuss a detailed example in S8cpnin a
business scenario, a workflow may encapsulate the process of satisfyarge order from
a customer, which relies on services from the company’s warehouseg liéipartment and
possibly from external companies (e.g., for logistics, credit servicgsrenrance). In practice,
many current approaches use statically defined workflows that sereeyaneral template for
specific objectives and are then instantiated at run-time.

Chapter 2 Literature Review 38

Workflow Execution

Manual Service Selection Dynamic Provisioning Dynamic Composition

Constraint-Based Provisioning QoS Optimisation Decision-Theoretic Provisioning

Local QoS Global QoS
Optimisation Optimisation

FIGURE 2.5: Current approaches for the execution of service woslsflo

Against this background, one of the most prominent workflow descrifgioguages in the do-
main of Web services is the Web Services Business Process Executigndgen(WS-BPEL)
(Curbera et al. (2003); Weerawarana et al. (2005)). Here, &flar consists of interactions
with Web services and describes the control flow (including basic séigligrarallel and con-
ditional execution) as well as the data flow between services. WS-BPilslalirectly on top
of the Web service standards described in Section 2.1.1 and represiéivitduial services us-
ing their WSDL interfaces. By using such interfaces, rather than mefeseto concrete service
instances, WS-BPEL provides some flexibility for the dynamic selection, amrigioning, of
matching services at run-time. However, as we will see in Section 2.4.1, tliely exploited
in practice.

In the following, we consider several current techniques for exegugarvice workflows in
distributed systems. To this end, Figure 2.5 shows a basic taxonomy of this Were, we
distinguish between three principal approaches that are prevalentlitetéure: manual ser-
vice selectionwhere workflows and services are selected by hdylamic compositigrwhere
complete workflows are synthesised at run-time using high-level goaliggsns, andlynamic
provisioning where abstract workflows are instantiated by concrete services didaltyaat
run-time. We discuss each of these below, justify why the former two arsuitable for the
systems we consider and so describe work in the area of dynamic prangsionparticular
detail.

Chapter 2 Literature Review 39

2.4.1 Manual Service Selection

Although Web services and the use of WS-BPEL in particular are gainingpalarity with a
wealth of commercial products now available, many current application®tsetect services
dynamically, as is envisaged by the research literature in service-orieomeputing. Rather,
human programmers specify manually not only the high-level workflowgopfiations, but
also bind them to concrete Web services at design time (Zimmermann et al);(P@Basso
and Alonso (2005)). For this reason, most contemporary WS-BPEElalement tools and
execution engines do not directly support the dynamic discovery arttiselef services at run-
time. For example, IBM’s WebSphere Integration Develdpaliows users to build WS-BPEL
workflows, but requires all abstract WSDL interfaces to be manuallynthoo specific services
before they can be executed. The same applies to other WS-BPEL wokilgines, such as
Oracle’s BPEL Process Manag&rthe open source ActiveBPEL engifier Apache ODES.

Similarly, workflows are usually executed in @v@manner — the execution engine simply en-
sures that services are invoked in the correct order without adidgetbeir reliability or avail-
ability. In effect, the human workflow designer is assumed to have alreaasea the most
suitable and reliable services. Hence, WS-BPEL offers no facility foagively addressing
service failures, nor does it in any way consider most of the featuré¢shlaacterise service
providers in distributed systems (such as heterogeneity, the need foneeatian, negotiation
and dynamic availability).

Despite these shortcomings, it does offer facilities for reactively hantfihges (Requirement
A.2.a). These are based on traditional exception handling mechanismslttatgre-defined
procedures for mitigating or correcting a problem before continuing th&flear (forward re-
covery), or that roll-back previous tasks of the workflow to terminate it coasistent state
(backward recovery) (Garcia-Molina and Salem (1987); Eder aalHart (1995); Casati et al.
(1999)). The latter approach is supported by transaction mechanisM&foservices, and, in
particular, the WS-Transaction specification (Curbera et al. (2008)ih explicitly provides
mechanisms for cancelling (undoing) previous tasks when failures.occur

To support both forward and backward recovery, WS-BPEL alloaskflow designers to spec-
ify fault and compensation handlers that are invoked when failures aeeing workflow exe-
cution. However, we believe that neither is a satisfactory approachdétreasing failures and
uncertainty. More specifically, supporting transactions requires thedaoto surrender some
of its autonomy to the consumer by giving it the option to retrospectively rebhgany com-
mitments. This may result in losses to the provider if it has already startedsgingea task,
and so we believe that most service providers will be reluctant to offdities for rolling-back

Bhttp://www.ibm.com/software/integration/wid/
Yhttp:/iwww.oracle.com/technology/bpel/
Bhttp://www.active-endpoints.com/active-bpel-engine- overview.htm
http://ode.apache.org/

http://www.ibm.com/software/integration/wid/
http://www.oracle.com/technology/bpel/
http://www.active-endpoints.com/active-bpel-engine-overview.htm
http://ode.apache.org/

Chapter 2 Literature Review 40

tasks. Forward recovery may be a more viable option (e.g., by substitutingders at run-
time), but fault handlers are typically specified manually and so requirevehulesigner to
predict failures and hard-code possible solutions in advance.

A more flexible solution to this is proposed by Zeng et al. (2005) and Eetaali (2006), who

advocate the use of generic exception policies. These specify gpnecatures that the work-
flow engine should carry out when certain failure conditions are erteoeshduring execution.
For example, these procedures might include re-trying the same senviraldenes, switching

to other (possibly redundant) services or terminating the workflow. Hewévey still need to

be manually specified and do not proactively address services failures

In summary, WS-BPEL relies heavily on human effort and thus exemplifiesaon trend in a
number of widely used workflow languages and execution enginesrfgcseoriented systems.
These include, for example, the Java CoG kit (Laszewski and Hat@@ab)) that is part of the
Globus toolkit, and Taverna, which is a workflow engine specifically dgezldor enabling the
workflows that bioinformaticians face (Oinn et al. (2004)).

This concludes our review of workflow execution approaches thataelthe manual specifi-
cation of services. We have seen that these are currently being emjiogechmercial and
academic environments, and that software supporting them is readily dvdddhay. They al-
ready offer expressive mechanisms (most notably WS-BPEL) to deswoitnplex workflows,
meeting our Requirement W.1. However, they generally assume highly relatdé)east co-
operative and benevolent, services. Each item in the workflow is habgledsingle service
that is pre-defined by a human programmer, and when failures occse, &he treated as excep-
tions that are handled by manually coded procedures. Some systemsiffetgntl providers
upon failure, but this is purely reactive and without regard for the piaterosts that might be
incurred. As such approaches are clearly insufficient for the emviemts we consider (services
are unreliable and require remuneration), we look at the current stadsedrch in the area of
dynamic service composition in the following section.

2.4.2 Dynamic Service Composition

While the work discussed so far relies heavily on human effort, the field/oamhic service
composition represents the other extreme. Specifically, research in thisa@encerned with
synthesising entirely new workflows by composing atomic services to ackmwe overall
goals (Mcllraith et al. (2001); Srivastava and Koehler (2003)). pidglly applies Al planning
techniques, which take an initial state, a goal state and a set of opernatotisem search for a
sequence of operator applications that will result in the desired goal&tasdlab et al. (2004)).
Now, the operators in this case are service descriptions using sucHifommas OWL-S (which
already contains constructs commonly used in planning) and the result obrti@osition is a

Chapter 2 Literature Review 41

workflow consisting of concrete service invocations. Hence, sucppmach would take a con-
siderable burden from human users who no longer need to be codagithethe construction
of workflows, but rather state their intentions as simple high-level goals.

As planning is difficult in open environments such as the Internet, whereahgumer agent
does not have complete knowledge of the domain and where such knewladdo be actively
gathered during planning and execution, service composition is still veria amuopen research
problem. Example approaches include the work by Mcllraith and Son J200® use logic
programming to compose services. McDermott (2002) and Klusch et &5)2apt exist-
ing planners and the widely used Planning Domain Definition Language (PEdelkamp
and Hoffmann (2003)) to Web service scenarios, and Wu et al. (2@0®eotrate specifically
on compaosition approaches that use common Semantic Web technologies €\t &35 and
OWL.

These composition approaches are very flexible, because they delyhonrstatic workflows.
Hence, they deal naturally with the dynamism of an open system (Requiréfrignas they use
only the services that are available at a given time. However, currempasition techniques
select services implicitly as part of their planning algorithm and will therefaneerally pick
the first service that helps fulfil the goal. For this reason, these agipeealo not proactively
address potentially unreliable or even malicious services (Requiremenj,A2tbather assume
that service providers publish truthful descriptions that are alwaysrad to. Again, failures are
assumed exceptional and usually solved by expensive replanningfkdual. (2005)). Overall,
service composition is unlikely to scale to larger systems (Requirement A.3) due inherent
complexity of planning (Bylander (1994); Erol et al. (1995)). This isaatipularly pressing
concern for systems where there might be hundreds or thousandspéting providers.

Hence, we believe that neither completely manual workflow execution nautoenatic com-
position of new workflows are realistic approaches in the uncertain andndaig systems we
consider. Due to this reason, we now turn our attention towards work inrfzecd dynamic
service provisioning.

2.4.3 Dynamic Service Provisioning

To address the complexity inherent in fully automatic service composition angttoane the
restrictions of manually specified workflows, some research has dedgibe use of abstract
workflows, which are dynamically instantiated, or provisioned, at run-tivhal(aith and Son
(2002); Mandell and Mcllraith (2003); Sirin et al. (2005)). This wadsumes that workflows
for particular objectives usually follow the same basic steps, even if thieeclod service in-
stances is different each time, depending on the user’s personadaiotssand current service
availability. More specifically, such abstract workflows usually includeralver of semantically
annotated abstract tasks (e.g., using generic OWL-S descriptionsiinAinme, these abstract

Chapter 2 Literature Review 42

task descriptions are used to automatically discover service instances, eenchen be pro-
visioned for the tasks of the workflow. If necessary, additional plapigrused to combine or
substitute abstract workflow fragments (Sirin et al. (2005)) or to addnddiate services, e.g.,
to translate between heterogeneous data representations (MandeltHraitivi(2003)).

We believe that this approach is promising, because it does not requierthiee consumer to
plan from scratch, but still allows it significant flexibility to account for th@oging availability

of services. Furthermore, it is well suited for dealing with uncertainty aildres, as portions
of a workflow can easily be re-provisioned when necessary withoutdbe for expensive re-
planning. Finally, it allows us to take into account and reason explicitly aheuton-functional

characteristics of services, such as their cost or reliability, and use tigiside the agent’s
decision-making.

Hence, we concentrate on this process of dynamically provisioning serfic an abstract
workflow in our work. As described above and in Section 1.5, we refeetgice provision-
ing asthe selection of particular service instances for specific tasks of a warkiiehould be
noted that, unlike Jennings et al. (1996), we do not necessarily equesisipning here with
advance negotiation. Rather, a service consumer may provision sesvicksnand when they
are required, for example by invoking a Web service. Similarly, the consomight provision a
service tacitly in advance, but defer its negotiation to a later time.

Against this background, we now look at existing work in this area. Thie&jly assumes that
a service consumer has already discovered a set of potential sefiicesch task using, for
example, service registries such as UDDI or by reasoning over semanticesdescriptions
(and this will also be one of the assumptions we make in our own work). Wencento
follow the taxonomy shown in Figure 2.5 and begin by examining constraimeh@®visioning
approaches.

2.4.3.1 Constraint-Based Service Provisioning

The first approach we discuss uses decision rules to filter appropeiatees. Here, the user
specifies additional constraints on the services it requires, which areutiesl to differentiate
between multiple offerings. These constraints are often based on notieftal information
about the services and usually make binary decisions whether to acmdpservice or not.
When more than one service matches, a random choice is made or somekiedpmele is
applied.

As an example of this approach, Keidl et al. (2003) define two types mdtraints for each
task —preferencesand conditions Both are logical conditions on the meta-data of potential
services and may contain disjunctive or conjunctive constraints (fonpbea a constraint might
be that the service must be offered by a company based in the UK andpastcalar encryp-
tion standard). Here, the conditions define which services are eligibléhangreferences are
softer constraints that are applied when more than one service satisfiesnifigons. Patel

Chapter 2 Literature Review 43

et al. (2004) use a similar approach, but express constraints aswhiek, can be re-used and
composed for different tasks. For example, there might be rules thaedefiat is considered
a cheapservice (saycost < £10) and what is aeliable service teliability > 0.95). A
particular task might then require a chesaqp reliable service.

To give another example of provisioning with constraints, Mandell andriglth (2003) present
an interesting approach that extends BPEL4WS, the predecessor-BREL, to dynamically
select services based on DAML-S profile descriptions. Here, a theprever is employed to
discover concrete services that satisfy the DAML-S profiles given iin thedified BPEL4WS
workflows. Due to its reasoning capabilities, the system is also able to adobajspe mapping
services if required (e.g., to convert currencies or different dgieesentations) and handles
additional user constraints on the semantic service profiles (e.g., that #abakkd services
should be used or that the end result must be in a particular format).

Now, the problem with most constraint-based approaches is that they siampbmnwndown the
choice of appropriate services based on local (task-specific) bileigions. They do not dy-
namically and rationally choose appropriate thresholds for these rulesather depend on a
human programmer to make this decision. Furthermore, they are very rigid ite- avipro-
grammer might introduce a rule that all services should be highly reliable &r todaddress
uncertainty, this may simply result in unsatisfiable workflows where no se sufficiently
reliable. In practice, it is necessary to strike a balance between diffeegvice parameters
rather than set hard limits for all instances. For example, some tasks mayeberitiy difficult
to achieve and so the consumer must accept some unreliability, but may ke bblance this
by choosing only highly reliable services for other tasks. Similarly, a madtgineore reliable
service might be substantially more expensive than other services, bufiffiésilt to write
appropriate rules that make the best decisions in such scenarios.

In the next section, we will look at some approaches that have condittese issues in more
detail and proposed provisioning techniques based on comparing akidgaervices using
their performance criteria.

2.4.3.2 Quality-of-Service Optimisation

A large body of research has considered the provisioning of serbimssd not only on hard
constraints, but also on preferences for different QoS charaatsri$\s shown in Figure 2.5,
we distinguish here between those approaches that examine and preassisim isolation and
those that consider the impact of each service on the whole workflow. iSvass these local
and global techniques separately in the following.

In their work on using Semantic Web technologies to instantiate abstract aeskfSirin et al.

(2005) consider the case when many services match a given task. Rethemposing hard
constraints that might result in no or too many matches, they assume ptiefldretependence
between these parameters and then pick a service that is Pareto optimdihgegt dimensions

Chapter 2 Literature Review 44

(i.e., it selects a service, such that there is no other service that offetsea performance along
one dimension without also offering worse performance along anothi&is guarantees that
there is always a matching service and it removes clearly inferior candiddtavever, it may
also easily result in arbitrary decisions. For example, if we assume thatdhethree services,
as shown in Table 2.1, all of these are Pareto optimal (but the consumebahty best advised
to choose the second one).

Service | Cost | Reliability
A $1 1%
B $1.5 99%
C $100| 99.1%

TABLE 2.1: Example services

In the context of Grid computing, Condor and the related Condor-G useesianiking schemes
along with constraints for the local provisioning of workflow tasks. Carig@ framework for
allowing consumers to execute computational jobs over a distributed systamrkdtations
(Frey et al. (2001); Thain et al. (2003)). When submitting jobs, conssiisecify the types
of resources they need by giving both a set of requirements and egaekpression. These
are similar to the conditions and preferences described by Keidl et &3)2But the ranking
expression might simply be a non-functional property to be maximised. Feonge, the con-
sumer might require a Unix-based system with a memory of least 512 MB RAMwben
several resources satisfy this, it will select the one with the highesepsoc speed.

Now, Condor is particularly interesting, because it also offers some nawechniques for
tolerating failures. As its primary objective was to harness the computatiesalirces of idle
workstations, it closely monitors all submitted jobs and regularly saves thegress. When
a job is interrupted (usually when a user reclaims the computer), Condistrisutes it to a
different workstation, where it is then continued. While this job migration isffettve method
for addressing service failures reactively, Condor relies on a lagmperative environment
(initially, it was deployed for use within one particular organisation). Afisgervice consumers
are expected to report accurately on their progress and provide irdietmeesults. Similarly,
there is no explicit notion of costs or remuneration and service consuaressraply retry until
their job succeeds.

While the work so far has looked at each task in isolation, other reseaskattempted to
consider the impact of provisioning on the overall workflow. This is impdyrtaacause provi-
sioning a single unreliable service may jeopardise the whole workflow aapingto an overall
budget may be more important than controlling the expenditure on each siskleltaenable
this, a number of QoS aggregation mechanisms have been proposedritoardliculate overall
performance metrics for workflows, based on the services selecteddébrtask (Cardoso et al.
(2004); Jaeger et al. (2004)). These are typically simple calculationsr-exdmple, the overall
cost of a workflow is the sum of all service costs and its reliability is the dveraduct of all
service reliability values.

Chapter 2 Literature Review 45

The goal of a large body of research has been to optimise these aggr€zS values while
satisfying some overall constraints, such as a deadline or fixed butkyeg €t al. (2004); Ag-
garwal et al. (2004); Canfora et al. (2005); Xiao and Boutaba%P0®@s an example, consider
the simple workflow given in Figure 2.6. It is assumed that the agent needsriplete all four
tasks in the order indicateds(andts can be invoked in parallel). Table 2.2 contains a list of
services suitable for each task. Now, at the simplest level, a QoS-bgsetraight provision
providers in order to optimise one of the criteria. As in Xiao and Boutaba5R20@ may be
interested in minimising the overall cost while ensuring the overall duration ssthes 100.
In this case, an optimal solution is to provisien, s21, s31 andsy; for a total cost of 41, a
combined reliability of 0.27 and a duration of 30. A similar approach of optimisime jar-
ticular performance measure is taken in the work of Deelman et al. (2008b)use planning
techniques to minimise the overall time of large Grid workflows.

FIGURE 2.6: Simple workflow consisting of four tasks.

Task | Service | Cost | Reliability | Duration

tl S11 5 0.5 10
S12 10 0.9 5

to 521 1 0.75 5
599 7 1 30

t3 531 10 0.9 10

t4 S41 25 0.8 10
542 10 0.99 100

TABLE 2.2: Suitable services for each task

Now, in realistic scenarios, a consumer will be unlikely to optimise only alongobilee QoS
dimensions but will rather want to find a good balance. Hence, it is commoptimiee a
weighted sum of all performance measures (Gu and Nahrstedt (Z082);et al. (2004); Can-
fora et al. (2005); Yu and Lin (2005); Ardagna and Pernici (200@gger and Nhl (2007)).
This is typically done by first normalising each of the aggregated measoresample to range
between 1 and O (indicating the best and worst values possible regihgctivhen a weighto;

is attached to each measure wih, w; = 1, and the overall weighted sum is optimised. In
other words, ifp is vector of provisioned services for all tasks (e@= [s11, S22, $31, s41]) @and
qi(p) is theith aggregated QoS value resulting franfe.g., the overall duration or reliability),
then a QoS-based agent will provision services by solving the followinignggation problem

Chapter 2 Literature Review 46

(WhereQ; is a constraint for théth quality):

maximise Q= >, w;qi(p)

: 5 (2.6)
subject to qi(p) > Qi for all ¢

To continue the example above, if we weigh all performance measurebyetjuen the opti-
mal solution becomef o, sa1, s31, s41] with cost 46, reliability 0.486 and duration 25. Un-
fortunately, such a problem cannot be solved efficiently in general,easan reduce the 0/1
knapsack problem to it and so prove that it is NP-hard. In practice,entagar programming
applications are usually employed to solve the QoS problem (Zeng et adl){Z0fgarwal et al.
(2004); Yu and Lin (2005)), although other approaches, such astigealgorithms, are occa-
sionally used for complex scenarios (Canfora et al. (2005); Jaeddviahl (2007)).

In order to address services failures and execution uncertainty in @eSdased provisioning
approaches, Zeng et al. (2004) as well as Canfora et al. (20@gesuadaptive replanning
mechanisms. These monitor the execution of a provisioned workflow byasttyschecking the

progress of services and calculating their impact on the overall aggce@oS values. When
these breach the overall constraints, the remainder of the workflowpswsioned to again

satisfy the constraints. For example, a provisioned service may take muggr kbian expected
and thereby lead to a breach of the workflow deadline. In this case, tis&icer re-provisions
the remaining tasks, using faster services where possible.

While this replanning is purely reactive, Jaeger and Ladner (2003has®ncept of redundancy
to improve provisioned workflows before execution. Assuming that aflekhas already been
fully provisioned, they show how the addition of redundant servicesrognove overall quali-
ties such as the reliability or maximum duration of the workflow. However, thmr@ach has
several weaknesses. Although the authors suggest that redyrstienudd be added to particu-
larly weak parts of the workflow, they do not discuss the decision-makimcgplures necessary
to decide which and how many services to add. Furthermore, their appret@ins all initially
provisioned services and so it does not consider the case wheralsgvweap, unreliable ser-
vice may offer a better overall quality than the original service. Finally, ésuguestionable
aggregation methods that are difficult to justify in practice. For examplde TaB shows how
their method combines two example services invoked in parallel — the new reliabilitye
probability that at least one service is successful and the new maximwtiatuis the smaller
duration of the two services. Clearly, this method is unrealistic, resulting ireggted values
that overestimate the performance of the services.

Service | Reliability | Maximum Duration
A 1% 1s
B 99% 100s
AandB| 99.01% 1s

TaBLE 2.3: Example of redundantly provisioned services (Jaegeétladner (2005)).

Chapter 2 Literature Review 47

In conclusion, these QoS-based approaches show some promiseackmeyledge some un-
certainty about provider behaviour in the form of reliability measures (Rement M.1.a), but
usually assume certainty about service durations and other quality meafyemodelling
each service explicitly with different quality values, these approach#®sslthe inherent het-
erogeneity of such services (Requirement M.4). Service costs cahealsoluded in the calcu-
lations (Requirement M.2.a), and most of the workflows considered pressive (Requirement
W.1), containing parallel, sequential and conditional branches (Cauetca. (2004)). The re-
ward models are simple as they rely on linear combinations of QoS values,gyutatte into
account global solution qualities such as the workflow completion time, cadjbsted flexibly
by altering the weight vector and may include complex performance corist{&aquirement
W.2). Finally, QoS provisioning addresses service failures reactiyetgflanning (A.2.a) and
proactively by taking into consideration an overall reliability measure (A.Z2Tifjere is even
some initial work on including redundancy.

Despite making some progress towards meeting our overall researéfereents, we believe
that QoS-based provisioning in its current form is not usable in the anwieats we consider.
In particular, we note the following shortcomings:

e The weighted QoS function that is optimised is very simple and assumes that &sue
linear, additive and independent. In particular, reliability is treated as pathar issue
that is substitutable, at a constant rate, with other qualities of the solutioh.b@haviour
is not rational (as defined in Section 2.2.1), will require careful manipulaifahe ap-
propriate constraints and weights for each workflow, and so largegatiethe purpose of
designing an agent to automate the execution of workflows (our cersesneh aim).

e The approach does not offer a good solution for generally highlyliabie services.
While it can optimise the overall reliability, the workflow will still fail when all séres
in the system are unreliable or when the workflow is simply very long. Fomei&
when it provisions services with a reliability 8% each for a workflow consisting of
100 tasks, the overall success probability is just ursdés. Redundancy may help with
this issue, but current work is insufficient for the reasons outlinege@bo

e Although some of the above approaches suggest reactive re-planriage of failures,
they do not reason about this in advance. This is a major shortcomingx&mopée, con-
stant re-planning may be expensive if services demand some paymeatfoinvocation,
and so it may result in a large loss for the agent if it still fails to complete the floark
in time. On the other hand, if services are cheap and plentiful, the agentuneges!
with a high likelihood despite a low initial reliability for the overall workflow. Hoves,
it would need to plan ahead and leave sufficient time in its schedule to attemptaskae
several times before its deadline.

Another potential criticism is that QoS approaches rely on information thatogiged to
them through service descriptions, which may be unreliable or even mateiguiaorder to

Chapter 2 Literature Review 48

entice consumers to provision particular services over others. Howeveve mentioned in
Section 2.2.3, we believe that such issues are being addressed bynttugipatation mech-
anisms. In fact, work by Sreenath and Singh (2004) is concerned wiidbooative service
provisioning based on ratings by other agents, and in other work, MaxinaifidrSingh (2005)
consider a trust mechanism for QoS-based service provisioning.

To conclude our review of current service provisioning techniques,joagk at an area that
we find particularly promising and which begins to consider some of the dgeetd work
presented in Section 2.2.

2.4.3.3 Decision-Theoretic Provisioning

So far, we have discussed approaches that provision servicas drasegical constraints and
rules, or that optimise some numerical parameters of a possible solutionitdDibepfact that

services are envisaged to be used in economic contexts, that they wilbotatsignificantly

to the operations of organisations, and that they are consumed in uncarthicompetitive

environments, little work has used decision-theoretic principles for praowisjoservices for

complex workflows.

An exception to this is the work carried out on top of MAGNET, which we intrced in
Section 2.2.4. Collins et al. (2001) consider simple workflows of interdggrentasks, rep-
resented as directed acyclic graphs, that a consumer wishes to combe¢echiixed deadline.
Here, the consumer uses decision theory by assigning utilities to variousmesof the work-
flow (e.g., not attempting the workflow at all, failure after thi task or overall success), and
then calculates the expected utility of the workflow by multiplying the utility of eadicaue
with its respective probability (as we discussed in Section 2.2.1). Becangees cost money
and the successful completion of a workflow is assumed to have an explicétary value to
the customer, utilities are calculated directly from the loss or profit that estelmipal outcome
entails’.

Such utility calculations are used by the service consumer in two ways. Fiesthtip the
agent determine a good preliminary schedule for the workflow, which is tlsed to solicit
bids from suppliers. Here, the agent might delay expensive tasks twedtie probability
that the workflow fails after these tasks have been started. Such delagsh impact on the
expected utility, because leveled commitments allow the consumer to withdraw fdeal &
the workflow fails before the task is started (Babanov et al. (2004)thidistage, the agent also
attempts to balance the need to create a tight schedule and finish within the eledthiran
appropriate amount of flexibility to solicit the maximum number of bids of supp(iémlins
et al. (1999)). With this preliminary schedule, the consumer proceedgytmise a reverse
combinatorial auction (as outlined in Section 2.2.4).

This is common in decision theory — in fact, the monetary outcomes of garabéeoften equated with utility
measures for risk-neutral agents. When agents are risk-senaitieg-linear function is usually applied to translate
between them (Raiffa (1968)).

Chapter 2 Literature Review 49

The second application of utility calculations happens during the provisigstiage. This is
when the consumer receives bids from the suppliers to carry out thegseql tasks at the spec-
ified times. The consumer then chooses the set of bids that maximises théedxpidiy of
its workflow. Due to the complexity of this task, the agent uses simulated angeathrer than
an exhaustive search, which has the added benefit of being an anygionithan that can be
stopped when a pre-defined time-limit is reached.

Relating this work back to our requirements, we note that, in addition to aduyessst of the
issues covered by QoS-based approaches, it offers a feasilslmaapgowards implementing
an agent that makes (boundedly) rational decisions (RequirementFAuthermore, it demon-
strates how a non-trivial negotiation protocol can be used to provisieites in advance (Re-
quirements M.2.b and M.3.b).

Nevertheless, the work is lacking in several areas:

e By relying only on advance negotiation, the work is not applicable to ctiservice-
oriented systems, where interactions are mostly carried out through @meton-de-
mand invocation mechanisms. Eventually, we envisage systems to offer Yamies
of negotiations that coexist (Requirement M.3.b) rather than relying onpartécular
mechanism.

e Similarly, the service consumer provisions an entire workflow at once,haieiguires a
high initial investment that may be lost when a single service fails. For thisme#éss
also slow to respond to failures, as it has to organise a new auction foerttender of
the workflow. In dynamic environments, this is not desirable, especiallynwhee agent
has to work towards a fixed deadline. Also, the authors do not explicitlgritbeshow
such re-provisioning should proceed and how the agent might reasomitin advance.

e As inthe QoS-based approach, workflows are still vulnerable in certaimesios. Again,
we can consider generally unreliable services that will serve as botteoeextremely
large workflows that pose a risk even if the individual providers arbljigeliable.

This concludes our literature review of the basic technologies and existihgitgies for work-
flow execution and service provisioning. In the final section of this chapte briefly sum-
marise our main findings and evaluate the extent to which our requirementsedrgy the
current literature.

2.5 Summary

As discussed in this chapter, the research community has devised manydwiidtes for pro-
viding services over computer networks, for negotiating about the ternashimh the services
are provided and for making good decisions under uncertainty and with liaiegutational

Chapter 2 Literature Review 50

resources. However, little work combines these in order to enable commatisdigents to ex-
ecute complex workflows autonomously on behalf of their owner in uncestadncompetitive
environments — a key problem that is encountered in business and imziezalike.

Some existing work addresses parts of our requirements in isolation. @ftenyill provide
us with the necessary tools to tackle our overall research challengethascigse, for example,
with the work on probabilistic trust models by Teacy et al. (2006). In othees, existing so-
lutions for some of our requirements may be infeasible when consideringveuall aims, as,
for example, the use of manually specified exception-handling routines HBRE. demon-
strates. Hence, in this section we conclude the literature review by brigfiynanising our
main conclusions and evaluating what existing work to build on.

2.5.1 Model Requirements

Current work in Web services, Grid computing and peer-to-peer systéfersinfrastructures
for providing and consuming services in distributed scenarios. By usingron, platform-

independent data formats and protocols, they allow heterogeneous agenteract and, by
employing emerging techniques from the Semantic Web, to discover eachAshsich, these
are the basic enabling technologies that we can build upon, but they doodet explicitly the

uncertainty or dynamism that is inherent in the systems we consider.

Recent work on QoS in service-oriented computing models uncertainty pibgbilistic mea-
sures, which can be obtained either by a centralised observer or thtaug) and reputation
mechanisms. We believe that this is a promising approach for satisfying Rewant M.1 in
order to represent the possibility that providers may defect or offér seevices with vary-
ing qualities. Similarly, such measures can be used to distinguish betweergesieous agents
(Requirement M.4) and there is some work to consider the dynamism of s@miented sytems
by tracking changes in performance over time (Requirement M.5).

Currently, interaction mechanisms in service-oriented systems are simplelyantbistly on on-
demand service invocation (Requirement M.3.a). Despite some initial workeotetbcription
of service level agreements, there are no satisfactory mechanismsdoraded service remu-
neration and advance agreements (Requirements M.2.b and M.3.b). Swehass addressed
by separate work in agent-based negotiations, which offers a spestnuegotiation protocols
for different settings. In this context, we find the leveled commitment contrecprotocol
particularly promising, because it follows similar contracting models in the redtyis easily
implemented and offers the contracting agent flexibility in choosing whichiotéeaccept.

Chapter 2 Literature Review 51

2.5.2 Workflow Requirements

As workflows have been widely studied in the context of business pesgthere is extensive
work on the expressivity of workflows and their semantics. We will drawthos work when
designing the workflows that service consumers face (Requirement W.1)

However, because the workflows considered in that work are usuegiged by humans, they
do not provide associated reward models that might guide an autonomats gek on the
MAGNET system awards agents a fixed price for successful complefibrs. is a promising
approach as it lends itself well to a decision-theoretic analysis, whetepap®ff and uncer-
tainty are balanced. However, it is a very simple model that takes into aconlynthe binary
outcome of finishing in time or not. In reality, cumulative penalties might apply to lae-c
pletion (Requirement W.2). Nevertheless, the approach allows a usexitnyfldetermine the
value of a workflow and can be extended to cover more expressigddunctions.

2.5.3 Agent Requirements

Service failures are addressed in the literature in several ways. Mwog&flow engines con-
tain explicitly specified failure-handling routines that deal with failurestieely (Requirement
A.2.a). Such an approach requires a human programmer to foresdemsadnd is therefore
not applicable for our work. In Condor and most peer-to-peer systiihsres are addressed
in a more appropriate manner by automatically choosing substitute services. rigjrsitene
approaches use global workflow replanning to react not only to failumet also to other events
that breach workflow constraints (e.g., when services take longer ¥pected). Hence, these
approaches are adaptive, but only react when breaches haagyatrecurred and do not exploit
opportunities (Requirement A.4). Furthermore, this reactive behavimuld de infeasible in
unreliable environments with workflow deadlines, where the consumer &r dimgle-pressure
and cannot retry indefinitely.

Some approaches take a more proactive approach towards dealing iluithsf§Requirement
A.2.b). Especially, work in decision-theoretic provisioning explicitly modelgabdity and
strikes a balance between choosing more reliable services and the gsboo#&s. In P2P sys-
tems and the deployment of Web services, techniques from reliability emgigese used and
service redundancy is exploited to provide higher overall reliability, datishoften determined
manually or formulates the redundancy allocation as a static optimisation probtargiven
cost or reliability constraints.

Work in decision theory offers some valuable tools for making good deasidthin the limits
of a computationally bounded agent (Requirement A.1). Some of thedtsiesve already been
applied to a particular provisioning scenario and show some promise favant However,
much work on service provisioning aims to solve combinatorial problems, vareigenerally

Chapter 2 Literature Review 52

Flexible Provisioning of Service Workflows

Principled workflow execution framework for uncertain environments

Quality-of-Service Negotiation
Performance metrics Automatic agreements
Agreement languages Flexible pricing
Parallel Redundancy
‘ ‘ ‘ ‘ Proactive failure avoidance
Semantic Web Services Trust & Reputation
Dynamic matchmaking Probabilistic service modelling
Service discovery Observation aggregation
‘ ‘ ‘ ‘ Serial Redundancy
Reactive failure avoidance
. . . s Dynamic re-provisionin,
Web & Grid Services Decision Theory ’ ? ¢
Infrastructure Rational decision-making under
Workflow engines uncertainty
Service-Oriented Computing Multi-Agent Systems Reliability Engineering

FIGURE 2.7: Summary of the work we build upon in this thesis.

intractable for large cases. Approaches that use heuristic methodsreestpromising here to
satisfy our requirement for scalability (Requirement A.3).

In summary, many of our requirements have been considered in isolatiortloe gontext of

different research. Hence, there are a number of tools that we aanugron for our research
problem. However, there is currently no effective general strateggrfwvisioning services in
realistic distributed environments, where services are neither providdaéonor behave in a
reliable manner. To address this, we build on the work presented in thitecligpmmarised in
Figure 2.7) and first outline an abstract model of a service-orientadrayia the next chapter.
Then, we consider a range of service-oriented environments, whgyimg amounts of service
performance information is known to the consumer and where differgatia¢éion mechanisms
are used. In order to address these separately, exploiting the spéeaifacteristics of each
environment, we develop several novel service provisioning strateg@sapters 4—6.

Chapter 3

Modelling a Service-Oriented System

To frame the remainder of this thesis, we begin by describing in more detaiysenss we
consider, based both on our original requirements given in Chapted bracurrent service-
oriented technologies outlined in Chapter 2. The purpose of this discussiorintroduce a
number of common assumptions that are used throughout the thesis, aadite @r high-level
description of a service consuming agent and its possible interactions withesproviders.
This will form a general system model, which we extend and base ouraevorklater chapters.

More specifically, we begin in Section 3.1 by defining the basic terminologyuofnoodel,
and in Section 3.2, we describe the lifecycle and structure of a workfldis i$ followed by
an outline of how service providers behave and the information that is bdadéout them in
Section 3.3. We give a high-level algorithm that formalises the behaviauseifvice consuming
agent (Section 3.4), and we briefly introduce an illustrative workflowunftbe bioinformatics
domain that will serve as a running example throughout the thesis (SectipnRr&lly, we
conclude our framework by discussing some of its limitations in Section 3.6.

3.1 Basic Terminology

Our model describes a distributed, service-oriented environment, velciwes can exhibit a
varying degree of reliability, timeliness and autonomy in providing and congusarvices. It
assumes several basic concepts (shown in Figure 3.1):

e All participants in service-oriented systems are autononamesits i.e., self-interested
entities that seek to maximise their private utility (Jennings (2000)). We distimdpeis
tween two different types of agents:

— Providers offer their capabilities to other agents in the system, usually in exchange
for financial remuneration.

53

Chapter 3 Modelling a Service-Oriented System

54

\
\
\
\
\

[] concept () instance — has-owner mapping =~ --------- > has-type mapping
Consumer c,
1
n
(2 (5) (1

Service Type

\]

\,
\,
\.

/ \
/ \
/ \
7 \
/ \
/ \
7 <
S / \ AN
ya / \ N
1 \
/ ! \ AN

W

.

Provider

FIGURE 3.1: Basic model concepts (on left) with an example (on jiglrrows indicate
functional (many-to-one) relationships.

— Consumersmake use of the capabilities offered by providers in order to achieve

their goals.

e Tasksare problem instances that a consumer faces in a particular context.aSask
can be seen as a desired change in the current state of the agentsemrit or in
its current knowledge. Generally, we will concentrate on tasks thataveds by the
transfer of data or information — for example, such tasks might include @sapg a
large dataset, finding the solution to a complex optimisation problem, or comparing a
nucleotide sequence to a database comprising millions of genes. To a lesser @ur
work also applies to tasks that require actions with a tangible physicat efighe world,
such as the delivery, manufacturing or processing of goods, butrevea concerned
with the associated logistic problems and assume free disposal of unwartesl @his

assumption is explained in more detail in Section 3.6).

Furthermore, tasks are not further decomposable by their ownersaaedid be dele-
gated to providers that are able to solve them. Due to this task delegationsweaes
that, from the owner’s perspective, tasks are always in one of twsstateompleted or
uncompleted. We also assume that there is only one transition from beingpleted to

Chapter 3 Modelling a Service-Oriented System 55

completed when a task is solved, after which it becomes irrelevant to the'swaoeent
needs.

e Each task is associated wittsarvice type This is an abstract description of the type of
service that is required to solve the task. Different tasks can be aesbwidh the same
service type, but each task has exactly one type. For example, the taskrohing for
a specific nucleotide sequence in a genome database could be assoitfatadabstract
data comparison service type.

e Services(or service instancey are concrete implementations of a given service type.
There may be many implementations of a service type, but each servicedtily exe
type. These services are behaviours that service-providing agétscoconsumers in
order to help them solve tasks of the appropriate type. In this work, serefices are
treated as atomic problem solving units, whose internal realisations arglets as
black boxes and not further considered in this workurthermore, they are generic and
repeatable, that is, they can be procured by different consumedffiarent tasks, but
each service instance has exactly one provider. An example of a seotittebe a par-
ticular implementation of a genome comparison algorithm offered as a Grid sdayia
biological research laboratory (O’Brien et al. (2004)).

The above concepts form the basic terminology of our model. As we arestéerin developing
strategies for a single service consumer, we now describe in more detadtibeiour of such a
consumer and the workflows it executes.

3.2 Workflow Model

Service consumers in distributed systems often face multiple inter-depeagkst which to-
gether achieve a more complex objective. For example, several datsping tasks may be
required to sequence and analyse a gene (see Section 3.5), omdiffares and materials may
need to be purchased in a procurement scenario. As described in Chapese tasks and their
dependencies are usually expressed as workflows, and so this natimtrial to our work. To
this end, we first outline the lifecycle of an abstract workflow (Section B.2rid then formalise
its structure (Section 3.2.2).

In practice, it may be necessary for the consumer to exchangeabevessages with the provider in order to
effect the desired behaviour. For example, a book-ordering semvéy require the consumer to first obtain a unique
book identifier from its catalogue, create a virtual shopping basket, adubitk and finally provide payment details.
We do not explicitly cover such detailed interactions in our model, becaage&pend highly on the implementation
of a particular service and are typically indivisible (i.e., it is generallypustsible to order the book from one service
but provide payment details to another).

Chapter 3 Modelling a Service-Oriented System 56

Workflow Service Registry/ Domain Knowledge/
Repository/Planner Broker Trust Model

g E == o EER

O—0—0 O—0—0

T a5) &S) (B) —
Workflow Match- ElE - SHS I

Selection making Provisioning Invocation Success

Failure

FIGURE 3.2: Lifecycle of a workflow
3.2.1 Workflow Lifecycle

Building on the work on abstract workflows outlined in Chapter 2, a semdcesumer in our
model proceeds through four stages when executing a workflow {geseR3.2):

1. Workflow Selection: First, an abstract workflow is chosen to suit the consumer’s current
objectives. This is generally created either manually by domain expertgamatically
by a planner that uses abstract templates of common service types. Dueadahiexity
of generating workflows, this may take place offline, allowing the consumesttve
suitable workflows from a repository. At this stage, tasks are only &gsdcwith their
abstract service types (e.g., in the form of semantic meta-data) and natlyeiny con-
crete service instances.

2. Matchmaking: Once an abstract workflow has been selected, tasks are mappedito cand
date service instances via a matchmaking process. Here, the consurnbeseapublic
service registry or requests matching services from a broker. Thisustpthe service
type annotations provided by the abstract workflow to find suitable sengtances. Ad-
ditionally, the agent may, at this stage, apply security policies to filter the satroice
instances (e.g., to remove services that do not adhere to certain prato@sisryption
methods, or that cannot provide the necessary security certificates).

3. Provisioning: Given lists of matching services, the consumer now provisions individual
service instances for each task of the workflow. This decision may caestitacit inten-
tion by the consumer to invoke the provisioned services for the respéask®, and so it is
not necessarily a binding commitment. The purpose of this stage is to allow thermen
to make predictions about the performance of a provisioned workflaaeaxplore the
space of candidate provisioned workflows. Specifically, it is possibl¢hi® consumer
to evaluate and optimise the provisioned workflow using an appropriate utititgtiin
that encodes the value of successfully completing the workflow. Duringstage, the
consumer can make use of its own domain knowledge and possibly servioenmnce
information that is available from external sources, to identify particulailarfe-prone

Chapter 3 Modelling a Service-Oriented System 57

FIGURE 3.3: Example workflow consisting of six interdependent sagRircles represent the
tasks inT" and arrows represent the dependencies as givefi fiyansitive dependencies are
omitted for readability).

tasks, and to proactively provision additional or more reliable servicesevhecessary
and where this increases the expected utility of the provisioned workflow.

4. Invocation: When appropriate services have been provisioned, the consumertstarts
invoke the chosen services as dictated by the ordering constraints ofotlkéomw. If
services fail to complete their tasks, the consumer may provision other snitéd the
workflow is successfully completed.

In the following section, we formalise the concept of a workflow and show to describe its
value to the service consumer.

3.2.2 Workflow Structure

As discussed in Chapter 2, a workflow is typically a collection of tasks withcgpjate ordering
constraints. For this reason, we model it as a directed acyclic grapimabgra workflow is a
tuple W:

W= (T,E,T,u) (3.1)

where

T = {t1,t2,t3,...,ty7|} is the set of tasks that make up the workflow.

E : P(T x T) is a strict partial order ovef’, denoting the precedence constraints. An
element(t, t2) € F means that completion of is necessary for, to be started.

e 7 : T — 7 maps each task to an abstract service type, wiieig the set of all such
descriptions.

e u : R — R is a utility function that maps the total completion time of a workflow to the

related reward for the consumer.

To give an example, Figure 3.3 shows a workflow consisting of six tasksswitie dependen-
cies. Here, task; has to complete successfully before any other tasks can be started:, Task

Chapter 3 Modelling a Service-Oriented System 58

Service Types @ @ @
\ ~

1\ / VA \

i A U \

\
/ / \ \ \
/ N Vo \

N/ v \

/
Y \
/ \ \

/ FAN \ AN \

FIGURE 3.4: Relationships between tasks in workflow and abstraicsetypes.

can only be started once tasks t, and (by transitivity)t; are completed. While this figure
only shows the task& and edgesr, Figure 3.4 highlights the relationship between tasks in
the workflow and abstract service types (as given by functjonn this example, several tasks
share the same service type (for exaniplandis).

The utility functionw defines how the service consuming agent is rewarded for the sudcessf
completion of a workflow. This represents the value that the agent (or iiewattaches to the
workflow and may, in practice, be the expected financial gain of completmgvtrkflow, or
simply a private utility value, as commonly used in decision theory (Raiffa ()968re, we
assume that the reward is given only when the whole workflow is completethahthe amount
of the reward depends on the time at which it is compfetddence, we use a general utility
function that awards a maximum utility,ax when the workflow is completed within a given
deadlinetmax. When this deadline is exceeded, a penalty sdatededucted fromumay for every
unit time step that the agent is late, until the agent gains no more positive utilithiahwase
it receives a reward of zero, regardless of whether the workflowrigpteted at a later stage or
not. Formally, we express the utility functianas follows (withumax > 0, tmax > 0 andé > 0):

Umax if t S tmax
'U:(t) = Umax — (S(t — tmax) if t > tmax andt < tmax + Umax/(s (32)
0 if £ > tmax + Umax/d

In this context, we usgeroto denote the first integer time step at which the consumer no longer
gains any reward, i.etzero = [tmax+ umax/d|. In practice, when the consumer has not com-
pleted the workflow at time stefero, We treat it as failed and assume that execution will stop
immediately (as doing otherwise is clearly irrational and may lead to infinite exedirties).

To illustrate this, Figure 3.5 contains some example utility functions. The functimeildal
u1(z) rewards the consumer withnax = 400 up to the deadlinémax = 100. When this
deadline is exceeded, the utility of the workflow decreases slowly, with altyasf only § = 4,
thus representing a case where a small delay does not significantly pahalisonsumer. In

2This is consistent with much previous work in the area — Collins et al. (2@843rd an agent with a fixed payoff
for completed workflows, while Arunachalam and Sadeh (2004) avid kt al. (2004) describe utility functions that
depend on the time of completion.

Chapter 3 Modelling a Service-Oriented System 59

1000 f--------- \ Uy(x) ——
- Un(X) -------
800F .. % Ug(X) - - -
© \‘ﬁ.\
g 600} VT -
& 400 ‘\ e 1
200 el
OF e RS
0 50 100 150 200 250

Time to Completion

FIGURE 3.5: Examples of some representative utility functions.

contrast to thisuq(x) represents an example where time is more critical. Here,40 and so
the consumer loses all utility even if it is only 25 time steps late. Finalfyz) has no specific
deadline {nax = 0), rewarding the agent purely based on the amount of time taken.

Given our formal model of a workflow, we now discuss the behaviousest/ice providing
agents.

3.3 Service Provider Model

In this section, we give an overview of how service providers interditt the consumer, and
how we describe the performance of their services. As we will consiffereht market mech-
anisms and varying amounts of knowledge about services, we restridesaription here to a
brief summary and expand on it in more detail in later chapters.

First, as described above in Section 3.2.1, we assume that there is a mecfuardiesnsumers
to discover the available service instances for each tagk ifo this end, we le§ = {s1, sq,

e 5‘3|} be the set of all services and we formalise the matchmaking phase in Figuas 3.2
a function,i, : 7 — P(S), that maps abstract service types to sets of suitable services. For
brevity, we letS; = u(7(t;)) (e.9., in Figure 3.1, we hav® = {s1, s2, $3, 84}).

Given this information about service instances, the consumer may therededid/oke them
for the appropriate workflow tasks. This happens either thramgdemandnvocation, where
the consumer requests the service only when it is required (this is the do€ilsapters 4 and
5), or through advance agreements (discussed in Chapter 6), wbeerertbumer and provider
first negotiate an explicit contract about when and how the servicddshewprovided. In both
cases, we assume that the consumer incurs some cost for invokingeservic

Once a service is invoked for a given task, we consider two main outcasuesess and fail-
ure. If the service succeeds, the consumer receives notification afatme time after invoca-
tion. However, the exact time for this is usually uncertain, as it dependstwork delays, the

Chapter 3 Modelling a Service-Oriented System 60

complexity of a given task and the provider’s decisions on how to allocatmirees between
competing consumers. If the service fails, we assume that no explicit ntifiga returned to
the consumer — hence, we primarily consideaishfailures in our work (Cristian (1991)). In
Section 3.6, we briefly outline other types of failures that we do not ctiyraddress, and we
show in Chapter 6 how this model can be extended to include explicit failureages.

An important aspect of our model is that we assume multiple services candbedhfor a single
task. This means that the consumer may invoke several in parallel, for Ex#oripcrease the
overall likelihood that the task will be completed by one of them. Similarly, it maygdeéea
failed task to a different provider. In this context, we assume that a singtess is sufficient
and so atask is considered completed as soon as the first invoked sesviceessful. However,
we also assume that the consumer generally has to pay for all invokéckeseregardless of the
outcome, but in Chapter 6, we consider scenarios where providersdref even compensate
the consumer for service failures. Furthermore, throughout the thesessume that outcomes
of different services (or of the same service, but for differentdpske independent. Again,
we briefly return to this assumption in Section 3.6 and discuss some cases itvtiees not
necessarily hold.

As outlined in Section 3.2.1, the consumer uses some performance informiatiohsgrvice
instances to decide which ones to provision for the tasks of the workfldtlhodgh we will
cover this in more detail in later chapters, we consider a number of basimpters that describe
each service:

e c(s;) € Risthe invocation cost of servieg. Usually, this will be a financial remuneration
paid by the consumer to the service provider, but could also represemhiunication
cost. We assume that it is expressed in the same units as the workflow (givardby
utility function u(t)).

e f(si) €]0,1] is the failure probability of service;. This is the probability that invoking
the service for a particular task will result in failure (as described ghove

e d(s;,x) € Ris the duration function of servicg. This is a probability density function
representing the time between sending a request to invoke sepdoe receiving notifi-
cation of a successful outcome (as observed by the consumer antdarwaicdn overall
success). As such, this function encapsulates the general unceirtdhyservice execu-
tion time, including factors such as network propagation delays, competitiorottié
consumers and task uncertainty. For convenience, we denote théatsd@timulative
density function a®(s;, z) = [d(si, y) dy (i.e.,D(s;, x) is the probability that the time
between requesting servieg and being notified of its successisor less). Intuitively,
we assume that durations are always strictly positiie< 0 - d(s;, z) = 0).

In the following section, we present a general algorithm that sketchdxetiaviour of a service
consuming agent. This further formalises the consumer’s interactions witbrdeders and
forms the basis for our proposed strategies in Chapters 4 — 6.

Chapter 3 Modelling a Service-Oriented System 61

3.4 Basic Service Consumer Algorithm

Algorithm 3.1 shows the general behaviour of a service consumer., Mereoncentrate on
the sequence of actions to give us a basic framework for our workinggélve actual decision-
making procedures IiTIALISE, UPDATE, STOPCONDITION and ENGAGESERVICES) to later
chapters. In this algorithm and throughout our work, we assume that tissegdn discrete,
uniform time steps, representing the intervals at which the consumer sesnsegronment. To
this end, we denote the first time step?as 0, the second as= 1, and so on.

At the beginning of the algorithm, two variables are first initialised to keep toathke current
time (line 2) and the overall profit the consumer has accumulated (line 3)n, Tindine 4,
the consumer selects an appropriate workflél¥, to achieve its current objective (denoted
by A). This corresponds to the workflow selection stage described in Secfiah (Bowever,
as we concentrate on the provisioning of a given workflow, we do nercihis stage in more
detail). Givenl, the consumer next performs an initial decision-making procednrelALISE
(line 5). During this, it may discover available services (correspondirtheéamatchmaking
phase) and make initial decisions on which services to invoke for the thgksaorkflow (the
provisioning phase).

Lines 7 — 24 constitute the main loop of the algorithm, with each iteration repregahtn
actions performed during a single time step. In more detail, the var@tte line 8 is first
set to contain information about the most recent service outcomes thatextdetween the
current and the previous time step (this is later used to update the consetatg)s For now,
we assume thad : P(T x S) is simply a set of tuples that indicate the tasks and associated
services that have successfully been completed in that time interval (ineCl&gpve consider
other outcomes as well). Next, in line 9, any penalties for failed servicgmid¢o the consumer
(we only consider this in Chapter 6). If the outcomegirsuggest that all the tasks have been
completed, the overall profit is calculated using) and the algorithm terminates by returning
the profit and a status message to indicate success (line 11). On the atlieif tlee workflow

is not complete and will no longer result in a positive, non-zero rewamd athorithm also
terminates (line 13).

If some tasks are still uncompleted, the consumer updates its internal stedednathe service
outcomes (line 15). This involves updating the progress of the workflapassibly adapting
its initial provisioning decisions. Next, when service providers demantiogxgontract nego-
tiations (as discussed in Chapter 6), the consumer may negotiate with senwiigeps (line
16). After this, the consumer may abandon the workflow, for example viteems infeasi-
ble to complete it in time (line 17). This is followed by service invocations, durihgckvthe
consumer requests any provisioned services to be started (line 20)corFfesponds to the in-
vocation stage detailed in Section 3.2.1. Finally, the profit is updated to takeccooirat any
costs incurred during negotiation and invocation (line 21) and the time is eeddline 22).

Chapter 3 Modelling a Service-Oriented System 62

Algorithm 3.1 Service consumer behaviour.

1. procedure SERVICECONSUMER

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

t—0 > Current time
p—0 > Current profit

W « SELECTWORKFLOW(A) > Select workflow
INITIALISE (W) > Initial matchmaking and provisioning
O 10 > Variable to hold most recent service outcomes
loop > Main loop

O « recent service outcomes
p < p + penalties > Pay out penalties for failed services
if all tasks completethen

return (p + u(t), success) > Successfully completed workflow
else ifu(f + 1) < 0 then
return (p,failed) > Failed to complete workflow in time
else
UPDATE(O) > Update consumer with outcomes
NEGOTIATESERVICES > Negotiate service provisions
if STOPCONDITION = true then
return (p, abandoned) > Abandoned workflow
end if
INVOKESERVICES > Invoke services
p < p — costs > Accumulate costs of provisioned/invoked services
te—t+1 > Advance time
end if
end loop

25: end procedure

Chapter 3 Modelling a Service-Oriented System 63

pasecatl }—{ Geneassemble %

FIGURE 3.6: Example bioinformatics workflow, based on workflowsatiésed by Smith et al.
(1997), Kochut et al. (2003) and O’Brien et al. (2004).

To further illustrate the types of workflows that a consumer in a serviegvgd system may
face, we briefly discuss an example workflow in the next section.

3.5 lllustrative Workflow

Throughout this thesis, we illustrate our work using a simple workflow frogrbibinformatics
domain — an area that relies heavily on computationally intensive servicdbariths increas-
ingly seen the establishment of large distributed Grid systems for shariogreces, as exem-
plified by the GriPhyN (Deelman et al. (2003a)), myGrid (Oinn et al. (2pa63 ComieChem
(Coles et al. (2005)) projects. For our example, we assume that a Sdiexgigist sequenced a
previously unknown gene of a bacterium, and is now interested in visuattstnghape of the
associated protein. For this, she has to carry out a number of taské$, arishown in Figure
3.6.

Her initial data comprises a large set of overlapping DNA fragments in tha fafr chro-

matograms, as is common in shotgun DNA sequencing (Ewing et al. (1998)gseTshow
characteristic light traces at different wavelengths, corresponditigetéour bases found in a
DNA sequence. As these traces typically contain some noise and errassjghtst first needs

to run a base-calling servicB@seCal). This translates the chromatograms to the corresponding

base sequences, attaching a quality value to each base in the processtitas how accurate
the assignment of the base is. The resulting base sequences are émbleddo a single con-
tinuous DNA sequence by identifying and merging overlapping fragmestaguhe quality
values to find and repair errors. This task is performed by a seq@ssesnbling service, which
also identifies and isolates the coding region of the g&eméAssembje

When the coding region of the gene has been assembled, it is then tratsthgedorresponding
amino acid sequence using a simple translation serfiams¢latg. As the primary structure of
the protein, this forms the input to the computationally-intensive folding se(t#ud), which
predicts the 3-dimensional shape of the protein based on a search foortfemation with
the lowest free energy. The output of this — a file containing the tertiargtsirai data — is
then rendered in high resolution using an appropriate graphics seRacel€). In parallel with
the folding simulation, the scientist is also interested in comparing the new genevioysly
discovered sequences. To this end, she searches through publiticoief known proteins to

Chapter 3 Modelling a Service-Oriented System 64

find the closest match using a specialised senBtasf), and then accesses commercial database
services to retrieve structural information about the proteookUp. This is rendered again,
and both images are printed as part of a report on a local printa].

Now, some service types in this example require a significant computatidorlaafd may take

a considerable amount of time to complete. In this context, our utility functionjvas ¢y
Equation 3.2, allows the owner of the service consuming agent (the scientiés example)
to succinctly encode the overall utility of the workflow and how this relates tdithe taken.
For example, if the scientist needs the results later in the day, but is ndy ceecerned about
waiting a bit longer, a utility function with a low penalty such as; in Figure 3.5, is appro-
priate. If, on the other hand, the results are critical for a presentat®isgjiving to a funding
committee in the next 90 minutes, a utility function suchuagexpresses the urgency and high
value of the workflow more suitably.

These examples serve to highlight some of the challenges we seek tosatdms work.
Especially in the latter case, uncertain service durations can easily jéspénd successful
completion of the workflow — for example, when one of the provisionedisermstances is
in high demand and therefore takes longer than expected. Similarly, séailices can lead
to missed deadlines and to higher costs (as replacement services may heddund and in-
voked). Furthermore, the service types discussed above may bediffigmany heterogeneous
agents — for example, there may be instances foRiederservice type that are very expen-
sive and reliable (perhaps because they run on dedicated graphicgations), but also others
that are cheap, unreliable and usually much slower (these may be exemutsmgple desktop
machines).

Hence, we need a decision mechanism that can anticipate some of the pgpiertiains and
mitigate them by provisioning the workflow in a flexible manner, for example,rbyipioning
multiple providers for a given task, by re-provisioning failed tasks anchmpsing appropriately
among several heterogeneous providers. Before discussingaposad algorithms for this in
detail, we conclude this chapter by detailing some of the limitations of the model wee ha
adopted. This discussion is necessary, as we have made some assuthatiores/ not always
hold in practice.

3.6 Model Assumptions and Limitations

Although we have striven to present a model that is applicable to a large céservice-oriented
scenarios, we have had to make a number of simplifying assumptions ab@ubblem domain
that may not hold in all potential application areas. On the one hand, theseaiions were
necessary to produce a formal model that is amenable to efficient mathdraatbgsis, and
on the other hand, they allowed us to present and deal with a genebé&tmreather than con-
centrate on domain-specific constraints that may occur in a concrete dipplicil/e believe

Chapter 3 Modelling a Service-Oriented System 65

that our assumptions are reasonable in most large distributed systemstand thadel consti-
tutes a solid basis for more specific extensions. In this section, we explicitynlisjustify the
assumptions we have made.

e Failure Model: We have chosen to focus mainly on silent crash failures at this time.
Compared to explicit failure messages, silent failures are more challengaeatavith
(clearly, a consumer receiving such messages will perform at lea&lbass one that does
not). Furthermore, they are realistic in distributed environments, whereEsqroviders
do not reveal their internal state, and where network or machine faitarekad to com-
munication losses. However, we currently do not deal with Byzantine ésjuwvhich
include the return of corrupt service results. Hence, we must assutgetivace results
can be tested for correctness (in fact, many intractable problems cafidiendl/ veri-
fied), but we plan to relax this limitation in future work.

We also assume that failures (and durations) of different servicesdapendent of each
other. We believe that this is generally the case in large-scale distributesysvhere
services reside on physically separate machines, use different impleioentand do not
directly interfere with each other. Despite this, failures may occasionallytrelated
— e.g., when two services rely on a common third service, or when seystahss are
attacked by the same virus.

Furthermore, failures between separate tasks may not always beric@epeither. For
example, when provisioning the same instance for several tasks, it iblpasst there
will be some correlation between the outcomes of these tasks. In sometbasesiure

of certain tasks may also require the consumer to repeat previous tagksmaen the
service input data was first converted by another service to a spexifiaf). However,
we believe that this usually happens within the context of a single task, veegezal
operations of the same service have to be invoked to achieve the ovgeaitivd (and
where a failure would imply repeating these operations with a differenigeov While

other dependencies are also possible, we chose not to include sudtaicbsisn our
current model for conciseness.

Finally, we do not explicitly consider transient or intermittent failures — hemezdo

not attempt to repeatedly invoke the same failed service for a given taskabéwvnes

(however, if such a behaviour does not incur additional costs, itasityde incorporated
into the overall failure probability and duration distribution of a task).

e Performance Information: As we concentrate on the provisioning problem rather than
learning techniques, we assume that the service consumer has acedi@mance infor-
mation about the providers for each taskn practice, such information may be domain
knowledge provided by experts during workflow generation (Ng andiiison (1990)),
by inference over the task descriptions and related data (Maximilien antd §10604)),
or by statistical estimation based on previous interactions with similar servicgsipty

3However, we show in Appendix A that our proposed approach is tabusoderate inaccuracies.

Chapter 3 Modelling a Service-Oriented System 66

provided by a trusted monitoring service (Teacy et al. (2006)). Horvelstaining this
knowledge is clearly non-trivial and has been the subject of much ongesegrch. Fur-
thermore, there may be tangible costs associated with obtaining such trustatitm

(e.g., when a monitoring service charges for its information, or when auowershas to
actively explore the population of providers to gather statistical aveyagh'e do not
cover these costs of querying and maintaining trust information at this timeyebeivis-

age that existing work on the value of information in uncertain environmentbeased
to extend our model in the future (Dearden et al. (1999); Teacy etGD3(2

Moreover, we currently represent uncertain service durations sgimge non-condition-
al probability density functions. This is a common approach for modelling aktich
systems, but it is possible to envisage more detailed joint distributions to betdwafta
example to model varying service durations at different times of the dayeekends, or
based on observations about current network traffic.

e Payment Model: Our model assumes that the service consumer is charged a fixed price
per invocation. We believe that this is realistic in many dynamic service-oriey®d
tems, where providers and consumers form only loose short-termnagnee However,
it should be noted that other pricing schemes have been proposed,ifigckaine that
allow multiple invocations of the same service over a certain period of time (Dah et
(2004)).

Additionally, we currently assume free disposal of unwanted servicesthat several
successful service invocations for the same task do not incur addipenalties above
their normal cost. This may be realistic in Grid scenarios, where the resudetafpro-
cessing services can be disregarded without costs, but in a sugtyagbplication, the
disposal of unused goods may incur additional charges (especialthéonicals or dan-
gerous materials).

e Reward Model: Our reward function encodes the value of completing a workflow at a
given time, and it intuitively follows the general form of many contracts in otleenains.
However, certain application scenarios might require a more exprdasigton that de-
pends on multiple dimensions (e.g., the overall time and the perceived qualitynaf s
end-product).

e Model Scope: To obtain a general system model, we currently do not consider specific
domain-dependent constraints that may occur in particular workflow apipins. For
example, we do not cover cases where service instances have mutudiligiex side-
effects or where there are dependencies between the instancesopeifor several
task$. The latter case might occur in scenarios where the choice of an earlirese
instance dictates the applicability of services for subsequent tasks. Weeplesent
workflows as directed acyclic graphs, which is consistent with much reledeki but we

“Most commonly, such dependencies occur when invoking sevezghtipns on a service to achieve some higher-
level objective (such as the selection and payment operations whenngrgoods online). As described in Section
3.1, these low-level dependencies are subsumed by the high-leviekeseoncept we use in our model.

Chapter 3 Modelling a Service-Oriented System 67

note that realistic applications often require more complex structures, inglbdamches
and loops.

Furthermore, we do not currently consider explicit transaction mecharfignsmech-
anisms for coordinating multiple inter-dependent service invocations irr twdensure
a consistent outcome). We believe that such mechanisms are typically sublyroer
high-level view of tasks that will often include multiple messages between tisuower
and provider, and that may be underpinned by a transaction mechargsnigensure that
a book order takes place only when all constituent operations aressfigdeDespite this,
there are also cases where several high-level tasks may be coaddiizaselong-running
transaction. This is common in domains where services are highly interdaptesad
where the consumer may need to retain the freedom to retract previoiceseguests
(e.g., when booking hotels and airline tickets in the travel domain). Howasargued in
Section 2.4.1, we believe that such transaction mechanisms cannot gebernalied on
for cancelling previous tasks and thereby take a more pessimistic appnoacidelling
our system without transactional support.

Finally, in line with the overall aim of this thesis, we focus solely on uncertaintynén

behaviour of service providers. Hence, we assume that workflavscarect, that appro-
priate matchmaking algorithms correctly identify suitable providers and thaotisimer

is able to translate between heterogeneous data formats. In practicgrebldms are
far from trivial, but they are not the focus of this work.

In Chapter 7, we will re-examine some of these limitations and show how ourlradebe
extended to handle them.

3.7 Summary

In this chapter, we have outlined a general system model and agenwioakyevhich will form
the basis of our work. In doing so, we have concentrated on formaliseng/dinkflows a con-
sumer faces, and we have detailed some assumptions about how the comsynrgeract with
service providers. We have also briefly introduced the basic behagfaquoviders and dis-
cussed how we quantify the uncertain outcomes of services using [iisfi@imeasures. In
the following chapters, we will elaborate on this model to cover differemtrenments. More
specifically, in Chapter 4, we develop a strategy for cases where sgairie invoked on demand,
but where the service consumer has no detailed performance informbtahiadividual ser-
vices. Then, in Chapter 5, we look at environments where such informigtemrailable to the
consumer. Finally, in Chapter 6, we consider environments where ex@ivits contracts are
negotiated in advance and where the availability and performance chatécdeof services
may change dynamically. We decided to address these scenarios dgpasatieis allows us
to best exploit the specific characteristics of each one. For example, limtiged information
is available, we can perform particularly fast calculations. When cornisgienore complex

Chapter 3 Modelling a Service-Oriented System 68

environments, on the other hand, we propose decision algorithms thétett=alwith the larger
decision spaces. Taken together, these techniques thereforeergpaeset of algorithms and
tools that can be used in a range of different environments.

Chapter 4

Service Provisioning with Limited
Performance Information

Having devised a model for service-oriented systems in the previousechag@ now outline
a number of strategies for provisioning services for abstract workfloim this chapter, we
concentrate on systems where services are invoked purely on demanditheut the need
for explicit advance agreements) and where the information about tf@rmpance of services
is highly limited (Chapters 5 and 6 will deal with systems where more detailed infamma
is available and where services are provisioned in advance). To thisre8ection 4.1, we
formalise these assumptions by extending our system model. This is followaedibgussion of
a number of provisioning techniques: in Section 4.2, we begin by outlinirgjve strategy that
formalises many current approaches towards service provisioningahaot consider service
uncertainty. Then, in Section 4.3, we describe three strategies that rehulbiple services
to satisfy single taskspérallel(n), serial(w) and hybrid(n,w) and that are broadly based on
simple redundant strategies found in related work. These are then cambingection 4.4,
into aflexibleprovisioning strategy that reasons explicitly about its provisioning decsaoa
that constitutes the main contribution of this chapter. The chapter is condhydadhorough
empirical investigation, in Section 4.5, into the performance of our propsisatkgies.

In devising theflexible strategy, we address four of our agent requirements outlined in Section
1.4.3. Specifically, the strategy reacts dynamically to failures by re-provigjaervices (Re-
quirement A.2.a) and it avoids failures proactively by redundantly piavisg services where
appropriate (Requirement A.2.b). Furthermore, it makes flexible, autormetisidns with the

aim of maximising the agent’s utility (Requirement A.1) and our approach usasshc ap-
proximations that make it suitable for large problem instances (Requirem@&nt A

69

Chapter 4 Service Provisioning with Limited Performance Information 70

4.1 Model Extension

We begin by looking at a simple system model, which builds closely on thatidedadn the
previous chapter. As before, we assume that the consumer knowsettadl get of services that
may satisfy a given task (denoté for taskt;). However, we make a number of assumptions
about how the consumer is able to interact with these services and the itiribdas about
them:

Limited information about S;:
@ @ - Population Size (v;)
@ ©(t) @) @ @ @ - Failure Probability (f)
@ @ - Cost (¢;)
Task Service Type @ @ @ - Duration Distribution (d;)

S. Performance Information

Service Instances

FIGURE 4.1: Information that is available about the services aldd for each task.

e On demand invocation: In this chapter, we assume that services are always invoked on
demand. To this end, when the consumer decides that execution of i thsluld start
(provided all predecessors gfhave been completed), it simply sends a request to any of
the members of; during the NVOKESERVICES procedure of Algorithm 3.1.

¢ Limited performance information: We assume that the consumer does not have detailed
performance information about each individual service. Rather, thestsicted to prob-
abilistic estimates and distributions about the $eas a whole. Specifically, we assume
the following to be available (as shown in Figure 4.1):
— t; is a task in the workflow.

- T, = 7(t;) is the service type associated with the task.

- S; = p(T,) is the set of valid service instances that are capable of completing the
task.

— v; = |S;| is the number of valid service instances.
— fi is the failure probability of a randomly drawn memberSf
— ¢; is the cost of each service irf;.

— d; is the duration distribution function of a randomly drawn, successful mewotfber
S;, andD; is the associated cumulative distribution function.

\We assume here that the cost of services is homogeneous Withie., that all services cost exactty. How-
ever, the techniques developed in this chapter apply similarly when theoenis gncertainty in the cost of each
service, withe; representing the average cost.

Chapter 4 Service Provisioning with Limited Performance Information 71

We make these assumption because they apply in a range of realistic applsmiarios.
Specifically, on demand invocation is the predominant invocation mechanismniy coarent
service-oriented systems, where service interfaces are publishegistriess and then simply
invoked when needed, much like remote procedure calls (as outlined irte€t2dp Regarding
our second assumption, performance information may be limited for sewasbms. First,
more detailed information may simply not be available, for example in the abséacgel@ble
reputation mechanism and when the consumer has not had the benefitrgé anlenber of
previous interactions with all providers. Second, the service-oriernysdras we consider are
open and dynamic, which may make it difficult to collect specific performamcemation,
as services enter and leave at will and may even change their identity. Feelyces may
also be homogeneous or highly similar, for example if they rely on the samethaigsror
implementations.

4.2 The Ndve Strategy

We begin by looking at the currently predominant approach to servicasgoaing in the liter-
ature. This gives us a basic benchmark against which we can evaluatediegies we develop
in this section, and, in doing so, serves to highlight the shortcomings adrdusmork.

Now, as described in Chapter 2, most of the current work on Web ssrficusses solely on
the functional descriptions of services. In such research, desospdi typically assumed to
be truthful and deterministic, and thus service-consuming agents do piaiyx consider the
provisioning stage, but rather piaany single service that matches their requirements. Since
such a strategy does not consider service failures, we teravie and describe it more formally

as follows:

Definition 2 (Naive Strategy) A consumer agent following aaive strategy always provisions
a single randomly chosen service of the correct type for each task.

Algorithm 4.1 formalises this strategy as an implementation of the abstract pireseishtro-
duced in Algorithm 3.1. The first procedureANE-INITIALISE, in lines 1 — 11 constitutes the
main decision-making logic. Here, the agent initialises agetyhich will contain a mapping
from tasks to services (line 3). This is then populated by finding apptem&xvice instances
for each task using the matchmaking functjofline 5) and then provisioning a service that is
picked uniformly at random from the set of matching instances (line 7).

The remaining procedures are straight-forward -4\ -UPDATE keeps track of any success-
fully completed tasks, NivE-STOPCONDITION always returngalse as the strategy does not
reason about the feasibility of the workflowANE-NEGOTIATESERVICESdoes nothing as ne-
gotiations are not necessary, andide -|NVOKE SERVICESinvokes the services selected during
the initial provisioning.

Chapter 4 Service Provisioning with Limited Performance Information 72

Algorithm 4.1 Naivestrategy that selects a single valid service for each task.

1:
2:

10:
11:

12:
13:
14:
15:

16:
17:
18:

19:
20:
21:

22:
23:
24:
25:
26:
27:
28:
29:

procedure NAIVE-INITIALISE (W)
Tcomp —0
p 0
forall t; € T do
Si — (7 ()
if S; # () then
Sy € Si
p— pU{(tis2)}
end if
end for
end procedure

procedure NAIVE-UPDATE(O)
Thew < {ti | 3sz - (ti, 52) € O}
Teomp < TeompU Thew

end procedure

procedure NAIVE-STOPCONDITION
return false
end procedure

procedure NAIVE-NEGOTIATESERVICES
do nothing
end procedure

procedure NAIVE-INVOKESERVICES
forall (t;,s5) € p do
if V(tj,tz‘) cFE- tj S Tcompthen
INVOKE(s,, t;)
P — o\ {(tis2)}
end if
end for
end procedure

> Keeps track of completed tasks
> Provisioning decisions
> Iterate through tasks
> Matchmaking

> Choose random service
> Store provision decision fas

> Recently completed tasks
> Add to completed tasks

> Never abandon

> Not necessary here

> Iterate throughp
> Is t; executable?
> Invoke services,, for taski;
> Remove to avoid re-invocation

Chapter 4 Service Provisioning with Limited Performance Information 73

A major shortcoming of thigaive strategy is that it is highly vulnerable to service failures. A
single failure means that the whole workflow is lost, along with all investmentadlranade.
To reduce this risk, we discuss several simple techniques in the followatigpise for dealing
with service failures.

4.3 Robust Provisioning Strategies

We proceed in this section by presenting three strategies for provisionmvigesein a manner
that anticipates failures and attempts to reduce their impact on the consurmedfiows. All of
the following strategies require some manual intervention (by adjusting perentieat dictate
their behaviour) and so are not very well suited to large complex systenesevautomation is
not only desirable, but perhaps necessary due to the scales invataseever, the strategies
present the basic techniques that we will use in Section 4.4 to design a flexilmmated
provisioning technique. During our empirical investigation in Section 4.5, #isy serve to
highlight and quantify the potential benefits of actively dealing with senddares.

4.3.1 Parallel Provisioning

The first strategy we discuss in this context uses parallel provisionipgéztivelycontrol the
effect of unreliable services, thereby addressing our Requirem@nib.AAs discussed in the
previous chapter, a feature of service-oriented systems is the facketreral service instances
may match a single semantic service description. For this reason, a consuynbemedit by
delegating each of its tasks to several providers at the same time, ratheelthiag on a single
service.

To highlight the advantage of this approach, }t € {succesdailure} be a random vari-
able indicating the outcome for a taskwhenn services are invoked in parallel for this task.
The probability that a single service & 1) successfully completes the task is theaX; =
success= 1 — f;. When invoking two service instances in parallel- 2), we have a success
probability P(X, = succes§ = 1 — f2. For the general case withservices, we thus have:

P(X, = success=1— f" (4.1)

This means that the probability of success increases as more providepsoaisioned for a
single task. However, if a non-zero cost is associated with each proyisien the total cost
incurred rises wit. Based on this, we can formulate a strategy that uses parallel provisioning
to reduce the probability of workflow failures:

Definition 3 (Parallel(n) Strategy)A consumer following garallel(n) strategy always provi-
sions exactly: randomly chosen services of the correct type for each tagkd single constant
for all tasks).

Chapter 4 Service Provisioning with Limited Performance Information 74

Algorithm 4.2 Parallel(n) strategy that provisions valid services for each task.
1: procedure PARALLEL -INITIALISE (W)

2. n « constant specified by agent owner > Number of parallel services

3: Teomp— 0 > Keeps track of completed tasks
4 p—10 > Provisioning decisions

5 forall t; € T do > Iterate through tasks

6: Si — u(7(t;)) > Matchmaking

7 PARALLEL -PROVISION(Z, n) > Provisioning

8 end for

9: end procedure

10: procedure PARALLEL -UPDATE(O)

11: Thew < {t; | 3sy - (i, 82) € O} > Recently completed tasks
12: Teomp — TeompU Thew > Add to completed tasks
13: end procedure

14: procedure PARALLEL -INVOKESERVICES

N

15: forall (¢;,S,) € pdo > Iterate throughp
16: if V(tj,t;) € E-t; € Tcompthen > Is t; executable?
17: forall s, € S, do > Iterate through services if,
18: INVOKE(sy, ;) > Invoke services,, for taskt;
19: end for

20: o —p\ {5} > Remove to avoid re-invocation
21: end if

22: end for
23: end procedure

24: procedure PARALLEL -PROVISION(Z, n)
25: if S; # 0 then

26: Sy — 0 > Set of chosen services, initially empty
27 n' «— min(|S;|,n) > Number of services to provision

28: for j =1ton’ do

29: sy € 5; > Choose random service

30: S, — S, U {sy} > Add service to chosen set
31 Si — Si\ {sy} > Remove from set of available services
32: end for

33: o — pU{(t;,S)} > Store provision decision faf

34: end if

35: end procedure

Chapter 4 Service Provisioning with Limited Performance Information 75

For this strategyn is a fixed constant that is determined by a human user. The strpsegy
allel(1) is equivalent to theaive strategy, and a higher value farimplies a generally higher
resilience against failures. In Algorithm 4.2, we show how the strategy is meiéed. This is
similar to thenaivestrategy, but it now selects uptcservices in lines 28 — 32. The\RALLEL -
INVOKESERVICES has been adapted to reflect this, but all other procedures remainngecha
(PARALLEL -STOPCONDITION and RARALLEL -NEGOTIATESERVICES are not shown here for
brevity).

While reducing the probability of workflow failures, the strategy discussehlis section lacks
any capacity to react to failuredter they have occurred (Requirement A.2.a). This is addressed
by the strategy in the following section.

4.3.2 Serial Provisioning

The second strategy we propose dealsctivelywith service failures (Requirement A.2.a).
Rather than relying on parallel provisioning, it re-provisions serviceemit becomes likely
that a previously provisioned service has failed. To this end, the comsiistgrovisions a sin-

gle service and then waits for some time. If the service has not been stutadter this time,

the consumer assumes it has fafledd tries a different one, repeating the process if necessary,
until the task has been completed. However, as providers have namaestic duration times

and because they do not notify the consumer of failure, the consuméo bhsose an appro-
priate waiting period. This period should give the service a reasonable tifimésta but should

not waste unnecessary time when it has most likely already failed.

With this in mind, letX; ,, € {succesdailure} be a random variable indicating the outcome of
invoking up tos service instances in series for a taskHere, s is the number of services that
are available in total, as the consumer will continue invoking services until s$kégauccessful
(hences = v; = |S;|), andw is the chosen waiting period. To calculate the success probability
of a single service in this case, we can use the cumulative density furdetjaterived fromd;.
Hence, we havé’(X, ,, = success= (1 — f;) - D;(w), wherel — f; is that probability that

the service will succeed, and; (w) is the probability that this will happen withim time steps.

Generalising this for invoking services in sequence, we get the overall success probability

2Here and in the remainder of this chapter, any services that are absarhave failed in this way are subse-
quently ignored by the consumer (even if they succeed at a later timejnake this assumption for two reasons:
first, such time-out behaviour is common in many distributed applicatiche#en explicitly part of service-oriented
frameworks (such as CORBA or HTTP-based Web services); sedailows us to make efficient predictions about
service performance by considering a single invocation at a time (réthemrmany interleaved invocations). How-
ever, in Chapter 5, we show how this assumption can be relaxed.

Chapter 4 Service Provisioning with Limited Performance Information 76

when invokings services in series:

P(X,, =succesp = 1— P(X, = failure)
= 1— P(Xy, = failure)®
= 1—(1- P(Xy,, = succesp?®
= 1-(1-(01-7f) Di(w)) (4.2)

This is generally less than the success probability of invoking the same nuwihbervices in
parallel, and the average time taken will also be higher for serial provigjdmgause of the
additional waiting time that is introduced. On the other hand, the averagelrmpst, because
costs are only incurred at the time of invocation.

Hence, we define a new reactive strategy as follows:

Definition 4 (Serial(w) Strategy)A consumer following aerial(w) strategy always provisions
exactly one randomly chosen service of the correct type for eachA#tsk.a waiting period of
w time units, if no success has been registered yet and if there are still naslabée services,
the agent re-provisions a new, randomly chosen service and contintiés manner until the
task is completed or no more services are lefig a single constant for all tasks).

This strategy is illustrated by Algorithm 4.3. The procedusERB\L-INITIALISE (lines 1 —
10) now contains a new constant which is the waiting time before invoking a new service
Furthermore, we have added a variallg, : T — Ra“, which keeps track of the invocation
times of tasks (line 3). This is checked at each time step, in order to identifyeapisbvision
any tasks that have timed out (lines 17 — 22). New invocation times are addgg thuring
invocation (line 26) and removed when the task is eventually successhilldin

The two approaches discussed in the preceding secterial(w)andparallel(n), cover two of
our original requirements, A.2.a and A.2.b respectively. However, thegarently separate
from each other and so may be less useful in practice. Instead, it is rasilule to devise
a single strategy that addresses both requirements at the same time. Feadoat, the fol-
lowing section generalises the preceding strategies and provides us veiticddundation for
developing a more flexible approach in Section 4.4.

4.3.3 The Hybrid Strategy

In order to address service failures proactively, but also reaciltoda as they occur, a con-
sumer agent can provision multiple services in parallel, and then re-provigos services for
the same task when a failure has occurred. Such a strategy increapeshfiaility that a task
is completed on the first attempt, but also includes a mechanism for respaodailgres.

3The special case @krial(co) is equivalent to theaive strategy.

Chapter 4 Service Provisioning with Limited Performance Information 77

Algorithm 4.3 Serial(w)strategy that re-provisions unsuccessful tasks aftéme units.

1: procedure SERIAL-INITIALISE (W)

2:

10

11

15

16

30

31

3
4
5:
6:
7
8
9

w «— constant specified by agent owner
Tinv < 0
Tcomp —0
p—0
forall t; € T do
Si = p(7(t:))
SERIAL-PROVISION(?)
end for

: end procedure

. procedure SERIAL-UPDATE(O)
12:
13:
14:

TneWH {tl ‘ 331 . (ti,sz) c O}
Tcomp — TcompU Thew
Tiny — {(tiay) ‘ (tia y) € Tiv At ¢ Tnew}

: end procedure

. procedure SERIAL-INVOKESERVICES
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
: end procedure

forall (¢;,y) € Tiny do
if £ —y > wthen
Tinv < Tinv \ {(tlay)}
SERIAL-PROVISION(7)
end if
end for
forall (t;,s5) € p do
if V(tj,ti) cFE- tj S Tcompthen
INVOKE(s,, t;)
Tinv < Tinv U {(tuf)}
P — o\ {(ti,s2)}
end if
end for

. procedure SERIAL-PROVISION(?)
32:
33:
34:
35:
36:

if S; # () then
Sy €5;
Si — Si\ {52}
p—pU{(ti,s2)}
end if

37: end procedure

> Time-out for re-provisioning
> Keeps track of invocation times
> Keeps track of completed tasks
> Provisioning decisions
> Iterate through tasks
> Matchmaking
> Provision (see procedure below)

> Recently completed tasks
> Add to completed tasks
> Remove completed frorfi,y,

> Check for timed out tasks

> Invoked at leastv time steps earlier?
> Timed out

> Re-provision task

> Iterate throughp
> Is t; executable?

> Invoke services,, for taski;
> Store invocation time
> Remove for now

> Select random service
> Remove from available services
> Store provision decision fag

Chapter 4 Service Provisioning with Limited Performance Information 78

The overall success probability of this approach is the same as thatialiprovisioning given in
Equation (4.2) (when using identical time-out values). This is becauseuglihgome services
are executed in parallel, their individual success probabilities are ngeda However, this
hybrid approach allows the consumer to achieve lower execution times thaarthkstrategy
at the expense of incurring higher invocation costs.

We define this hybrid strategy as follows:

Definition 5 (Hybrid(n,w) Strategy) A consumer following dybrid(n,w) strategy always pro-
visions exactlyn randomly chosen services of the correct type for each task (or as asany
available if these are less thah After a waiting period ofv time units, if no success has been
registered yet and if there is still at least one available service, the apeats this process with
a new set of, services until the task is completed or until no more services are left (batid

n are constants that apply similarly to all tasks).

The hybrid strategy is formalised by Algorithm 4.4, which follows closely the structure ef th
previous algorithms, combining the time-out mechanism oftrél strategy with the multiple
provisions of theparallel strategy. In fact, théybrid strategy subsumes all previous strategies
(naive, parallel andserial). In so doing, it addresses two of our main original requirements,
A.2.a and A.2.b. However, it has several shortcomings that make it lekd fmeautomating

the provisioning of complex workflows:

1. The choice ofi andw are probably critical to the performance of the strategy. When ser-
vices are generally unreliable, a highmight be called for, while the choice of depends
on the duration distributions of services and the deadline of the workflowe@tly, this
choice needs to be taken by the owner of the consumer agent, hencegghitiburden
of making rational decisions to a human user. In dynamic environments, witlsahds
of services and complex workflows, the choicerofind w will be time-intensive and
not trivial. Hence, such manual intervention is highly undesirable andatstfrom our
Requirement A.1 for building an agent that takes rational decisions aiftuétihe user.

2. Currently, specifyingp andw as global constants leads to a highly constrained decision
space. In realistic application scenarios, it is likely that some services witidieand
reliable (e.g., a DNS lookup request taking a fraction of a second), wtiiker® could
be time-consuming and unreliable (e.g., running an enzyme folding simulatiomidfea
workstation for several hours). In such scenarios, where sanaoe highly variable,
specifying global values for andw will be unsatisfactory because some services may
benefit more from over-provisioning (highe) than others and because the time taken
for some services will be fundamentally different from others (and éieeguire different
values forw).

Chapter 4 Service Provisioning with Limited Performance Information 79

Algorithm 4.4 Hybrid(n,w)strategy that provision parallel services and re-provisions unsuc-
cessful tasks aftap time units.

1: procedure HYBRID-INITIALISE (W)

2:

10:

11

12

13:
14:
15:

16

17

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

33

n < constant specified by agent owner
w «— constant specified by agent owner

Tinv < 0
Tcomp<— 0
p—0
forall ¢; € T' do
Si— p(7(t:))
PARALLEL -PROVISION(Z, n)
end for
: end procedure

: procedure HYBRID-UPDATE(O)
Tnew<— {tz | 351 . (ti,sx) € O}
Teomp < TeompU Thew

. end procedure
: procedure HYBRID-INVOKESERVICES

forall (¢;,y) € Tiny do
if £ —y > wthen

Tinv < Tinv \ {(ts,)}
PARALLEL -PROVISION(Z, 1)
end if
end for

forall (t;,5,) € p do
if V(t]’,ti) eklE- t; € Tcompthen
forall s, € S, do
INVOKE(sy, t;)
end for
Tinv < Tiny U {A(ti’ f)}
p— o\ {(t, 5)}
end if
end for
. end procedure

Tinv < {(tiay) | (tia y) € Tinv AN t; §é Tnew}

> Number of parallel services

> Time-out for re-provisioning

> Keeps track of invocation times
> Keeps track of completed tasks
> Provisioning decisions

> Iterate through tasks

> Matchmaking
> Provision (see Algorithm 4.2)

> Recently completed tasks
> Add to completed tasks
> Remove completed fromi,,

> Check for timed out tasks

> Invoked at leastv time steps earlier?
> Timed out

> Re-provision (see Algorithm 4.2)

> Iterate throughp

> Is ¢; executable?
> Iterate through services if,
> Invoke services,, for taskt;

> Store invocation time
> Remove to avoid re-invocation

Chapter 4 Service Provisioning with Limited Performance Information 80

To address these two critical shortcomings, in the following section, wdateaanovel strategy
that provisions multiple services for tasks in a flexible manner. This apptad&es into consid-
eration the performance characteristics of services and the structtire wbrkflow and then
provisions services based on a heuristic approach.

4.4 Flexible Service Provisioning

Building on the techniques presented in the previous section, we now inga@dnovel algo-
rithm for flexibly provisioning services that are part of complex work#8ownlike our previous
strategies, this approach determines automatically how many services to inyullel and
it also chooses an appropriate time-out value. It does this by considenmage finely-grained
decision problem than thus far considered and by using some informatbon #ie expected
performance of services in the system. This approach allows the ageaytds/strategy ac-
cording to the current system conditions, without the need for human émgow. In devising
the strategy we address not only the requirements covered in prevatigns€A.2.a and A.2.b),
but also consider the need for making rational decisions (A.1). We atsw ttat our approach
is suitable for larger environments and workflows (A.3).

Due to its autonomous decision-making process that adjusts the agentsooeha its envi-
ronment, we term this approach thexiblestrategy and summarise it as follows:

Definition 6 (Flexible Strategy) A consumer following dlexible strategy makes appropriate
decisions to provision services for its workflow. To this end, the ageds uitable numbers of
providers and time-out values for each task in the workflow, so that thetagredicted profit
is maximised.

We begin this section by describing our problem as an optimisation task (Sdcfidn). As
solving this turns out to be intractable in practice, we then provide a heurgioach for
provisioning services (Section 4.4.2).

4.4.1 Problem Formulation

To address the shortcomings of thgbrid(n,w)strategy, outlined in Section 4.3.3, we first for-
mulate a more fine-grained decision problem than so far consideredadriftehoosing global
values forn andw, as in thehybrid approach, we define them as vectatsndw, correspond-
ing to the tasks in the workflow. In this notation, tlth element of vectofi, n;, is the number
of services to be invoked for tagk Similarly, w; is the associated time-out value, indicating
how long the consumer will wait before invoking another set g$ervices for task;.

Now, we are interested in choosing vectarsand «, so that the expected profit(7, W) is
maximised (the profit is the difference between the reward gained fromletingothe workflow

Chapter 4 Service Provisioning with Limited Performance Information 81

and the costs incurred from all service invocations). More formally, wezlé7, @) be the
expected reward angii, «/) the expected cost. Then we can define the expected profit as:

a(ﬁa ZU) = Ut (ﬁa w) - E(ﬁv w) (43)

With this, we can specify the service provisioning problem as an optimisatikn tas

max u(7i, W) (4.4)

However, finding a solution for this optimisation problem is far from easy. 8ivgxifying a
possible solution, i.e., computing the expected prigfit,) for given vectorsi andw is very
hard. This is because calculating the distribution of the workflow completion tieeded for
;) involves the convolution of several probability functions (the duratiorcfions given byi),
which is further complicated by the fact that there are usually interdeperedebetween the
task completion times (as tasks in the workflow depend on their predecesbofact, there
is currently no known efficient methédo solve this problem exactly for arbitrary distributions
(Dodin (1985); Baccelli et al. (1993)).

For this reason, we decided to simplify the problem and devise a heuristiitlfgdhat sacri-
fices theoretical optimality in favour of a tractable decision algorithm thatymesigood results
in practice. In particular, we employ a heuristic function for estimating the a@ggdeprofit,
u(mi, w). Despite this simplification, we are still faced with the difficult nonlinear integer p
o by carrying out steepest-ascent hill-climbing (Russell and Norvig (§088 described in the
following section.

4.4.2 Generic Algorithm for Flexible Service Provisioning

We decided to use a local search algorithm to find a good allocation, leettdasdechnique is
widely employed for intractable optimisation problems (Michalewicz and Fo@84p. While
the particular method of local search is not central to our work, we choig experiments
with a range of existing algorithms, including steepest-ascent hill-climbing, sinilpldimbing
(where the first better solution is chosen at each iteration), hill-climbing witHoa restarts
and simulated annealing. We found that these techniques achieved a simikgeprofit over
a range of environments, but varied in the number of required paranfetgrsthe annealing
temperature or the number of restarts). As steepest-ascent hill-climbingegao such pa-
rameters and as we observed a generally faster convergence to anmogimypared to simple
hill-climbing, we decided to adopt this approach in our work.

“We consider the hardness of the provisioning problem more formally peAgix C.

Chapter 4 Service Provisioning with Limited Performance Information 82

Algorithm 4.5 formalises our hill-climbing approach. It starts by generatingnaom initial
provisioning allocation, using the procedur&@RATE-INITIAL shown in lines 19 — 27. For
each task, this procedure first randomly picks the number of parallkesr(:;) from the
distribution/;(1, min(v;, ¢;)), where we uséf;(a, b) to denote a discrete uniform distribution
over all integers in the intervak, b], with ¢; chosen so that it represents the smallest number
of services required to ensure a success probability of at (e2&2 (based on Equation 4.1).
When this is less than 10, we sgt= 10, to include the possibility that services are provisioned
redundantly. Choosing,; in this way means that we do not start with an unnecessarily high
number of services when there are many available in the system. Next, teelpre determines

an initial waiting time for each tasky;) by sampling from the respective duration distribution
d;.

Given this initial allocation fori and, the algorithm next estimates its expected utility using
the heuristic functior (line 3), which we will cover in detail in Section 4.4.3. Then, it begins to
iteratively improve the initial allocation in the loop given in lines 4 — 16. Here, iherghm first
generates a random set of neighbours of the current allocation usipgdbedure GNERATE-
NEIGHBOURS (lines 28 — 43). These neighbours are generated by increasing aerehsiag
exactly one component of either vector — both in unit steps and in rahdteps, as shown in
lines 32 — 39 (ignoring any neighbours with ; < 1 orn,; > v;). We chose this particular
neighbour generation function, because it allows the algorithm to exglmse neighbours (by
varying the parameters in unit steps, which usually results in only small esanghe expected
utility), but also because it quickly traverses larger parts of the seg@tesvhen necessary
(by considering random steps). The algorithm then estimates the expétitgdfieach of the
generated neighbours and adopts the best of these as the curréionsdlhis continues until
no generated neighbour of the current solution results in a higher texpetility.

This hill-climbing procedure is placed in the context of our abstract consumedel in Algo-
rithm 4.6. It is called in the procedure.EXIBLE-INITIALISE, where it provisions all tasks in
the workflow (line 5). In line 6 the agent then decides if it should proceiti tive workflow,
which depends on whether it expects to gain a positive utility (the decikiggis used by the
updated EEXIBLE-STOPCONDITION procedure in lines 21 — 23). The remainder of the al-
gorithm is mostly identical to thaybrid(n,w)strategy, with the exception that the agent now
uses the vectorg andw to guide its provisioning decisions, rather than globally set constants.
Specifically, if the allocation is promising, the agent proceeds to discomgces and provision
them in lines 10 — 13. These are then invoked in the updat&XIBLE -INVOKESERVICES
procedure, which now usegandii to time out tasks and to re-provision.

So far, we have given an algorithm for a flexible service consumerdbase hill-climbing
approach. However, we have not discussed the heuristic utility funcii@®,«w), which is
central to the algorithm. This shortcoming is addressed in the following section.

SForn;, we select the change from uniform distributions. &@rwe sample from the duration distribution (using
the inverse of the cumulative density functidd, ', to generate a sample that is larger and one that is smaller than
the current waiting time).

Chapter 4 Service Provisioning with Limited Performance Information 83

Algorithm 4.5 Hill-climbing algorithm for provisioning services.

1. procedure FIND-ALLOCATION(WV)

2:

10:
11:
12:
13:
14:
15:
16:
17:

18

19

27

28

37:
38:
39:
40:
41:
42:

7, W < GENERATE-INITIAL (W)
u «— a7, W)
repeat
Uold <— U
0 it i
N «—GENERATE-NEIGHBOURY(7, W)
forall (7',') € N do
u — a(n’, ')
if «' > u then
u—u
n*w* — i,
end if
end for
R, W — ", w*
until u = ugg
return (7, &)

: end procedure

. procedure GENERATE-INITIAL (W)
20:
21:
22:
23:
24:
25:
26:

i, W < vectors of sizeT|
fori=1to|T| do
¢; — max(10, [—3/1og;o(fi)])
n; — sample fromfy(1, min(v;, ;)
w; <+ sample fromd;
end for
return 72, W

: end procedure

. procedure GENERATE-NEIGHBOURY71, W)
29:
30:
31:
32:
33:
34:
35:
36:

N —10
fori=1to|T|do
(fiy, W), ..., (fig, Wg) «— (7, W)

N1 <—ni+1
no; —mni —1
w3 +— w; + 1
wy; —wi — 1

> Generate initial allocation
> Estimate ultility
> Main hill-climbing loop
> Store utility at start of iteration
> Best neighbour found so far
> Randomly generate neighbours
> Check all neighbours
> Utility of neighbour
> If neighbour is more promising...
> ...update

> Choose best overall neighbour
> Until no more improvement is made
> Return best allocation found

> Maximum number of initial services
> Random number of providers
> Random waiting time

> Set of neighbours

> Consider each task

> Create eight copies

> Now slightly modify each copy
> n;; is theith component ofi;
> wj; IS theith component ofi;

ns; < n; + x, wherex is sampled frond{;(2, v; — n;)
ne; < n; — x, wherez is sampled frond/;(2,n; — 1)
wr; — [D;!(x)], wherex is sampled frond/.(D;(w;), 1)
ws; < |D;'(z)], wherez is sampled frond/(0, D;(w;))

N — N U{(7iy,@),..., (s, ws)}
end for
return A/

43: end procedure

> Add copies to\/

Chapter 4 Service Provisioning with Limited Performance Information 84

Algorithm 4.6 Flexible strategy that provisions services based on a heuristic function.

1. procedure FLEXIBLE-INITIALISE (V)
2: Tinv < 0

3: Teomp < 0

4: o <— 0

5: 7i, W < FIND-ALLOCATION(M)
6: if a(7i, W) < 0then

7: dstop < true

8: else

9: dstop «— false

10: forall ¢; € T do

11: S; — ,u(T(ti))

12: PARALLEL -PROVISION(Z, 1)
13: end for

14: end if

15: end procedure

16: procedure FLEXIBLE-UPDATE(O)

17: Thew — {ti ‘ Elsx . (ti,sx) S O}

18: Tcomp — TcompU Thew

19: Tinv — {(ti»y) | (tiry) € Tinv A ti & Thew}
20: end procedure

21: procedure FLEXIBLE-STOPCONDITION
22: return dstop
23: end procedure

24: procedure FLEXIBLE -INVOKESERVICES
25: forall (¢;,y) € Tiny do

26: if t —y > w; then

27: Tiw < Tinv \ {(ti,v)}

28: PARALLEL -PROVISION(, 12;)
29: end if

30: end for)
31: forall (¢;,S,;) € pdo

32: if V(tj,ti) cFE- tj c Tcompthen
33: forall s, € S, do

34: INVOKE(sy, t;)

35: end for

36: Tinv < Tinv U {A(ti’ tA)}

3r: p— o\ {(t, 5)}

38: end if

39: end for
40: end procedure

> Keeps track of invocation times
> Keeps track of completed tasks
> Provisioning decisions
> Find best allocation
> Is utility estimate non-positive?
> ...then abandon workflow
> ...otherwise continue

> Iterate through tasks
> Matchmaking
> Provision (see Algorithm 4.2)

> Recently completed tasks
> Add to completed tasks
> Remove completed frorfi,y,

> Abandon if allocation yields non-positive utility

> Check for timed out tasks

> Invoked at leasty; time steps earlier?

> Timed out

> Re-provision (see Algorithm 4.2)

> Iterate throughp

> Is t; executable?
> Iterate through services i,
> Invoke services,, for taskt;

> Store invocation time
> Remove to avoid re-invocation

Chapter 4 Service Provisioning with Limited Performance Information 85

success success success success

failure

invoke n, invoke n, invoke n, invoke n,
services services services services

FIGURE 4.2: Possible state transitions as consumer invokes ssriricsequence.
4.4.3 Utility Prediction

As discussed above, we use a heuristic functigi, @), to approximate the expected utility
of an allocation. We need such an approximation due to the inherent difficutigticulating
the distribution of the workflow completion time. Based closely on Equation 4.3lefiee the
heuristic utility function as (omitting the parameters for brevity):

i=F—¢ (4.5)

Here,7 andé are estimates of the expected reward and cost of the allocation, respetivth
unconditional on overall success of the workflow). In the following, describe how these
estimates are calculated from a number of parameters for the individual+agke success
probability p;, expected cost;, expected completion timg and variancer?. First, in Section
4.4.3.1, we outline how the parameters are calculated for each;taBken, in Section 4.4.3.2,
we show how these calculations are used to derive the overall valugsifaic.

4.4.3.1 Local Prediction

Given the probabilistic information about service instances discussediio®d.1 and an allo-
cation,(n;, w;), we begin by calculating the success probability of a taskThis is the overall
probability that the task will eventually be successfully completed when foligwhe alloca-
tion (n;,w;). This does not depend of, because it is irrelevant for the success probability
whether services are invoked in series or in parallel. Hence, we ussi&gu4.2 to determine
p; as follows:

pi=1—=(1—=1—=fi) Di(wi))" (4.6)

Next, we calculate the expected castwhich depends on the expected number of invocations
that are carried out for the task, before it is successful. To illustrateRigare 4.2 shows the
possible state transitions of a service-consuming agent. In ktate agent invokes the first
set ofn; services. With probability, = 1 — (1 — (1 — f;) - D;(w;))™ at least one of these is
successful, but with probability— p; none of them will succeed. In the latter case, the consumer
then invokes a new set af; services (in stat@). This process repeats until one invocation is

Chapter 4 Service Provisioning with Limited Performance Information 86

successful or no more services are available (for now, we assume thatl n; = 0, so that
there are up ten = v;/n; invocations of exactly:; services each).

We note from this diagram that the consumer is guaranteed to pay the futifdagoking all

n; services for task; (n;c;) at least once. After this, the consumer generally has to pay again if
the previously invoked set of services has failed (each with probability;). Formally, we let

fi = 1 — p; and give the expected cost for taslkas follows:

& = nici+ fi- (nici + fi- (nici + fi- (ot fi (nici) ..))) (4.7)

m instances ofi;c;

m—1
nici- > fF (4.8)
k=0
= N;C; - 1= fZA (49)
1—fi

Equation 4.9 is the expected cost for tagkassuming that; mod n; = 0. To generalise this
result for cases where; mod n; # 0, we note that the consumer will invoke all remaining
services on its last try. For this case, wedet= |v;/n;| be the number of full invocations
(n; services each) and= v; mod n; be the remaining number of services afteinvocations.
Then, the consumer will pay. = ¢;r for the last invocation if all previous services have failed
(which happens with probabilitﬁ[”). To generalise Equation 4.9, we simply include this cost:

_ L= /" om

G, = nic; - [F + fi"ar (4.10)

2

Next, we are interested in calculating the expected timentil the task is completed. We
define this as the mean time until the first service completes the task successhulifional on
overall success (i.e., that at least one service is successful). Férkdt py be the mean duration
of a single invocation, conditional on overall success. In other wagiden thatn; services
are invoked and that at least one completes successfully before time;qutis the expected
duration of the fastest successful service.

To calculatey;, we first letD;(z) be the cumulative (non-conditional) probability that at least
one out ofn; services has finished successfully by time

Di(x) =1—= (1= (1= f;) - Di(z))™ (4.11)

®For the sake of readability, we do not provide a full derivation hereréther refer the reader to Appendix D.
This appendix contains a more thorough treatment of this and other eggiitroughout the thesis (we will indicate
this in the text where appropriate).

Chapter 4 Service Provisioning with Limited Performance Information 87

With this, we calculate:; as follows:

- R R
b= s ;k (Ditk) = Dik = 1)) (4.12)

Now, to calculate the overall expected time of the task, we again assume thatl n; = 0
and follow similar reasoning as for the expected cost by considering 2. When the
consumer succeeds after statéts expected duration is ther), and if it succeeds after state
the expected duration is; 4 p;. We can formulate the general case, afterktieinvocation as:

dy, = (k—1) w;+ (4.13)

The associated non-conditional probability of this event (succeedieg thk kth invocation)
is fi’“*1 (1 — fl) Using this, and conditioning on an overall success, we can now write the
expected time for task as’:

Eo= a1)

Sr
Il
T

m—1
= l (/‘C'wz’+#z’)'ﬁk<1_ﬁ)
2
_ Y (g m Afz‘—mf["+(m—1)ff“+1

To generalise this when; mod n; # 0, we again letm = |v;/n;| be the number of full
invocations and = v; mod n; the remaining services. We also Jetbe the mean duration to
the first success whenservices are invoked (calculated analogously:tan Equation 4.12),
and we letf, be the probability of failure when invokingservices in parallel. Then we can add
the impact of the remaining services to extend Equation 4.14:

i —mf + (m — 1) fmHt

! -7 : + A=)+ mwﬁ) (4.15)

ti=— (Mz’(l—f?)+wifz

1

Finally, to calculate the variance?, of the task, we leC; be a random variable representing
the duration of the task, conditional on its success (note, its expected &Zlug, is equal to
t;). We are interested in the variance of this variable, V&R, which we calculate as follows:

o? = VAR(C))
= E(C?) — E(Cy)? (4.16)

’See Appendix D for a detailed derivation.

Chapter 4 Service Provisioning with Limited Performance Information 88

We can calculate ;)% as given by Equation 4.15, but to calculate’), further steps are
necessary. First, we consider two cases, as before: (1) the taskésstul during the firsh =

|v; /n;] full invocations, and (2) the task is successful in the last invocationthy; mod n;
parallel services (if # 0). We use two random variables to denote the durations in each case —
A; and B;, respectively (again, these are conditional on the task being suakciesséch case).

In order to treat both cases separately, we can now re-w{itg E letting P be the probability

that case (1) occurs, ans the probability that case (2) occurs, both conditional on overall

Success.
E(C?) = PJE(A?) + PgE(B?)
1_fm fm(fr)
= —Ji_E(A? : 4.17
1—frf;”()+ = E(B}) (4.17)

Furthermore, we separate each of these durations into the total time sjii@rg Yest unsuccess-
ful invocations that are timed-out (we denote theselas and Byy;) and the time that passes
during the last invocation before the first service is successful {ddrasAp; and Bp;), and
we note that these two components are independent of each other in ceit Beginning with
the first case, we thus write:

E(A7) = VAR(4;)+E(4;)?
= VAR(Aw;) + VAR (Ap;) + (E(Aw;) + E(ADZ-))2
= E(Afy;) — E(Aw:)? + E(AD;) — E(Api)? + (E(Awi) + E(Ap:))?
= E(Afy,) + E(AD;) + 2E(Aw:)E(Ap;) (4.18)

The expected duration of a single invocatiofAlp;), is equal tou;, which we calculate using
Equation 4.12. The expected squared duratide{ %), is similarly calculated by multiplying
the term inside the summation By instead ofk. The expected waiting time, (By;), is
obtained from Equation 4.14:

%

- o —mf™ + (m — 1) fmH! 4.19
T A @.19)

E(Aw:) =

To derivé® the expected squared waiting timq%i), we follow similar reasoning as for Equa-
tion 4.14:

A m—1
2 _ w ik
E(Ajy:) = 1 - fm z% K f]
wiz ;) 2 tm
= A Wit mT e —
(1= g
(2m 41— 2m?) fm 4 (2m — 1 — m?) fm+2) (4.20)

8See Appendix D for a detailed derivation.

Chapter 4 Service Provisioning with Limited Performance Information 89

Next, whenv; mod n; # 0, we also need to calculate the expected squared duration if the
consumer is successful on the last invocatiai3 . This is done analogously to Equation 4.18,
simplified by the fact that a constant waiting time«);) is associated with the last invocation:

E(Bf) = VAR(B;)+E(B;)* = E(Bjy;) + E(Bp;) + 2E(Bw:i)E(Bp;)
= (mw;)? + E(B%;) + 2mw;E(Bp;) (4.21)

The remaining terms, @p;) and EB?%,), are calculated as(Bp;) and §A%,), discussed
above.

We have now finished analysing the performance characteristics ofla &as§jt; given an al-
location (n;, w;) and some knowledge about the services available for the task. In particula
we can calculate the success probability of the taskn(Equation 4.6), the expected cost of
attempting the taske{ in Equation 4.10), the expected completion time of the task, conditional
on its succesdg{in Equation 4.15), and its variance(in Equation 4.16). Given these calcula-
tions for each task, we are now interested in estimating the expected reaadithe expected
costc¢ for the overall workflow, which are required for our heuristic utility ftioa given in
Equation 4.5.

4.4.3.2 Global Prediction

We now calculate a number of global performance characteristics fowdralbworkflow, be-
ginning with the estimated total cogt, This is the sum of all task costs, each multiplied by the
respective success probabilities of their predecessors in the woidflosver; is the probability
that taskt; is ever reached):

P (4.22)
{ilt;€T}
! it (1) & B
Ty = { J ((j>ti) ¢ E) .23
H{ﬂ(tj,ti)EE} pj Otherwise

Next, to estimate the expected reward of the allocation, we need a duratiobudistr for the
complete workflow (again, conditional on overall success). To thiswadmploy a technique
from operations research (Malcolm et al. (1959)), and evaluaterifieal path of the workflow
(i.e., the path that maximises the sum of all mean task durations along it). To ob&stimated
distribution for the duration of this path, we approximate it with a normal distributiat has a
mean\y, equal to the sum of all mean task durations along the path and a varignegual to
the sum of the respective task variances. This approach exploits tinal diemt theorem, which
states that the sum of arbitrary independent random variables capiluxiapated using such a
distributior?. Hence, the corresponding probability density function for the worktovation

This theorem holds when the number of variables approaches infinitynakds some assumptions about the
variables, e.g., that their third moments must be finite (DeGroot and/iShg2002)). However, we have verified
that this approximation works well in practice, even when consideringl syoekflows (see Section 4.5.7).

Chapter 4 Service Provisioning with Limited Performance Information 90

1 _(@ap)?
dw (z) = Tz (4.24)
with
Aw= Y i (4.25)
{i|t;eC}
{ilt;eC}

whereC is the set of tasks on the critical path.

Next, we use the distributiody; (z) to estimate the expected reward of the allocation. In so
doing, we assume that workflow finishing times can be continuous, in ordmErice a closed,
analytical solution. This introduces a small error in the results, as the time medemploy

is actually discrete. However, we believe this error is negligible, as time stdpgpically be
small compared to the overall workflow duration (and our experimentaltsesupport this). To
this end, we assume overall success and denote the correspondacteeiward with:

Ts = /Ooo dw (x)u(x) dx (4.27)

In order to calculate this, we léy (z) = [“__ dw(y) dy be the cumulative probability func-
tion'® of dyy (z), we let Dmax = Dw (tmax) be the probability that the workflow will finish no
later than the deadling,ax and Diaie = Dw (tiast) — Dw (tmax) the probability that the workflow
will finish after the deadline but no later than timg; = “3=* +tmax (both conditional on overall
success).

Next, we consider three distinct cases, as derived from Equationr3:2tfo First, the workflow
may finish within the deadlingnax — in this case, which happens with probabiliBy,ay, the
consumer will receive the full rewardmax. Second, the workflow may finish aftggs;— this
happens with probability — Dyy (tast), and here the consumer receives no reward (and so we
can ignore it). Finally, the workflow may finish between these two times, whipphdras with
probability Diae. Becauseu(t) is linear on this interval, we can calculate the expected reward
in this case by applying(¢) to the mean time on the interval, which we denote |y. Hence,

we can re-write Equation 4.27:

Ts = Dmax " Umax + Diate - U(Elate) (4-28)

9This is a common function that is usually approximated numerically. In opteémentation, we use the SSJ
library (http://www.iro.umontreal.ca/ ~simardr/ssj).

http://www.iro.umontreal.ca/~simardr/ssj

Chapter 4 Service Provisioning with Limited Performance Information 91

Now, we calculatéate:

_ 1 tlast d
7 = / dw (x)x dx
ate Drate (x)
—(tmax=Aw)? —(tlast=Aw)” A/ U
—)\W + (e 2uyy, —e 2uyy)7‘” (429)
Dlate' \/ﬂ

Finally, this reward) is only obtained when the workflow is successful. Hence, we calculate
the overall probability of succesg, as the product of ajp;:

p= 11 » (4.30)

{i‘tiGT}
This allows us to summarise our heuristic utility function as follows:

u=p- (Dmax' Umax + Diate - U(t_late)) —C (4.31)

Using this heuristic function, it is now possible to use steepest-ascent hillinljrals described
at the beginning of this section. Through observations, we have seenuhaill-climbing
algorithm quickly converges to a good solutténin particular, the heuristic functioia can be
solved efficiently in quadratic time. The bottleneck here is the calculation foattans 4.22
and 4.23. However, after the initial calculation, only small adjustments neezlritalde at each
iteration of the hill-climbing procedure, further reducing the run-time of datawg @. In this
case, it is bounded by the critical path problem used in Equations 4.25.26dwhich has a
run-time inO(|T'| + |£€]) where|T'| is the number of tasks in the workflow anfl the number
of direct, non-transitive edg&s

To illustrate the behaviour of outexible strategy, we briefly outline the provisioning of an
example workflow in the following section.

4.4.4 lllustrative Example

In this section, we discuss how the example workflow introduced in Sectiois Brévisioned
by our algorithm, and how the various performance measures from th@psesection are
calculated and used in practice. For this example, the appropriate serpedye detailed
in Table 4.1, along with their failure probabilities, invocation costs, humbeagdadole, their

1on average, around six iterations are needed per task in the workflovingthe experimental evaluation of
our algorithm (see Section 4.5), a solution was typically found within 25Aiisasks) or 5s (50 tasks) on a 3GHz
Pentium 4 with 1GB RAM.

2\\e also assume that the probability density functions of service invocatiations and related expected values,
as calculated in Equation 4.12, can be efficiently calculated (or elsexapted).

Chapter 4 Service Provisioning with Limited Performance Information 92

respective duration distributiohsand associated means and variances. These were chosen to
represent a set of services with variable performance characteristios example, Translate
is a cheap, fast and unreliable service type, wRibmdelis expensive, slow and reliable.

Service Fail. | Cost ($) | Number | Duration Mean | Var.
Prob. (min.)
BaseCall 0.2 1 50 Gamma(1.5,2) | 3 6
GeneAssemble 0.1 5 50 Gamma(5s,2) 10 20
Blast 0.3 2 500 Gamma(5,3) 15 45
LookUp 0.5 5 10 Gamma(1.5,1.5) 2.25 | 3.375
Render 0.1 10 25 Gamma(30,3) | 90 270
Translate 0.7 0.5 200 Gamma(1,1) 1 1
Fold 0.2 10 5 Gamma(3,30) | 90 2700
Print 0.2 2 20 Gamma(2,3) 6 18

TABLE 4.1: Service types used in the example workflow.

Now, for our illustrative example, we assume that the scientist has a deatifma hours, and
values the workflow at $150, which decreases by $1 for each minutét thdate. Figure 4.3
shows the initial allocation for the workflow. As outlined in Section 4.4.2, therélguo begins
here by randomly provisioning service instances for the constituent éasie workflow.

To illustrate the calculation our algorithm performs on this allocation, we consider the upper
Rendertask in the workflow {,). Here, the algorithm first calculates the probability of success
for the taskp,, using Equation 4.6. As there are a number of service instanges ¢5), this
probability isps = 1 — (1 — (1 — 0.1) - 0.62)> = 1.00. Next, the algorithm calculates the
expected costy, using Equation 4.10. This is highy(=1- 10 - % = 17.98), because
the initial allocation will ignore any services that finish after the mean duratioen(if they are
successful). Finally, the expected completion timeis calculated using Equation 4.15. Again,
thisis high € = {-(80.22155- (1— %) +94-(fs =25 f° +(25-1)- /") 1) = 155.19,
wheref; = 0.44367) for the same reason as the expected cost.

Given these values for all tasks in the workflow, the algorithm next dettlre overall expected
performance measures for the workflow (these are summarised in the Il tight of the
workflow). First, the overall success probabilipy, is calculated using Equation 4.30. This
is low, due to the inappropriate time-out value for fhdd task {s), which results in a high
failure probability of that tasky = H{z‘meT} p; = 1.007 - 0.26 = 0.26). The expected
cost, ¢, is estimated next using Equation 4.22. In this case, we derive an estimatedfco
¢ = D (ijery TiC = 175.25 for the whole workflow. After this, the algorithm estimates

Bwe assume that services in this example follow a gamma distribution Ggimédawith pdf p(z, k,6) =
zF~1e~ 7T (k)~'0~*, which has been chosen because it is well suited for uncertain servies tirat are always
positive, but are not usually bounded above. The gamma distributionrelsides common other distributions such
as the exponential and Erlang distributions, both of which are often ustw ianalysis of service and queueing
times (Trivedi (2001)). However, this choice is only for illustrative pases — in practice, an arbitrary distribution
can be used to model service durations.

YFor readability, all values presented here are reported to two decimaisplexcept where additional precision
is necessary during the calculations.

Chapter 4 Service Provisioning with Limited Performance Information 93

Task Allocation (n,w) 614
P, =1.00 p, =100
Expected performance G, =1132 ¢, =17.98 > Dependency
(success _probablhty‘, cost, 7,=10.87 7 —155.19 Dependency
duration and variance) 63 =36.63 62 =12759.06 > (critical path)

p=026
7 =175.25
S N N N vy =12805.43
\ \ A Translate -3 "~ T=-140.94
(10,89)
7,=1.62 =536 P, =1.00
G, =0.87 ¢, =100.25
— 7,=67.96
62=039 62 =83.07
T
FIGURE 4.3: Initial provisioning allocation.
(1,54 (1,16) (1,174)
P, =1.00 Py =1.00 P, =1.00
¢, =286 ¢,=9.99 ¢, =1111
7,=38.65 7, =18.61 7,=109.84
o3 =1830.89 o2 =490.45 o2 =4008.51
/Y
= Blast -----3 LookUp — . p=1.00
L :) :) """" 7=77.66
oy =195.82
vy =3937.15
Translate U=63.13

(2,167) (2,138)

7, =545 7, =13.09 s =1.00 Pe=1.00 P, =1.00 7, =10.18
62=2579 62 =868l G,=236 G, =21.48 ¢,=20.22 ol =87.63
T — — 7, =3.05 1, =79.63 i, =84.41 " —

62=852 o¢ =3329.12 62 =399.30

FIGURE 4.4: Finally provisioned workflow.

the distribution of the overall completion time by summing the expected completions times
and variances along the critical path, using Equations 4.25 and 4.26. i€his g mean of
Aw =D gepy ti = 1.62045.356+10.867+2.747+155.187+2.130 = 177.91 and a variance
of vy = Z{i‘tiep} 0?2 = 0.87+2.81+36.63+4.88+12759.06+1.18 = 12805.43. Using these
as the mean and variance of a normal distributigf (z) in Equation 4.24, which was derived
using the central limit theorem), we estimate that the workflow will finish within tredtiee
tmax With probability Dmax = ff“;gx dw (y)dy = 0.708395. We also estimate that the probability
of finishing between the deadline afgs; is Djate = ﬁiﬁ dw (y)dy = 0.261157. In the lat-
ter case, we calculate the expected completion time using Equationt#;29-(296.766592).
Finally, using these intermediate values in Equation 4.31 yields a total utility estimate-of
0.262624 - (0.708395 - 150 + 0.261157 - u(296.766592)) — 175.245220 = —140.94. This is low
because of the high degree of parallelism in the workflow (resulting inaessary expenses)
and the low overall success probability (resulting in a low estimated reward).

Chapter 4 Service Provisioning with Limited Performance Information 94

(2,43) (1,14) (2,185)
P, =1.00 Py =1.00 . =100
2, =440 & =9.99 &, =2020
L,=17.71 7,=16.63 7,=84.82
0, =236.97 62 =376.48 67 =539.58

/5 /5

=099
¢=167.35
Ly =131.40
vy =568.23
\ T=762.22
.

(5,116)
P, =1.00 P =0.99
¢, =440 ¢, =50.00
;=130 i, =44.59
6:=0.53 G; =458.60

(5,142)

7, =181
6l=122

FIGURE 4.5: Provisioned workflow with shorter deadline and higlesvard.

To improve this initial allocation, our algorithm now repeatedly considers a eunflmeighbour
allocations and, at each iteration, picks the one that promises the highestedtprait. This

is repeated until no more improvements can be made. Figure 4.4 shows thallboation
found by our algorithm, which includes several tasks where providare been provisioned

in parallel, but mostly relies on serial provisioning as this saves money. Gtngdhis with

the initial allocation, the improvements are clearly visible — for example, the tagheost of
the Rendertask in the upper branchi,) has now been reduced from = 17.98 to 11.11 and

its expected duration has been lowered, simply by choosing a more ajgpeopaiting time
(from ¢, = 155.19 to 109.84). It is also evident that the structure of the workflow has been
taken into account — two providers have been provisioned in paralléhédowerRendertask
(t7), despite being the same type of service. This means that the task is fasteg4.41), but
also more expensiver{ = 20.22) than its counterpart in the upper branch. This is beneficial,
because the durations of the lower tasks are generally longer, andsmnthemer has to invest
more resources in order to meet its workflow deadline. Overall, the comsumaeexpects to
finish within the deadlinénax = 240 with probability Dimax = 0.7593, and between the deadline
andtjast = 390 with probability Diae = 0.2397. In the latter case, its expected finishing time is
tiate = 276.4548, leading to an overall estimated utility @f= 0.9977 - (0.7593 - 150 + 0.2397 -
u(276.4548)) — 77.6572 = 63.13.

To give a second example, Figure 4.5 shows the same workflow in a scesare the scientist
requires her results in a far shorter time period (within 150 minutes), wherevalues the
outcome more highly (the value is no#t000), and where the penalty is higher than in the
previous exampleb@0 per minute). Here, our algorithm is using a far higher level of redundanc
than previously, because that allows the agent to finish more quickly &ablye For example,

for theRendettask in the lower branch, the algorithm has now provisioned 5 servicesafiglar
which is very expensivec¢ = 50.00), but also results in a low expected duration £ 73.32)
necessary to meet the overall deadline. Nevertheless, the algorithm stBehto provision

a single service for theookUptask. As before, this is because the tasks on the lower branch

Chapter 4 Service Provisioning with Limited Performance Information 95

take longer, and so the consumer can save some costs by executing ¢heagsp in series.
Overall, the consumer now expects to finish within the deadlipg = 150 with probability

Dmax = 0.78 and it is late with probabilityDja.e = 0.22 (in which case its expected finishing
time istjqe = 163.23). Due to the high levels of redundancy, the estimated expected cost has
now more than doubled compared to the previous case (167.35), but the overall higher
reward results in a high estimated utility @f= 762.22 that justifies the expenses.

In order to evaluate this strategy and to compare it against less flexibleaahas, in the fol-
lowing section, we describe a set of experiments that we carried out tantthis e

4.5 Empirical Evaluation

In this section, we experimentally compare our proposed strategies to teattypredominant
naiveapproack®. The aim of this part of our work is to compare the performance of outestra
gies to current approaches when there is some uncertainty in the behaféeuvices. We also
intend to verify that our flexible strategy in particular takes appropriatsides and makes an
overall profit over a variety of environments while achieving high suscates. We decided to
conduct an experimental study (rather than an analytical one), leeoatise inherent difficulty
of calculating workflow completion distributions (see Section 4.4.1).

To this end, we investigate the average profit gained by all strategiesgelhasiahe average
proportion of successfully completed workflows. We begin in Section 4.5delgribing our
experimental testbed and our methodology. In Section 4.5.2, we outline alsgiaitheses to
guide our experiments and in Sections 4.5.3—4.5.5 we present our re$idts.iff Section 4.5.6,
we show how our strategy deals with larger workflows, and in Section 4. tompare it to
the optimal strategy (for a simplified scenario).

4.5.1 Testbed and Methodology

In order to analyse our strategies experimentally, we developed a congiugation of a
service-oriented system. In this simulation, the system is populated by adfenitsgoservices,
as described in Chapter 3. During each experimental run, a randokflavots first created
according to some pre-defined variables. These include the numbek®friabe workflow, the
service types that should be included, and a parameter indicating the lradiEthe workflow.
The latter is a variable ranging from 0 to 1, where O results in completely linedflaws (i.e.,
the task dependencies form a total order), while 1 causes workflowes ¢orhpletely parallel
(i.e., there are no dependencies between tasks). Any intermediate vatatdadhe number

15As we assume limited information about each task,rthige strategy also subsumes a number of other QoS
optimisation approaches that were discussed in Chapter 2. This is babaysely on more detailed information
about individual service instances and user-specified constraingréaot available in our model.

Chapter 4 Service Provisioning with Limited Performance Information 96

(a) Parallelism=0

(b) Parallelism =0.25 (c) Parallelism =0.75

FIGURE 4.6: Several random workflows with 10 tasks, 3 different mestypes (indicated by
the task labels) and varying degrees of parallelism.

of edges that should be introduced as a proportion of the number of @dgsiblé® (Figure
4.6 shows some example workfloWfs This workflow is then executed by a service-consuming
agent using one of the strategies outlined earlier in this chapter. Thesammpisodic and
each involves the execution of exactly one workflow, with no interactiobhsd®n successive
runs.

To analyse the performance of a particular strategy, our simulation exexlgaege number of
experimental runs (the data in this section was collected using 1,000 ruesdoexperimental
setup) and then records the following statistics

e The proportion of successful workflows for the strategy (wheretita¢exyy completes the
workflow within timet, so thatu(t) > 0).

e The average profit of the strategy (the profit of a workflow executiamesdifference
between the utility reward(t) for completing the workflow and the incurred cost).

These indicate the extent to which the consumer agent manages to completéfimvgonithin
the given time-constraints and whether it manages to achieve a high apeddigat the same
time, without making an overall loss.

For the data presented in Sections 4.5.3 — 4.5.5, we used workflows withksCatas a paral-
lelism parameter of O (i.e., without parallel tasks). This means that the expasimpreesented
here are particularly relevant to scenarios where workflows are higtesdependent. By using
such linear workflows, we were also able to check some of our resuligianby to verify that

5We implement this by randomly populating an adjacency matrix until the diweishold is reached.

1"To avoid confusion, it should be noted that Figure 4.6(c) represesitsgée workflow with 10 tasks, four of
which are immediately executable. Parts of the workflow are entirely diemted in this case, because of the high
level of parallelism.

18To test for statistical significance, we also record the variances ofehges.

Chapter 4 Service Provisioning with Limited Performance Information 97

our simulation is correct (in particular, we verified the results presenteé@dtidds 4.5.3 and
4.5.4).

Furthermore, we assumed that there were 1,000 services for everyitaglach service having
a cost of 10 and a gamma distribution with shape- 2 and scalg = 10 as the probability
distribution of the service duration. We set a deadline of 400 time units fdr wackflow,
an associated maximum utility of 1,000 and a penalty of 10 per time unit. We alsawrped
similar experiments in a variety of environments, including heterogeneoupamatiel tasks,
and observed the same broad trends that are presented in the followiiog $some of these
results are presented in Section 4.5.6).

To prove the statistical significance of our results, we averaged datal @0 test runs and
performed an analysis of variance (ANOVA) where appropriate to oéterwhether the strate-
gies we tested produced significantly different results (Cohen (1998)gn this was the case,
we carried out pairwise comparisons using the least significant ditfer@uBD) test. Thus, all

results reported in the following sections are statistically significant (gt thé.001 level).

4.5.2 Hypotheses

Before discussing the results of our experiments, we outline four hypesht@at drive our in-
vestigation. The first two are concerned with the effects of the two basicflexible strategies,
parallel(n) andserial(w). The aim of these hypotheses is to show that it is possible to achieve
better results using simple techniques for handling failures than when relgitigenaive strat-

egy.
Hypothesisl. Adopting strategyparallel(n) in uncertain environments can lead to an improve-
ment in the average profit over theive strategy.

Hypothesi2. Adopting strategyserial(w) in uncertain environments can lead to an improve-
ment in the average profit over thaive strategy.

The other two hypotheses are concerned with evaluatinfekiblestrategy. Here, we present
two hypotheses concerned with the average profit and the succdssbitg. This presents
the flexible strategy in more detail than the previous two strategies due to its img@t@our
research.

Hypothesis3. The flexible strategy produces a higher profit than any of the other examined
strategies, averaged over all cases.

Hypothesis4d. The flexible strategy successfully completes a higher proportion of workflows
than any of the other examined strategies, averaged over all cases.

To evaluate Hypotheses 1 — 4, we tested each of the four stratedjiesparallel(n), serial(w)
andflexibleusing the same experimental variables (as outlined in Section 4.5.1). We summaris
the results by discussing each hypothesis separately.

Chapter 4 Service Provisioning with Limited Performance Information 98

900 T T
\ naive — ——-—
800§~ parallel(2) - -2- -
700 | \E\ : parallel(6) — -» -
\ .
600 [g,
- \I o
"‘é 500 Y LN
a \ "
S 400 - IR N
=) %
S 300 e : :
o I o SN
> SN N ‘%
I 200 . g -
100 . RN, K
2N [\ %
0 S I.. e g e
e it Pk et - wht— el - Ik - B '9":?’
-100 o L%
X _i_.x -
=200
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Failure Probability

FIGURE 4.7: Effect of provisioning different numbers of servicagparallel (data shown with
95% confidence intervals).

4.5.3 Parallel Provisioning (Hypothesis 1)

In our first experiment, we compared the performance of strapegsilel(n)® with the naive
approach in environments where services have a varying probabilityilafd, as shown in
Figure 4.7 (throughout this section, we vary the failure probability in sté@®s0d from O to
1). From this, it is clear that there is a considerable difference in padioce between the
different strategies — the average profit gained byrthige strategy falls dramatically as soon
as failures are introduced into the system. In this case, the averagegpimoétl by provisioning
single services falls to around 0 when the failure probability of serviceslys(3. A statistical
analysis reveals that thregive strategy dominates the other two when there is no uncertainty in
the system. However, as soon as the failure probability is raiseéd)?o parallel(2) begins to
dominate the other strategies. Between 0.35 and @&%)lel(6) then becomes the dominant
strategy as increased service redundancy leads to a higher probafditgaess. Above this,
the parallel strategies do not yield better results thaméee strategy as they also begin to fail
in most cases.

Summarising these trends, it is obvious that parallel provisioning yields &epable improve-

ment over thenaive approach in a range of environments. For example, when the failure prob
ability is 0.2, provisioning two services results in an average profioaf2 + 26.6 (with 95%
confidence interval), while thedive strategy achieves onhg8.2 + 17.9. This leads us to con-
clude that thgarallel(n) strategy can indeed lead to an improvement and, hence, that Hypothesis
1 holds. However, no parallel strategy dominates the other and they atliellg make losses
when the probability of failure increases to such an extent that the chedendancy levels do

not suffice to ensure success. In this context, it is interesting to note #eslo§each strategy
become smaller again after a certain minimum is passed fargllel(6) reaches a minimum

%Here, we arbitrarily chose = 2 andn = 6 as representative of the general trends displayed by the strategy as
more services are provisioned.

Chapter 4 Service Provisioning with Limited Performance Information 99

1000 T

T
naive — ——-—

900 \-‘-\5;_3“ serial(30) - -&- - 7
800 o serial(100) — -% -+ |
\ @
700 ‘\ N “@"
g 600~ %\. G
& 500F-% T
o \ X .
g 400 < S -
o 300 : A
S X, X,
200 " i
¥
100 Yo <
0 - \,\?M % ‘l;]
TR R L T e R A L R e
~100 “X--—x__‘E_.T::_%_.-x-—x—-x—--x-—x—-)e-e
-200 8-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Failure Probability

FIGURE 4.8: Effect of different amounts of waiting times for senebvisioning (data shown
with 95% confidence intervals).

when the failure probability is around 0.8). This is because the stratedieariger in the work-
flow and therefore lose a lower investment. In conclusion, parallel pomirgy is sensitive to
the right choice of, and might even lead to an overall loss if the wrong parameter is chosen.

4.5.4 Serial Provisioning (Hypothesis 2)

We carried out a similar experiment to verify the advantage of serial poowmigy over thenaive
strategy (see Figure 4.8). Here, again, there is a marked improvemertheveive strategy
for failure probabilities up to and including 0.5. This improvement is due to ttietlfiat serial
provisioning responds to failures as they occur, while only paying fditiadal services when
necessary. However, as the failure probability rises, this strategydstegmiss its deadlines and
hence incurs increasingly large losses.

Overall, a significant improvement in the average profit for some envirotateads us to con-
clude that Hypothesis 2 holds. Again, the strategy is sensitive to the cHglegaommeterw, but
this time,serial(30)dominatesserial(100)when there is uncertainty, until both make a loss.

4.5.5 Flexible Provisioning (Hypotheses 3 and 4)

To show how thdlexible strategy compares against thave provisioning approach and our
non-flexible strategies, Figure 4.9 plots the average profit of varicategies against the service
failure probabilities. Here, it is clear that the flexible approach perforriefkhan any of the
other strategies. This is due, in part, to the flexibility of the strategy that alloiespitovision
more services for later parts of the workflow, where success beconmescnitical as a higher
investment has already been made. The flexible approach also combinesntfés of the
other strategies, allowing the agent to choose between parallel (e.g.thdrenis little time)
and serial provisioning (e.g., when the agent can afford the extra wditimg) or a mixture

Chapter 4 Service Provisioning with Limited Performance Information 100

900
800 R " naive — -
ooy A S parallel(2) - -e- -
700 e i\“\e\ parallel(6) - - x - -
\ e serial(30) ----e--- |
600 |\ B i flexible —+—

\ N
500 |4 =

J\\ § \f\\
400 R ¥
300 \ : I \

200 . kN J o % \§\

100 o RUE . X
- [N :

Average Profit
=

FONE L INE ;5;'-%‘...___ o
-100
-200

0 0.1 0.2 0.3 0.4 0.5 0.6
Failure Probability

FIGURE 4.9: Average profit of flexible strategy (data shown with 958afedence intervals).

T T
naive —+ -

lg—w o S SN S Suhaa parallel(2) - &-
oof e O Vg, [paralielte) < |
\ N
\
\
\
\T
s
\

3]

R % . serial(30) --o--
0.8 - flexible ——-
0.7

0.6
0.5 ~ .

0.4 N : \
0.3 . 1
02 5 e ... s
0.1 - S s,

PN o
TN AL R CEN :
Ao~ e P g _g___s R E“\n &

SEH
B3

2
.

Proportion Successful

K=l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Failure Probability

FIGURE 4.10: Success probability of flexible strategy (data shovth 86% confidence inter-
vals).

of the two. Although performance degrades as services become more-faitne, flexible
provisioning retains a relatively high average profit when all other gfiedestart to make a loss.
Furthermore, the strategy avoids making an overall loss due to its predictiraniem, which
ignores a workflow when it seems infeasible.

In Figure 4.10, we plot the success probability of each strategy agaisettice failure prob-
abilities. While maximising the workflow success probability was not the primaryddide-
vising theflexiblestrategy, the results show that the strategy performs very well ovega dn
environments. More specifically, it initially completes almost all workflows sastully, and
maintains this trend up to a failure probability of 0.8, by which all other apfresbave large
failure rates. When this failure probability is exceeded, the strategy slyddegins to ignore
all workflows, because it cannot find a feasible allocation to offer &ipeseturn. While the
parallel(6) strategy still succeeds in a small fraction of workflows, it is incurring sigaift
losses, as explained in the previous sections.

Chapter 4 Service Provisioning with Limited Performance Information 101

FIGURE 4.11: An example workflow consisting of 50 tasks.

From these results, it is clear that hypotheses 3 and 4 hold. While theseragecases where
other strategies achieve similar results (e.g., when services never failflexitde strategy
achieves consistently good results, and, averaged over all resulisshsicin Sections 4.5.3—
4.5.5, dominates all other strategies. This is summarised in Table 4.2, whiclinsaihia per-
formance statistics of our representative strategies, averaged oeswvathnments we tested
(using the same data as in Figures 4.7—-4.10). These results highlight #fédehour strate-
gies, and show that thigexible strategy by far outperforms theive approach. In particular,
we achieve an improvement of approximately 700% in average profit awessfully complete
around 80% of all workflows. To show that these results also hold in stterarios, in the next
section, we consider a more complex case than the workflows discustad so

Strategy | Average Profit. | Profit vs ndve | Success ratg;
naive 65.16+ 1.68 1 0.095+ 0.002
serial(100)| 142.47+ 2.46 2.19+ 0.07 | 0.258+ 0.003
parallel(2) | 177.98+ 2.37 2.73+0.08 | 0.272+ 0.003
parallel(6) | 180.06+ 1.86 2.76+0.08 | 0.626+ 0.003
serial(30) | 217.12+ 3.06 3.33+0.10 | 0.439+ 0.003
flexible 523.90+ 2.20 8.04+ 0.21 | 0.795+ 0.003

TABLE 4.2: Summary of results with 95% confidence intervals

4.5.6 Performance in Complex Environments (Hypotheses 3 ard)

In the previous section, we examined the performance of our strategiesdonkext of a small,
sequential workflow with only one type of service. As mentioned above,allogved us to
verify some results analytically. In this section, we briefly present thdtsssiia more complex
problem, and, in doing so, demonstrate that the same overall trends chedrees.

For this experiment, we created random workflows that consist of 56 tamkhave a parallelism
parameter of 0.25. We also chose a random service type for each daskafset of seven
types that are detailed in Table 4.3. These service types were chosemplay disvariety of
parameters. For examplé; is extremely fast and will almost certainly complete by the next

Chapter 4 Service Provisioning with Limited Performance Information 102

0.14 : T T T T T T T T T
012F "
01} !
0.08
0.06
0.04
0.02

oLt Dt |x\\‘ i S] I I I 1
0 20 40 60 80 100 120 0 500 1000 1500 2000 2500
Time t Time to Completion

b 1000
T5 - - - - _: 800 i
600
400
200

Duration density p(t)
Reward

(a) Example service durations (b) Utility function

FIGURE 4.12: Experimental settings: (a) shows some service durétinctions and (b) gives
the utility function we use.

time step following its invocation, while, at the other end of the sc&leand Ty both have a
mean duration of 50 time units (Figure 4.12(a) shows the duration functiorsofoe of the
services). Services of typgg are also very cheap (0.1 units), while thos&pfost 20 times as
much.

Service | Cost ($) | Duration Mean | Var.
(min.)

Ty 0.1 Gamma(1,0.1) | 0.1 0.01

T 0.1 Gamma(1,10) | 10 100

T 1 Gamma(5,1) 5 5

Ty 1 Gamma(5,10) 50 500

T5 2 Gamma(10,1) | 10 10

Ts 2 Gamma(10,5) 50 250

T 2 Gamma(100,0.1) 10 1

TABLE 4.3: Service types used to test complex workflows.

Furthermore, we assumed that there were 100 instances of each $gpécend we used a
utility function with a deadline of 1,000 time units, a penalty of 1 per time unit and a mawimu
utility of 1,000 (this is shown in Figure 4.12(b)). Again, we tested our straseégienvironments
where services have different failure probabilities (0,0.01,0.02,. .but Xhis time we included
some variance in the failure probabilities of different service types. ifsgadty, during each
experimental run for a particular average failure probabijfityve assigned a failure probability
to each service type that was drawn from a beta distribeRioith parametersy = f - 10 and

[=10—«a (unlessf = 0 or f = 1, in which case all services had the same failure probability).
This process, which was repeated for all 1,000 runs for each valfieroéant that the average
failure probability of all service types would approagthbut still allowed considerable variance
between the different types of services.

With these experimental settirfgswe again tested théexible strategy against several other
approaches (see Figure 4.13). Here, a similar pattern as shown in Bi§ueenerges and our
flexibleapproach clearly dominates the other approaches when servicesiscgesertain (i.e.,

2The beta distribution was simply chosen because it always ranges belveeel 1.
21These parameters were chosen to exemplify the performance ofakeggtrWe have experimented with other
values and observed the same broad trends.

Chapter 4 Service Provisioning with Limited Performance Information 103

1000 _
naive ———-—
900 \\E\}\a parallel(3) - -8- -
8007 i parallel(10) — - - - |
0o b e flexible —+—
! ’ T ~—
600k B N\fk:f
500 | ¥ N
400 A= Ko 3 !
300 |}] -
200 \\ i \ﬁ % 3 \\
100 |4 s, A .
N [1N x
0 i CETETETSH AT
-100 .
-200

Average Profit

B

9
L%

\X\‘ "_x/-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Failure Probability

FIGURE 4.13: Average profit for various strategies when faced watmplex workflows (data
shown with 95% confidence intervals).

1 ' naive -« -
- = LR gy y parallel(3) - &- 7
0.9 2. * M\M\ parallel(10) - x- |
I | ‘\ % AL flexible’ ——
7 08 | EAN *. \—\
& 07 % Yo
g \ fi %
5.) 0.6] < X &
c 0.5 ! %
s 5 %
E=] \ o, \ \
5 0.4 - N
g \ " : \
E 0.3 \\ I:g‘ R \7
0.2 \ z . S \
o1l X LR LN
’ N L TR
0 A - - - = = Em— e #
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Failure Probability

FIGURE 4.14: Success probabilities for various strategies wheedfavith complex workflows
(data shown with 95% confidence intervals).

when the failure probability is greater than 0). When no services fail (@jhnobability is 0),
the flexible strategy does as well as tigive approach and better than any of the others.

To complete the summary of this experiment, Figure 4.14 shows the succbabilities of the
strategies we tested. Again, the flexible strategy performs very well cemparthe other ap-
proaches. Itinitially completes at least as many workflows as the othemgéistthen stays at a
high level and only starts to drop below 90% when the failure probability tss@8%. Overall,
the results presented in this section further highlight the promise of flexiblégiwning tech-
nigues and show that our strategy is applicable to large workflows withdggeeous service
types and parallel workflow tasks. In particular, the results confirmahahypotheses 3 and 4
hold in these environments, as the same trends as in the previous sectibsemed.

Chapter 4 Service Provisioning with Limited Performance Information 104

90 1000

T T T T T T T
optimal ---x--- near—optimal------

80 Py flexible —— - 900 flexible —+—
g 800
o 70 * = «-‘\)
= \.,’
s 60 Ty 700 \x\\,
j=2]
g 50 600 N
2 500 N\
S 40
g Ef\ 400 S
2 30 X
E . 300
o 20 : 200 \
10 100 s
0 0 .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Failure Probability Failure Probability
(a) Workflow with 3 Tasks (b) Workflow with 10 Tasks

FIGURE 4.15: Average profit ofiexiblestrategy (with 95% confidence intervals), compared to
the optimal strategy for 3 tasks in (a) and to the near-optatnategy for 10 tasks in (b).

4.5.7 Optimality of Flexible Provisioning

As discussed previously, thiexiblestrategy uses a heuristic utility function and a hill-climbing
mechanism that is not optimal in general. However, adopting this heuristic chei®made
the provisioning of complex workflows tractable. In this section, we comher@erformance
of our algorithm to the theoretical optimal. More specifically, we first showresults in a
simple environment (we consider a workflow with 3 sequential tasks, daghich has a cost
of 3, duration distribution Gamma(2,4), 20 providers, and a utility function withdiine 30,
maximum utility 100 and penalty 10). This scenario allows us to solve our origptahisation
problem (as given by Equation 4.4) analytically. This is then followed byrailyais of the
environment used in Sections 4.5.3 — 4.5.5. Because deriving the optimiabsdaduntractable
in this case, we designed a nawalytical flexiblestrategy. This is based on diexiblestrategy,
but accurately calculates the expected utility, rather than relying on a tieefuisction. It then
repeatedly performs a hill-climbing search with random restarts (we reéks&etgorithm 200
times with random initial allocations). We believe that this is a reasonable apmtan to
the optimal, and, in fact, there is no significant difference between its rpesface and the
theoretical optimal in the smaller environment.

Figure 4.15 shows the average profit of our strategy in these two eménatis (here, failure
probabilities were varied in steps of 0.1 due to the computational cost ofi@titguan optimal
solution). In both cases, while clearly sub-optimal, our strategy comes wdbe expected
utility of the optimal or near-optimal strategies. In fact, when averaging theefailure prob-
abilities we examined, for 3-task workflows (Figure 4.15(a)), thexible strategy achieves an
average utility oft1.740.7, compared to the optimal expected utility4¥.5, which corresponds

to achieving98.2 + 1.7% of the optimal. For 10-task workflows (Figure 4.15(b)), we achieve
even closer results with an average utilitypd®.0 + 7.0 compared to the near-optimal expected
utility of 516.1. In fact, a t-test confirms that this is not a statistically significant difference
(p = 0.764). This improvement, compared to the smaller workflows, may be due to ouraelian
on the central limit theorem to estimate the duration distribution. When the workideaome

Chapter 4 Service Provisioning with Limited Performance Information 105

larger, this tends to give more accurate estimates. Overall, these resyitsmising, because
they show that our strategy achieves a level of performance that istddke optimal in the
environments we tested, using a fast heuristic method that is tractable eVamgéoworkflows.

4.6 Summary

In this chapter, we outlined five strategies for provisioning servicesrasfpmomplex workflows
in environments where little information is known about the available servidesfiiist four of
these strategies are based on related work in the area. Specificatigite@pproach uses no
knowledge about the performance characteristics of services and siroplgipns a single ran-
dom service for each task in the workflow. The following strategiesallel(n), serial(w)and
the compositdybrid(n,w) deal with potential services failures by proactively invoking multiple
services for each task and by responding to failures by re-provigjor@w services. However,
these strategies rely on a human decision-maker to choose the parameaters (respectively
the number of services to invoke in parallel and the waiting time before rgspaing). This
shortcoming is finally addressed by the noflekible strategy, which provisions services flex-
ibly and without human intervention based on the performance characen$tservices and
the constraints imposed by the workflow and its reward function.

After introducing these strategies, we described a number of empiricatieygnts. These high-
lighted the benefits of thigexibleapproach, which consistently outperformed all other strategies
and managed to maintain a high success probability of around 95% evenindigdual ser-
vices had an 80% failure probability. This strategy meets our original rempints by dealing
with service failures both reactively (Requirement A.2.a) and proacti/eB.b). It also deals
with uncertainty in a principled manner (Requirement A.1) by taking decisiatsmaximise

the consumer’s predicted utility, and we have shown that it deals well witedargrkflows and
environments with many services (Requirement A.3).

However, we have so far only looked at systems where the informatiart abovices is highly
limited. We argued that there are many realistic application areas for thislnastnere are
clearly other environments where the consumer may have more detailed itirrabout in-
dividual services and where these might be highly heterogeneous.dilvess this case (and
thereby our Requirement M.4) in the following chapter.

Chapter 5

Service Provisioning with
Heterogeneous Providers

We now turn our attention to environments where more finely-grained informaliout service
instances is available to the consumer. Specifically, we assume that psodfiideitheir services
at varying levels of quality and that the consumer has some information to distmthese
services. For example, the consumer may know that certain data-pracessvices offered
by large companies are more reliable than their cheaper counterparisgumidle desktop
computers. Similarly, a given provider may offer tier-based servicesratly the consumer
may pay a higher service fee, in order to receive a better quality of ser8ach tier-based
services might be implemented, for example, by elevating the priority of a owersin the

provider’s scheduling algorithm, hence resulting in a shorter and motarcservice duration.
As outlined in Chapter 3, we again assume that the consumer has obtaihepestozmance
information about services either through previous interactions or a kuitabt mechanism.

When such heterogeneity exists in the system, the provisioning problemnbsenore difficult,
as its dimensionality increases: rather than just considering the numbematiépservices and
their waiting times, the consumer now needs to consider which service instahoald be
provisioned. To address this problem (and our original Requiremen)t Mielextend our work
from the previous chapter. Specifically, in Section 5.1, we describe@msysodel that includes
heterogeneous services. As there is already existing work that g®pgsovisioning approach
for a similar case, we briefly formalise that approach for our framewof&eiction 5.2. Next,
we return to our flexible provisioning strategy and show how it can betaddpr systems
with heterogeneous providers in Section 5.3. Finally, in Section 5.4, we shwirically that
our extended approach performs well in practice by benchmarkingistgae algorithms in
Section 5.2 and others from the state of the art.

106

Chapter 5 Service Provisioning with Heterogeneous Providers 107

5.1 Model Extension

In contrast to the previous chapter, we now assume that the consumeichas failure prob-
ability and duration distribution associated with each service instapcether than for the
whole setS; (c(s;), f(si) andd(s;, x), as introduced in Section 3.3). Additionally, we introduce
the notion of servic@opulations which describe services that display identical behaviour and
performance characteristics. Formally, welet= { P\, %, P, ..., Pp|} be a set partition of

S, whose members are disjoint subsetsafith | J, P, = S. Any two members, ands, of a
given populationP; always have the same failure probability, duration distribution and cost, and
each service type that is mappedstoby 1. is also mapped te,.

e S pr—
l/ T \\\ /,/ \|
{' < : PF (> i y i j ’:' Failure Probability:
\ Pt ! Ssg) =f(s) = f(s)) =S (s6) =S (s)
‘\ T \\ Cost:
() w(T,) \ @ o @ T :
@ m X % Y Pr A c(sg) = c(s4) = c(sy) = c(sx) = c(s1)
\\ /’ 7’ TN / . . » .
S " \ @ JP Duration Distribution:
Task Service Type SN d(sgx) = d(s,) = d(s;x) = d(si,x) = d(sp)
' o)
S (\ @ P‘/ @ /:' "\ P) Population Performance Information
| Mo e mm—e i s //
e ol

Service Instances

FIGURE 5.1: Information that is available about the service pojote for each task.

In more detail, Figure 5.1 illustrates this extended system model. Here, thierréces are able

to solve task;, as given by the sef;. Furthermore, this set is again partitioned into four smaller
sets,P,, Py, P- and P, each of which represents a group of service instances whoseitihav
is identical. For examples;, ands; here have the same failure probability, duration distribution
and cost, but; ands,, will differ in some or all of their performance characteristics.

The model presented here includes both the cases where the conserdetdil@d information
about each service instance (see Figure 5.2(a)), and where it lydsroted information about
the whole sefS;, as assumed in the previous chapter (see Figure 5.2(b)). The notierviafes
populations is introduced for convenience, because we believe that dasmon feature of
distributed systems, where a number of agents may use the same service ingtiememight

@
é
c
(=)

(a) Information about each service$;. (b) Information limited to overall se%;.

FIGURE 5.2: Examples where different levels of information abbwat $ervices irb; are avail-
able (dashed lines denote the partitions$9f

Chapter 5 Service Provisioning with Heterogeneous Providers 108

adhere to certain quality standards, or where the consumer’s knovdedgé service providers
is limited (e.g., in the absence of more accurate information, a service consuagesimply
classify P, = {sq4, s, 54, 55} as cheap, unreliable providers, aRgl= {s., s, s, } as reliable,
but expensive providets

In contrast to the previous chapter, we also no longer assume thatysedovices are ignored
as soon as a task is re-provisioned. Hence, it is now possible that themeninvokes service
s1 for a given task, waits for some time, then invokgdor the same task, but later receives a
response from, thereby completing the task. We make this change to our model here, becaus
we believe that it is a more realistic assumption when services are highly geteaus and
especially when different service populations follow varying duratiotritigions. To illustrate
this with an example, the consumer might be able to choose from two populatioaspar-
ticular task: P;, which contains reliable, slow and expensive services,Bndvhich contains
unreliable, fast and cheap services. In this case, its best strategyentayrivoke one service
from each population, followed by more services frot invoked in series and with short time
intervals to account for the population’s short service duration. Seblvour would be inef-
fective if we assumed that a service frdpn is ignored as soon as a second service fignis
invoked.

Now, as we discussed in Chapter 2, there is already a significant bodyseérch that has
considered the provisioning of services in environments where theyiginly Ineterogeneous.
Typically, such research has concentrated on optimising weighted sunasiofis quality-of-

service parameters, but without planning for service uncertainty in aipka manner. In the
following section, we formalise this approach in the context of our systenematis gives us

an additional benchmark against which to compare our extended flexitneamh (discussed in
Section 5.3).

5.2 QoS-based Provisioning

This section is based closely on the provisioning strategies describechigyeZal. (2004), but
many similar approaches are widely used in the literature (Aggarwal etGfl4j2Jaeger and
Muhl (2007)). We already briefly introduced these strategies in SectioB.2.4nd here we
simply elaborate them against the background of our system model. Wérstdyy describing

a local strategy that makes myopic decisions about the provisioning otasickduring execu-
tion (Section 5.2.1), and then we discuss a global provisioning strategpriasions entire

workflows before execution (Section 5.2.2).

1As in Chapter 4, we assume that the probabilistic performance chastictein this case express the uncertainty
and variability of providers within a population. As before, the cost ol/juters within a population is assumed
homogeneous, but our work similarly applies when there is some uimtgrédbout the cost and we only know its
expected value.

Chapter 5 Service Provisioning with Heterogeneous Providers 109

5.2.1 Local Weighted Optimisation

This strategy provisions each task only when it becomes available and withiasidering the
impact of provisioning on the overall workflow (e.g., whether the workfleil likely succeed
within the given deadline or whether the overall workflow cost will exadednaximum utility).
More specifically, when task; becomes available, it provisions and immediately invokes a
matching service* that maximises a weighted sum:

3

s* = argmax Z Wi - Qi(s) 6.
SEM(T(ti)) i=1
0 if gmaxi = gmin,s
i i se 5.2
@ { H otherwise (5.2)

whereq;(s) = c(s) is the service coslgz(s) = f(s) is its failure probability ands(s) =
m Steot . (D(s,t) — D(s,t — 1)) is its mean duration (provided it succeeds withigo

time steps). The values f@max; andgmin; are the largest and smallest of these parameters
among the services that are considered, and each wejght|0, 1] attaches a relative impor-
tance to the associated parameter (Withw; = 1).

For the purpose of our experiments, we ggt = wy = w3 = % which strikes a balance
between the various qualities (in most environments, we did not observeificsigt difference
in performance when adopting other weight distributions). With this, we eléfiglocal strategy
as follows:

Definition 7 (Local Strategy) An agent following docal strategy provisions a servicé for
each task, so that the weighted sum given in Equation 5.1 is maximisedwithw, = w3 =

3)-

Typically, such a local strategy re-provisions services immediately uphmefa However, as
we assume silent failures, it is again necessary to introduce explicit timeatuds in order
to produce an adaptive strategy. Furthermore, it is possible to increaselthstness of the
strategy by including redundancy:

Definition 8 (Local(n,w) Strategy)An agent following docal(n,w)strategy orders all matching
services in descending order of the sum given in Equation 5.1 and tbeisipns the firstn
services. If the task has not been successful afttme steps, it repeats this process with the
remaining services until the task has been completed.

As such, the strategy makes provisioning decisions about serviced tragkeir performance
characteristics and reacts to failures when they occur, but considigrsingle tasks in isola-
tion. The strategy we discuss in the following section addresses this limitatiogdoggating

performance characteristics over the entire workflow.

Chapter 5 Service Provisioning with Heterogeneous Providers 110

5.2.2 Global Weighted Optimisation

This is perhaps the most widely adopted approach for provisioning ssruicthe literature
(Aggarwal et al. (2004); Jaeger andilkl (2007); Zeng et al. (2004)), as we already discussed
in Section 2.4.3.2. An agent using this approach considers the whole awrkilovisioning a
service for each task, so that a weighted sum similar to Equation 5.1 is maxiriisesdsum
now aggregates the quality parameters over the entire workflow and mégajrcoonstraints,
such as an overall budget or time limit. More specifically, jet SI”! be a vector of T |
services, such that; € p(7(¢;)) is the service provisioned for tagk The global provisioning
approach then finds a vectgt that maximises the weighted sum:

3

p* = argmax Z w; - Qi(p) (5.3)
peSITI 5y

whereQ); (p) is again a normalised quality metric, derived from one of the three followirgwo
flow qualities:

~

e Gi(p) =, c(p;) is theworkflow cost
e G2(p) = ;In(1 — f(p;)) is the natural logarithm of therorkflow success probability
e G3(p) is theworkflow duratior.

Furthermore, this optimisation problem may be subject to constraints on thakty garame-
ters. In practice, we derive these directly from our workflow modeb#evs:

Q1(P) < Umax (5.4)
QS(P) < tzero (5.5)

Respectively, these denote that the agent should not spend more thahetfent value of the
workflow, and that it should aim to complete the workflow before it receive more utility
from completion. Thus, we define the global strategy as follows:

Definition 9 (Global Strategy) An agent following aglobal strategy selects a vector of services
p* that maximises Equation 5.3 (with; = wy = w3 = %), subject to the constraints given by
Equations 5.4 and 5.5.

Although some existing global strategies adapt to failures, they typicallyreseyplicit failure
messages. Thus, we introduce an explicit time-out parameter, as before:

The logarithm is used here, so that the success probability can be saghaessa sum and thus solved by existing
linear integer programming techniques.

3This is calculated by aggregating the mean service durations (gives($)) along the critical path, as described
in Section 4.4.3.2.

Chapter 5 Service Provisioning with Heterogeneous Providers 111

Definition 10 (Adaptive Global(w) Strategy)An agent following aradaptive global(wktrategy
provisions services as the global strategy. However, when a proviseeeice has not been
successful aftew time steps, the agent re-provisions the respective task and all othethasks
have not been invoked yet. In doing so, it adjusts the constraints in Ega&tié and 5.5 to take
into account the time that has already passed and the total expenditumedhdregardless of
w, the strategy also re-provisions all uncompleted tasks whgn > tzero

As discussed in Section 2.4.3.2, these strategies have a number of shogoand so we
describe a more flexible approach based on our previous work in theviofosection. In
Section 4.5, we will then return to the QoS-based approaches and useathbanchmarks
against which to compare our proposed strategies.

5.3 Flexible Service Provisioning

In this section, we extend our flexible provisioning strategy to deal with bgégreous services.
Our new strategy builds closely on the techniques introduced in the presiayser, but we

adapt the local task predictions to account for the extended model oudllved. We also

consider a more finely-grained decision problem than before by allowengumber of parallel

services and time-out values to vary during the execution of a single tadkyea propose a
modified local search algorithm that takes into account the larger sqaach.s

Our discussion of the flexible strategy for heterogeneous serviceddediinto five main sec-
tions. We begin by formalising the provisioning problem with our modified mo8ekt{ion
5.3.1), followed by our extended local search and consumer algoritheetids 5.3.2). In Sec-
tion 5.3.3, we describe how to adapt the local task predictions for the morplerw model of
this chapter. As the strategy discussed here considers a large sol@#®; g outline in Sec-
tion 5.3.4 how it may be simplified for cases where time is critical. Finally, we illustrate o
modified strategy using the bioinformatics workflow from Section 3.5.

5.3.1 Problem Formulation

In the previous chapter, our flexible provisioning strategy optimised twarpeters for each
task: the number of parallel services) and a waiting time before provisioning more services
(w;). As we now assume more information to be available about individual semvitances,
we clearly want to take this into consideration and extend the problem acglyrdA simple
approach might be to introduce a third decision variable to indicate from whopiulation
services should be selected. Such an approach would require minimalaatdifs of the work
discussed in the previous chapter, but it is likely to be insufficient in mests;as the consumer
will often benefit from provisioning services from different populatidor a single task. This is
particularly evident when populations are small, as in Figure 5.2(a), on ¥eeconsumer can

Chapter 5 Service Provisioning with Heterogeneous Providers 112

benefit from provisioning services from several populations caoratly (for example, when
relying on services with very different characteristics, as describ8éation 5.1, or when there
is little difference between the populations).

For these reasons, we decided to extend the consumer’s decisiorirsgi@asechapter and con-
sider adetailed provisioning allocatiothat constitutes a plan of which services to invoke for a
given task and at what time (as long as the task is still uncompleted):

Definition 11 (Detailed Provisioning Allocation)A detailed provisioning allocation is a map-
pinga : T'— (S — N) that associates each tasKiirwith the provisioned services for that task
and their respective invocation time steps.

FIGURE 5.3: A detailed provisioning allocation with three servjmpulations.

This allows the consumer to provision services of different populations weitiing invoca-
tion times. As an example of this, Figure 5.3 shows an allocation for a particdar ta
a(t;) = {(54,0), (55,0), (5¢,0), (54, 15), (se, 40), (sf,40), (s4,70)}. Here, the consumer first
provisions a set of cheap and unreliable services to be invoked at tim@ $tgps;, ands.).

If these are not successful by time step 15, the consumer will then précéevoke a service
from a more reliable and more expensive populatigy),(followed 25 time steps later by two
more services of the same populatiep &nds). After a longer time-out period, the consumer
then invokes the most reliable and expensive service availaple sing this allocation, the
consumer initially exploits the cheaper services, as there is a possibility tiyatdhelete the
task successfully. When this is not the case, the consumer then switchesnmté reliable
services to ensure that the task is eventually completed successfully.

Having defined this allocation, we now extend our definition offteeiblestrategy (Definition
6) to cover heterogeneous services and term the new strdétgied flexibleas it considers a
more finely-grained decision problem:

Definition 12 (Detailed Flexible Strategy)A consumer following aletailed flexiblestrategy
makes appropriate decisions to provision services for its workflow. Teetidsthe agent finds
a suitable detailed provisioning allocation, so that the agent’s predictetlipnofaximised.

Again, we can formulate this as an optimisation problem:

max (U (a) — é(w)) (5.6)

[0}

Chapter 5 Service Provisioning with Heterogeneous Providers 113

whereu, () is the expected reward of following allocatiarandé(«) is the associated expected
cost.

This problem is computationally hard for the same reasons as describedireti@us chapter,
and so we decided to take a similar approach in solving it. However, the prdtdes is more
complex, as we now consider a larger decision space than before (theodty is further
investigated in Appendix C). This means that we require a modified locatiséachnique,
which we outline below (Section 5.3.2). This is followed in Section 5.3.3 by a si&son of an
updated utility estimation approach that takes into account the model extedsiscrgbed in
Section 5.1.

5.3.2 Updated Generic Algorithm

Our modified algorithm, shown in Algorithm 5.7, follows broadly the same straasrthat in
Section 4.4.2. In more detall, it starts in line 2 by generating a random allocatiahich is

then iteratively improved, based on an estimated utility value (lines 5-20). dpegich iteration,

the algorithm picks a random taskfrom the workflow (line 9), and considers each of a set of
neighbours ofx, which are obtained by randomly applying small changes to the provisioned
services for task; (line 11). During this process, the algorithm keeps track of the bestineigh

so far, which is then used as the new allocaiiofor the following iteration (line 15). If no
better neighbour is found for tagk, the algorithm continues to consider all other tasks in a
random order. It terminates when the main search loop is exematefhiled “ times without
discovering a better solution, at which point the curreiig returned (line 21).

Now, the local search procedure in Algorithm 5.8 depends on two puoesdGENERATE-INI-
TIAL and GENERATE-NEIGHBOURS Respectively, these create an initial solution and generate
neighbour allocations of a given, as described in the following.

5.3.2.1 Initial Provisioning Allocation Creation

The GENERATE-INITIAL procedure, detailed in lines 23-36, initially provisions a random non-
empty subset of; for each task; (line 27), assigning an invocation time that is sampled from
Uy(0,t,6r0 — 1) to each provisioned serviee Finally, the service times assigned to each task
are altered in such a way that there is at least one service with an invotiat®mf 0 (line
32). This is achieved by the procedureUNCATE-ALLOCATION in lines 37—44, which finds
the minimum invocation timerg) of a provisioned service for a given task and deducts this
from every invocation time. This ensures that there are no unnecedsiags before the first
invocation.

“This accounts for the fact that we select random neighbours and risaypatentially better solutions. In our
work, we set this td 0, in order to balance the quality of the solution with the time taken to find it.

5As defined in Section 3.2.2;er is the first time step at which the consumer no longer receives anyddomar
completing a workflow.

Chapter 5 Service Provisioning with Heterogeneous Providers 114

Algorithm 5.7 Modified hill-climbing algorithm for finding provisioning allocatian.
1. procedure FIND-ALLOCATION(WW)

2: o «— GENERATE-INITIAL (W) > Generate initial allocation
3: u — () > Estimate utility
4: Niailed < 0 > Keep track of unsuccessful iterations
5: repeat > Main loop
6: Nfailed <— Nfailed + 1 > Increase counter
7 T T > Copy set of tasks
8: while njleq > 0 A |T7| > 0 do > No bettera found and more tasks left?
9: t, €T’ > Random choice
10: T — T\t > Removet;
11: N < GENERATE-NEIGHBOURY, t;) > (see Algorithm 5.8)
12: forall o/ € N do > Check all neighbours
13: u' —a(a)) > Utility of neighbour
14: if u' > uthen > If neighbour is more promising...
15: (o, u) — (o) > ...update
16: Nfailed < 0 > Reset counter
17: end if
18: end for
19: end while
20: until ngjleq > maxFailed > Continue until too many unsuccessful iterations
21: return « > Return best allocation found

22: end procedure

23: procedure GENERATE-INITIAL (W)

24: a1 > Initialise overall allocation
25: forall ¢; € T do > Consider all tasks
26: A1 > Allocation fort;
27: Sa€eP(S)\ {0} > Random non-empty subset 8f
28: forall s; € S4 do > Store each service
29: t — sample fromif;(0, tzero— 1) > Random provisioning time
30: A — AU{(sj,t)} > Store provisioning decision
3L end for

32 A —TRUNCATE-ALLOCATION(A) > Truncate
33: at;) — A > Store task allocation
34: end for

35: return «

36: end procedure

37: procedure TRUNCATE-ALLOCATION(A)

38: A — > Initialise truncated set
39: m < minimum provisioning time i

40: forall (s;,t) € Ado > Truncate each mapping
41: A — A'U{(sj,t —m)}

42: end for
43: return A’
44: end procedure

Chapter 5 Service Provisioning with Heterogeneous Providers 115

Algorithm 5.8 Neighbour generation procedure for a provisioning allocation

1: procedure GENERATE-NEIGHBOURY «, t;)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

A — a(ty) > Allocation for¢;
Aprov +— set partition ofA, partitioned by populatiords

Ay € Aprov > Select random patrtition
(s,t) € Az > Select random service/time

Sall < set partition ofS;, partitioned as aboVYe

Sunprov < asSay, excluding services inl®

Sother +— aSSunprow €Xcluding services from same populatiomés

Ssame<— Set containing all unprovisioned services from same populatiaf as

a1,092,...,08 <

aq(t;) — a1(t;) \ {(s,t)} > Remove(s, ot)
Sz € Sother > Select random member
Sp1 € Sy > Select random service
az(t;) — ai(t;) U{(sn1,t)} > Replaces by s,,1
Sn2 € Ssame > Select random service
as(ti) «— ag(ti) U{(sn2,t)} > Add new services,,»
ayg(ti)(s) —t—1 > Decrease by 1
as(t;)(s) —t+1 > Increase by 1
ag(t;)(s) <« z, with = sampled froni{;(0, ¢t — 2) > Decrease randomly
ar(t;)(s) < x, with = sampled fronif(t + 2, tzero— 1) > Increase randomly
sn3 € Us, € Sunpron 0¥ > Pick random unprovisioned service
tns < sampled frondf;(0, tzero— 1) > Random provisioning time
ag(t;) «— ag(t;) U{(sn3,tn3)} > Add new services,,3

for j =1to8do

a;(t;) < TRUNCATE-ALLOCATION(cv;(%;)) > Truncate new allocation
end for
return {au, g, as, a4, as, ag, a7, ag} > Return all neighbours

36: end procedure

Apov={As | Az CANA, #DANTPy € P-Vs,t-(((s,t) € ANs € Py) & (s,t) € A}
°Sat = {Py | P, € PAP, C Si}

“Sunprov={Px | Py #O N3Py € Sai-Vs; € Py - (s: € Pp & —3t - (s:,1) € A)}

9Sother = {Ps | Pz € SunprovA —3Py € P- (P, C P, As€ Py)}

€Ssame= {8z | APy € P+ S, € Sunprov, (s € PyAS. C Py As; € 5.)}

Chapter 5 Service Provisioning with Heterogeneous Providers 116

Algorithm 5.9 Overall behaviour of theetailed flexiblestrategy.

1:
2:

10:

11:
12:
13:
14:

15:
16:
17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

3
4
5:
6:
7
8
9

procedure DETAILED-FLEXIBLE-INITIALISE(W)

o «+— FIND-ALLOCATION (M) > Find best detailed allocation

Tiy < 0 > Keeps track of invocation times

Teomp— 0 > Keeps track of completed tasks

if a(ar) < 0then > Is utility estimate non-positive?
dstop + true > ...then abandon workflow

else > ...otherwise continue
dstop + false

end if

end procedure

procedure DETAILED-FLEXIBLE -UPDATE(O)
Thew < {ti | 3sz - (ti, s2) € OF > Recently completed tasks
Teomp < TeompU Thew > Add to completed tasks
end procedure

procedure DETAILED-FLEXIBLE -STOPCONDITION
return dstop > Abandon if allocation yields non-positive utility
end procedure

procedure DETAILED-FLEXIBLE -INVOKESERVICES

forall t; € T'\ Tcompdo > Consider all uncompleted tasks
if V(t,t;) € E - tj € Tecompthen > Is t; executable?
if 3y - (t;,y) € Tiny then > Has invocation started?
tAstart — Tinv(ti)
else
tstart— > Start invoking now
Tinv(ti) — tA
end if
ti — 1t — tstart > Time steps aftet; was started
forall s, € {s. | (sz,%) € a(t;)} do
INVOKE(s,, t;) > Invoke services,, for taski;
end for
end if
end for

end procedure

Chapter 5 Service Provisioning with Heterogeneous Providers 117

5.3.2.2 Neighbour Generation

The GENERATE-NEIGHBOURSprocedure is shown separately in Algorithm 5.8. This procedure
creates a set of neighbours of a given allocatidoy considering a task. To this end, it first
partitions«(t;) into sets that correspond to particular service populations and selectsf one
these at random (line 4). The algorithm then picks a random service/timé pajr; from the
selected set (line 5). Given this, the following transformations are appdipdrately tay, in
order to generate a set of eight neighboussas, . . ., as:

e o (line 13): Services is removed.

e s (line 17): Services is replaced by a random servieg,, from a different population.
e a3 (line 20): A new services, o, from the same population ass added to the allocation.
e oy (line 22): The invocation time for serviceis decreased by a single time step.

e o5 (line 23): The invocation time for serviceis increased by a single time step.

e o4 (line 24): The invocation time for serviceis decreased by a random amount.

e o7 (line 25): The invocation time for servigeis increased by a random amount.

e ag (line 29): A random unprovisioned servicg,s, from any suitable population is pro-
visioned at a random time.

In doing this, any impossible transformations are ignored (e.g., when albaiigte service
providers are already provisioned, we do not perform the transfwnsafor op, a3 andag)®.
Furthermore, we again alter the provisioning times of all new neighbours twestisat there are
no unnecessary delays (line 32).

We have now described how our algorithm generates candidate solutidrimds a good pro-
visioning allocation by performing a local search. Algorithm 5.9 briefly sunsearthe overall

strategy by showing how these procedures are used in the context géwoeric agent frame-
work. In the following section, we outline the utility estimation functien,which is used in

lines 3 and 13 of Algorithm 5.7 to estimate the expected utility of a candidate solution.

5.3.3 Utility Prediction

Due to the effectiveness of the heuristic function introduced in the predbapter, we use the
same overall form fof; in this chapter (omitting the parameteifor brevity):

= p/ooo dw (z)u(x)de —¢é (5.7)

5To keep the listing concise, this is not shown in Algorithm 5.8.

Chapter 5 Service Provisioning with Heterogeneous Providers 118

wherep is the overall success probability of the workflaiy; is an estimated probability density
function for the completion time of the workflow if successful a@nd an estimated cost.

Now, p, dyy and¢ are obtained by aggregating a number of local parameters for each task in
workflow, in the same manner as described in Section 4.4.3.2. Howeven theeinclusion of
heterogeneous services, it is necessary to adapt the local task thaiuta our extended model,
and we detail these adaptations in the remainder of this section. As befoeggvnterested in
calculating four key parameters for each workflow taskgiven an allocatiorn(¢;):

The success probability;.

The expected cost.

The expected completion tinte

The variance of the completion tinae.

To calculate these, we define a number of terms. First, wB(st, ¢) be the probability that a
services, has completed its service successfully within no more thame steps of invocation
(not conditional on overall success):

~

D(suyt) = (1= f(52)) - Dls, 1) (5.8)

Furthermore, we lef;(a,t) = {(z,v) | (z,y) € a(t;) Ny <t} be the set of provisioned ser-
vices and associated times that are invoked at mtiste steps after task was started. Com-
bining this with Equation 5.8, we can calculate the probability that the task is comate
cessfully within no more thantime steps, denote#; (o, t):

Eia,ty=1— [1 =D(=zt-y) (5.9)

(z,y)€l;(ayt)

To illustrate Equations 5.8 and 5.4, we return to the example allocation shownureFsg3
(a(ti) = {(54,0), (55,0), (8¢, 0), (54, 15), (se,40), (s5,40), (s4, 70)}), and assume that the pro-
visioned services have failure probabilities, durations and costs asishdvable 5.1. For ex-
ample, each of the three initially provisioned servicgs s, ands., has a failure probability of
f(sz) = 0.8, follows an exponentidldistribution with mear = 20 for its duration and has
a cost of 5. In this context, Figure 5.4 shoMsz,t) for the provisioned services, offset by
their respective invocation times, as well as the overall success probénilthe taskE; (o, t).
This demonstrates how the individual duration distributions infludti¢e, ¢) as more services
are invoked over time, and how the overall success probability riseslguigkprovisioning
unreliable services redundantly.

"We use Expg) to denote an exponential distribution with peltz, 1) = ;fle*f.

Chapter 5 Service Provisioning with Heterogeneous Providers 119
1 T T T T = P e ——————
D(Sayb,c,t) — ,/‘/ 777777777777777777
D(sg,t —15) ————— =7
0.8 | D(seyt—40) ------ e i
> ﬁ(SQ,tf’?O) """""""" //l
= Ei(oc7t) ***** -
e 0.6 | /’/ -
a 7
c‘?) ,/’/
8 04t e [— - - .
N pd /
,// //
02} /
/ /
/ /
/ ///
0 1 - 1 1 ! L
0 20 40 60 80 100 120
Timet

FIGURE 5.4: Cumulative success probabilities for allocation igufe 5.3.

Service(s,) | Fail. Prob. (f(s;)) | Duration (d(sz,t)) | Cost(c(sz))
Sa, Sb, Se 0.8 Exp(15) 5
54, Se, Sf 0.6 Gamma(10,2) 10
Sq 0.1 Gamma(3,3) 25

TABLE 5.1: Service performance characteristics used in Figdre 5.

Given E;(a, t) in Equation 5.4, we can now calculate the four performance parameters give
above. To do this, we disregard any service outcomes that occur margdiéime steps after a

task becomes available — this provides us with a limited time horizon to considendehich
the consumer is certain to gain no more utility. Hence, the success probapistgimply the
probability that the task has been successfully completed by any of thesahgekvices by time

tzero

Di = Ei(av tzero)

(5.10)

For example, ift,ero = 100, then the overall success probability of the provisioned task shown
in Figure 5.4 igp; = E;(,100) =1 — 0.8% - 0.6% - 0.1 = 0.99.

Next, to calculate the expected castwe sum the costs of all provisioned services, each mul-
tiplied by the probability that the task has not been successfully completecinydbpective
invocation times:
e= Y, (1-Eifay): c) (5.11)
(zy)€alti)
Continuing the example above, the consumer is guaranteed to pay the cdbis fiest three
services, while later costs depend on whether the initial services hawesheeessfule; =

35+ 0.66666 - 10 4+ 0.36693 - 2 - 10 4 0.12199 - 25 = 32.05.

Chapter 5 Service Provisioning with Heterogeneous Providers 120

In order to calculate the expected completion tith¢again, conditional on overall success),
we evaluate all possible outcomes, noting that the consumer receivesraive outcomes at
discrete time steps:

ti=—> t-(Ei(ot) — Ea,t—1)) (5.12)

Using this, it is straight-forward to calculate the associated variafice

tzero
ot = B+ LY (Bant) - Bat— 1) (513
bi i

Applying these to the allocation shown in Figure 5.4 results in an expected diongiene of
t; = 33.72 and a variance of? = 642.44.

Unfortunately, the calculations described above are less tractable tisglesented in Section
4.4.3.1. This is for two reasons. First, we now consider the impact of edotdnal service on
the task performance throughout the duration of the task (while we pigyigrouped them into
multiple service invocations that were independent from each otherpn8gE&quations 5.12
and 5.13 compute a sum over all time steps,tq, which is potentially a very large number
(depending on the form of the utility functiar).

Now, the first issue is an inherent feature of the more complex problesd fadhis chapter and
means that the time of computing the performance characteristics for eactisesknearly
with the number of services provisioned for that task. To address tladéssue, we decided
to approximate both Equations 5.12 and 5.13 by iteratively dividing the intérvgk,J into
smaller segments, each time assumifdo be linear on the segments, until a desired minimum
error is reached. Specifically, in our work, we approximate Equation @iiRit is within 0.1
time steps of the true value, and then we calculate Equation 5.13 over the samenge This
means that our approximations are close to the real values, but reqsiomfaputational effort.

Given the success probability (Equation 5.10) of each task, the expected ¢pgEquation

5.11), the expected completion timyg(Equation 5.12) and variane€ (Equation 5.13), we can
now calculate an overall success probability for the workflow, an estinoatiéssfcost and we
again use a normal distribution to approximate the workflow duration, asibleddn Section

4.4.3.2. This allows us to calculate the estimated utility of an allocatj@s shown in Equation
5.7.

This concludes our discussion of tHetailed flexiblestrategy. In the following, we describe a
second strategyast flexible that includes some modifications to reduce the search space and
convergence time of our provisioning approach.

Chapter 5 Service Provisioning with Heterogeneous Providers 121

5.3.4 Fast Flexible Strategy

A potential drawback of the above strategy is the fact that it explores a kege-space by
modifying a single service at a time. This may take a long time to converge to a ghaibs,
especially when there are many services in the system. To address thigcideddto sim-

plify the full flexible strategy and consider a coarser decision problem, similar to that discussed
in Chapter 4. Hence, rather than considering services individually,saecéte three integer
values with each possible service populatiénfor a given task;:

e ny; €{0,1,2,...,|P|}: the number of services to invoke in parallel (O means none are
invoked).

o wi; €{1,2,3,...,tzer0}: the number of time steps to wait before invoking more services
from the same population.

o by €{0,1,2,...,tzr0}: the number of time steps to wait before the first set of services
is invoked.

Here,n; ; andwy; correspond toy; andw; used in the previous chapter, whilg; is intro-
duced to allow the consumer to vary the starting times for different servipelgtions (e.g.,
to delay the invocation of more expensive services until after cheapéces have been at-
tempted). Again, the provisioning allocation is only followed until the task has lsempleted
successfully. We summarise this allocation asnaplified provisioning allocation

Definition 13 (Simplified Provisioning Allocation) A simplified provisioning allocation is a
tuple 8 = (n,w,b), where each component is a functiotw, b € (Z x Z) — Z, such that
n(k,i) = niq, w(k,i) = wi,; andb(k, i) = by ;, as defined above.

To give an example, Figure 5.5 shows an allocation for a singletagkh three possible service
populations,P;, P, and P;. Here, the consumer provisions two services of populaipin
parallel (21 ; = 2), and repeats this invocation every 20 time steps; (= 20), starting as soon

as the task becomes availabbe { = 0). When the task has not been completed successfully by
time step 30, the consumer invokes a single service of the more reliable pop#alie ; = 30
andny; = 1), repeating this every 20 time stepsy(; = 20). Finally, at time step 70, the
consumer invokes a service of the most reliable populdtipfb; ; = 70 andns; = 1), but does

this only once (settings ; = t,ero €nsures that the service will be invoked at most once).

With this simplified allocation, we define thiast flexiblestrategy as follows:

Definition 14 (Fast Flexible Strategy)A consumer following dast flexiblestrategy makes ap-
propriate decisions to provision services for its workflow. To this endagent finds a suitable
simplified provisioning allocation, so that the agent’s predicted profit is maximise

Chapter 5 Service Provisioning with Heterogeneous Providers

122

FIGURE5.5: A simplified provisioning allocation with three sergipopulations.

Algorithm 5.10 Fast algorithm for finding a simplified provisioning allocatign

1. procedure FAST-FIND-ALLOCATION(IV)
g < number of iterations
h < number of random restarts

5best

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

Upest <+ 0

forc=1tohdo

[«— FAST-GENERATE-INITIAL (W)
u < u(CREATE-DETAILED(())
Nfailed < 0
nall < 0
repeat
(Niailed; Nanl) < (Nfailed + 1, nan + 1)
T «—T
while najleq > 0 A |T'| > 0 do
t; € T
T/ — T/ \ ti
N «— FAST-NEIGHBOURY(3, t;)
forall 5 € N do
u' «— u(CREATE-DETAILED(('))
if u' > uthen
(B, u) «— (8, u)
Nfailed <— 0
end if
end for
end while
until nfajleg > maxFailed VvV ng > g
if u > upestthen

(Boest tpesy) — (5, u)

end if

end for
return CREATE-DETAILED(Opes)
32: end procedure

> Pre-defined constant
> Pre-defined constant
> Keeps track of best allocation found

> Keeps track of estimated utility of best allocation found

> Generate initial allocation
> Estimate utility

> Keeps track of contiguous unsuccessful iterations

> Keeps track of all iterations
> Main loop
> Increase counters
> Copy set of tasks
> No betters found and tasks left?
> Random choice
> Removet;
> (see Algorithm 5.8)
> Check all neighbours
> Utility of 3
> If neighbour is more promising...
> ...update
> Reset counter

> Too many iterations?

> Return best allocation found

Chapter 5 Service Provisioning with Heterogeneous Providers 123

Algorithm 5.11 Allocation conversion procedure.

1: procedure CREATE-DETAILED((n,w, b))

N

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

a0
forall ¢; € T do > Consider each task
Oc(tz‘) — 0
forall P, € {P, € P| P, C S;}do > ...and population
t"— b(k,1) > First provision time
if n(k,i7) > 0then
P — P, > Copy population
while |P'| > 0 At/ < tzerodO > No services left or time exceeded?
cmax < min(|P’'| ,n(k, 1)) > How many service to provision
for ¢ = 1 t0 ¢max do
s, € P’ > Random choice
P — P\ {sz} > Removes, from P’
alt;) — a(t;) U{(sst")} > Provisions,
end for
t—t' +w(k,i) > Advance time
end while
end if
end for
end for
return o

22: end procedure

Algorithm 5.12 Fast initial allocation generation procedure.

1. procedure FAST-GENERATE-INITIAL (W)

N

10:
11:
12:
13:

(n,w,b) — (0,0,0) > Initialise 3
forall t; € T do > Iterate through all tasks
P — {P,eP|P,CS;NP,#0} > All suitable populations
repeat
forall P, € P’ do
n(k,i) < sample fronif;(0, | Px|) > Random number of services
w(k, i) < sample fronldy (1, tzero) > Random waiting time
b(k,i) «— sample fronid;(0, tzero) > Random initial waiting time
end for
until P’ =0V 3k-n(k,i) #0 > Ensure a service is provisioned figr
end for

return FAST-TRUNCATE-ALLOCATION((n, w, b))

14: end procedure

Chapter 5 Service Provisioning with Heterogeneous Providers 124

Algorithm 5.13 Procedure to remove unnecessary waiting times at start of task.
1: procedure FAST-TRUNCATE-ALLOCATION((n, w, b))

2: forall ¢; € T do

3: K —{k|n(k,i) >0} > Population indices with provisioned service for
4: bmin < minge g b(k, 1) > Find minimum initial waiting time
5: forall k € K do

6: b(k,i) < b(k,i) — bmin > Deductbmi, from all initial waiting times
7 end for

8: end for

9: return (n,w,b)
10: end procedure

Algorithm 5.14 Neighbour generation procedure for a simplified allocation
1. procedure FAST-NEIGHBOURY3, ;)

2: B, B2,...010— > Initialise neighbourd
3: K—{k|P, e P\P,CS;} > Indices of all populations fof;
4 ke K > Pick one at random
5:
6: ny(k,i) =nq(k,i) — 1 > Decreasey ; by 1
7: no(k,i) = no(k,i) + 1 > Increasen, ; by 1
8: n3(k, i) = sampled fromi; (0, n3(k,i) — 2) > Decreasey, ; randomly
o: n4(k,i) = sampled fromidy(ny(k, 1) + 2, | Px|) > Increaser, ; randomly
10:
11: ws(k,i) = ws(k,i) — 1 > Decreaseu;, ; by 1
122 wg(k,i) = we(k,i) + 1 > Increasewy, ; by 1
13: wy(k, i) = sampled fronidy (1, wr(k,i) — 2) > Decreasew;, ; randomly
14: wg(k, i) = sampled fronidy(ws(k, i) + 2, tzero) > Increasew;, ; randomly
15:
16: bo(k,i) = by(k,i) — 1 > Decreaséy, ; by 1
17: bio(k,i) = bio(k,i) + 1 > Increasey, ; by 1
18: b11(k,i) = sampled frond; (0, b1 (k, i) — 2) > Decreaséy, ; randomly
19: bi2(k, 1) = sampled fromidy (b2 (k, i) + 2, tzero) > Increase, ; randomly
20:
21: for j =1to12do
22: f; < FAST-TRUNCATE-ALLOCATION(3;(t;)) > Truncate new allocation
23: end for
24:
25: return {01, B2, ..., P12} > Return all neighbours

26: end procedure

*Here, we usén., w,, b;) to denote the components 6f. Hencen.(k, ¢) is the number of parallel services
of populationP;, provisioned for task; by allocationg...

Chapter 5 Service Provisioning with Heterogeneous Providers 125

To implement this strategy, we again use a local search, as shown in Algdsifiim This is
mostly identical to thedetailed flexiblestrategy, but includes a number of minor differences.
First, as we are interested in reducing the overall time to find a good solutmexploit the
anytimeproperty of our local search and terminate its main loop (lines 11-26)aitierations.
However, as this may result in terminating the algorithm before it is was abla¢b segood so-
lution, we performh random restarts and use the best solution. Here, patidh are constants
defined by the user to balance the speed of obtaining a solution with its §uality

Furthermore, théast flexiblestrategy now operates on a simplified provisioning allocation as its
candidate solution, but converts this to a detailed provisioning allocation to éstitaatility

and to store its final allocation (using the&REATE-DETAILED procedure shown in Algorithm
5.11). The procedure to generate an initial solution has also been adeqtetw selects a
random allocation for eachy, ;, wy; andby, ; (using the RST-GENERATE-INITIAL procedure
shown in Algorithm 5.12).

Similarly, new neighbours are created by randomly varying, wy; andb, ; for a particular
population and task in unit and random steps (as described byatsie WEIGHBOURS proce-
dure in Algorithm 5.14). As for theletailed flexiblestrategy, all allocations are altered so that
at least one service is invoked immediately when the task becomes availabtpthesFAST-
TRUNCATE-ALLOCATION procedure in Algorithm 5.13). Finally, because the output of the
FAST-GENERATE-INITIAL procedure is a detailed provisioning allocation, the basic consumer
algorithm for thefast flexibles identical to that of theletailed flexiblgAlgorithm 5.9).

Before proceeding to conduct a detailed empirical evaluation of bothgittatgresented so far,
we briefly return to the bioinformatics workflow introduced in Section 3.5 dmmvshow the
detailed flexiblestrategy provisions it when there are heterogeneous services.

5.3.5 lllustrative Example

To illustrate the approach developed in this chapter, we again use the bioatics workflow
shown in Figure 3.6, but now assume that there are several heteooggupulations that satisfy
each service type. To this end, we include populations with the same perfoeroharacteris-
tics as those discussed in Section 4.1, as well as two additional populaticzecfotype (see
Table 5.2). Generally, we have chosen these to offer certain trasleasfipared to the original
population — e.g., services iR, are more reliable and faster than thosePy but also three
times as expensive, while servicesfy, are slower but also more reliable than thosén.

As the overall mechanism of the strategies is similar to that in the previous chaptenly de-
scribe the final allocations of thietailed flexiblestrategy. In more detail, Figure 5.6 shows the

8We usey = 10 - |T| andh = 5, because these values lead to good results in a variety of environments.
*We do not treat théast flexiblestrategy here, as it behaves in a similar manner adetsiled flexible

Chapter 5 Service Provisioning with Heterogeneous Providers 126

detailed provisioning allocatioh&that the local search procedure of thetailed flexiblestrat-
egy found during two example runs with the same utility functions as first ilbestin Section
3.5 (onenormalscenario with a four-hour deadline, and amgentscenario with a 150-minute
deadline). The respective cumulative success probabilities of eactatagken byF;(«, t) in
Equation 5.9, are shown in Figure 5.7. Finally, Figure 5.3 summarises thamparice param-
eters of all tasks and the overall workflow, given the two allocations.

Now, the allocations in Figure 5.6 illustrate some general trends of the stritiesty we notice

that all allocations include some redundancy, which is usually achieverlispning multiple
services in series, but also frequently by provisioning several ssriicparallel (e.g., for task

t1 in the normal case, which is started by invoking three services of the relatively slow and
unreliable populatiorP; at the same time). Next, the strategy normally relies on several service
populations throughout the execution of a task. For example,ttaiskstarted in both cases

by invoking cheaper services frof first, but as these run out, the strategy switches over to
services fromPy to continue executing the task. Similarly, for tagk the strategy provisions
services fromP;g and Py in parallel, as the latter is very cheap, but still has a small chance of
success.

Finally, it is clear that the strategy also adapts appropriately to changimtjimeEsaand utility
values. Comparing the allocations for the normal workflow with its urgenhtsspart, many
tasks in the latter case are provisioned with higher levels of redundacyexemple, rather
than the single service provisioned initially forin the normal case, the strategy immediately
provisions two services in parallel, followed soon by a third when the waskifs urgent. This
increases the probability of success and also shortens the completion tinegtadkhas is evi-
dent by the cumulative success probability over time, shown in Figure 5t&irfRdar reasons,
the intervals between successive service invocations;fare shortened in the urgent case. In
some cases, the strategy even changes the populations it relies on agkhewveecomes
more urgent and valuable. For example, for tagkg, andig, it initially provisions services
from populations that were not used at all before. These are moensixe and more reliable
services that are better suited for the high value and tight deadline ofghetwrorkflow.

Overall, this flexible adaptation is summarised both by the cumulative sucadsahdities in
Figure 5.7, which rise more quickly in the urgent case, and by the ovéaiacteristics in Table
5.3, where tasks are generally more expensive but also much quicker.

In the following section, we evaluate our strategies over a range of settings

10For brevity, these allocations are only shown to time step 150, but while #tegyrprovisioned further services
at later times, these have little impact on the results for each task.

Chapter 5 Service Provisioning with Heterogeneous Providers 127

Service Pop. | Fail. | Cost | Num. | Duration Mean | Var.
Prob. | ($) (min.)
BaseCall Py 0.2 1 20 Gamma(1.5,2) | 3 6
(to) P 0.1 3 10 Gamma(1,2) 2 4
Py 0.1 1 1 Gamma(1,2) 2 4
GeneAssemble Pj 0.1 5 25 Gamma(5s,2) 10 20
(t1) Py 0 10 1 Gamma(5,2) 10 20
P 0.3 1 10 Gamma(10,2) | 20 40
Blast Py 0.3 2 50 Gamma(5s,3) 15 45
(t2) P 0.8 0.1 |50 Gamma(10,10) | 100 1000
Py 0.05 | 10 5 Gamma(2,1) 2 2
LookUp Py 0.5 5 10 Gamma(1.5,1.5) 2.25 | 3.375
(t3) Py | 05 4 2 Gamma(1.5,1.5) 2.25 | 3.375
Py | 075 |5 10 Gamma(0.5,0.5) 0.25 | 0.125
Render Py | 0.1 10 25 Gamma(30,3) | 90 270
(ta,t7) P | 001 | 100 |5 Gamma(20,2) | 40 80
Py | 09 1 25 Gamma(30,3) | 90 270
Translate P | 0.7 05 | 50 Gamma(1,1) 1 1
(ts) Pig | 0.7 0.1 |50 Gamma(10,2) | 20 40
Pi7 | O 25 10 Gamma(1,1) 1 1
Fold Pg | 0.2 10 5 Gamma(3,30) | 90 2700
(ts) Py | 0.05 | 50 1 Gamma(3,5) 15 75
Py 075 |1 1 Gamma(50,2) | 100 200
Print Py | 0.2 2 20 Gamma(2,3) 6 18
(ts) Py 005 |2 10 Gamma(5,5) 25 125
P | 0.9 0.1 |30 Gamma(2,3) 6 18

TABLE 5.2: Service types used in the example workflow.

Task Success| Cost Mean | Variance | Utility
Prob. Duration

Non-Urgent WorkflowWtmax = 240, 6 = 1, umax = 150)

to 1.00 1.22 3.23 9.16

tq 1.00 3.13 17.94 51.76

to 1.00 2.70 41.71| 3347.25

t3 1.00 8.50 28.93| 1745.16

17 1.00| 11.24 106.06| 2586.45

ts 1.00 2.06 3.13 7.46

ts 0.99| 22.33 72.80| 1851.81

tr 0.99| 11.79 100.77| 1326.09

tg 1.00 241 6.00 25.04

Overall 0.98| 65.26 203.87| 3271.32| 73.25

Urgent Workflow(tmax = 150, 6 = 20, umax = 1000)

to 1.00 2.73 2.24 1.94

1 1.00| 10.00 10.50 20.70

to 1.00| 10.14 4.75 148.28

t3 1.00 8.61 11.98 281.14

ty 1.00| 21.14 83.86 273.00

ts 1.00 2.74 1.92 1.46

to 1.00| 55.37 18.51 269.73

tr 1.00| 30.18 80.16 152.04

ts 1.00 3.48 4.16 9.26

Overall 1.00 | 144.39 117.49 455.14 | 843.54

TaBLE 5.3: Finally provisioned workflows using tluetailed flexiblestrategy.

Chapter 5 Service Provisioning with Heterogeneous Providers

128

Normal Workflow

Urgent Workflow

Task 7,

Py 9_ooum8 o_ o oaB

0.0 000

8 88 a8 o

R 0 o

P

® o

P,

Task #,

Ps

Py

Ps g & 8

Task t,

\

Task 13

Task #4

Task 5

o 00

Task 4

10

A\

Task t;

Y

Y

Task t3

o OOC%

o 0 _ 0 o000 o

© o ®

ooom_go 00

1013
B
o

0 50 100

Invocation Time Step (t)

150

50 100

Invocation Time Step (t)

150

FIGURE 5.6: Detailed provisioning allocations for finally provasied workflows. Each circle
represents one provisioned service instance of a pantipafaulation at a certain time.

Chapter 5 Service Provisioning with Heterogeneous Providers 129

1/ Urgent
1/ Normal ———-

Cumulative Success Probability

0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Time Step (t)

FIGURE 5.7: Cumulative success probabilities of tasks in bioimfatics workflow (letailed
flexiblestrategy).

Chapter 5 Service Provisioning with Heterogeneous Providers 130

5.4 Empirical Evaluation

In this section, we investigate whether our strategies can achieve sighifigamovements over
currently prevalent approaches in environments where servicesetempeneous and unreli-
able, and we compare our two strategi@st@iledandfast flexiblé to each other. In the follow-
ing, we first describe our experimental setup and then report odtgesu

5.4.1 Experimental Setup

To test the performance of our strategies, we simulate a service-origrgteansin a similar
manner as described in Section 4.5.1, but now assume there are seteragjaneous service
populations for the different tasks of a workflow. More specificallypl&eb.4 lists a number of
controlled variables and distributions that we use in this section to generaigeseand work-
flows. As in the previous chapter, the main variable we vary throughauexperiments is
the average failure probabilityof services in the system (denotedds This allows us to test
our strategies in the presence of varying degrees of unreliability. All et@ables given in the
table are kept static throughout our experiments, both for consisteddyp afiow a fair compar-
ison between environments with different failure probabilftteds in the previous chapter, we
obtain statistical significance by repeating all experiments 1000 times with melermdy gen-
erated services and workflows, and carry out appropriate statisttsibied ANOVA at the 95%
confidence level (for larger workflows, we occasionally carry eutdr repetitions, as indicated
in the text).

In more detail, we first generate five service typ&s—= {11,7»,13,74,15}, and assign an
average cost, duration shape and scale to'ashich are drawn from the respective continuous
uniform distributions given in Table 5.4. As in Section 4.5.6 of the previowptEr, when
0 < ® < 1, we also add some variance to the failure probabilities of different setyies by
assigning a failure probability to each type that is drawn from a beta distnbuiiin a mean
equal to® and a variance equal to 0.01 (timer-type failure variance This gives us the broad
characteristics of different services types in our simulated environmengivé an example,
Table 5.5 shows a set of randomly generated service types with o®etall.5, demonstrating
how this generation process results in service types with highly varyingactesistics. For
example I3 is cheap and slow with a mean duration of 27.32, whilés more than three times
as expensive but has a mean duration of only 2.77.

As we are mainly interested in heterogeneiighin service types in this chapter, we next gen-
erate a number of service populations for each of the five service tip@® specifically, for
each type, we create a number of service populations equal to an intagerfdom the discrete

1The values in Table 5.4 were chosen as a plausible workflow scenagchavé carried out a number of ex-
periments with other environments and workflows, and observed the bamad trends as those reported in this
chapter.

12ps before, these represent the parameteandd of a gamma distribution.

Chapter 5 Service Provisioning with Heterogeneous Providers 131

| Variable | Value
Environmental Variables
Average Failure Probabilityd) varied
Number of Types 5
Populations Per Type Uy(3,10)
Services Per Population Uy(1,100)
Average Type Cost U.(1,10)
Average Duration Shapé) U.(1,10)
Average Duration Scalé) U(1,5)
Inter-Type Failure Variance 0.01
Intra-Type Failure Variance 0.005
Intra-Type Variance 0.05
Workflow Variables
Workflow Length 10
Workflow Parallelism 0.25
Deadline {max 100
Maximum Utility (umax) 1000
Penalty §) 50

TABLE 5.4: Controlled variables

Type | Cost | Fail. | Gamma | Gamma
Prob. | Shape | Scale
Ty 7.57 | 0.55 | 5.45 4.19

T 8.06 | 0.42 | 3.14 2.47

T 2.53 | 0.40 | 6.60 4.14

T 8.63 | 0.49 | 2.59 1.07

T5 412 | 0.58 | 4.88 1.78

TABLE 5.5: Example of randomly generated services types (®ith 0.5).

uniform distributionl{;(3, 10), and populate each of these with a number of services drawn
from (1, 100). We then use the type-specific characteristics determined above to fthtrer
acterise each population. To this end, we draw the failure probability fapalation from a
beta distribution with a mean equal to the type-specific failure probability ardiance equal

to 0.005 (theintra-type failure variancg Furthermore, we determine the service cost of each
population as the produgt y - z, wherey is the type-specific average cost and sampled from

a beta distribution with mean 0.5 and variance 0.05 ifitr@-type variancg This is repeated
for the duration parameters (resamplinfpr each). To give an example, Table 5.6 shows some
randomly generated populations by andT), from Table 5.5. Here, it is clear that services of
type T3 are generally cheaper and slower than those of fyp@s they are based on the over-
all type characteristics), but there is still considerable heterogeneityebatpopulations of the
same type. For example, servicesHnare particularly cheap, but much slower than the more
expensive services from,.

Finally, workflows always consist of 10 tasks, with a parallelism of 0.2} we defineu(t)
by settingtmax = 100, umax = 1000 and§ = 50. The matching function- is created by
mapping each task to the services of a randomly chosen service type. robesp ensures

Chapter 5 Service Provisioning with Heterogeneous Providers 132

Popu- | Type | Num. of | Cost | Fail. | Gamma | Gamma
lation Services Prob. | Shape | Scale
P, T; 76 2.38 | 0.43 | 8.67 5.79
P, T3 8 3.44 | 0.33 | 6.99 2.91
P. T; 87 2.82 | 0.48 | 6.86 2.82
Py T3 61 2.90 | 0.45 | 4.60 4.05
P, T, 52 11.52| 0.50 | 0.39 0.99
Py T, 63 13.60| 0.50 | 4.03 1.19
P, T, 58 8.12 [0.36 | 4.61 0.66
Py T, 59 5.90 | 0.47 | 0.70 0.88
P; Ty 18 3.77 | 0.43 | 1.98 0.83
P; T, 28 10.72| 0.47 | 452 1.08

TABLE 5.6: Example of randomly generated populations (basedetygies in Table 5.5).

that our strategies are tested across a large spectrum of randomlgtgeremvironments, with
considerable heterogeneity across service types and within the popsilatiargiven type. To
evaluate our strategies, we compare them to the following seven benchradekies:

e naive: As discussed in Section 4.2, this strategy provisions a single servicediotask
in the workflow (chosen randomly from all matching services).

e hybrid(n,w): As discussed in Section 4.3.3, this strategy provisions multiple services for
each task in the workflow, but does so in a fixed manner without explicitlyiderisg
the service parameters. Specifically, bydbrid(n,w)strategy provisions sets aefrandom
service providers in parallel, evetytime-steps after a task becomes available.

¢ local: For each task, this strategy selects the service that maximises a weightetiisum o
performance characteristics, as described in Section 5.2.1.

e adaptive local(n,w): Similar to the above, this strategy selects thbest services and
repeats this provisioning evety time steps until the task is completed.

e global: This strategy provisions a single service for each workflow task, inrdocdmax-
imise a weighted sum of aggregated performance characteristics, assgidén Section
5.2.2. We implemented this strategy using the ILOG CPLEX optimisation package.

e adaptive global(w): As above, but this strategy treats services as failed when theytake
time steps or longer, and re-provisions them accordingly.

e best hybrid/local/global: To approximate the upper bound achievable by any of the pa-
rameterised strategiebybrid(n,w) adaptive local(n,wandadaptive global(w), we test
a large range of possible parametémnd then select the best performing strategy for a
given environment (i.e., for eachvalue).

1370 limit the time required to compute this upper bound, we test gaghw) € {1,2,...,19,20} x
{1,2,3,4,5,10,15,..., 45,50,60,..., 90,100, 150, cc}. Although this means we that we do not tedit pos-
sible parameters, we observed that the strategies do not generallyeastgaificantly different results between
these intervals.

Chapter 5 Service Provisioning with Heterogeneous Providers 133

5.4.2 Hypotheses

During our empirical investigation, we are interested in four hypothesée fifst seeks to
establish whether simple, non-flexible redundancy is potentially benefidiaéianvironments
we consider. The last three evaluate our flexible strategies, both by dogphem to the
non-flexible approaches and to each other.

Hypothesiss. Adopting thehybrid(n,w)strategy can lead to a significant improvement in the
average profit over thedive strategy, when appropriate values foandw are chosen.

Hypothesi$. Thedetailed flexiblestrategy achieves a higher average profit tharmytoeid(n,w)
strategy over all environments considered, and forn@hdw.

Hypothesis7. The detailed flexiblestrategy achieves a higher average profit than any non-
adaptive QoS-based strategy over all environments considered.

HypothesisB. The detailed flexiblestrategy achieves a higher average profit than any adaptive
QoS-based strategy.

Hypothesi9. The fast flexiblestrategy finds a solution in less time than thetailed flexible
strategy.

Hypothesisl0. Thefast flexiblestrategy does not achieve a significantly different average profit
from thedetailed flexiblestrategy.

In the following sections, we consider each of the above hypothesasasely.

5.4.3 Hybrid Results (Hypothesis 5)

During our first set of experiments, we were interested in evaluating tHerpemce of the
hybrid(n,w)strategy, in order to ascertain whether redundant provisioning coulddukta deal
with uncertain service providers (Hypothesis 5). To examine this, we cmdplae performance
of the naive strategy to théhybrid(n,w)strategy with various parameter choices foandw.
Figure 5.8 shows our results in four distinct environments, with varyingegabf ®. More
specifically, Figure 5.8(a) shows an environment where services fal¢d = 0.0), then
Figures 5.8(b) and 5.8(c) show environments where services incgaéail (¢ = 0.3 and
® = 0.6), while Figure 5.8(d) shows the case where services are guarantadd o= 1.0). In
these figures, theaive strategy is marked by a circle (the left-most point with= 1, w = o).

It is clear that there are choices farandw that significantly outperform thaaive strategy.
However, the figures show that the best-performing strategies areediffi@ all environments.
For example, when services never fail, the highest average prafit + 8.96) is achieved by
hybrid(3,60) When the failure probability rises @3, hybrid(5,45)obtains the highest profit
(594.41 + 19.20), and at® = 0.6, the best performing strategy ligbrid(8,30)with a profit of
315.07 + 25.91. This is because the higher level of redundancy allows the consumep&o co
better with uncertainty, but incurs unnecessary costs when servieesliable. Similar to our

Chapter 5 Service Provisioning with Heterogeneous Providers 134

results in the previous chapter, this indicates the need for a more flexiblefwagvisioning
services than the static method employed by the hybrid strategy, and it paddeth a basic
benchmark to evaluate our work against.

Finally, Figure 5.9 compares some representatiylerid(n,w) strategies to thaadive strategy
over a range of environments with different failure probabilities. It isobs here that theaive
strategy is outperformédiby other strategies, thus validating Hypothesis 5.

5.4.4 Flexible Provisioning Results (Hypothesis 6)

Next, we compared the performance of our flexible approach ttnybed(n,w)strategy over

a range of environments (Hypothesis 6). To this end, Figure 5.10 sha@vavdrage profit
of the detailed flexiblestrategy and théest hybridstrategy, which represents an upper bound
achievable by anfybrid(n,w)strategy. For reference, this graph also includesiee strategy,
which does not address uncertainty or service heterogeneity in any way

Here we note that thbest hybridstrategy performs well in most environments, with its profit
decreasing gradually as the average failure probability rises. It onig steaking a small net
loss at® = 0.8 and beyond (at which point it is equivalant to thaive strategy, as this invokes
the smallest number of services). However, it should be noted thaeitehybridstrategy is a
purely speculative approach that is based on retrospectively seltotingpst parameter for
andw, and so it is not a viable option in realistic scenarios.

Now, thedetailed flexiblestrategy performs even better than thest hybridstrategy, and does
so consistently over all values fdr we tested. When there is no uncertainty in the system, it
achieves almost maximum utility as it is able to select the cheapest providdabbyand thus
obtains an average profit that is around twice as high asdhe approach. Beyond this, the
average profit decreases slowly, and continues to make a positivegwariiwhend = 0.8 and

$ = 0.9, at which point all other strategies make an overall loss.®PAt 1.0, the strategy
makes neither a loss nor a profit, as it recognises the workflow as infeasith thus makes no
investments.

The good performance of thietailed flexiblestrategy is due to two reasons. First, the strategy
is able to flexibly provision multiple services redundantly for its tasks whemtisarncertainty,
and it is able to re-provision services when they have apparently faiietisiway it operates in

a similar manner as theest hybridstrategy, but uses a decision-theoretic framework and knowl-
edge about its environment to pick appropriate levels of redundanciraadntervals between
invocations (rather than determining these retrospectively). Secordktiited flexiblestrategy

is able to exploit the heterogeneity of services (and tasks) and pick thesoitatle services

14an ANOVA rejects Hy that all means are equal for failure probabilityd (F = 694.11 andp < 0.001). A
second t-test to compangivewith hybrid(10p0) (for example)ejectsH, that both strategies achieve the same net
profit in favour of H 4 thathybrid(10p0) achieves a higher net profif’(= 55.36 andp < 0.001).

Chapter 5 Service Provisioning with Heterogeneous Providers

135

0 400 800

Net Profit -500

1000 naive O

(a) Failure Probabilityp = 0.0

Net Profit

1000
800
600
400
200

0

—-200

-400
inf.

Serial (w) 10

(c) Failure Probabilityp = 0.6

Net Profit

1000
800
600
400
200

0

-200

-400
inf.

(b) Failure Probabilityp = 0.3

Net Profit

1000
800
600
400
200

0

-200

-400
inf.

serial (w) 10

(d) Failure Probabilityd = 1.0

FIGURE 5.8: Average profit ohybrid(n,w)andnadive strategies in environments with varying
values of® (shading indicates profit).

1000

900

T T
naive ——

fixed(10,inf.) ---5--- 7

800
700 g

fixed(5,25) - -8- - 4
fixed(1,10) - - e - -

600 -

400

5008 :

300 e

Average Profit

200 & Tl
N * .
100 ™ .

-100

-200

-300

0 0.1 0.2 0.3

0.4

0.5 0.6 0.7 0.8 0.9 1

Failure Probability)

FIGURE 5.9: Some representatitgybrid(n,w)strategies compared to theive

Chapter 5 Service Provisioning with Heterogeneous Providers 136

1000 . —
900 detailed flexible ——

i etailed flexible ——
800 \\ : best hybrid------

700 s T

600 P :
500 - I

400 %+ -
" &
300 |- !

200 : N

100 e B N

Average Profit
7

-100 L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Failure Probability)

FIGURE 5.10: Performance of theetailed flexiblestrategy.

available, or even rely on multiple services of different heterogeneopslations at the same
time.

Averaged over all values fob, the detailed flexiblestrategy achieves an average net profit of
535.66 + 8.29, while thebest hybridstrategy achieves onl§62.49 + 7.74. This supports
Hypothesis 6. For comparison, the best individual hybrid strategy weddied(5,25)(as
shown in Figure 5.9), achieves an average prof2G¥.4 + 9.1, while thenaive strategy only
achievest8.33 + 4.24.

5.4.5 Non-adaptive QoS-based Provisioning Results (Hygdagsis 7)

In our next set of experiments, we considered the performance dbtheandglobal strate-
gies. As stated by Hypothesis 7, we expected these to perform worseuhdetailed flexible
strategy, because they do not adapt to failures at all.

Figure 5.11 shows the results of these strategies (along witmdive and detailed flexible
strategies, for reference). Clearly, they consistently perform better ttenaive approach,
as they provision providers based on their performance characterisfiesce, they tend to
complete workflows faster, at a lower cost and with a higher successlpility. Theglobal
strategy here performs slightly better than libeal strategy when the failure probability is low,
because the former reasons explicitly about the overall duration witlecesp the duration
constraintt,ero and thus generally finishes workflows earlier. Despite this, wheeaches 0.4,
both begin to make a net loss as they do not react to failures and completaomhd 1% of all
workflows successfully.

15/ t-testrejects Hy that thedetailed flexiblestrategy achieves the same average net profit aseitehybrid(over
all environments) in favour off 4 thatdetailed flexibleachieves a higher net profit withi = 29.94 andp < 0.001.
Further t-tests for all individual failure probabilities confirm this resultWéth p < 0.001).

Chapter 5 Service Provisioning with Heterogeneous Providers 137

1000 T T T
900 naive - -8- -

i detailed flexible ——
800 \\ local -~ |

) T T global - -e - -
700%. :
600 |- ”
500} . T ”
400 ™
300 <
200 oot ™
100 B
N - _‘“\f . _ \
0 S L VR S — —

-100 L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Failure Probability)

Average Profit

FIGURE 5.11: Performance of the non-adaptive QoS-based strategie

Itis obvious that theletailed flexiblestrategy performs better than tloeal andglobal strategies,
which, respectively, achieviel 7.18 4 8.64 and100.94 + 5.79. This support¥® Hypothesis 7.

5.4.6 Adaptive QoS-based Provisioning Results (Hypothes8)

Given the poor performance of the non-adaptive QoS-based ap®awe next investigated
how their adaptive counterparts perform. We expected these to genachlgve a lower net
profit than ourdetailed flexiblestrategy (Hypothesis 8), as they rely on simple weighted sums to
guide the service provisioning.

Figure 5.12 shows a number of examplgaptive local(n,w)trategies:adaptive local(2,9Q)
local(4,40)andlocal(11,25) We selected these particular parameters, because they are some of
best-performing strategies we tested and because they display thel gemelsof the strategy

as higher redundancy and shorter time-outs are introduced. Much absgeved earlier with

the parallel(n) and serial(w) strategies, it is clear that the strategies here are well suited only
for particular environments. For example, th@aptive local(2,90performs very well when
services always succeed, but as the failure probability rises, moressjge strategies that
rely on higher redundancy quickly begin to outperform it. Even whenaher& probability is
high, some strategies can achieve a good positive profit, but typically mikgealoss when
workflows become infeasible (this is most evident withddeaptive local(11,253trategy, as the
failure probability rises above 0.8.

The figure also shows the hypothetibalst localstrategy. This performs very well and is clearly
better than thdest hybridstrategy from the preceding section, as it chooses services based on
their quality parameters rather than randomly. It also approaches tloerparfce of theletailed
flexiblestrategy. In fact, although ttaetailed flexibleachieves a higher average profit than the

1A t-testrejects Hy, that thedetailed flexiblestrategy achieves the same average net profit ds¢hgstrategy in
favour of H 4 thatdetailed flexibleachieves a higher net profit with = 84.33 andp < 0.001. The corresponding
H, comparing thaletailed flexiblestrategy and thglobalis rejected withl” = 68.54 andp < 0.001.

Chapter 5 Service Provisioning with Heterogeneous Providers 138

1000 . . T
900 detailed flexible ——
+ local(2,90) — = -
‘ \\\Hb\\\\‘ﬁ local(4,40) - - e - -
800wy S i local(11,25) - -8- -
700 ~ o best local ---x---
600 S
5004 [:: I ;; N i
= AY
5 400 N ‘ﬁ
& 300 ,A TN
=) AN N N '\
g 200 <
g i N .
< * R
100 KN S
0 TEesoooo ‘ S S
-100 *::‘x__ﬂ,_. e
-200 :
-300
-400 Bt
-500
0 01 02 03 04 05 06 07 08 09 1

Failure Probability)

FIGURE 5.12: Performance of the adaptive local QoS-based stestegi

best localover all failure probabilities, the difference is not statistically signifitaat® = 0.4
and® = 0.5. However, as théest localis a purely speculative strategy, the results confirm that
ourdetailed flexiblestrategy adopts suitable levels of redundancy for its respective envémn

Similarly, the shape of the graph suggests thatdémiled flexiblestrategy has a higher ad-
vantage over thbest localstrategy towards the extremes®f We believe this is because our
strategy increasingly relies on provisioning allocations that cannot begsgd within the pa-
rameters of anydaptive local(n,wktrategy. In particular, whe is high, our strategy mixes
different service populations and is generally more sensitive to smaltefiites between the
performance characteristics of different service types. On the odret, whend is low, our
strategy typically provisions single services, followed, after some long tumegseriod, by a
number of redundant services (to ensure the task is completed).

Next, Figure 5.13 shows various representasidaptive global(w)strategies (each experiment
was repeated 250 times due to the more time-intensive nature of the stratddjiesg. follow
similar trends as thadaptive local(n,wytrategies — initially, the strategies with longer time
out values perform better, but as the failure probability increases, the aggressive strategies
achieve a higher profit. As before, none of the strategies is particul@ilyswited for all envi-
ronments and sometimes they even incur a substantial loss as the failurbilisobaes. The
best globakgain provides an appropriate upper bound, which is here slightly loapthiebest
local described above. This is because the global approaches do notiesipiitit redundancy
and so have to rely on extremely short time out values in order to meet thdiirdea

1A t-testacceptsH, that the net profits are equal @ = 0.4 and® = 0.5 with T = 1.27, p = 0.203 and
T = 1.75, p = 0.080, respectively. It is rejected at all other failure probabilities with- 0.022 or less.

Chapter 5 Service Provisioning with Heterogeneous Providers 139

1000 T — —
900 detailed flexible ——
+ global(1) - -&- -
i global(5) - - e - -
800 o % i global(10) - -
700 Dk T ,\\ best global---x---
R S, S T
T \\\ii‘\l“'»?g__ \
600 N \'\;; S \\,
B-._ 1 IS I~¢ T TR
500 = = Bl T
- D St ot o T 4
5 400 1= N S SORR - S
o ~ - S TN \‘\‘ s
T 300 T p ¢
o o . -8 '\
o 200 ik :
9] NG N o
< 100 S
0 SR S
B Rt ahuiis
-100 NI
-200
-300 [/ &
-400 &
-500
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Failure Probability)

FIGURE 5.13: Performance of the adaptive global QoS-based steateg

To conclude, when averaging over all environments gt localstrategy achieves a profit of
482.98+8.26 and thebest globaktrategy achieves a slightly lower profit4i#8.13+17.04. Both
strategies are outperformed by aletailed flexiblestrategy (with average profi85.66 + 8.29),
thus supportintf our Hypothesis 8.

5.4.7 Fast Flexible Search Time (Hypothesis 9)

Given the promising results of thdetailed flexiblestrategy, we were interested in how it com-
pares to théast flexiblestrategy. Due to the simplified search space, we expéastdexibleto
reach a solution faster (Hypothesis 9).

To investigate this, we recorded the time taken by each strategy to reachsagrimg allocation
during the experiments outlined in the previous section (these were exeruged GHz AMD
Opterons with 1.98 GB RAM). Measured over 8@l the average time detailed flexibleis
37.82 £ 0.51s, the average time ddst flexibleis only 4.82 4 0.04s, thus reducing the run-time

by over 85%. This suppof®Hypothesis 9. Similarly, the respective standard deviations are
27.29 + 0.36s (72% of the average) antl.88 + 0.02s (39% of the average), indicating that the
time offast flexibles also significantly less variable. The overall better convergence time of the
fast flexiblestrategy is not surprising, as we have reduced the search spaceradddéed an
artificial cut-off time for its hill-climbing procedure.

18A t-testrejects Hy that Gigetiled = iocal in favour of H 4 that Gidetailed > iocal With T = 8.82 andp < 0.001.
Similarly, a t-testrejects Hy that Gigetailed = Uglobal iN favour of H4 that Ggetailed > Ugiobal With T = 17.73 and
p < 0.001.

194 t-testrejects Hy thatttast = Ldetaileain favour of H 4 thatttast < fdetwieaWith 7' = 126.56 andp < 0.001.

Chapter 5 Service Provisioning with Heterogeneous Providers 140

1000

900 'detailed flexible —— |
800 \\ H . fast flexible ——
700 = .
= 600 ’“:::\\ﬂ
2 500 ’“\\§*_
o 400 LN
g 300 .
5 200 RN
100 N,
o -
-100
-200
-300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Failure Probability)

FIGURE 5.14: Performance comparisonfattdetailedstrategies.
5.4.8 Fast Flexible Profit (Hypothesis 10)

While taking less time to converge to a good solution, we were next interestedithb quality
of the solution obtained by thiast flexiblestrategy compares to thietailed flexiblestrategy
(Hypothesis 10).

To compare the performance of both strategies, we recorded theigawseaiprofit in the same
environments as discussed in the preceding section. The resulting datavisistFigure 5.14,
and itindicates that they are highly similar. In fact, when averaging ovéaihlte probabilities,
the average net profits a586.0+-8.23 (detailed flexiblgand539.0+8.03 (fast flexiblg. Hence,
their overall performance is not significantly different, supportrgypothesis 10. This trend
continues when comparing the results individually for all valuesifas 0.0. The only excep-
tion is at® = 0.0, when thedetailed flexibleslightly outperforms théast flexiblestrategy. This
is because the former is able to provision single providers initially, but cavigion multiple
providers at a later time if the single service takes unusually long. Howeheedifference is
minor — at® = 0.0, thedetailed flexiblestrategy achieves an average net profd®f.5 + 6.8
while thefast flexibleachieves90.4 + 9.4.

This result indicates that it is not necessary to search the full spadiepofsaible provisioning
allocations. Rather, it is sufficient to select an appropriate number sfdens to provision in
parallel as well as a time-out value after which more services are progasiorhis is because
a service consumer can generally gain little from altering the number of ggredhaders or
the frequency of provisions as times passes compared to the overall gimettintroduction of
redundant services offers.

20 t-testacceptsHy that the net profits, averaged over all environments, are etuahbs = ras) With T = 0.57
andp = 0.572.

Chapter 5 Service Provisioning with Heterogeneous Providers 141

10000 —
gL fast flexible ——
9000 ; = ey Sl S Iocal(l,90) ———=
8000 | T TN e local(2,25) - -e - - |
. T local(5,15) - -&- -
7000 N B E"”‘*”"'ﬁﬁt\ o R bes(tloceglrrrrx"' -
\ A
6000 y . ~J
3 v \ B
5000 X TR
= 4000 Y \ N
B \ \ AW
2 3000 \ : N
o \ “r L
<) \) I\
& 2000) v “x\\
g 1000 \ et
< . "
0 s e T S S SR -
-1000 N PRR s
~2000
-3000 v
-4000 L
-5000 -
-6000 ¥
0 01 02 03 04 05 06 07 08 09 1

Failure Probability)

FIGURE 5.15: Performance of the adaptive local QoS-based stemt@gth large workflows.
5.4.9 Performance in Complex Environments

So far, we examined the performance of our strategy in environments with woriflows.
To investigate whether the trends shown in previous sections hold for lng&flows, we
repeated the above experiments for workflows consisting of 100 tagtksawnaximum utility
umax = 10000, deadlineumax = 1000 and penalty = 50. All other parameters remain the same
except for the inter-type failure variance, which is set to 0 (otherwiseetis a high likelihood
that some types have a failure probability close to 1 even wihen 1, thus making the entire
workflow infeasible). We also now generate 25 distinct service typesepwit all experiments
250 times (due to the more complex nature of these workflows).

Figure 5.15 plots the results of several representaitilaptive local(n,wktrategies, their upper
boundbest localand our flexible strategy (due to the more complex environments and the small
difference between our strategies, we only show the results dagidlexiblestrategy here).
The broad trends are similar as those described in Section 5.4.6. Howeueow note that in
most environments, there is som@aptive local(n,w}jhat achieves a higher average profit than
our flexible approach. The main reason for this is that our strategy usinatyses provisioning
allocations with few initial providers and higher redundancy after some timehssed, thus
resulting in a high task duration and variance. Although such an allocatsuitsen a high
estimated utility (in particular due to a low overall cost), our critical path teclaiguslightly
inaccurate and underestimates the completion time. This inaccuracy is extaderbthis case
by the high task duration variances, which increase the probability thathaskn the estimated
critical path will become critical at run-time. Hence, we observed thattoategy often finishes

a short time aftetmax, thus incurring a penalty on its eventual reward. &daptive local(n,w)

Chapter 5 Service Provisioning with Heterogeneous Providers 142

10000

9000 =TT === : " fast flexible ——
CITETIIT S sy lobal(1) - -8- -
[R R et S &&E&sg -e--
8000 T \:\ global(10) - —=-
7000 X + 3y bestglobal---x---
\] \ s

6000 N

B A B--- \\ \\“\;\\x
5000 B G
4000 (£ TR N

3000 o

2000 LN et \;
\ o

1000 k AN

Average Profit

-1000 BRSNS S
-2000 EEEE
-3000 &
~4000 =
-5000
-6000
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Failure Probability)

FIGURE 5.16: Performance of the adaptive global QoS-based steategth large workflows.

strategies, on the other hand, almost always finish some time hgfgrand thereby achieve
the maximum utilityumax.

These results are mirrored by thdaptive globalstrategies, as shown in Figure 5.16. Here,
there are again some strategies for most environments that achieve aprigfitehan ourfast
flexiblestrategy. This is mostly for the same reasons as mentioned above, and adiglitios
adaptive globaktrategies adapt dynamically to new information as it becomes available. More
specifically, the strategy frequently replans during execution and théakbs into account the
performance of past services. Thus, it can react to services tlealotadger than expected (and
therefore become part of the critical path), which tlegiblestrategy does not currently do.

In conclusion, these results show that our strategy still manages to obtigjh average profit
even when services are highly uncertain. However, we noted that itds ofitperformed by
hypothetical strategies that retrospectively choose time-out and redey¢parameters. This
contradicts our Hypothesis 8 as thest localandbest globalachieve a higher average profit
than thefast flexiblestrategy.

Nevertheless, the results indicate that our strategy performs well in sglgoid provisioning
allocations without the need for manually setting parameters and it typicallyvashéeprofit
that is close to thbest localandbest globalstrategies. In more detail, thast flexiblestrategy
achieves an average profit@f13.87 4+ 139.35, while thebest localobtains6942.23 + 126.94
and thebest globalchieve$598.73 + 135.88.

Furthermore, while setting the best parametersif@ndw in some environments results in
a higher average profit than tifiast flexiblestrategy, the same parameters often perform very
badly in other scenarios (e.g., the adaptdaptive local(5,15¥trategy performs very well at

Chapter 5 Service Provisioning with Heterogeneous Providers 143

| Variable | Value
Environmental Variables
Average Failure Probabilityd) varied
Number of Types 12
Populations Per Type Uy(3,10)
Services Per Population Uy(1,200)
Average Type Cost U.(1,80)
Average Duration Shapé) U.(1,40)
Average Duration Scalé) U.(1,10)
Inter-Type Failure Variance 0.0
Intra-Type Failure Variance 0.005
Intra-Type Variance 0.05
Workflow Variables
Workflow Length 50
Workflow Parallelism 0.25
Deadline {max 2000
Maximum Utility (umax) 25000
Penalty §) 37.5

TABLE 5.7: Controlled variables for complex environments.

® = 0.8, but incurs a severe loss @t = 0.9). Thus, our results support a weaker version of
Hypothesis 8:

Hypothesid 1. Thefull flexiblestrategy achieves a higher profit (averaged over all environments
considered) than any parameterised adaptive QoS-based strategy.

Finally, as a result of observing that both the local and global strategisatly finish com-
fortably within the deadline, we believe that the scenario covered so faisrséction does
not represent a particularly challenging environment, where simple sgstibgt do not reason
specifically about the cost of failures (both the financial cost and thgiawclal time incurred)
can perform well. For this reason, we briefly discuss a more challengiseglmelow.

In these experiments, we alter a number of our controlled variables, asmshdrable 5.7 to
represent a more challenging environment, where services are potemitakyexpensive (we
increase the maximum cost from 10 to 80) and service times are significarggrland display
a higher variance than in the scenarios considered so far (we qledngopmaximum shape
and double the maximum scale parameters). We believe théashéexibleis more suitable
for such environments, as it is able to determine how to balance these wlifjgossibly highly
variable qualities. Again, we repeat all experiments 250 times to obtain statstjo#lcance.

Figure 5.17 shows the performance of thst flexibleand a number cfdaptive locaktrategies
in these environments. Clearly, tfest flexiblenow outperforms all other strategies. This is due
on one hand to the more heterogeneous environment that requires thécacgrefully balance
the benefit of redundant provisioning with the associated cost. On the ludine, the more
challenging deadline (given the significantly longer service durationsesathdocal strategies
to frequently miss the overall deadlifgax and thus incur a penalty. In fact, the individual local

Chapter 5 Service Provisioning with Heterogeneous Providers 144

25000 : :
fast flexible ——
5 local(2,150) — = -
20000 = local(6,150) - - ® - -
SN \\ best local------
==k . +
15000 N S +
B Ry \
£ 10000 R St St N \
3 FERN B SERC \T
< S Tk \
[0) * “ i
S 5000 . s .
9] AN N
= . L
< 0 3 S e ——
\\\\ ‘\‘ e
-5000 ?s——__‘__ﬂ\i\
R e
-10000 LA v
e ¢
-15000
0 01 02 03 04 05 06 07 08 09 1

Failure Probability)

FIGURE5.17: Performance of the adaptive local QoS-based stest@ghighly heterogeneous
environments.

25000 | .
fast flexible ——
global(20) - - e - -
20000 global(30) — —=-
’ global(40) - —a- —
15000¢- - S o & best global------
& 10000 S \\7
g NEN . +
=) AN Bl \
g At
) 5000 . - . .
S RN
O . ~ - \‘,,
SN Je B
oo L __—-%¥7_.4
-5000 .\.;., g
$
-10000
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Failure Probability)

FIGURE 5.18: Performance of the adaptive global QoS-based steatég highly heteroge-
neous environments.

strategies often incur a significant negative loss as they provision mavigese but do not
complete the workflow in time.

These broad trends are mirrored by daptive globalstrategies shown in Figure 5.18. The
overall profit of these strategies is slightly lower than the local strategithair overall loss at
high failure probabilities is also lower (as they explicitly reason about theigéulimit and as
they do not provision redundant services). However, they are stiflistently outperformed by
thefast flexiblestrategy over all failure probabilities.

Concluding this section, we have observed that there are certain emént® where simple
strategies may outperform thast flexiblestrategy. However, finding these simple strategies
is non-trivial and picking the wrong one may result in a significant lossthieumore, when
considering more heterogeneous environments with challenging deadliedsund that the
flexible strategy quickly outperforms any other existing strategy. Finallypeted that thdast

Chapter 5 Service Provisioning with Heterogeneous Providers 145

flexible strategy achieves good results throughout all environments consideneet incurs a
net loss (unlike most other strategies) and often achieves a strictly pgsit¥ie even when
services are highly unreliable.

Given this, in the following section, we aim to quantify how close the flexiblesigioning
approach can come to highest possible overall profit.

5.4.10 Optimality of Flexible Provisioning

To examine how well théast flexiblestrategy performs compared to the optimal, we carried
out another set of experiments. However, due to the inherent difficLitgroputing an optimal
solution, we decided to benchmark the strategy against an upper botmal @ftimal that can
be efficiently calculated. More specifically, we simplify the provisioning peobin two ways
that significantly reduce the complexity of finding an optimal solution. First, sgume that
there is no time constraint on the completion of a workflow (i€t) = umax regardless of
the eventual completion timg@. Second, we consider only linear workflows with parallelism O.
These two assumptions allow us to concentrate only on balancing serviae faitbabilities
and their costs, and to disregard the complexities of interleaving paralle. taSlearly, an
optimal strategy for this simplified problem represents an upper bound dacdiresponding
optimal strategy in an environment with some deadline and penalty.

Now, given these assumptions, it is straight-forward to determine an optiratdgy and cal-
culate its expected utility. First, we exploit the simple workflow structure and sttt the
last task in the workflowt{r|). Clearly, the optimal strategy will invoke services that max-
imise the expected utility of that task, regardless of the services invokezhfber tasks. We
also note that a servicg will eventually be invoked by the optimal strategy if and only if
the task has not been completed yet and the expected utility of invekirgpositive (i.e.,
(1= f(si)) - umax— c(s;) > 0). Finally, if several services are invoked by the optimal strategy,
it will always invoke them in descending order of the rajia;) = 1;(1;(155) (it is easy to show
that doing otherwise would result in a lower expected utility). This means thatam quickly
determine the optimal strategy for the last workflow task by ordering allcesvn descending
order ofn(s;) and discarding those whefté — f(s;)) - umax — ¢(s;) < 0. By constructing a
simple decision tree from this, we can calculate the expected utility for that taislen this

utility, we can then repeat the process iteratively for all preceding wawkfisks until we have
an overall workflow strategy and an associated expected utility.

This procedure is summarised in Algorithm 5.15, which iterates over the warkésks, as
described above, in the main loop in lines 4-16. For each task, it computek-apkcific
expected utility valuey/, by considering the contribution of each service that will be invoked,
from last to first (as calculated in line 10, this depends on the cost, thalmtity of success
and the utility the agent expects to gain from completing the @gKThis task-specific utility

Chapter 5 Service Provisioning with Heterogeneous Providers 146

Algorithm 5.15 Upper bound on the expected utility of the optimal strategy.
1: procedure CoMPUTE-UPPERBOUND(IV)

2: U +— Umax > Start with maximum utility
3: i |T| > Begin from last task
4 while 7 > 0 do

5: w0 > Utility so far for this task
6: Sl — S, > Set of suitable service instances
7: while | S]] > 0 do > Consider one service at a time
8: s« argmax g —1)(s;) > Pick next service to consider
o: if n(s;)-u > 1then > If feasible to invoke this...
10: W —(1=f(s) -u—c(s)+ f(s) @ > ...include its impact on’

11: end if

12: Si— S\ {s} > Remove it froms,
13: end while

14: u— u

15: 1—1i—1 > Continue with predecessor
16: end while return @ > Return final utility

17: end procedure

is then used as for the preceding task and the process is repeated until a final expsitiiyd
value is returned in line 16.

Now, using this procedure, we can calculate an upper bound for thegevprofit of the optimal
provisioning strategy (on a sequential workflow). Generally, we afeskthat this upper bound
is very high compared to the performance of any of the other strategieaweedsted. This is
most likely due to the deadline, which presents a significant constraintemedsitates the more
expensive parallel provisioning of services. To evaluate the effetti® constraint in more
detail and to compare the performance of our strategy to the optimal as itsreneint becomes
increasingly similar to the simplifying assumptions we made above, we tested at@ggton
workflows with varying deadlines.

In more detail, we adopt mostly the same experimental conditions as describection 5.4.1,

but this time we consider a workflow consisting of 25 sequential tasksuyith = 25000 and

carry out 500 repetitions of all experiments. We also draw the averagectyst from a new
distribution,4..(5, 100), in order to place slightly greater emphasis on service costs (rather than
the duration). As in the previous section, we set the inter-type variancétadid infeasible
workflows.

Figure 5.19 shows the results of our experiments as we gradually in¢cheaserkflow deadline
(the upper boundplotted on the graph is the average expected utility obtained by Algorithm
5.15, rather than the result of any experimental run). Here, we sedydbat the deadline
has a considerable influence on the performance of the strategy. ¥her 125, thefast
flexiblestrategy achieves barely any positive utility. This is because it has to redyxmensive
parallel redundancy to complete its workflows within the deadline and this is ifteasible in

the environment considered here (in fact, even whes 0.0, the strategy ignores over 90% of
its workflows).

Chapter 5 Service Provisioning with Heterogeneous Providers 147

1600 T

T T
1500 Fimeys tax = 125 —+—
14008~ | tmax= 250 - %~
13008 T Fo tmax= 500 — =]
100 S g tax = 1000 -~ & -]
00 L E S tmax = 100000 ——
. 1100 AN Ny upper bound---x---
£ 1000 &S =
a 900 ii o
o 800 +
? 700 \\\ %
S 600 ~
< 500). N
400 > \ii (]
100 S - S S S
0 S —— il SRS S S o
-100
0 01 02 03 04 05 06 07 08 09 1

Failure Probability)

FIGURE 5.19: Performance comparison of tlaest flexiblestrategy with upper bound on opti-
mal strategy.

| Strategy | Deadline| Average Profit| % of Upper Bound
| upperbound] oo | 705.63 £+ 18.20 | 100.00

fast flexible 125 14.32 + 3.21 2.03 +0.46
fast flexible 250 146.39 £+ 10.84 20.75 £ 1.63
fast flexible 500 399.53 +£16.37 56.62 + 2.74
fast flexible 1000 | 551.47 +17.93 78.15+£3.24
fast flexible | 100000 | 620.69 & 16.98 87.96 + 3.31

TABLE 5.8: Results of théast flexiblestrategy compared to an upper bound of the optimal.

As we increase the deadline, tfest flexiblestrategy begins to gradually perform better, as it
can rely more on the cheaper serial provisioning. In fact, the larggr the more similar the
performance of thdast flexiblestrategy becomes to the upper bound of the optimal. When
tmax = 100000, the deadline no longer presents a significant constraint on the conantheo
that environment is most similar to the assumptions we made in calculating the uppet. b
Here, thefast flexiblestrategy achieves an overall average profit that7i96 + 3.31% of the
upper bound (the complete results are shown in Table 5.8). This is a promasungthat shows
thefast flexiblestrategy comes close to the optimal despite relying on a simple local search. We
believe the remaining discrepancy in average profit is caused by dyrteamination of the
hill-climbing procedure and by encountering local maxima. Hence, in the follpehapter, we

will consider a more stochastic search technique that is able to escaplecaiahaxima.

5.5 Summary

In this chapter, we looked at environments where a single workflow taskomaatisfied by a
large number of highly heterogeneous services. Within this context, wexXtended our system
model and then proposed a number of modifications tdléxible strategy from Chapter 4 to
deal with heterogeneous services. These modifications allowed us ®saddmore complex

Chapter 5 Service Provisioning with Heterogeneous Providers 148

problem, but also resulted in a strategy (thetailed flexiblestrategy) that explores a larger
decision space than our previous strategy. To speed up the seaechdod solution, we then
proposed dast flexiblestrategy that considers a smaller solution space and also terminates its
search after a fixed number of iterations.

In empirical experiments, we showed that both our modified flexible apbesaautperfom cur-
rently prevalent provisioning approaches in most environments, anthéhaachieve a positive
profit even when services fail in 80-90% of cases (at which pointthkrostrategies makes a
loss). Thus, in addition to meeting the same requirements as in the previousrchiag work
presented in this chapter additionally meets our research requirement vattideeterogeneous
services (Requirement M.4).

Together, Chapters 4 and 5 present a set of tools that the designsemi@e-consuming agent
can use in environments where services are invoked on demand. Théwiloe former chapter

is particularly suitable for cases where there is either little difference in thiese that satisfy a
given task, or when there is considerable uncertainty about this differén such systems, our
approach determindsw manyservices to provision anghento re-provision services to deal
with failures, using fast calculations. The work presented in the latterteheppands on this
and also answers the guestionvdfich services to provision when there are many competing
candidates offering different levels of quality.

However, so far we have considered only a simple market mechanismne sémices are always
available on demand and at fixed prices. In the following chapter, we wéhexthis and look

into systems where service availability changes over time (Requirement MBjewrices are
uncertain (Requirement M.2.b), and where the consumer may reachcadagreements with
providers, possibly in return for discounted or more reliable servicegiRement M.3.b).

Chapter 6

Service Provisioning with Advance
Agreements

So far, we have looked at service-oriented systems where provifferservices without the
need for explicit contract negotiations, and where the population of &laitervices is static
throughout the execution of a workflow. As discussed in Chapter 2, pipiées to many current
service-based systems, in which services are advertised on a regstrig@ssed by consumers
on demand. However, there is increasing interest in building systems wieemrovision of
services is negotiated and an explicit service-level agreement, or cpriragreed upon in
advance (as motivated in Section 2.1.5).

To this end, in this chapter, we address such systems by first extendirgysiam model to
include service negotiations using a market-based mechanism (SectioMid)s followed,
in Section 6.2, by a discussion of a novel provisioning strategy. In cstritvathe approaches
presented in previous chapters, this strategy does not initially provisiaifispgervices for all
workflow tasks, but rather takes high-level decisions about how drehwo provision work-
flow tasks during execution. These are then constantly adapted aretirdfiing execution as
the agent interacts with the dynamic market. Finally, we evaluate this strateggtiorsé.3.
Hence, we deal with our last outstanding model requirements to addgesnsywhere prices
are not fixed (Requirement M.2.b), where advance agreements arecemt® with providers
(Requirement M.3.b) and where service populations are dynamic (Rewgrité.5). In so do-
ing, we also show how the agent can adapt its decisions throughoutiexeas new information
becomes available (Requirement A.4).

6.1 Model Extension

To address more dynamic systems with flexible pricing and advance agrsemersubstan-
tially modify our model in this section. Most importantly, we now include a negotigiroaess,

149

Chapter 6 Service Provisioning with Advance Agreements 150

Term Description

s(o) : T | Theservice typeffered (equal to the requested type).

t(o) : N The starting timeat which the service can be invoked (equal to the
quested time).

¢r(0) : R | Thereservation costwhich must be paid immediately by the consumer
when entering the contract.
ce(0) : R | The execution costwhich is the remaining cost (after the reservatjon
cost) that the consumer must pay when invoking the service.
d(o) : Z* | Theduration i.e., the number of time steps it will take for the service to
complete.
dr(o) : R | Thefailure penalty which is paid to the consumer when the service fails
to complete successfully within the agreed duration.

=

e-

TABLE 6.1: Service contract terms.

whereby the consumer and provider agree on the terms of a providéckdaefore it is invoked.
To this end, we use the contract-net protocol, as it is simple and has beely wsed in dis-
tributed multi-agent systems (see Section 2.2.2).

Hence, rather than having access to static performance information séwite instances,
the consumer interacts with a service market to discover the current altgilabd quality of
services. To this end, at a given time step, it may sewdlfor proposals ¢ : 7 x N, to
the service market to request a particular type of service at a certain timeFe example,
¢ = (11, 2) indicates that the consumer requires a service of Tp® start at time step.

In response to each call, the market returns a seffefs C;, C C. These are potential contracts
that the service providers participating in the system are willing to offer togdhsuwmerC is the
set of all offers). Each offer € C, contains a number of terms, as given in Table 6.1. Although
based on the performance characteristics introduced in Section 3.3ateeseme differences
to our previous model. Specifically, a service instance is now offeredcific time step only
(t(0)) and we use a more expressive cost model, which splits the investmentofthemer into
two parts — an initial reservation cost.(0)) and an execution costd(0)). This cost model
is more realistic in the contracting scenario we consider in this chapter, seeitaequires the
consumer to pay the provider for its commitment to execute the service at a latebtitme
does not necessarily require the full cost of the service if the conslateerchanges its mirtd
Furthermore, we also extend our model to include a pendity,) : R, that is payable by the
provider upon service failure and that constitutes a compensation to tearmen (or simply a
refund of the service costsdf(0) = ¢, (0) + c.(0)).

This process of requesting services and receiving responses mapdsed arbitrarily often
during a given time step for different time steps or service types (we asthahéhe offers
returned for two requests with the same service types and times are aleatisatiduring a
particular time step). Furthermore, we assume that the consumer has sommatidn about
the probabilities of the possible outcomes of each offer, as shown in Tab{mractice, these

!As outlined in Section 2.2.2, such leveled payments are common in relarkd 8andholm and Lesser (1996);
Collins et al. (2001)).

Chapter 6 Service Provisioning with Advance Agreements 151

Probability | Description
Ps(0) : [0,1] | Thesuccess probabilitys the probability that the service will be com-
pleted successfully within the agreed duration.
Py (o) : [0,1] | The failure probability is the probability that the service will not be
completed successfully within the agreed duration and that the provider
will pay the failure penalty ¢ (o).
P;(o) : [0,1] | Thedefection probabilityis the probability that the service will not be
completed successfully and that the provider will also fail to pay|the
agreed penalty (o) (e.g., if the provider leaves the market, maliciously

disregards the market rules or if the service simply crashes).

TABLE 6.2: Performance information (outcome probabilities).

may be obtained through a trust and reputation mechanism, or throughysréwieractions).
Together, these probabilities describe all possible, mutually exclusiveroegof an offer, such
that Ps (o) + Py (o) + P4(0) = 1. As in previous chapters, we assume that the outcomes of any
two distinct offers are independent.

During the same time step as receiving offers from the market, the consurggroasior?

any number (or none) of these offers for the tasks of its workflow. dthi, it sends a single
acknowledgement to the market,: C; — T, that maps offers to the corresponding tasks of
the workflow, whereC; is the set of all offers received during the time step. At this point, the
consumer must pay the reservation costs of all provisioned offersamaynaffers not in the
domain ofa are implicitly assumed to be rejected. We also assume that the consumer may
provision several offers for a single task (as we did previously).

At the end of each time step, the consumer may invoke its provisioned dffielgding those
provisioned during previous time steps), provided that all relevanegete constraints given
by £ have been satisfied and that the agreed starting time matches the currentignoeitdome

of the invocation is one of the outcomes listed in Table 6.2, but we assume thabttkeown
until the beginning of the time step at which the service is scheduled to endif{énggking
offer o with ¢(0) = 15 andd(o) = 10, the consumer will only be notified of the outcome at the
beginning of time step = 25).

The extended system model described in this section meets the remaining stpdedments
outlined in Section 1.4.1. In particular, we now consider flexible servicéngridRequirement
M.2.b), as the cost of a service is not fixed or publicly known, but radleéermined through a
negotiation process. Furthermore, services are provisioned explicityvemae (Requirement
M.3.b) and the number of offers and their characteristics may vary dynbyniB&quirement
M.5). Given this extended model, we continue in the following section by dxsgra flexible
provisioning strategy that provisions services in advance.

2To avoid any confusion, it is important here to note that our use of thd tywovisioning” is more specific in
this chapter than in the remainder of the thesis. While we used it earlier toed@mpimplicit decision by the agent
to invoke a particular service, we now use it only when the agent haseatketidaccept, and pay for, a particular
service offer.

Chapter 6 Service Provisioning with Advance Agreements 152

6.2 Flexible Provisioning

In designing a flexible provisioning strategy in environments with advaneeagents, we fol-
low the same basic approach as discussed in the previous chaptersverdome have had to
make a number of significant changes to account for the more compleisipriomg scenario.
We briefly summarise these here before outlining the details of the strategy falltheing
sections.

First, the flexible pricing and more dynamic environment means that the consorfomger has
complete information about the exact availability and performance chasdicteof services be-
fore requesting offers and provisioning them. This could be addréssgavisioning the entire
workflow in advance (i.e., requesting and provisioning offers foryetask in the workflow at
time stept = 0). However, doing so is not practical for large workflows or whewises have
a high probability of failure, as some tasks may not be completed as planeeghytresulting
in missed starting times of later tasks in the workflow.

O strategy selected

® provisioned

D @ e

FIGURE 6.1: Progressive provisioning of a workflow over time.

For this reason, we decided to design a strategy that provisions woskflmgressively through-
out execution, as outlined by Figure 6.1. In more detail, the consumer tagemakes simple
high-level decisions about how and when to provision each task in thieflasr but without
requesting or committing to any service offers yet (Figure 6.1 (a)). Thedede decisions
about how long in advance they should be provisioned, how to selectgaomonpeting offers
and how much time to leave between successive tasks (considering thasesaces may fail
and thus jeopardise the successful execution of later offers). Usitigtisal information based
on past observations of the market, these high-level decisions allow #m tagestimate the
various task parameters used in Chapters 4 and 5, and thus obtain alhesténated utility.

Based on these initial decisions, the consumer then gradually requestlactd concrete offers
for the workflow, as shown in Figure 6.1 (b). Here, it has provisior@destasks in advance,
e.g., because they tend to be of better quality when a longer advance nagigeristo the
providers, or because they are scarce services that are difficutid¢arp at short notice. How-
ever, it has also left some tasks unprovisioned, e.g., because thdgmtifupand can easily be
provisioned exactly when required, or because the completion time of tbeding tasks is too
uncertain. Then, as tasks are completed successfully, further tasksoaisioned as required
(Figure 6.1 (c)).

Chapter 6 Service Provisioning with Advance Agreements 153

The second significant difference to our previous work is that we rexfopm the provisioning
in a more adaptive manner, thereby addressing Requirement A.4. Trathiy, than following
the initial decisions blindly throughout workflow execution, the consumer adapts its deci-
sions as new information becomes available. We make this change, beaaunsgathigh-level
decisions use statistical performance information that may turn out to beunadéeavhen the
actual offers become known. Similarly, making the strategy more adaptiwvesatito react ap-
propriately to unexpected outcomes of tasks. For example, when an initigllglesoffer turns
out to be unsuccessful, the consumer may need to adapt its provisioritegy&s for later tasks
of the workflow, in order to meet the overall deadline.

Before we start to discuss the strategy in detail, we briefly summarise it bslawaptimisation
problem.

6.2.1 Problem Formulation

As in previous chapters, we are interested in building a rational agera¢teato maximise its
expected utility. Hence, we want our agent to adoptavisioning strategy?’ that maximises
the difference between the reward and cost of following it. Here, weptmsasioning strategy
to denote a set of decisions for each workflow task about how the adentls to complete it.
This may either be a high-level decision about how to provision it in the futura concrete set
of offers that have already been provisioned for it. In both casesaghat may also associate
further decisions for contingencies with a task, but we will discuss amddtise this later. In
this context, we define the overall agent strategy we develop in this clegptelfows:

Definition 15 (Dynamic Flexible Strategy)A consumer following alynamic flexiblestrategy
makes appropriate decisions to provision services for its workflow. Tetldsthe agent finds a
suitable provisioning strategy, so that the agent’s predicted profit is maximised. Furthermore,
the agent continuously incorporates new service outcomes into its predietwhadapts its
provisioning strategy accordingly.

Following the notation of Chapters 4 and 5, we formulate this as an optimisatiblepro
max (a(¥) - &(¥)) (6.1)

wherew, (V) is the expected reward of following the provisioning stratdgandc(V) is the
associated expected cost.

In the following, we discuss outynamic flexiblestrategy in more detail. We start by showing
how the basic task parameters used in previous chapters can be caléwatedgiven set of
offers (Section 6.2.2). Then we discuss how we use high-level tadkega to estimate the
outcomes of tasks before provisioning, and how these strategies camipned into simple
contingency plans for each task (Section 6.2.3). In Section 6.2.4, we Istmvthe consumer
decides when to begin provisioning each task and in Section 6.2.5, we ldigtlyss how the

Chapter 6 Service Provisioning with Advance Agreements 154

overall utility of a complete workflow is estimated. Similar to the work in previougptins,

this is used in Section 6.2.6 as a basis for a local search alrogithm. Finallyisetessl how
our agorithm adaptively improves its decisions at run-time as more informdiimut available
offers and invocation outcomes become known (Section 6.2.7), and we sig@rnhe strategy
based on our generic agent algorithm (Section 6.2.8).

6.2.2 Task Provisioning

In this section, we outline some basic calculations to predict the outcome dbipraung a
certain set of offers for a workflow task. These calculations are @liotthe remainder of this
discussion, as we use them both when the consumer has decided whatofirovision for the
task, and also to derive the performance characteristics of high-leketti@ategies.

In this context, we refer to a chosen set of offers for a particular teslpeovisioning decision
Definition 16 (Provisioning Decision)A provisioning decisiony; C C is a set of offers (of the

correct type) that the consumer has provisioned for atask

d(o1)
t(o1) A (01) +d(o1)

| 2 s
| z |

Os5 |

| | -

X x+1 x+2 x+6 ¢

FIGURE 6.2: An example provisioning decision for a single task.

As an example, Figure 6.2 shows the provisioning decisjoa {o1, 02, 03, 04, 05 }, where five
distinct offers have been provisioned for a single task.

We also assume that we have a cumulative probability density funéijon, that describes the
probability that any predecessors@fwill have completed successfully by tinte Here, we
assume thaf;(¢) is conditional on the successful completion of all predecessors.

Chapter 6 Service Provisioning with Advance Agreements 155

Now, first we are interested in calculating the expected cost of a proingiaecision. This is
simply the sum of all offer reservation costs and expected executiorfcosts

Ct = Cp + Ce (6.2)
whereg, is the sum of all reservation costs:

Cr = Z CT(O) (63)

andc, is the overall expected execution cost for all offers. To calculate tlegjefine a number
of auxiliary terms:

e $:7 — Zis asequence of all unique start times of the offers;iin ascending order
(i.e., 5(1) is the earliest unique starting time of any offerip 5(2) the second earliest,
and so on). For the offers in Figure 62= {(1,z), (2, + 1), (3, + 2), (4,2 + 6)}.

e p, : Z — R is a sequence of real numbers, each of which represents the probgaitity
the corresponding element énis the first time step at which offers i can be invoked
(depending on the completion time of the task’s predecessors, as givéy). biore
formally, for alln € N, such thatl <n < |s]:

&) =1
ps(n) = { Ez(g(n)) _ gl(g(n — 1)) otherwise (64)

e opre : (Z x Z) — P(C) is a function that maps two time slots, and+», to the set of
offers that start on or aftéi and end on or befor& (i.e., opre(t1,t2) = {c € 7i | t(0) >
t1 At(o) + d(o) < t2}). For example, in Figure 6.2pre(z + 1,2 + 10) = {09, 03,04}

e oafter : Z — P(C) is a function that maps a time slat,to the set of offers that start on or
aftert (i.e., oater(t) = {c € i | t(0) > 1}).

e cinv : C — R maps an offer to the expected cost of invoking it:
cinv(0) = ce(0) — Pr(0)d(0) (6.5)

e pinv : (C x Z) — R maps an offer and a time stefpo the probability that the offer will
eventually be invoked, given that execution of the task starts at time:step

piv(o,)= [(1-Pu(0)) (6.6)

o’Eopre(f,t(o))

3Here, and in the following, we assume that it is never rational for theurnesto invoke a service that is no
longer needed (i.e., that the expected execution cost is never rggatins assumption keeps the calculations more
concise, but can be easily relaxed.

Chapter 6 Service Provisioning with Advance Agreements 156

Given these, we calculate the overall expected execution &ty considering each possible
starting time for the task (given bj), and then the respective offers that may be executed given
the starting time:
El
ce= | bsla) - (pinv(0, 3(a)) - cinv(0)) (6.7)

a=1 0€0after(8(a))

Next, we consider three different overall outcomes of following a promiag decisiony; for
taskt;:

e Late: The predecessors 6f complete late, such that no offerinis ever executed.
o Failed: At least one offer iny; is executed, but none succeeds.

e Successful:At least one offer iny; is executed and successfully completes the task.

For each of these, we calculate a probability that this outcome ogguis; (ps, respectively),
an expected end time when the outcome is knadyndy, ds), and the variance of this time(
vy, vs). We consider these outcomes separately, as we will later construct gemtin plans
that the agent may take when a task has been unsuccessful (see S@cE#).6

Now, treating each of the parameters separately, we can calculate tlabititplbhat the prede-
cessors completate as follows:
p=1-&(5(]8))) (6.8)

The associated expected end time is simply the highest starting time of anyaoffethe vari-
ance of this is O:

d = 5(]5]) (6.9)
n = 0 (6.10)

When the provisioning decision héailed, we again examine each possible task starting time
separately (as in Equation 6.7). Hence, the probability of this event is:

131
pr=>Y |ps(a) - [(1-Pso) (6.11)
a=1 0€0after($(a))
The expected end time of this outcome now depends on the latest end time opeaoffailed
offers, again evaluated for different starting times:

13l
df = —- Z Ps(a) - tend(0atterl(3(a))) - (1 = Ps(0)) (6.12)

a=1 0€0after(8(a))

Chapter 6 Service Provisioning with Advance Agreements 157

wheretenqd: P(C) — R is a function that maps a set of offers to the highest end time within that
set:

tendC) = Ii%c(t(o) + d(0)) (6.13)

The variance of this can be calculated in a similar manner, using the expqot@d end time:

|8

vy = —dfc + 1 . Z (ﬁs(a) - tend(Oafter(3(a)))? - H (1- Ps(o))) (6.14)
(a))

pf a=1 0€Oafter(5

Finally, the probability that the decision will result irsaccessfuéxecution of the task is then:

ps=1—pr—m (6.15)

The expected end time in this case depends on the end time of the first fulbcesecuted
offer. To calculate this, we use an auxiliary functiegsq : Z — P(P(C) x Z), that maps a
time step{, to a set of tuples, each of which consists of a set of offers that stant aftert and

that end on a common time step, as well as the respective end time. Formally:

cendt) = {(C,e) | C#DANe€ZAC C oatedt)
AVe € oatier(t) - ¢ € C < t(0) + d(0) = e} (6.16)

To give an example, for the provisioning decision in Figure 6ed¢(x + 1) = {({0s},z +
8)7 ({027 04}737 + 10)7 (05,:5 + 11)}

Then we use this to calculate the probability of each possible end time and thespieted
end time:

i
dy— L. (ﬁs(a) Y (e- (1 “[la- Ps(o))> .
)

a=1 (C,e)€Ecend(3(a ocC
11 (1- Ps(o’)))) (6.17)
o' €opre($(a),e—1)
The variance is calculated in a similar manner as in Equation 6.14:

13

S (ﬁs(a)- > ((1 ~TIa —Ps<o>>> -
(Che) (5(a))

Ps a=1 Ecend oeC

11 (1- Ps(o’)))) (6.18)
3(a),e~1)

o' €opre($(a

The calculations outlined above now allow us to determine similar performamampters as
we have used in previous chapters, including the success probabilitgrof/sioned task, its
expected cost, end time and variance of the end time. However, as wesgid@ishe beginning

Chapter 6 Service Provisioning with Advance Agreements 158

of Section 6.2 and as shown in Figure 6.1, the consumer agent will typicdllgrovision an
entire workflow at once, and therefore it will not know the exact affavailable for each task
until later during execution. For this reason, we rely on averages feetfigures, which have
been learnt over time by observing offers on the market. We describe thisgtion in more
detail in the next section.

6.2.3 High-Level Task Strategies

In order to make predictions about unprovisioned tasks, our flexibldgioning approach first
selects simple high-level task strategies for each task. These are degismthat the agent will
later use to submit a call for proposals for the task and to select fromttiveed offers, and that
have some associated statistical information about their performancexdfople, such a high-
level strategy might be to submit a call for proposals some time before thediasitig becomes
executable, and then to provision the most reliable offer available, or it iétat provision the
five cheapest offers at the last moment, when the task is already eXeclu@@pending on the
market conditions, such strategies may have very different perfoenzmaracteristics — the
former might result in a cheaper and more reliable execution of the task thaattdr, but also
carry a risk that the arranged starting time cannot be met if the precedirgfiaisk later than
expected.

In this section, we formalise these high-level strategies, outline how the egens statistical
information about them by observing the market and describe how to nonsimple contin-
gency plans to deal with failures.

6.2.3.1 Strategy Library

High-level provisioning strategies are available to the consumer as a libfatyategies] :

T — P(Q), that maps each service type to a set of strateglas the set of all strategies). Each
strategyw € 2 is described by a number of parameters, as shown in Table 6.3. The first tw
of these prescribe how the consumer will formulate its call for proposays,i€t,(w) = 100
andt,,(w) = 3, it will request services 100 time steps in advance and for three cdiaetime
steps. The latter two describe how it will select from the returned offellexe, we consider
four simple selection strategies for parametév): {cost , unreliability , end _time ,
balanced }. The first three indicate that the consumer will always choose the offiths
respectively, the lowest expected cast(6) +c.(0)— Pr(0)d¢(0)), the lowest probability of not
succeedingl(— P;(0)) or the lowest end timet (o) + d(0)). The selection stratedyalanced

will pick the offers that minimise a sum of these parameters, each normalised toténval
[0, 1], so thatO corresponds to the offer with the lowest parameter and the highest. We
also assume that there is a high-level strategy not to do anythjpg(i.e., the agent will stop
executing the task).

Chapter 6 Service Provisioning with Advance Agreements 159

Parameter | Description

to(w) : N | Number of time steps to provision offers in advance.
tw(w) : ZT | Time interval to request services for.

n(w) : Z* | Maximum number of offers to provision.

Hw) Strategy for choosing offers to provision when more théan)
offers are available.

TABLE 6.3: Task strategy parameters.

Furthermore, we assume that the consumer has some performance inforatetia each of
the strategies, which it previously learnt by observing the responsesahtrket to various
calls for proposals. Specifically, we assume that the consumer hase@igesubmitted calls
of proposals corresponding to its known strategies to the market, calctifetqarobabilities
and expected values described in Section 6.2.2 and built up statisticajesdoa these, with-
out necessarily provisioning or invoking any services. In doing soassime that tasks are
invoked in isolation, i.e., that there are no predecessors amd s6;(f) = 1. These statis-
tics are summarised in Table 6.4. Hetedenotes the overall outcome of the strategy, with
e € {success ,unavailable failed } (which refers to the same outcomes as described
in Section 6.2.2 with the addition afmavailable , which we introduce to denote the case
where no offers were found). We also do not includel#ite outcome here, because we exam-
ine tasks in isolation.

In more detail, these statistics are derived directly from those discussetiini®6.2.2. The
first three,é, (w), ¢.(w) andé(w) are based on Equations 6.3 and 6.7. The ngkt, ¢), is
based on Equations 6.11 and 6.15, as well as on the frequency with weiclnisumer fails
to find any offers. Finally, the duration, squared duration and deneidnce are obtained
using similar calculations as in Equations 6.12, 6.14, 6.17 and 6.18 (with small catidifis
to calculate the duration from the first time step the original request was suthriitieand to
record only the squared duration rather than the variance).

Statistic Description

ér(w): R Average of the reservation cost.

Ce(w) : R Average of the expected execution cost.

éw): R Overall expected cost{(w) + ¢.(w)).

p(w,€) : [0,1] | Average of the probability of outcome

d(w,€) : R Average of the expected time until outcomi known (mea-

sured from first time step that call for proposals was submitted
for).

d*(w,e) : R Average of the expected squared time untfi known.
O(w,e) : R Variance of time {(w, €) = d?(w, €) — d(w, €)?).

TABLE 6.4: Average performance statistics when following state
(e € {success ,unavailable , failed }).

These strategies now allow the consumer agent to make some predictiohshablikely out-
comes, the cost and duration for completing a task, given that it adoptsaincstrategy (see

Chapter 6 Service Provisioning with Advance Agreements 160

Figure 6.5 in Section 6.2.9 for some example strategies and the performandes}atisow-
ever, assigning a single strategy to each task is unlikely to be sufficient@rtain environments
as the consumer needs some capabilities to plan for contingencies and threidicnpact on
the cost and feasibility of the workflow. Hence, we decided to includerabgentingent strate-
gies that the consumer will use if its primary strategy was not successfulle¥éibe these in
the following section.

6.2.3.2 Planning for Contingencies

The contingent strategies we consider are shown in Figure 6.3. kjassthe main strategy the
consumer will use to provision the task, but it also has a number of strategesback on if
the initial offers were not successful:

e s; is used to re-provision offers when the preceding tasks in the workfiow hot been
completed by the time the initial offers are available for invocation. In this dhse,
consumer will wait until the preceding tasks have completed and then proview offers
usings;.

e s, is used when either all initial offers were cancelled, or when the initial syat&l not
result in any provisioned offers at all. In the latter case, the agent waitsall preceding
tasks have been completed and then adgpts

¢ s; is adopted when the initial offers were started, but did not complete sfaigslt is
carried out as soon as the last offer completes unsuccessfully.

task conflict? \) repeat?
Sp unavailable?
Pmi

all offers failed? \) repeat?

FIGURE 6.3: Task contingencies.

To further extend the number of strategies we consider, we note thatrniseroer might con-
tinue to repeat certain strategies until a task is completed (e.g., when thexmndoes not
have a tight deadline, it may decide to select the cheapest offer on thetmattkmpt it, and,
in case of failure, simply try another cheap offer until the task is eventuaihypteted). Hence,
we extend the space of possible strategiessfps,, ands; by adding a repeated strategy,
for eachw €). Generally, these repeated strategies will be carried out as soon asviwip
attempt is known to have failed, except when no suitable offers werelfauall — in this case,
the agent waits a time step before attempting the strategy again.

Chapter 6 Service Provisioning with Advance Agreements 161

Now, for the repeated strategies, we derive their performance statistingdlieir non-repeated
counterparts as folloWs First, we assume that, given an infinite number of attempts, the task
will eventually be successful (provided(w) > 0):

3)1 ifps(w) >0
Ps(wy) = { 0 i pu(w) = 0 (6.19)

Next, the expected cost will rise if there is a chance of failure:

) = (& — & (W) + Ce(w)
Hwp) = (¢ (w Z (1 — ps(w 5o (6.20)

The duration will also rise. To calculate this, we uigw), d2(w) and¥s(w) to denote the
expected value, expected squared value and variance of the duragorfelowing strategw,
given that it either fails or is not started:

Ly Br@)dp(@) + puw)

R R) 621
o D) (B) 4 5() +)

ds(w) = 5] F u) (6.22)
Us(w) = di(w) —ds(w)? (6.23)

S

Now, we letds(w) = ds(w) + to(w), Which accounts for the extra time that is needed to re-
provision, and we calculate the repeated duration, its expected squbvarséance as follows:

dwr) = pofw)- Y2 (1=ps())" (d(w) +n-dsw))

n=0
= dy(w Is(w 1-5sWw) e 21C)
= ds(w) +ds(w) @) (6.24)
dg(wr) = ﬁs(w)z ((1_155(&)))71'
n=0

= dy(w)? + Ts(w) + QCZf(w)dS(w)—Fﬁg(w))
1 —ps(w) i ()2 2 — 3ps(w)
L) i) (e +1> (6.25)
7~)§<wr) = d?(wr)_ VE(WT)Q (6.26)

Finally, the task strategy is annotated witmaximum late probabilityp,,,; : [0, 1). This is the
largest acceptable probability that the task will not be executable wheffféne provisioned by

4For conciseness, we use subscriptsu and f to refer to various outcomes. For examplg,(w,) =
p(wr, success

Chapter 6 Service Provisioning with Advance Agreements 162

s, can be invoked (i.e., that some of its predecessors will not be completed gégy we will
also use this parameter to decide exactly when to provision each task ($iem $e2.4), but for
now it allows us to calculate some probabilities and expected values related&skhe

Specifically, the overall success probability can be obtained by simplyd=yirgy all branches
of Figure 6.3 that result in success:

Dbi = pmlﬁs(sl) + (1 - pml) (ps(sp) + pn(sp)ps('su) + pf(sp)ps(sf)) (627)

The expected reservation cost is the average reservation cost ofrttagypstrategy:
Cri = ér(sp) (6.28)

The expected execution cost is again calculated by considering thebjitdsa of all contin-
gencies:

Cei = Pri¢(s1) + (1 = pmt) (Ce(sp) + Pn(5p)e(su) + Df(sp)e(sy)) (6.29)
We use similar calculations for the expected time (denéfeand its expected square (denoted

ts4), both conditional on overall success as we are not interested in theahs of tasks that
have not been completed:

ti=p; " (poubs(s1) (ta(s) + ds(s1)) +
(1= pot) (Ps(sp)ds(sp)+
Pr(sp)Ps () (dn(sp) + ta(su) + ds(su)) +
Dr(sp)is(sp) (dr(sp) + talsy) + ds(sy)))) (6.30)

i = 97 (Prape(s0) (8s1) + (tals0) +da(s0))”) +

(04 (
(ds(sp) +ds(sg) + ta(sf))2)>) (6.31)

The five parameters described above — the success probability of atable expected reser-
vation cost,c,;, the expected execution cost,, the expected duratiort;, and the expected
squared duratiori, ; — as well as the variance;, which can be calculated as in Equation 6.23,
give some general performance metrics for each task, given a seatafgies. Our agent uses
them to estimate the overall expected utility of an execution strategy, which welablbrate in
Section 6.2.5.

However, so far we have looked at each task in isolation, calculatedusakahs without taking
into account the initial provisioning time (s,)) and we have used an artificial late probability.

Chapter 6 Service Provisioning with Advance Agreements 163

In the following section, we address these issues by adding an initial waitingdithe task
duration, and we elaborate on our use of the maximum late probability, shtvimdt is used
to determine exactly when to start provisioning a task.

6.2.4 Provision Timing

In some environments, it may be beneficial for the service consumer tcagimeger notice
period to the service provider (indicated by a latges,)). However, in these cases, the con-
sumer either has to wait longer (if it provisions services only when thesotisp tasks become
available), or it has to accept an additional risk (if it provisions senbedsre the outcomes and
completion times of any preceding tasks are certain). To express the aafoisita consumer
is willing to take when provisioning a particular task, we use the maximum late ppitipap, ,;
introduced in the previous section. This is the largest acceptable probatilidy provision-
ing taski¢; that one of the predecessorstpfvill still not have been completed successfully by
the time step; was provisioned for. More formally, the consumer will provision taskith
primary strategys, at the earliest possible time stépvherep,,; > 1 — & (t + ta(sp)). Ex-
pressing the starting time of a task in such a way allows us to succinctly exphessto start
provisioning relative to other tasks in the workflow.

Generally, a®,,,; becomes smaller, the gap between the starting tintearid the end times of
preceding tasks becomes larger. This means that the consumer may takettoegecute the
workflow, but it also reduces the risk of expensive re-provisionif@estimate this delay (de-
notedw;), we examine the predecessorg.ofind determine the task during which provisioning
will take place so that the above condition fgy; is satisfied. To this end, as in previous chap-
ters, we again consider only the critical path to taskWe then proceed backwards along the
critical path to identify the task during which to provisignas shown in Algorithm 6.16. Here,
the inputC is a set of tasks on the critical path to taskwhich we define as the longest path
to the task considering the complete duration of each preceding task (thefshenexpected
durationt; and the waiting timed;). The functionsd, w andv map each of the elements 6f

to their respective durations, waiting times and variances(aka given task is established by
the algorithm, we run it iteratively in topological order over all workflow sk

The algorithm returns a tupte= (¢, ¢, w,p;) : ((T"U{none }) x NxR x [0, 1]). Heret, is the
task during which services foy should be provisioned (or the special casee if provisioning
should start immediately) andis the time of provisioning, relative to the starting time of task
t. (specifically, the first time step for whiah will be provisioned). The returned valugis the
expected amount of time between the last completion time of any of the predecests and

the first time step for whicly; was provisioned — this is effectively the expected time that the
agent will waste due to provisioning services in advance. Finalig a revised late probability
that is used by the consumer to update its calculations for the task, as ddsaorthe previous
section f; < pi)-

Chapter 6 Service Provisioning with Advance Agreements 164

Algorithm 6.16 Algorithm to determine the provisioning time.
1: procedure DETERMINEPROVISIONTIME(C, d, w, v, Pi, Sp, i)
2: if pry =0V |C| =0 V t4(sp) = 0then

3 return (¢;,0,tq(sp),0) > No advance provisioning required
4 end if

5: dpre +— 0 > Total duration of tasks precedirig
6: Upre < 0 > Total variance of tasks preceding
7 t— —1 > Provisioning time

8: whileC #0 At < 0do > Step backwards along critical path
9: t, < element ofC that is nearest to,

10: C—C\t,

11: dpre «— dpre + d(tz)

12: Upre < Upre + U(tz)

13: t— @aimvm(l - pml)—‘ — ta(sp) > Determine target provisioning time
14: if £ < 0then > Negativet indicates earlier provisioning
15; dpre «— dpre + w(ty) > Add waiting time before,,
16: end if

17: end while
18: if ¢t < 0then

19: t, < none > Provision immediately
20: t—20

21 end if

222 P 1= Dy (t+tal(sp)) > Calculate actual late probability
23w [0 g (@)t ta(sy) — 2)d > Calculate waiting time
24: if £ > 0 then

25: w — W+ ta(5p) Prnpre vpre (1) > Add time if tasks complete early
26: end if

27: return (tg,t,w,p;)
28: end procedure

Briefly, the algorithm begins in line 2 by considering the trivial case whgpe= 0, where the
task has no predecessors, or where the provisioning strategy comtafis/ance notice time.
In these cases, the consumer will always start provisioning only whetaskatself becomes
available ¢, = t; andt = 0), it will always need to wait the advance provisioning period
(w = tq(sp)) and there will never be any conflicts with preceding tagks=(0).

In all other cases, the algorithm will work backwards from tgsiklong the critical path to find

a suitable task, for commencing the provisioning. At each step, it estimates the time it will
take from that task untit; becomes executable by using a normal distribution with mean and
variance equal to the sum of all duration means and variances alonghteogar. Using the late
probabilityp,,;, the algorithm then determines the earliest acceptable provisioning time,eelativ
to the start time ot (line 13). If this is negative, it continues to consider further predexsss

of ¢;. If no suitable task is found in the set of predecessors, the consum@ranilsion the task
immediately (i.e.f, = none, line 19). Finally, the algorithm calculates the expected waiting
time, considering both the case that the predecessors finish after pnowistwut beforet; is
started (line 23) and that they finish befeyeés even provisioned (line 25).

Chapter 6 Service Provisioning with Advance Agreements 165

Step 1:
d=10 d=20
vi=4 v4=10
w3=3 wy=1.5 considered tasks
=10 dyre= 0
=30 Ve = 0
w1=0 r=-1
Step 2:
dye= 20
Vpe = 10
t=-10
Step 3:
dye =36.5 51=0.07
Vpre = 14 w=5.62
t= 1

FIGURE 6.4: Algorithm 6.16 operating on an example workflow.

To illustrate this algorithm, Figure 6.4 shows how it determines the waiting time forgdesin
task in an example workflow. Here, we assume that it has already beemecen tasks; —
ts, which now have associated waiting times, and is about to examinegtaBkr this task, the
agent has chosen an advance provisioning time of 35 time si{gps)(= 35) and a maximum
late probabilityp,,,; = 0.1.

The algorithm starts from the task in questiog, and initialises the duration and variance of
the predecessors it considers, as well as the current provisioningdiraedpre andt). This is
shown in step 1, which corresponds to the end of line 7 in the algorithm.

Following this, the algorithm enters its main loop and begins to traverse the cptittato task
tg backwards (the critical path is shown by uninterrupted arrows). StbpW®ssthe state of the
algorithm at the end of line 13 during its first iteration. Here, it considersigioning the task
during the execution ofy, but as the duration of the task is too shaif;§ = 20) compared to
the required advance provisioning time of 35, the algorithm determines &veegeovisioning
time and so continues to consider tasks along the critical path.

Chapter 6 Service Provisioning with Advance Agreements 166

Next, it examines task,, which is shown in step 3 (corresponding to the end of line 13 during
the second iteration of the main loop). The algorithm estimates that taskelt, will have a
mean durationlyre = 36.5 and variancepe = 14. This means that the target provisioning time
in line 13 is positive witht = 7 (i.e., tasktg should be provisioned 7 time steps after the starting
time step oft;). Before terminating, the algorithm calculates that the actual late probability of
tasktg is now only 7% f; = 0.07) and that the expected waiting time associated wyjils 5.62.

Before we discuss the overall utility calculations of the workflow in the follansection, it is

important to note that the algorithm presented here is simply a heuristic apgovastimating

the durations of tasks and for determining appropriate provisioning timeslids on several
simplifying assumptions that do not generally hold. Specifically, in contraGhtpters 4 and
5, task durations are no longer independent of each other when theregeprovisioned offers
in advance (i.e., when one task is taking longer, then this may have an impiet daration of

following tasks). Furthermore, our treatment of task waiting times simplifies gigreblem, as

they are not independent from task durations and may also lead to dgioedacsariance along
the workflow, which we do not consider here. Finally, the algorithm usesraal distribution

even when considering a small number of tasks, and this can lead to iagcresults.

Despite these simplifications, we chose to adopt the algorithm to make fasttjpnesi about
waiting and provisioning times, where an accurate analytical solution is ibfegfor similar
reasons that led us to adopt the critical path method in previous chapgiemse use an adaptive
provisioning approach, these possibly inaccurate estimates are corslintevised during exe-
cution and eventually replaced by concrete offers, as we discuss in m@i@ikid Section 6.2.7.
Furthermore, our empirical experiments in Section 6.3 show that our agpwarks well in
practice.

6.2.5 Utility Estimation

As discussed in the previous sections, we can now calculate a numbeiforhpsnce parameters
for every task of the workflow, given a set of strategies and a maximurpiab&bility for each
task. This allows us to estimate the overall utility of the workflow. These calcaktoe similar
to those employed in previous chapters, but we outline them briefly belowofopleteness.

First, the overall success probability of the workflow is simply the prodéietldask success
probabilities:
p=]p (6.32)
€L

whereZ is the set of all task indices.

Next, the overall expected workflow cost can be estimated by taking thefalitask execution
costs, each multiplied by the probability that they are reached, and allatiser costs, each

Chapter 6 Service Provisioning with Advance Agreements 167

multiplied by the probability that they are paid for:

c= Z Cei H 8 + Cpi H S5 (633)

€T JjEB; jEPT<7;)

whereB; is the set of the indices of all tasks that precegandr(7) is a function that returns
the index of the task during whiah will be provisioned (i.e., the index af. in Algorithm 6.16,
or, if t, = none, we assume, ;) = 0 and]_[je@ s; =1).

We approximate the duration of the workflow again using the critical path aroiiraal distri-
bution. To this end, we first attach a predicted completion time and variancethdask:

diend = Wi+t +dipre (6.34)
Viend = Ui+ Vjpre (6.35)
dipre = { 0 T B; =0 (6.36)
max;ep, djend Otherwise
Vipre = { ! "B :.® (6.37)
: Vargmax; ¢ . dj end otherwise

Next, we estimate the overall workflow duration and variance using the tasistbxpected to
finish last:

/\W = dl,end (6-38)

Yw = Ulend (6-39)

wherel = argmaxd;end (6.40)
1€

Given these, we estimate the final expected reward, conditional onllosecaess, using a
normal approximation:

;e / " dw (8) - u(t)dt (6.41)
0

which can be written in closed form and quickly calculated as shown in Eqsati®8 and
4.29 in Section 4.4.3.2. Finally, we combine the parameters to derive an estimtite dwerall
expected utility:

(6.42)

=g
Il
i
el
|
o

In the following section, we describe how we use this utility estimation techniquedafgood
provisioning strategy.

Chapter 6 Service Provisioning with Advance Agreements 168

Algorithm 6.17 Local Search Algorithm
1: procedure OPTIMISE(Y, max, Nfail, Nexp©,a)

2: i, f<—0

3 repeat

4 U’ « GENERATERANDOMNEIGHBOUR(Y)

5: At «— PREDICTUTILITY (') — PREDICTUTILITY (¥)
6: if Aa > 0then

7 U, f— 00

8 else

o: x < drawn uniformly at random frorjo, 1]
10 if z < eAu/(92) then

11: U 0

12: end if

13: end if

14: i, f—1+1,f+1

16: return ¥
17: end procedure

6.2.6 Optimisation Algorithm

We again perform a local search to find a set of high-level strategiesafth task. However,
when employing the hill-climbing algorithms used in previous chapters, we notihegdhe
agent frequently ended its search in a local maximum, where it attempts toipnoaisingle,
cheap service for the first task and then gives up, thus obtaining a seggtive profit. To
avoid such behaviour, we decided to adopt simulated annealing, whictsipr@se to suffer
from local maxima than deterministic local search techniques (Kirkpatrick €1283)). The
optimisation algorithm is shown in Algorithm 6.17 and follows the general streabfirour
previous algorithms. In particular, it is provided with an initial candidate satytig which we
here informally assume to be a function that maps each workflow tatka tuple consisting of
the task’s high-level strategies and its maximum late probability;; svi, s i, Sii, Pmii). Given
this, the algorithm then repeatedly generates a random neighbdu(lofe 4), accepting it as
the new candidate solution if it yields a higher utility than the original (line 7wih a certain
probability, if its utility is less. As is common in simulated annealing, this probability ddpe
on the utility difference, an initial temperatuég a decay factorr and the number of steps so
far. The algorithm terminates aftef,ax Steps or if a better solution has not been found afigr
consecutive attempts (this applies only after the fiegp steps, to allow the algorithm an initial
exploration phase).

For the neighbour generation in line 4, we first choose uniformly at rmAddhether to change
the strategy associated with a particular task or the structure of the warkfitie former case,
we pick a random task and randomly apply one of the following changes:

*We will expand on this in Section 6.2.8.
8All random choices in this section assign equal probabilities to all outcomes.

Chapter 6 Service Provisioning with Advance Agreements 169

o All strategies £, sui, spi, 5;) and the late probabilityp,,,;;, are re-assigned randomly
from the available options.

e One of the task strategies, is picked and changed to so that exactly one of its pa-
rametersi(,(w’), tw(w'), n(w’), ¥(w')) is different from the original. This is done in one
of four ways: either by increasing or decreasing the parameter by ke Step, or by
randomly choosing one of the remaining higher or lower values.

e One of the task strategies, is picked and changed in one of the three following ways: to
arandom.’, to its repeated or non-repeated equivalent, arqiq.

e The late probabilityp,,;;, is changed t@/ .. in one of three ways: by randomly choosing

mli

a value from(p,,;;, 1), from (0, p,i), or by settingy! . = 0.

When altering the structure of the workflow, we change the precedemstraimts to £’

by either introducing or removing temporary edges. This allows us to reptrdse fact that the
consumer may prefer to delay the provisioning or invocation of certain tagkshe outcome of
other tasks is known. For example, the consumer might decide to delay aifzalyiexpensive
task until it knows the outcome of another, highly unreliable task. Clearlynever remove

the original edges i, pick only from new edges that do not introduce cycles and we update
transitive dependencies, so thgtremains a strict partial order.

In testing our optimisation algorithm, we noticed that we could consistently impropetitsr-
mance by making small adjustments, which are, for brevity, not shown in ¥lgo6.17. First,
we apply an additional penalty to solutions that result in a negative expetilieg to generate
a new expected utility valuey/, as follows:

Oail = (1 —p)umax (6.43)

Olate = ()\W/td - 1)Umax (6.44)
0 if w>0

i = U — Ofajl ifa<0AAMw <tig (6.45)

U — Ofail — Olate Otherwise

This further encourages the algorithm to avoid the local maximum descriimeka Second,
we found that we could generally decrease the time to find a good solution bydiatelyg re-
considering the same neighbour generation strategy in line 4 if the previgeisgrated neigh-
bour yielded a higher utility.

So far, we have discussed how the consumer can make high-level deasiout the provision-
ing of its workflow. In the next section, we describe how our mechanismtended to deal
with new information as it becomes available during execution.

Chapter 6 Service Provisioning with Advance Agreements 170

6.2.7 Dynamic Adaptation

As we use a local search approach, our provisioning strategy is easlyded to incorporate
information at run-time and act on it if necessary. For example, if seemiefigbte services
suddenly fail, the agent may need to re-provision the task and possiblbaage its strategies
for later tasks in the workflow, in order to meet its deadline. Similarly, the agyt come
across new opportunities; for example, if it discovers a particularly #tteagffer on the market
and is able to immediately provision it for a current task.

From the discussions above, it should be clear that it is straight-forwandorporate informa-
tion about the performance of services into our calculations. First, wieenathsumer provi-
sions services for a particular task (according,f@nd at the time determined by the procedure
in Section 6.2.4), we use the calculations in Section 6.2.2 for a provisioningj@®eg; to im-
mediately replace those faf,. This gives us a more accurate estimate of the probabilities of
various outcomes, the late probability, the completion time and the cost for theSiaskarly,

as services fail, we remove them from their respective tasks, and velervation or invoca-
tion payments are made, we remove the respective costs from the calcuylasone aim to
maximise the expected utility of the remaining workflow.

Next, we also refine the overall completion time of the task. Specifically, wedentwo cases:
the preceding tasks finish in time for at least one of the provisioned dffebbg invoked or
they finish too late for any provisioned offer to be invoked. In the fornesec we can use
the equations from Sections 6.2.2 and 6.2.3 with minor modifications to deriveballity
distribution for the completion time that assigns probabilities to the various end tifrths o
provisioned offers and uses a normal approximation if the provisiorfedsdhil. In the latter
case, when there is a conflict with the previous task, we use a normabapgtion with mean
and variance as follows:

Mmijate = ta(s1) +ds(si) + (1= &i(ts) ™! /Eoo &i(x)xdz (6.46)
Vilate = Us(s;)+ (1 — ()t /500 El(x)xdr — m?Jate (6.47)

Combining these two cases into a single distribution (each occurring with Igtidpal — p;
andyp;, respectively) gives us a more accurate estimate of the completion time fostheata
we now take into account the provisioned offers. We use this distributioead®f the simpler
normal approximation a$; in the calculations above and in those presented in Section 6.2.2.

Furthermore, we modify the neighbour generation procedure descnil&=ttion 6.2.6 to con-
sider adding to or removing offers from an already provisioned tas&sdlre chosen randomly
from all available offers or from the set of offers that the agent ptansrovision during that
time step (as we will discuss in the next section, offers are not provisiontidthe end of a
time step). More specifically, in addition to changing the structure and higheavisioning
strategies during the neighbour generation procedure, we include $sibitity of changing a

Chapter 6 Service Provisioning with Advance Agreements 171

provisioned task. When this occurs, we select a random task that lmasi@ete provisioning
decisionry;, and randomly carry out one of the following changes:

e Add offer: We first sample a valug from an exponential distribution with meanw?! =
ﬁ Zoe%_ t(o) — tmin, Wheretmin is the lowest starting time in; (when 206% t(o) —
tmin = 0, we useA~! = 1). Then we submit a request for offers for time step-
t, + tmin — 20, and add a random returned offeryp This process allows us to select a
random offer, but with a bias towards offers at a similar time as those gleagl.

e Remove offer: If |y;| > 1, select a random offer that has been addeg); tduring the
same time step and remove it again.

Finally, we also modify Algorithm 6.16 to terminate its main loop when it examines a task
that has already been provisioned. This is because the agent haty aleeided when to start
invoking that task and, as a result, the normal approximation will be far tzssate. Ift is still
negative at this stage, we use the starting time of the provisioned task astem and infer the
absolute provisioning time from there (e.g.t £ —10 and the earliest provisioned service is to
start at time step(o) = 120, the algorithm returns the timte= 110 and specifies the target task

t, = none to signal that the task should be provisioned at an absolute time step).

To conclude our discussion of the dynamic flexible strategy, we now sumnentirighe context
of our generic agent algorithm from Section 3.4.

6.2.8 Updated Generic Algorithm

In this section, we provide a final overview of the strategy that adds¢hseoptimisation prob-
lem outlined in Section 6.2.1. In particular, building on the work describedenipus sections,
we now define the provisioning strategymore formally as a tuple:

U = (a,B8,7,ds,dy, E') (6.48)

whereq, 5 and~y are a set partition of’, describing the current state of each workflow task.
Here,a contains the tasks that have been completed succesgfaiytains the tasks for which
some offers have been negotiated, andontains the tasks for which no offers are currently
provisioned. The functiongg andd., provide further information about the agent’s high-level
decisions for the members ¢f and~, respectively. Based on previous sectiotig(t;) of a
provisioned task; € g is:

dg(ti) = (i, Sti» Sui» 51i) (6.49)

where~; is the set of offers already provisioned fr while the other objects refer to the
contingent strategies. Similarly, (¢;) of a taskt; € g is:

dy(t;) = (Spj» Sijs Sujs Sf5> Pmij) (6.50)

Chapter 6 Service Provisioning with Advance Agreements 172

Algorithm 6.18 Summary of Flexible Provisioning Strategy
1.t 0
2: U « create initial strategy
3: abandoned- false

4: repeat
5: ¥ «— update strategy with recent service outcomes
6: repeat
7 U « local search for better strategy
8: ¥ «— use high-level strategies to provision services
9: until ¥ was not altered in line 8

10: if PREDICTUTILITY (¥) > 0 then

11: provision new services

12: invoke services that are due

13: else

14: abandoned- true

15: end if

16: t—t+1
17: until abandoned-= true or workflow completed

wheres,; is the primary provisioning decision ang,;; is the late probability. Finallyf’ :
P(T x T), is the current set of edges.

Given this, Algorithm 6.18 contains a high-level overview of thaamic flexiblestrategy. At
time ¢ = 0, the consumer creates an initial execution stratégy form the basis of its local
search (line 2). Then, at each time step, the consumer first updates its currantigeany ser-
vice outcomes (line 5), followed by an optimisation process that refines thdplehanging its
high-level task strategies and by altering already provisioned offees {linas described in the
previous two sections. In line 8, the agent considers the provisioningeatfadks, as determined
by the algorithm described in Section 6.2.4. It does this by carrying outstbmceted primary
strategy, but only temporarily associates the chosen offers with the warfdl now (they are
not yet explicitly provisioned). If any such provisions are added to thekflow, the consumer
then repeats the optimisation stage, so that the initially chosen offers can evéugand
possibly replaced by better ones), and this continues until no more nesvasgrovisioned.

Following that, if the consumer expects to receive a positive utility from comtgnthe plan,
it provisions any new offers that have been added to the workflow gluhiat time step and
invokes due services (lines 11 and 12). This procedure continueshentibnsumer either does
not expect to gain any utility from its current plan or the workflow is completed

Clearly, it is time-consuming for the service-consumer to carry out a lotign@ation stage
during every time step of the simulation — especially as the expected utility of thidlawr

’In our work, we start with a simple allocation that usgs with t,(w,) = 0, ty(w,) = 10, n(w,) = 1
and 9(w,) = unreliability as the primary and contingent strategies (all repeated) for every takket
pmi = 0.01. We believe that this already constitutes a feasible strategy in most enentsinas it includes repeated
provisioning to deal with failures but without relying on expensive retdunty. We have empirically verified this
and noted a quicker convergence than a completely random initial strategy

Chapter 6 Service Provisioning with Advance Agreements 173

will not change at each step. Hence, we have found it sufficient tg oat further optimisation
of the current allocation only when its expected utility changes significariy fan earlier
estimate, and also to vary the amount of time spent during the optimisation dep@mdihe
magnitude of the change in utility.

More specifically, we have experimented with various optimisation strategb$oamd the

following approach to work quickly and effectively in a variety of envinents. First, we
always carry out an extensive initial simulated annealing run with the pasasngiven in the

first row of Table 6.5. This is repeated up to 3 times if the resulting allocatios dokyield a

positive expected utility. Then, at each time step, we calculate the diffebetween the current
expected utility and the total costs incurred so far. We carry out a “lopgjfrisation run (see
Table 6.5) if this value is at least 40% higher or lower than the same value thiserwas last

run. Otherwise, if it is at least 20% higher or lower than after the last optiioiseun, we run a
“quick” optimisation procedure. Clearly, these parameters can be eagilstad for particular
problems. For example, when time is criticalax can be set to a fixed cut-off time.

Nmax | Mail | Nexp | © « Threshold
initial | -1 5000 | 2000| 100 | 0.999| -

short | -1 75 200 |50 | 0.99 |0.2

long | -1 1000|500 |50 [0.99 |04

TABLE 6.5: Simulated annealing parameters.

For completeness, Algorithms 6.19 and 6.20 contain more detailed descripfitims strat-
egy, based on the generic agent algorithm from Section 3.4. To fit aanéad model, we
now assume that the parameter to theDdTE procedure is a set of tupl€d : P(C x T' x
{succeeded ,failed }), each of which indicates that an offer for a particular task has either
been successful or failed (this includes both a defection and failure witipensation). For the
sake of readibility, we have left a number of procedures undefinddeas are straight-forward,
but would require a number of additional data-structures and hoysiekgerocedures. Instead,
we outline them only briefly below:

e REALISESTRATEGIESW): This procedure iterates through all tasksyirand identifies
those that are due to be provisioned, based.aandt returned by the BTERMINEPRO-
VISIONTIME procedure (this is the case eithetjf= none andt < ¢, or if the earliest
offer for t, was invokedt or more time steps ago). It then requests and provisions offers
for those tasks based on the associated primary strategy. If noneuac foadoptss,,;
and ignores the task for the remainder of the time step.

e PROVISIONSERVICEYY): Any offers that the agent has decided to provision in this time
step (during the RALISESTRATEGIESand CPTIMISE procedures) are now actually pro-
visioned.

Before we outline the empirical results of the strategy, we now briefly désansllustrative
example of how it provisions workflows in practice.

Chapter 6 Service Provisioning with Advance Agreements 174

Algorithm 6.19 Main procedures of the dynamic flexible provisioning strategy.
1: procedure ADVANCE-FLEXIBLE-INITIALISE (W)

2: ulong — 0 > To store utility of last long optimisation
3: Ushort < 0 > To store utility of last medium optimisation
4 10

5: repeat

6: U « GENERATE-INITIAL (W) > Generate initial strategy
7 U — OPTIMISE(Y, —1, 5000, 2000, 100, 0.999) > Optimise strategy
8 1—1+1

9 until PREDICTUTILITY (¥)>0Vi=3

10: end procedure

11: procedure GENERATE-INITIAL (W)

12: dy — {(ts, (W, wr,wp,w,,0.01)) | t; € T'} > Initial decisiorf
13: v — (0,0,7,0,d,E)

14: return ¥

15: end procedure

16: procedure ADVANCE-FLEXIBLE -UPDATE(O)

17: for all (o.,t;,succeeded) € O do > Iterate through successful offers
18: a— aU{t;} > Add to successful tasks
19: B a\ {t;}

20: remove mapping of; from dg

21: end for

22: forall (o.,t;,failed)e Odo > Iterate through failed offers
23: if t; € Bthen

24: Yi <% \ {0z} > Remove offer
25: if v # 0 then

26: dg(ti) < (Vis Sti» Suis Sfi) > Update offers for task
27: else

28: B — B\ {t:} > No longer provisioned
29: v —yU{t}

30: Spi “— Sfi > Adopt failure strategy
3L if s¢; is repeatinghen

32: Sliy Suis Sfi < Sfi > Repeat failure strategy in future
33 else

34: 53y Suis Sfi < Wnull > Do not repeat in future
35: end if

36: d(ti) < (Spi» Stis Suis Sfi Dii) > Store strategy
37 remove mapping of; from dg

38: end if

39: end if

40: end for
41: repeat similarly for lat®offers (adopting;; if necessary)
42: end procedure

#Here,w, is chosen such tha} (w,) = 0, tw(wr) = 10, n(w,) = 1 andd(w,) = unreliability
bThese are offers that are due this tutfog) = £), but cannot be invoked as their predecessors have not been
completed yet.

Chapter 6 Service Provisioning with Advance Agreements 175

Algorithm 6.20 Implementation of the EGOTIATESERVICES procedure.
1: procedure ADVANCE-FLEXIBLE-STOPCONDITION
2: return PREDICTUTILITY (¥) < 0

3: end procedure

4: procedure ADVANCE-FLEXIBLE -INVOKESERVICES

5 forall ¢; € 5 do > Iterate through provisioned tasks
6: forall o, € ~; do > Iterate through all offers for tagk

7 if ¢(0,) =t then > Check time

8 INVOKE(0g, t;) > Invoke offer

9: end if

10: end for

11: end for
12: end procedure

13: procedure ADVANCE-FLEXIBLE -NEGOTIATESERVICES
14: long « false

15: short« false

16: repeat

17: Unew < PREDICTUTILITY (V) +p

18: if ‘wong/unew— 1‘ > 0.4 then

19: long < true

20: ¥ «— OPTIMISE(Y, —1, 1000, 500, 50, 0.99) > Long optimisation
21: else if |ushory/ unew — 1| > 0.2 then

22: short« true

23: ¥ «— OPTIMISE(Y, —1, 75, 200, 50, 0.99) > Short optimisation
24: end if

25: Wpre — ¥

26: U «— REALISESTRATEGIES V) > Request offers and add
27: until ¥ = Wpee > ...until no new offers are added o
28: Unew < PREDICTUTILITY (W) +p

29: if long = true then > Store utility values for future
30: Ulong <— Unew

31 Ushort <— Unew

32: else ifshort= true then

33 Ushort < Upew

34: end if

35: PROVISIONSERVICEY V) > Provision all new offers

36: end procedure

Chapter 6 Service Provisioning with Advance Agreements 176

6.2.9 lllustrative Example

To show how thelynamic flexiblestrategy works in practice, we again consider the bioinformat-
ics workflows from Section 3.5. In order to simulate a dynamic service markbis scenario,
we keep a list of currently available offers associated with each time step the current step
t; to t; 160 (Nence, the consumer may provision services up to 60 time steps in advBure)
ing the simulation, at the beginning of each time step, we first generate ness tifat become
available in the market by drawing the number of new offers and their pagasrfeom random
distributions. These distributions are detailed in Table 6.6 and depend owrtiigen of time
steps the offer is generated in advance. This time dependency allows ghitteiperformance
differences in offers when they are provisioned with varying advarotiee periods. It is ex-
pressed here by including two rows of distributions for each service-typwe first indicates the
performance of offers when provisioned at short notice (as giyehdiadvance timeolumn),
and the second gives the performance when offers are provisioitie@ Wong advance notice
period.

Service | Adv. Fail. Reserv. Exec. Time Birth/ Re-
Type Time | Prob Cost Cost Death pay
(min.) %) (%) (min.)
BaseC.| <0 [.(0.2,0.5) [U.(0.5,1.0) [U.(0,0) U.(6,10) 1/3 no
>10 | ¢.(0.1,0.2) U.(0.5,1.0) | U(0,0) U.(1,2) 0.1/0 no
GeneA.| <5 | U.(0.1,0.2) | U.(2,5) U.(2,5) U.(10, 30) 1/0.5 | yes
> 10 | U.(0,0.1) U.(1,2) U.(0,0) Uc(5,10) 0.5/1 | yes
Blast <5 |U[(0.5,1) U.(2,3) U.(1,5) U.(20, 40) 172 no
>15 | U.(0,0.1) U.(1,5) U.(2,3) U.(5,10) 0.5/0.5 | no
LookUp | <0 U.(0.5,0.7) U.(0,0) U.(4,10) U.(2,8) 0.5/0.25| yes
>1 U.(0.5,0.7) U.(0,0) U.(4,10) U.(2,8) 0.5/0.25]| yes
Render | <15 | U.(0.2,0.3) U.(5,10) U.(10,15) U.(150,240) | 0.5/1 no
>30 | U.(0,0) U.(5,10) U.(5,10) U.(80,120) | 1/1 no
Transl. | <10 | U.(0.7,1.0) | U.(2,5) U.(1,2) U.(10, 40) 0.5/1 no
>30 | U.(0.3,0.4) U.(0.1,0.5) | U.(0.25,0.5) | U.(5,10) 0.5/0.5 | no
Fold <15 | U.(0.25,0.75) | U.(5,20) U.(5,20) U.(80,400) 3/5 yes
>45 | U.(0,0.05) U.(10,20) | U.(20,30) U.(20, 30) 1/1 yes
Print <0 |U.(04,08) |U.(1,2) U.(0,0) U.(8,12) 22 yes
>1 | U(0.4,0.8) | U.(1,2) U.(0,0) U.(8, 12) 2/2 yes

TABLE 6.6: Distributions used to generate random offers for hiioimatics services.

In more detail, for each service type and for each possible time steptfrtort;_ gy, we first
generate the number of new offers by drawing a sample from a Poisgohutisn with a mean
given by the respectivbirth raté. Then, for each such generated offer, we draw its failure
probability, reservation cost, execution cost and service durationtlienelevant distributions
(depending on how far the offer is generated in advance). When teetivhe lies between
the two extremes corresponding to the two rows for each service type terpatate linearly
between the distribution parameters. For example, when generating afooffiee Base Call
service type for time stefy, o, we draw its failure probability frorty,.(0.18, 0.44). If the service

8We chose the Poisson distribution here because it is a common distributiméelling random arrival events
(DeGroot and Shervish (2002))

Chapter 6 Service Provisioning with Advance Agreements 177

Strategy Parameters < n(w), t,(w), t(®), () > —3 ¢ =<4 20, 10,b>
(offer number, advance time, interval, selection strategy)

cw) =44.40

. ‘() = 37.04

Average Performance Statistics cv((a()/))) ~1.00

(reservation cost, execution cost, 52(0) -6 8 56

success probability, success duration, N &w) =5 34 71

success duration variance) ’)

‘ Higher redundancy

|
w=<12010b>

w=<12010¢> w=<120200b>

&(w) =13.92 éw) =10.22 éw)=10.73
éfw) = 12.85 Clw)=9.28 |- Longerinterval P clw)=16.53
Do) =0.78 Pi(w) =078 Do) = 0.92
dw) =57.74 dw) = 83.35 dy(w) = 54.24

(w) = 274.95

() = 716.78

() = 264.41

1
‘ Earlier provisioning

w=<14010b>

élw) =11.53
éfw) =21.15
Ps(w) = 0.99
dy(w) = 26.82
V(w)=11.77

FIGURE 6.5: Example high-level strategies for theld task.

type is marked as repaying in the table, we set the failure penalty to the congsieeation and
reservation costs (this means that providers for these services abfagd a consumer in case

of failures). Otherwise, it is set to 0. Finally, at the end of each time stepemeve offers in

a similar way as above by drawing a random sample from a Poisson distriittoits mean

given by thedeathrate. This models the demand for such services and we randomly remove the
generated number of offers from that time step (or all offers if the nurakegeds the current
supply).

The service parameters in Table 6.6 are broadly similar to those used inygebhiapters, but
we now include significant performance differences depending on theofipr@visioning. For
example, some services are now generally more reliable and faster vawisigmred in advance
(Base CallandGene Assemblesome offer a far better service overall but are also significantly
more expensive and need a long advance notice perud)(and a few display no difference

in quality over time Look UpandPrint).

As described in Section 6.2.3, we assume that the service consumer ey algained a
library of atomic high-level strategies by observing the market over some Timn#ustrate this,
Figure 6.5 shows a number of example strategies and their statistics feolthservice type.
In the centre, we use the notatien= (1, 20, 10, b) to represents a strategythat provisions
a single offer f(w) = 1) 20 time steps before it is requiret},(w) = 20), with the consumer
considering 10 consecutive time stepg((w) = 10) and selecting the offer that best balances

Chapter 6 Service Provisioning with Advance Agreements 178

all performance characteristic8((-) = balanced)°. We note that this strategy is relatively
cheap, has a success probability of only 78% and takes a long and higtéytain time to
complete. The remaining strategies shown in Figure 6.5 demonstrate the impsicthdf
altering this provisioning strategy — for example, when increasing the advaotice period
from 20 to 40 time steps, the cost rises, but the success probability alsasesrto 99%, while
the duration and its variance drop significantly (these trends all emengetifr® distributions
given in Table 6.6).

Given these strategies, Figure 6.6 shows the initial high-level decisionsuhagent takes for
the bioinformatics workflow (as in previous chapters, we first considewavalue, non-urgent
workflow with maximum utilityumax = 150, deadlingmax = 240 and penaltyy = 1). Here, the
agent generally attempts to spend as little on services as possible, peterwait longer for
completion. Thus, the algorithm decides to provision only single offers fat tasks and relies
on cautious contingency plans, where more single offers are provisgmaeually (and repeat-
edly) in case of failure. The only parallel redundancy in the plan is uset$kst; (Translatg
andtg (Print), which are relatively cheap. Due to the longer deadline in this case, the co
sumer also decides to include few task overlaps in the workflow and instetagto leave the
provisioning of each task until all predecessors are complete. The rodpton to this is5
(Translatg, which the consumer chooses to provision while its predecessors aexatiliting.
Using Algorithm 6.4, the strategy here determines that the task should hisipned immedi-
ately when the workflow is started (for time step 30) and that this will result b gtbability

of a losing the provisioned offers later on and an additional delay of 9.024tems. These
figures are based on the uncertain duration of its predece®assCalland GeneAssembje
which are expected to complete by= 21.08. Overall, the consumer expects the workflow
to finish just before the deadline, after 224.75 time steps (but with conblderariance) and
expects to spend $66.60, thus achieving an expected utiliiy-oR81.73.

Next, Figure 6.7 shows the same workflow after the first offers have pemisioned (during
the inital time step). Here, the agent has consulted the market and followéghttekel strate-
gies in reserving offers for some of the workflow tasks. In particula,dbnsumer has now
provisioned three offers fdg (BaseCal). In this case, it is different from the initial decision of
provisioning a single offer, as the agent immediately revises and improvescigahs as it ob-
serves the actual offers available on the market. Given these threg, tiffetask parameters are
updated to reflect their terms (hence, the task end time is now almost certaiig.edident in
the remainder of the workflow, the consumer has also now adapted its higlstiategies based
on the new information. In particular, knowing thatis almost certain to complete by time step
t = 11, it has decided to provision tagk (GeneAssembjearlier than originally planned. On
the other hand, it also delayed the provisioning of tagslranslatg to a later time. Finally, the
consumer has introduced a number of additional edges into the workflmwe $f these have
no impact on the estimated workflow utility, but the additional edge betwe@rookUp andt;

®Here, and in the remainder of the section, we abbreviate each selectiaygtin{cost , unreliability ,
end _time , balanced } with its first letter.

Chapter 6 Service Provisioning with Advance Agreements 179

Strategy Parameters < n(w), t,(w), tu(®), Iw) >
(offer number, advance time, interval, selection strategy)

l

sp < 1,10, 60, ¢c>
S0 < 1,10,50, ¢ >

5,0<1,0,60,b> 5,0<1,0,60,¢>

Task Strategies Spo<1,0,60,b> Spi< 120,40, c>

............ > Dependency

3 Dependency

(critical path)

Expected Performance

(success probability, reservation cost,
execution cost, end time, variance and
late probability, if non-zero)

p=1.00
& =66.60
BaseCall GeneAssemble Print Ay =224.75

Translate

5p:<1,0,10,¢> 5p:<1,0,20,b> $p:<2,0,10,b>
Spri<1,0,10,b> s <1,0,20,b> S <3,0,10,b>
po=1.00 1= 1.00 . S <130.305> o <1,0400> ps=1.00 Global Perform?.r.lce
=051 ¢ =143 $p7<2,30,10,b> < 10,50, > <1050 e> e =2.30 (success probability,
c = 0.12 co = 003 S5ei<3,0,30,b> - — cer = -0.63 cost, end time
dyong = 8.56 dyons = 21.08 S 0<3,0,30,b> pe=1.00 pr=1.00 dyeng = 224.74 > L
— Vi = 2812 =100 e = 10.99 =5 Yy = 271.98 variance, utility)
— s =0.39 Ces = 21.03 Cer = —
s = 0.91 dgena = 107.28 s = 213.07
s ena = 39.63 Voena = 136.27 Viena = 245.56
Vsens = 38.05
Psi=0.05

(none, 0, 9.02, 0.05) |

Provision Time Decision
(as given by Algorithm 6.15)

FIGURE 6.6: Workflow with initial high-level decisions.

§p<1,10,40,b > 5y <4,10,40,c>)
i< 1,201, ¢> 50 < 5,50, 10, c> 5 <10,20,u>
pi=1.00
=749
Ce: . Cet = 7.60
dyens = dyona = 78.33 diong = 18351
Viend = 41.64 Viend = 967.69 Voo = 1125.57
k
Render

BaseCall GeneAssemble

Translate Render

provisioned
S0 <1, 10,40, ¢ >

$:<2,0,30,b>

provisioned Sprs <3, 10,40, u>

=100
:<7,0.40,c>]] ps
S < 10,10, 10, 1> spi<1,30,30,b> spi< 110,10, > =220
Coy = 0.
dyon = 16.54 ps=1.00 Pe=0.98 pr=1.00 dyona = 22632
=013 vy = 976 = 1.04 = 10.99 =755 Vs = 416,38
s =0.94 s =2024 =755
g =43.29 diona = 109.83 s ong = 208.89
Vsend = 70.18 Voens = 106.99 Vi = 150.71
Offer o, Offer o4

Pfo))=0.16 Pfog)=0.03
T

Offer 0,

c(:(o;) = ()‘,00
d(os) =1
P02)=0.16

Offer o3

Pfos)=0.13

FIGURE 6.7: Workflow after first provisioning.

Chapter 6 Service Provisioning with Advance Agreements 180

(Rendej ensures that the former, slightly uncertain task completes before thesaxgender
task is started.

In order to investigate how the agent’s provisioning decisions change agttkflow becomes
more urgent and valuable, we now consider a second scenario. F@gliisprevious chapters,
we assume a maximum utilitymax = 1000, a deadlingyax = 150 and penaltyy = 20. Figure

6.8 illustrates the initial high-level provisioning decisions, clearly highlightinghareasing re-
liance on redundant provisioning and also on advance provisionirighwlkre allows the agent

to obtain better services and decrease the overall execution time (asesexcprovisioned
before their predecessors are completed). In more detail, the agentidedes to provision
some tasks immediately (such Eald), but leaves the provisioning of others until later (such
as the loweRendertask), according to the advance notice periods required and the exkpecte
completion times of their predecessors.

Next, Figure 6.9 shows the workflow after the first offers have beewnigioned. Here, the
strategy has mostly followed its initial decisions. However, based on thesgifevisioned
for taskty (BaseCal), it also immediately provisionet; (Translatg, rather than waiting an
additional two time steps. As the offers were generally as expected, nmaainiag high-level
decisions are unchanged and the overall expected utility has risen slighédyto an earlier
estimated completion time.

In the following section, we discuss a number of experiments we carrigd iwtestigate some
more general trends of odlynamic flexiblestrategy and to compare its performance to other
current strategies.

6.3 Empirical Evaluation

As in previous chapters, we have conducted a thorough empirical sfumy @lgorithm in a
simulated environment and compared it to a number of current approatiheprimary focus
of this section is to investigate the feasibility of our approach in environmemnarging uncer-
tainty (i.e., where services are more or less likely to fail) and also in enviroismémere the
market favours certain provisioning approaches (e.g., where eanyspning is rewarded by
more reliable services). In the following, we first describe how we simulatedrket (Section
6.3.1), then we detail the strategies we test (Section 6.3.2), draw up a nomgrotheses
(Section 6.3.3) and finally describe our results in Sections 6.3.4—-6.3.6.

6.3.1 Market Setup

In our experiments, we assume that there are five different typeswi€ase = {11, 1, T3,
Ty, T5}). We simulate the dynamic market as described in Section 6.2.9, but nowsadrea
advance provisioning time to 250 time steps. Furthermore, this time we gendeteusing

Chapter 6 Service Provisioning with Advance Agreements 181

5p:<1,060,b> S,0< 101, ¢> 5,:<1,0,50,b>
Spreo <1, 10,50, ¢> Spri<1,0,60,b> o< 1,20,40, ¢ >
p2=1.00 pam 100 =100
=128 6= 0.00 =565
Cos =447 ot = 5.65
ds.eng = 42.58 dyena = 148.43
Vzend = 97.44 Vi = 20675 Viens = 319.68
Blast Jre-eeed LookUp -3 Render

BaseCall GeneAssemble

Render

$:<3,0,10,b> $:<2,0,10,¢> 5,:<10,0,60,¢>
Spri<2,0,60, e > Spri<2,0,40,¢> S0 < 10,0,20, 6>
po=1.00 pr=1.00
o= 1.81 ¢ =488 5,0 <1,40,20, ¢ > §,0<1,30,20, >
= 0.00 =236 L] 5i:<1,0,50,¢>
dyena =3.86 dyona = 13.40 ps=0.97 570<2,20,40, e >
Voena = 2.77 Viens = 8.38 s = 14.97 pr=1.00 Vsens = 20.53
0,end Lend = 23.95 o= 752 '8.end
| dgena = 62.33 cr=8.38
| Voend = 2.50 drena = 148.58
| X
|
|

(o, 2,8.60, 0.00) | |

FIGURE 6.8: Urgent workflow with initial high-level decisions.

§,0<1,0,50,¢> §:<2,0,10,¢> §,0<1,0,20,b>
S <1, 10,50, b> S <1,0,30, > si<4,01e>
p2=1.00 pi=1.00

2= 2.99 = 6.04
Cer =271 Ce3 =578 Cog = 6.11
s ena = 23.96 g = 35.92 dyona = 138.86
Vaens = 40.10 Vi = 7145 Viens = 207.62
‘—r ‘—r ‘
Blast -3 LookUp fy---=--- Render

¢=9453

BaseCall GeneAssemble Print Jw= 15175
vy =3.55

i=829.22

Translate Render

provisioned $p:<2,0,30,e> .
S <3,10, 1, u> S0 <2,0,10,b> 52 <10, 0,60, e>
00 pi=1.00 .
provisioned . s, < 1,30, 10, e>
0.00 ¢ =4.88 provisioned » 3
! s o <1,0,60,e> Spo
0.06 o =233 % ¢ 5 <8 20,30, e> Cos =-0.02
dyend = 3.29 dyena = 12.84 ps=1.00 =097 pr=1.00 dyen = 151.75
Voo = 3.15 Viea=9.13 s = 0.00 ars =0.00 ar =17.32 Vona = 3.5
ces =1.31 Cos = 25.13 Cor = 7.55
ds eng = 30.34 dg.eng = 61.00 dyeng = 143.32
Vsend = 2.51 V,end = 0.00 Viend = 3.14

(none, 31, 0.00, 0.00)

Offer o, Offer 03 Offer og Offer o)y
fo3) =23 (og) = 30 or0) = 41
c05) = 0.16 c05) = 0. o) = 13.70
cl03) =0.35 ci0g) = 0. cloyg) = 26.45
d(o;) =7 d(og) = 6 d(oy) =7
Pfo)=0.13 Pfo5)=0.35 Pfog) = 0.34 Pfoig) =034
Sf010) =40.15
Offer 0, Offer o4 Offer o;
Hoy) =24 #(o7) =30
c04) = 0.20 c(07) = 0.20
cl0g) =0.29 c07) =0.36
o) =7 do7) =6
P02) =0.20 Pfo)=032 Pfo)=0.36
Offer o5 Offer og Offer oy
Hos) =24 Hos) =31 Ho9) =33
clos) = 0.36 c(00) = 0.28
cos) = 0.54 cl09) = 0.41
: dog) =7
Pfos)=0.34 Pfos5) = 0.40 Pfog) = 0.34

FIGURE 6.9: Urgent workflow after first provisioning.

Chapter 6 Service Provisioning with Advance Agreements 182

the distributions in each row of Table 6.7. First, we generate the numbefen$ dfy drawing

a sample from a Poisson distribution with a mean given by the birth rate in thagwewse

b = d = 0.005, unless noted otherwise). For each such offer, we then assign itrtheestype
given in the table and draw a value for the reservation cost, executibamgservice duration
from the specified distributioR® All other offer parameters, such as the failure probability and
penalties, are determined according to our experimental parameters dietédlied sections.

Type | Reserv.| Exec. | Time Birth | Death
Cost Cost Rate | Rate
117 Un(25) | Up(25) | Up(B) | b/2 | d/2
2|1 Un(5) | Up(5) | Up(40) | b/2 | d/2
3| 715 Un(1) | Up(5) | Up(50) | b d
4| T Ur(10) | Ux(10) | Ux(35) | b d
5| Ty Up(50) | Up(1) | Up(25) | b d
6|75 Un(1) | Up(50) | Up(25) | b d

TABLE 6.7: Service type parameters.

In our simulations, a consumer is rewarded a maximum utilitygf, = 2000 for completing a
workflow, with penaltys = 40 and deadlineéy = 200. Each workflow consists of 8 tasks (with
types chosen randomly froffi) and we generate them randomly as in previous chapters, with a
parallelism of 0.25.

We chose these parameters to represent a realistic and challengingoseétima relatively
short deadline, but a sufficient maximum utility to allow the agent to affordralar of failed
service invocations in uncertain environments. The workflows we testdrersmall, because
related work that relies on integer programming technigues was unabld teittelarger cases.

6.3.2 Strategies

In our experiments, we evaluate the performance of four strategiesfirfhéhree are based
closely on the work presented in Zeng et al. (2004), and are broadly simithose described
in the previous chapter (Section 5.2). The fourth isdigaamic flexiblgorovisioning strategy
proposed in this chapter. We briefly describe each below.

6.3.2.1 Local Strategy

This strategy is similar to thadaptive localstrategies described in Section 5.2.1. Again, it
selects an offer to maximise a weighted sum of performance parametergveftpas services
are not always immediately available, we include a lookahead parametbich determines
a window of future time steps that the strategy will consider when selectingetealailable

1%We usels;, (m) to refer to a uniform distribution with meamn that varies arouneh by a proportion of at most
h, i.e.,Un(m) is a uniform distribution on the intervd(1 — k) - m, (1 4+ h) - m]. We useh = 0.2 in all our
experiments, indicating a fairly high heterogeneity of offers.

Chapter 6 Service Provisioning with Advance Agreements 183

offer (we setl = 20 in our experiments as this produces good results for the environments we
consider). Also, in line with the modified system model, we nowgqige) = c.(o) + ¢, (o) (the
combined total cost)a(0) = 1 — Ps(o) (the success probability) ang(o) = t(0) + d(o) (the

end time of the offer) as the performance parameters to consider.

As the completion time is an explicit part of each service contract, we do mat taeinclude
time-out values. Instead, the strategy re-provisions offers immediately tileg are still un-
successful after the promised duration. Furthermore, we do notntlyramnsider parallel re-
dundancy for this strategy, as the existing approaches we base thislapust employ this
technique (and unlike our work in the previous chapter, there is no immeddateigus tech-
nique for including parallel redundancy, as different offers maystait at the same time step
or even overlap at all).

6.3.2.2 Global Weighted Optimisation

This is mostly identical to the non-adaptive global strategy described in 8écfd (using the
updated performance parameters).

6.3.2.3 Adaptive Global Weighted Optimisation

This strategy behaves as the above strategy, but also re-provisfersaice they have failed.
In so doing, it takes into account the money spent on offers to that paihthee time that has
passed, and it decides whether to keep any already provisioned offeg-provision those too
(taking into account the additional reservation cost required).

6.3.2.4 Flexible Provisioning

This is thedynamic flexiblgorovisioning approach as presented in this chapter. For this strategy,
we build a task strategy library by taking 2000 independent observatithe market over time

and recording the predicted outcomes of each of a set of possible ®Esat®hich we generate

by considering the combinations of the advance timgs) < {0, 10,20, 30, ..., 250}, the
provisioning intervalg,, € {1, 10, 20, 30, ...,100}, the number of parallel providerg§w) €
{1,2,3,...,10} and all selection strategies. Considering that each strategy may be tepeate
this means there are 22880 possible high-level strategies for eachesgméc Due to the time
required to build the library, we do this once for every environment in tluts@eand then re-use

the same library when repeating our experiments (we have verified thatitheo significant
difference in our results when using different libraries).

Chapter 6 Service Provisioning with Advance Agreements 184

6.3.3 Hypotheses

In this chapter, we are interested in four hypotheses. The first twadmnsnvironments

where providers fail maliciously without paying compensation, the nextcomsiders cases
where providers offer full refunds for failures, and the final hyysis looks at environments
where providers offer better services when provisioned with varyth@@ace notice periods
(e.g., where there are discounts for either early or late provisioning).

Hypothesidl2. In environments where the performance of services does not depehd time

of provisioning and where they fail maliciously (i.e., do not pay any penltibe flexible

strategy results in a higher profit than any of the other examined strategarsged over all
cases.

Hypothesisl3. In the above environments, thlexiblestrategy successfully completes a higher
proportion of workflows than any of the other examined strategies, gedraver all cases.

Hypothesisl4. Hypotheses 12 and 13 also hold when services offer full refundsilares.

Hypothesisl5. Hypotheses 12 and 13 also hold in environments where the performance of
services is dependent on the time of provisioning.

In the following, we discuss the results of our experiments. More spdbifieee examine
Hypotheses 12 and 13 in Section 6.3.4, then we discuss Hypothesis 14tionS®8.5, and
finally look at Hypothesis 15 in Section 6.3.6. Where appropriate, we favied out ANOVA,
followed by pairwise t-tests to ascertain the statistical significance of thégdatithep =

0.005 level) and we give 95% confidence intervals for all data.

6.3.4 Malicious Providers (Hypotheses 12 and 13)

During our first set of experiments, we evaluated the performance dbtinstrategies in envi-
ronments where service providers are increasingly unreliable. To tdjsvenvaried an overall
average defection probability across several experiments and used this to generate the de-
fection probability of offers!. We also assume that services either succeed or defect (and so
any penalties are irrelevant). This case is challenging for consumea,dmthey do not get
compensation for failures, but it is realistic in highly dynamic distributed systeitnsre some
providers may act maliciously and never perform the service they wédetgppalo. Examples

of such systems include peer-to-peer systems, where providers magffitey leave the system

and where it is difficult to enforce contracts.

The results of our experiments are shown in Figure 6.10, which plots tmagevéilure prob-
ability of an environment against the average profit (as a proportiem,g) that each strategy
gaing?. To complement this, Figure 6.11 shows the associated proportion of meskthat the

Hagain, we draw from a distributiod;, (d), whereh = min(0.2,h’) andh’ is the largest real number with
(1—n)-d>0AN1+h)-d<1.

12We average the profit over 750 runs for the flexible and the local aphes, while we average it over 250 runs
for the global optimisation approaches due to their more time-intensivesnatu

Chapter 6 Service Provisioning with Advance Agreements 185

100 T T T
Flexible —+—
90 Global - -8--
“\ Adaptive Global--e - -
80 1 AN Local — -]
70 L N o
. T~ . \
IS 60 AN \ i
= ' AN F
1 S
e 0 B YOSl
Y N . ¥, ~
TN N T
s 30 : - AN
< AN B N
£ 20 : o \4\
e : < X
o 10 SOIN
o T : N i
g 0 e ff_\\ \\
j% —10 A O LT B----- B----- & ---- #
-20 b .
-30 \i?ﬁ‘f i ki e 3
-40
-50
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Defection Probability

FIGURE 6.10: Performance of strategies in environments wheregeovincreasingly defect.

Flexible —~— Adaptive Global- - e - -
Global - -8- - Local — -+ -

100 ===
90 pr i av g —
80 R \\:x
70 N

60 bé ,\\\" A
50 R —
40
30

Proportion Successful

10 T B SEemes ¥
0 ! ~~__E____> _____) ‘i‘:_\‘_

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Defection Probability

FIGURE 6.11: Proportion of successful workflows in environmentsewmehproviders increas-
ingly defect.

strategy managed to complete with a positive payoff. When providers dedect = 0),
all strategies perform well, achieving between 70-90% of the maximum dewsad there is
no significant difference between either of the global optimisation aphesaand the flexible
strategy. Intuitively, both global strategies are equivalent here usedhere is no need to re-
provision failed tasks, and they both perform well due to the certain infiomthey have about
the cost and duration of the complete workflow. The flexible strategy similarfppns well —
although it does not provision the complete workflow in advance, it malagsae predictions
at the start (with little uncertainty) and provisions services as it proceeaisgh the workflow.
The local optimisation approach performs worse than the other strategiéstakes myopic
decisions and therefore occasionally exceggdsor event,ero

As d increases, all strategies generally perform worse, because thepsimyly have to pay

Chapter 6 Service Provisioning with Advance Agreements 186

for services that do not perform as promised. The non-adaptiveagtgdiimisation strategy

is most affected ad begins to rise, due to it only attempting one execution of the workflow
before giving up. If it succeeds, it gains a relatively high reward jfdtifails, it loses its initial
investment. Hence, the performance trend follows closely the averagessuprobability of

a single execution, i.e., the probability that all eight workflow tasks succéed d)8. For
example, whenl = 0.1, we expect the average success probability to be arogid= 0.43,
while atd = 0.2, it drops t00.8% = 0.17, and this is reflected closely by the shape of the graph.
At d = 0.3 and beyond, the strategy no longer makes a profit, as it begins to fail rodstows

and consistently lose its investments.

In contrast to this, the adaptive optimisation strategy performs considdratwgyr than the non-
adaptive one as the defection probability begins to rise, up=t00.4. On this interval, failures
occur occasionally and the adaptive consumer is generally able to visiprothe workflow

to meet its deadline. However, at= 0.5, failures become too numerous (the consumer now
fails to complete 69.0% of its workflows befotg.r,) and the consumer begins to make an
overall loss. As the defection probability rises further, this loss incegasentually levelling

off towardsd = 1.0. This considerable loss occurs because the consumer lacks the capability
of predicting the overall cost it will incur by re-provisioning and whetkt@s investment is
rational, given the defection probabilities of services. Rather, it willipeis retrying more
services and making further investments, despite a high probability of fgatire= 0.8 and
beyond, the consumer completes no workflows successfully).

Next, the average profit of the local strategy initially drops less quickly tharglobal strate-
gies. This occurs because it is less affected by a small a number of afhae the global
approach, which may need to re-provision its workflow completely upongeshailure. In
some environments, when the defection probability is 0.2 andd = 0.3, it even outperforms
the adaptive global approach for that reason. Beyond that, it drops quackly and follows a
broadly similar trend to the adaptive global strategy, as it also invests h@asgyvices without
ever completing the workflow.

Itis interesting to note here that none of the non-flexible approachegstently outperforms the
others. When service outcomes are certain, the global approachesforrtpthe local strategy,
but as the defection probability exceeds 0.2, the local approach begidmsrimate. Beyond
d = 0.5, the non-adaptive global approach dominates, but only because isrtrakemallest
loss. Also, none of the non-flexible strategies are able to deal effisctivth environments

where the defection probability is 0.5 or higher. Specifically] at 0.5, they all make a loss
and complete less than 40% of their workflows befigeg, At d = 0.6, this drops to 20%.

Finally, we consider the performance of the flexible strategy. At low diefe@robabilities,
it achieves a similar performance as the global approaches. Howéver=a0.2, it begins
to clearly dominate all other strategies. Unlike the other strategies, it reagpheitly about
failures and their impact on the workflow cost and execution time, and sese tiigher fail-
ure probabilities, the flexible strategy is able to deal proactively with faijdogsexample by

Chapter 6 Service Provisioning with Advance Agreements 187

provisioning them redundantly or by favouring more reliable providersmobre detail, this
means that the flexible approach is able to achieve an almost 200% improweraetite best-
performing non-flexible strategy dt= 0.4 and it still makes a positive profit dt= 0.5, d = 0.6
andd = 0.7, when all other strategies make a loss (in fact, the flexible strategy stulbess
completes over 98%, 93%, 88% and 66% of its workflows befgsg in these environments,
respectively).

At d = 0.8, we notice that the flexible strategy makes a small net loss ©97 4 18.25.
However, this is clearly not a significant loss in this case. Averaged alealues ford we
tested, the flexible approach achieves a profit3i.83 + 15.86, while the non-adaptive and
adaptive global approaches achieve orig.80 + 26.85 and183.60 + 37.83, respectively. The
local strategy achieves an average profi2d$.30 + 20.58. Similarly, the flexible strategy
successfully complete$8.55 + 0.51% of workflows, while the remaining strategies complete
only 16.87 4 1.39%, 40.21 + 1.85% and43.93 4+ 1.07%, respectively. These results suppdrt
Hypotheses 12 and 13.

6.3.5 Failures with Refunds (Hypothesis 14)

In our next experiments, we are interested in environments where prexdde not malicious,
but offer full refunds to the consumer in case of failure. Hence, tiepsis similar to the
previous sub-section, but we now assume that when providers fail,intmegdiately refund
both the reservation and the execution cost of the service. This is a mbstcasaenario when
services are offered by reputable companies, when some central entitipraghe system or
when contracts are easily enforceable. Examples of such systems maieikighlp services or
scientific Grids.

The results are shown in Figures 6.12 (average profit) and 6.13 (piampof successful work-
flows) and clearly highlight mostly the same trends as in the previous expésifioerthe non-
flexible strategies (all achieve slightly higher profits and tolerate higherdéagwwbabilities).
The local strategy now performs better than before as it will pay at mas fum each task in
the workflow, and it even achieves a small positive average profit Wieefailure probability is
f=0.6.

The flexible strategy performs significantly better in this environment, aclyeviigh positive
profit even at failure probabilities of up tb= 0.9. More specifically, af = 0.6, our strategy
achieves an average profit 8§71.22, with 96.5% of workflows executed successfully before
tzero COMpared to the best non-flexible profit of oB8l.34 with 19.1% of workflows successful
(an approximately 35-fold improvement in average utility). At= 0.8, the flexible approach
still completes’6.1% of workflows successfully, while the most successful non-flexibleegsa

13An ANOVA of the profits, averaged over all environments, rejelitsthat they are equalf{ = 400.16 and
p < 0.001). Pairwise t-tests confirm that the flexible strategy is significantly better thaofathe others (all with
p < 0.001). To test Hypothesis 13, we compared each proportion of suctessfkflows using Fisher’s exact test,
confirming that the flexible strategy is significantly more successful thgrothers (all withp < 0.001).

Chapter 6 Service Provisioning with Advance Agreements 188

100 T T T
Flexible ——
90 Global --8--
“\\ Adaptive Global--e - -
80 R Local ———]
70 N = > \
€ VTR . \\
= 60 ~3
£ RN F—
2 50 > T ~
I N *
1S 40 N \
‘c =] A L 8 \\\ G \“’\
53 30 X
£ 20 Vg
QE_’ [. N
g 10 [RRR 2y \
) 0 1 "¢ T =
u>) + B----- B g Inge - #,,_—_g_‘_’,__gg
< 1o T3
FEEE S
-20 e
-30
-40
-50
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Failure Probability

FIGURE 6.12: Performance of strategies in environments whereigeoy give refunds.

Flexible —~— Adaptive Global- - e - -
Global - -8- - Local — -+ -

100 gr=m—sr
et T *
90 |t g \\\
. .~ ,\
80 [TN
70 | g
60 % i D
50 s RS
40 \\ \\\V\——
30 T R
20 B S
10 P D
X SR SN S ==Y
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Failure Probability

Proportion Successful

FIGURE 6.13: Proportion of successful workflows in environmentemhproviders give re-
funds.

completesl.6%. This good performance is due to the considerably lower cost of invaléng
vices redundantly, as now the consumer effectively pays for only thersgces that succeeded
rather than all invoked services. Evenfat= 0.9, the flexible approach still achieves a positive
profit of 114.35 and complete81.2% of workflows successfully.

For all values forf tested, the flexible approach achieves an average prdfit26t53 + 14.23,
the global approaches achie@0.60 + 26.07 (non-adaptive) and35.80 + 34.30 (adaptive),
while the local approach achievd3.68 + 17.13. The respective proportions of successful
workflows are81.96 + 0.42%, 16.74 + 1.38%, 41.57 £+ 1.86% and 43.30 + 1.07%, which
support$* Hypothesis 14.

14an ANOVA of the profits, averaged over all environments, rejefitsthat they are equalf{ = 873.93 and
p < 0.001). Pairwise t-tests confirm that the flexible strategy is significantly better taofathe others (all with

Chapter 6 Service Provisioning with Advance Agreements 189

100

Flexible —~— Adaptive Global- - - -
90 Global - -8- - Local —-+-—
80% o .
\ i/
~ 70 : /E/;Y 1
g \\r // 7’/
E 60 \ / 5 Y
x
N I ¥: ¥
— g 0 ’
P -
\2 0 '\\%\)\{\< (/5/ . ’ I .
e I\ \I\,\{/ }?/ I 1 T
T 30 B 7 1
S NS / -7
e i A
o T K // 0'/
g 10 ¥ " ;
< - m e 4 T
Ov—-%\\ ,/%“V——!i\ zz.:’;t\” v -
T L N — + - -
§‘:§5>—$:_E;_"é. cH--B--@-- B - - -8
_lo ~
-20
-30
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Discount Factor

FIGURE 6.14: Performance of strategies when advance provisiosipgeferred (negative
adjustment) and when on demand is preferred (positive eagrs).

6.3.6 Different Market Conditions (Hypothesis 15)

Next, we tested the performance of the strategies in environments wherneagittaace or on
demand provisioning is preferred and given a discount in executidrandsa higher reliability.
Such conditions might occur, respectively, when providers prefeetgilen early notice by
consumers, so that they can plan their resource availability in advanadeor they find their
resources under-utilised and therefore offer discounted servicdks &st minute. To express
this preference, we vary a discount facigrfrom -1 to 1. When negative, this indicates a pref-
erence for early (advance) provisioning and when positive, on déprawisioning is preferred.
In more detail, we use it during offer generation to adjust the distribution searthe execu-
tion cost and failure probability by a proportion given lay. We consider all offers generated
for the current time stef,, as provisioned on demand, and any offers generatet] fay and
beyond as provisioned in advance. Between these two, we vary theidigaotor linearly. For
example, whenl = —0.6, f = 0.5 and we generate an offer for, 30, then the corresponding
mean failure probability i§1 —3/4-0.6)-0.5 = 0.275. We use all other experimental parameters
as in our first experimental setup, but kegpt 0.5, and now sét = 0.5 andd = 5, to ensure
that discounted offers are available only at their respective time steps.

Figure 6.14 shows the average profit of the strategies in these envirtmymaile Figure 6.15
shows the proportion of successfully completed workflows. Here, weethat the non-flexible
strategies perform well only in extreme conditions — the global approaotuet when advance
provisioning is preferred, while the local strategy performs wel ésnds to 1. When neither
advance nor on demand provisioning is strongly preferred, none afdhdlexible strategies

p < 0.001). Next, we compared each proportion of successful workflowsgusisher’s exact test, confirming that
the flexible strategy is significantly more successful than any othersitalpw< 0.001).

Chapter 6 Service Provisioning with Advance Agreements 190

Flexible —~— Adaptive Global- - - -
Global - -8- - Local ——+-
5 w000 : + - e e
g oof ; B R =, e
@ L Eal
Q
S 80 |-~ S & -
d 70 R +: x PR
§ eof g % e
S 50 i V- =
NS I S NI T ST TNE S s R S
o RN [.qr‘%i-‘” \§,—§V l o'/
30 R
B Y-+
20 I Ty
10 i
o B B--8-n . mo.mem o om B F-p-B-m-

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
Failure Probability

FIGURE 6.15: Proportion of successful workflows when advance giowing is preferred
(negative adjustment) and when on demand is preferredt{aidjustment).

does well, because most services in the market are unreliable. In fdcet at0.1, these strate-
gies all make a net loss. In contrast to this, the flexible strategy managehitveaa high
profit over all environments, and, in most cases, significantly outpadg@il other strategies.
This is because the flexible strategy adjusts its provisioning strategies tovihenement — at

d = —1, it provisions services, on averagi,.05 £ 0.72 time steps in advance, dt= 0, this
drops to14.71 + 0.36 and atd = 1, it provisions only3.57 4+ 0.12 time steps ahead. How-
ever, we also note that the flexible strategy is now outperformet-at —1 (atd = —0.9,

there is no significant difference). In this cases, it suffers frompnovisioning all offers in
advance (and thereby producing a tight-fitting but reliable schedulsfedd, the strategy con-
tinues to provision only parts of the workflow (although now provisioninghier ahead) and
hence sometimes exceefds,. Nevertheless, when averaging over all valuesdfepnsidered
here, the flexible strategy achieves an average utilityldB.61 + 12.12, while the global ap-
proaches achieve only09.69 + 17.78 (non-adaptive) and28.40 + 24.70 (adaptive), and the
local approach achieveéd 6.37 + 15.17. The corresponding proportions of successfully com-
pleted workflows ar®5.83 +0.22%, 13.11 £ 0.90%, 53.20 + 1.36% and59.78 + 0.77%, which
support$® Hypothesis 15.

To summarise our empirical evaluation, Table 6.8 shows the average utilitg&atdgy gained
in the various environments discussed in this chapter. It is clear that thigldlatrategy out-
performs all other strategies we tested here. In the following section,ieffylshow that these
trends also hold for larger, more complex workflows.

5Again, an ANOVA rejectsH) that all mean profits are equal’ (= 1825.08 andp < 0.001). Pairwise t-tests
confirm that the flexible strategy outperforms all others (all witke 0.001), and Fisher’s exact test confirms that
the flexible strategy is more successful than the others (allpvith0.001).

Chapter 6 Service Provisioning with Advance Agreements 191

Strategy Environment| Utility Success %

flexible malicious 725.83 = 15.86 | 68.55 £ 0.51
global malicious 173.80 +26.85 | 16.87 £ 1.39
adaptive global malicious 183.60 + 37.83 | 40.21 +1.85
local malicious 212.30 £20.58 | 43.93 +1.07
flexible refunds 1026.53 + 14.23 | 81.96 + 0.42
global refunds 200.60 +26.07 | 16.74 +1.38
adaptive global refunds 335.80 £34.30 | 41.57 +1.86
local refunds 473.68 +17.13 | 43.30 +1.07
flexible discounts 1143.61 +£12.12 | 95.83 +0.22
global discounts 109.69 + 17.78 | 13.11 £0.90
adaptive global discounts 428.40 +24.70 | 53.20 +1.36
local discounts 516.37 £15.17 | 59.78 £ 0.77

TABLE 6.8: Summary of empirical results.

6.4 Performance in Complex Environments

In this section, we consider large workflows with 50 tasks, a parallelism2&, 0,,ax = 6000,
deadlinetmax = 500 and penaltyy = 50. We assume that tasks belong to one of ten types,
and we generate offers randomly in a similar manner as described in Se@iBnl&it now use
the characteristics given in Table 6.10 and the corresponding distribtftioriEable 6.9. Table
6.10 now includes two rows for each service type, in order to generate vaaed offers (e.g.,
early offers generated by the first row are generally cheaper buta#e longer and are less
reliable than those generated by the second row). Furthermore, theme gopulations have
been chosen to represent a setting where some services are bettgrasisioned in advance
(such as the first row for service type 2), others are better whensmoed on demand (the
second row for service type 5), but most offer various trade-affavben the different qualities
when provisioned earlier or later. For all types, we assume that theyecprolisioned up to
300 time steps in advance.

Costs Duration Reliability Availability
(Birth/Death Rates
low U(1,3) U(1,5) U(f,1.5f) 0.05/1
medium | ,.(3,10) U.(5,20) | U(0.8f,1.2f) 0.5/05
high U.(10,25) | U.(20,60) U.(0.5f, f) 2/2
v.high | 4.(25,100) | U.(60,240) U.(0,0) —

TABLE 6.9: Distributions used in Table 6.10.

Figure 6.16 shows the performance of ty@mamic flexiblend thdocal strategies (it was impos-
sible to provide results for either of the twtobal strategies, as they were unable to deal with the
larger number of offers and tasks in these setifjgT he figure shows that tHeexiblestrategy

®The variablef used to define the reliability distributions is the average failure probability irvengsetting.
Where necessary, we assume that upper bounds are adjusted todmt at

"We attempted to solve the associated integer programming problem, bE>Q#h out of its allocated memory
(1.5 GB) after two hours.

Type Time Reserv. Cost Exec. Cost Duration Availability Reliability Refunds
early | late early | late early | late early | late early | late eary | late
1 >20 | <5 low low low medium | medium| high high low high medium no
1 >30 | <10 high medium | medium | medium low high medium | medium| v.high | medium yes
2 >5 <0 low medium low medium low medium | high low high low yes
2 >40 | <10 high medium | high low medium | medium| high low medium | medium no
3 >100 | <0 low v.high low high low high low low v.high low no
3 >1 <0 high high high high medium | medium | medium | medium | medium | medium no
4 >150 | <0 high low low v.high low medium | medium | medium | v.high low yes
4 >150 | <0 low high v.high low medium low medium | medium low medium yes
5 >60 | <0 | medium low medium low low medium | medium low medium | medium no
5 >40 | <10 high medium | high medium low low low low high high no
6 >50 | <5 high low low high low v.high low medium | medium low no
6 >1 <0 low low high high high high medium | medium | high high yes
7 >70 | <30 | medium low low low low high medium | medium| high low no
7 >30 | <10 | medium| medium low high high low high low medium | high yes
8 >30 | <0 high low medium low high medium | medium| high high low yes
8 > 100 | <50 low high low high low low medium low v.high low no
9 >50 | <10 | medium| high medium low medium | high medium | high medium | high no
9 > 30 <0 high medium low low medium low high low medium | medium no
10 | > 200 | <50 low medium low high medium low high medium | high medium yes
10 > 200 | <50 | medium| medium low v.high low medium | medium | medium | medium high yes

TABLE 6.10: Service types used to evaluate complex environments.

SIUBWS3.IBY 92UBAPY YlIM BUIUOISINOIL 92IAISS 9 Ja)deyD

¢6T

Chapter 6 Service Provisioning with Advance Agreements 193

100 T T
Flexible ——
90 Local ——- 7]
£ ol SN
70 S =+
S == i
% 60 Y\\\‘;L\o\
1S ”K\ \][\
“— 50 <
o ~
& 40 >
£ 30 i
g N AN
20
<) Sf\
g 10 <z
-10 S - |
-20 B atetin
-30
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Failure Probability

FIGURE 6.16: Performance of strategies in more complex environsnen

Flelxible — ' Local Tla--

R H T

90 Fowwps g

o SN '\\,,
70 A\
60 =
50
40
30
20
10

0 em &]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Failure Probability

100

Proportion Successful

FIGURE 6.17: Proportion of successful workflows in more complexiemments.

again achieves a high average profit over most environments, evantiadailure probabil-
ity is high. It also performs significantly better than tleeal strategy over all environments
considered here.

However, we also note that tHiexiblestrategy makes a small loss when the failure probability
is 1. Here, it still attempts some workflows (as there are usually some offdgravmon-zero
success probability when provisioned at a specific time), but then oftes Hightly longer to
complete than anticipated. We believe that this due to our heuristic workfl@tioestimation
technique, which is inherently optimistic. Furthermore, in contrast to the sieatpgesented

in previous chapters, we also use this heuristic to predict the probabilityaitiat will conflict
with each other. As discussed in Section 6.2.4, this introduces furthewiraaies, which we
believe contributes to the overall loss incurred in this particular environnisgpite this, the
general trends of the strategy are promising and it still completes most wesk$laccessfully
even when the failure probability is high (as shown in Figure 6.17).

Chapter 6 Service Provisioning with Advance Agreements 194

Having discussed the experimental results ofdiieamic flexiblestrategy, we now summarise
the work presented in this chapter.

6.5 Summary

In this chapter, we considered environments with dynamic service marke¢seuhe prices,
availability and other parameters of services change over time, and wigeceribumer enters
explicit contracts with providers. To deal with such environments, we iggelavel provision-
ing strategies that are based on statistical market observations, andradlyally provision
workflows, in order to retain flexibility and deal with failures. By addregghis type of system
model, we covered the remaining model requirements: M.2.b, M.3.b and M.thelfmore, as
the strategy iteratively provisions the workflow over time, using new informaghmut failures
and service availability as it is observed, the extended flexible strategisaftthpter refines its
decisions adaptively, thus addressing Requirement A.4.

By carrying out an experimental study, we have shown that our straidgrms significantly
better than the current state of the art, and over a range of environmieatsermore, we
demonstrated that the strategy adapts well to prevailing market conditiongipning services
earlier when providers offer discounts for advance provisioning@ang provisioning to the
last moment, when this is favoured by the providers.

Chapter 7

Conclusions and Future Work

This final chapter concludes the thesis by reviewing its contributions to thedietérvice

provisioning and by outlining opportunities for future work. To this end,éct®n 7.1, we look
back at the research problem that has motivated this thesis and provgtelavel overview of

the techniques we have proposed to address it. Then, in Section 7.2,onesdiis more detalil
our research contributions and relate these back to our original rewgrte from Section 1.4.
In Section 7.3, we compare and contrast the flexible strategies developadtibut this thesis.
Finally, in Section 7.4, we propose several ways in which our work caxtemded in the future.

7.1 Research Summary

Today’s computer systems are increasingly distributed and inter-codrinetature, thus allow-

ing organisations to share expensive computational resources aticiteviske range of services
online — from running complex data processing tasks, providing creditkshand travel reser-
vations, to selling physical goods. In this context, service-oriented ctingpis emerging as

a powerful methodology for allowing heterogeneous and distributed agtapplications to

discover and interact with each other automatically. Clearly, employing stlekible systems

engineering approach promises tremendous benefits, as users aaatautweir business pro-
cesses and workflows, dynamically outsourcing complex services to phosgelers that best
suit their needs.

However, as we have argued in this thesis, it is necessary to view pamtgipaopen service-
oriented systems as autonomous agents that have their own goals andrebjettius, they
cannot be assumed to follow service requests blindly, adhere to theirtiaddefunctionality,
or even honour pre-negotiated contracts. This uncertainty posegiemaise challenges to con-
sumers that rely on external service providers to meet their own objecéind it is a particularly
pressing concern in scenarios where consumers execute largeomaiKflave strict deadlines,
and where providers demand remuneration for their services.

195

Chapter 7 Conclusions and Future Work 196

Reviewing the current literature on service provisioning, we found tkiatieg approaches do
not address this uncertainty in a satisfactory manner. Most view sewilceels or contract
violations as exceptional and rare events that are handled purelywebaeither by manually
specified error handling procedures, or by re-provisioning the fadek. Other approaches
impose strict constraints to ensure that only highly reliable services avesiomed, but this is
infeasible when all providers are unreliable or when workflows comgistundreds of tasks.
Some existing work employs redundancy to deal proactively with highlyliabte providers,
but this is typically done in an ad hoc manner and does not explicitly balana®shef intro-
ducing this redundancy with its benefit.

Against this background, we examined work in the field of multi-agent systathglantified a
number of techniques that we believe are vital for addressing the ahovie@mings. In par-
ticular, we built on work on trust and reputation to model the uncertain hetnaef service
providers using probability theory, and we placed the interactions ofucoaiss and providers
within the context of a service market, where providers are financially menated for their
services (and possibly allow consumers to reserve resources incajlvaBased on this, we
developed a decision-theoretic approach that enables a consumeicetgér appropriate deci-
sions on behalf of its user with minimal human intervention. In particular, thisosgh reasons
explicitly about the uncertain behaviour of service providers to deciderhany services to
provision for each task in a workflow, which ones to choose from afskétrogeneous ser-
vices, how to deal with services that do not return explicit failure message also when to
start negotiating service contracts in advance.

In the following section, we provide a more detailed summary of our apprdaghlighting
the novel contributions we have made to the state of the art and relating okiback to our
original requirements from Section 1.4.

7.2 Research Contributions

In this thesis, we set out to design a set of methods for building a computadigeat that is

capable of executing complex workflows in highly dynamic and uncertauicgeoriented envi-
ronments. We achieved this by adopting decision theory as a principledi@inthat not only

allows the service consumer agent to make decisions autonomously orisébebeaif, but that
also builds naturally on top of work in the area of trust and reputation thaelstioe behaviour
of service-providing agents probabilistically. Employing this frameworknvegle a number of
significant contributions that allow a software agent to execute its workfleffectively even

in environments where service providers are highly unreliable. In thewiitp sections, we
outline each of the main contributions of this thesis (Sections 7.2.1-7.2.5mformarising
how we have addressed our original requirements (Section 7.2.6).

Chapter 7 Conclusions and Future Work 197

7.2.1 Redundant Provisioning

In this thesis, we proposed the use of redundant services as a fumadaitoel for addressing
uncertainty. This approach is based on similar techniques in the area bflityliengineering
and offers two key advantages: provisioning redundant servicegrail@l for a particular task
allows the consumer to both increase the overall probability of successlbasaecrease the
expected task duration. However, introducing such redundancylycldao leads to a higher
overall cost, as the consumer may need to pay for all provisioned service

Previous work has employed redundancy using a static approachyusuarovisioning a fixed
number of parallel services for each task. However, our approdbb fgst that reasons explic-
itly and fully automatically about the level of redundancy that is appropratedch workflow
task, using a principled decision-theoretic framework. In doing so, we itk consideration
several important factors. First, we use the performance characten$services, e.g., to use
greater redundancy when provisioning particularly unreliable serviesond, we explicitly
balance the cost of redundancy with its benefit (e.g., when they aragixpewe rely on fewer
services, but when they are cheap, we provision more in parallel). , Mardonsider the impor-
tance and time-constraints of workflows to decide how much to spend deesand whether
redundancy is justified (e.g., when a workflow is of high importance to thewuar, it may be
appropriate to use redundancy even when services are reliabld)y,Fonaapproach also takes
into account the structure of workflows, e.g., to rely on higher levelscifmdancy towards the
end of the workflow, in order to ensure that the high investment in earlieices is not lost.

7.2.2 Flexible Re-Provisioning

Current approaches for handling failures in service-oriented sydigtsily assume that ser-
vices return timely and truthful error messages to inform consumers wiegratie unable to
provide a requested service. Clearly, such an assumption is unrealispenrsgstems, where
providers may crash randomly without notice or even defect maliciously edteiving the
payment for their services. To address surdshfailures, previous approaches have relied on
manually specified time-out periods after which it is assumed that a senddaileal. However,
this requires significant human intervention and it is an inflexible approathltes not exploit
knowledge about heterogeneous services (some of which may betFastethers) or that can
easily be adapted to the structure or time-constraints of a workflow.

To address these shortcomings, we are the first to propose a flexibisipning mechanism
that determines automatically when to stop waiting for apparently failed seraizbstart re-
provisioning new services for the task. This mechanism uses probabiligireniation about
the duration and reliability of services and thereby explicity balances thitoegive services
sufficient time to complete their task with the possibility that they have already silizilthgl
and will never return a result. Furthermore, it again takes into accoamggerof factors, similar
to those described in the section above. For example, when workflowsstrast deadlines, the

Chapter 7 Conclusions and Future Work 198

consumer may start to wait shorter amounts of time. Similarly, it may allocate lorajgngv
times to tasks that are less likely to have a significant impact on the duration wbtféow
(i.e., those that are not on the critical path).

7.2.3 Limited Information Availability

Related work that has considered unreliable service providers typicallynges that the service
consumer has access to detailed performance information about edablawservice. In con-
trast to this, we are the first to explicitly consider a spectrum of casesevdiféerent amounts
of information about services may be available:

¢ Full Information: Complete performance information about each service in the system
is available to the consumer. This may be the case where consumers sharatith
about providers using an effective reputation system, or where themrie centralised
observer. We believe that such a case is actually rare in open multi-3gésns, as new
providers may enter at any time, about whom no specific information is alailab

e Moderate Information: Specific information about some individual services may be
known, but other information is often generalised to larger groups ofiggos. As an
example, this may include open systems, where consumers will have intefracieently
with some providers and so collected accurate information about their sgriiat where
there are also groups of providers with whom few interactions have taleee (e.g.,
new entrants to the system). In the latter case, the consumer can only «seliged
information, perhaps inferred from previous experience with membeggabf a group.

e Highly Limited Information: There is no specific information to distinguish one service
provider from another. This may be the case in service-oriented systatrdothot offer
any form of reliable reputation mechanism and where the consumer’'siexpe with
providers is severely limited. Similarly, it is applicable in systems, where thecserv
population changes rapidly and where it is not feasible to track and whefydentities
of the providers (such as in a peer-to-peer system). In these systemsnsumer has to
rely on information only about the whole population of service providesssipbly based
on knowledge about the complexity of the task itself or previous experigitbesuch
providers.

In this context, we developed several techniques that exploit the ¢baséics of these different
cases. Specifically, in Chapter 4, we considered the latter case wHeierited information
about the whole service population is known. Here, we showed thatwelen all services
are highly unreliable, the consumer can use redundancy to proactiielgrine the expected
performance of the workflow to suit its value, structure and time constrairiis is a novel
contribution, as existing work on service provisioning relies on diffezsrin the performance

Chapter 7 Conclusions and Future Work 199

of individual services, in order to select a single service that best rfezgiven constraints.
Furthermore, our approach allows us to efficiently calculate a numberrfofrpence parame-
ters, regardless of how many service providers there are.

In Chapter 5, we then considered the first two cases, where moreljyassmplete) informa-
tion about individual heterogeneous services is known. For sudsca® suggested a model
that groups the services for a given task into heterogeneous popslatibich allowed us to
significantly speed up our proposed algorithm.

7.2.4 Gradual Provisioning with Reservations

Existing work on service provisioning has usually made the assumption thiateseare invoked
purely on demand, i.e., that service consumers contact providers dhlytiine a given service
is required. This model is commonly supported by current Web servindst & an approach
we adopted in Chapters 4 and 5. However, there is a growing trend t®adveance agreements,
in order to provide consumers with higher reliability and some assurancedhates will be
available when they are needed. While some work on service provisioeggyauch advance
agreements, their strategies rely on provisioning entire workflows in advatlearly, this
produces brittle workflow when there is uncertainty, as a single failedcsamay mean that the
consumer misses all subsequent reservations, and this is particulariy evitien the consumer
has had to make an advance payment for these.

To address these shortcomings, we are the first to propose a more fepqilbteach to handling
advance agreements. Rather than provision an entire workflow at@ucstrategy provisions
only some tasks in advance and delays the provisioning of other tasks latgrdime. This

allows the consumer to reduce the risk of missing reserved servicesaasnad until it is more

certain about the time the service will actually be needed. Furthermorepproach naturally
allows a mixed system model, where services may be provisioned either omdl@men ad-

vance, but with potentially significantly different characteristics (e.gvises provisioned on
demand may take much longer and may be more failure-prone than resapgdat may also
be far cheaper). We believe that such a model may become common in ldrgpemservice-
oriented systems, but this aspect has not been considered by woekicesprovisioning so
far.

7.2.5 Adaptive Provisioning

While some work on service provisioning has proposed adaptive agipsahat monitor the
execution of a workflow, these react only to breaches of serviceeagmets or of the overall
workflow constraints (and at this time, it might be too late or very costly to mrcthe work-

flow). In this thesis, we proposed a novel, more proactive approachetontinitoring and
run-time adaptation of workflows. Specifically, by using probabilistic servimdels, we can

Chapter 7 Conclusions and Future Work 200

predict when services are likely to cause problems even if no constravedleen breached yet
(e.g., we might find that a task is completed slightly later than predicted, resultadigher
probability that already provisioned services later in the workflow will r@ekecutable). This
allows us to react earlier and in a more appropriate manner to potential misble

In such cases, we then take corrective actions to minimise the disruption totkiow. These

might include re-provisioning tasks of the workflow, but also adding aduitioedundant ser-
vices to already provisioned tasks or preparing contingent plans thatrdy activated when
problems occur. Furthermore, our approach will detect infeasiblefleark early during exe-
cution, as it makes probabilistic predictions and so anticipates failures dlirtkegiolations. In

these cases, the consumer may abandon the workflow to avoid wastingcessavhile existing
work will typically continue to re-provision the workflow until it eventually biehes one of its
constraints (e.g., budget or time constraints). Finally, unlike other workadaptive mecha-
nism also provides for the case when services perform better thaotegpeSpecifically, our
approach may provision less services than originally planned when thdlovelis ahead of
schedule or when it discovers particularly promising offers at run-time.

Now, having briefly summarised the five principal contributions of this thessreturn to the
research requirements we originally set out to address in Section 1.4 eadidcuss how they
have been covered by the work presented in this thesis.

7.2.6 Review of Requirements

In the following discussion, we summarise how we have addressed ourabmgodel require-
ments (Section 7.2.6.1), workflow requirements (Section 7.2.6.2) and agpntaments (Sec-
tion 7.2.6.3).

7.2.6.1 Model Requirements

We begin by discussing how the model we have adopted in this thesis meetdgialae-
quirements.

M.1. Uncertain Service Behaviour
Building on work in the area of trust and reputation, we decided to modertain be-
haviour using a probabilistic framework. We described this in detail in Ch&mtad used
it as the foundation for our decision-theoretic techniques in all subséghapters. More
specifically, this has allowed us to express uncertainty along the followingdiores:

a. Service Success
Throughout the thesis, we have assumed that providers may fail to priwait
services and represented this using a failure probabjfiisy). In Chapter 6, we

Chapter 7 Conclusions and Future Work 201

M.2.

M.3.

M.4.

M.5.

extended this model to include cases where the provider fails, but effevmpen-
sation to the consumer.

b. Service Duration
Similarly, we modelled uncertain service duration using a probability distribution
over possible service completion time&4;, x)). In particular, in Chapters 4 and 5,
we assumed that the actual duration was not known to the consumer unéihtiees
was completed. In Chapter 6, we used a slightly different model and addinaie
the duration was an explicit part of the contract (as this is a common termfin suc
contracts).

Remuneration for Service Provision

Services generally require financial remuneration in our model, and {s1sg has been
a central consideration in our decision-making algorithms. In particulayssd both of
the following two models:

a. Fixed Pricing
In Chapters 4 and 5, we used a fixed pricing model, which applies to systhers w
providers publish their prices in advance to all customers.

b. Flexible Pricing
In Chapter 6, we considered a more flexible approach, where a naw was pro-
duced for each service request, thus resulting in a more uncertain remano.

Service Interaction Models

While most current service-oriented technologies support on demandaitiwn as the
prevalent interaction model, the need for advance agreements is emergingrimber of
application areas. For this reason, we decided to cover both in ourchsea

a. On Demand Invocation
In Chapters 4 and 5, we developed technigues for a model that relies solely
demand invocation.

b. Advance Provisioning
In Chapter 6, we considered an extended model, where services meyimqned
in advance, possibly resulting in different performance characterigtes special
case, this model includes on demand provisioning, when the consumer attempts
reserve a service for immediate use.

Provider Heterogeneity
In Chapters 5 and 6, we explicitly model providers that differ in the qualitsheir ser-
vices.

Dynamism
In Chapter 6, we model availability of service offers using a stochasticess) where
offers are created and removed from the market according to a fixtaddoid death rate,

Chapter 7 Conclusions and Future Work 202

and where the terms of these contracts are drawn from probability distributi®his
leads to a market with considerable dynamism, where the availability of a typevi¢es
changes over time and where the qualities are similarly uncertain. Howeveymently
do not consider systems where the underlying parameters of thesesggo@dso change
over time.

7.2.6.2 Workflow Requirements

In this section, we summarise how our workflow model meets our originalresgants.

W.1. Workflow Expressivity
As described in Chapter 3, we model workflows using directed acyclighgtaThis is
consistent with much related work in the area and allows us to represeotltwairig:

a. Parallel Task Ordering
Two tasks may be executed in parallel when there is no path from one task to th
other.

b. Sequential Task Ordering
Otherwise, the structure of the graph dictates dependencies betwegsmtaksthe
sequence they must be executed in.

W.2. Use of Appropriate Reward Model
We use a simple utility functiom to represent the value of completing a workflow. Im-
portantly, this depends on the time of completion, such that a workflow compatédr
may be more valuable than one that is completed later.

7.2.6.3 Agent Requirements

In this section, we review how we have addressed our original aggmreenents.

A.1. Principled Decision Framework
We adopted decision theory as a principled framework for building a sepoasum-
ing agent. As this builds on probability theory, it was a natural choice falimtg with
provider uncertainty.

A.2. Failure Handling
Our proposed algorithms deal with failures in the following ways:

a. Reactive Failure Handling
Throughout this thesis, we consider the appropriate re-provisionisgreices when

Chapter 7 Conclusions and Future Work 203

failures occur. This allows the consumer to recover quickly from failares rea-
soning about this explicitly before execution enables the agent to prediovérall
utility and feasibility of the workflow. In Chapter 6, we additionally introduce-co
tingent re-provisioning plans for various types of failures that mighuoduring
execution.

b. Proactive Failure Avoidance
Another important technique we employ in our work is the redundant prawigjo
of multiple services in parallel. This proactively addresses failures, a&credses
the probability that a task will not be completed by at least one service.

A.3. Scalability
As we rely on heuristic techniques to estimate some probabilities and to find good p
visioning allocations, our approach is scalable to large workflows andcseoriented
systems, as we have shown in our empirical evaluations. In particulaygtmoat the
thesis, we have verified that our strategies work both on small workflodsoa larger
instances with 50-100 tasks and thousands of providers (furthermdppendix B, we
show that our approach can deal with workflows that consist of timuissaf tasks).

A.4. Adaptivity
In Chapter 6, we proposed a novel adaptive provisioning approatidéials quickly with
unexpected failures, but also exploits new opportunities when senéctsm better than
expected.

Having reviewed our original research requirements, we now disasdlte various flexible
provisioning strategies proposed throughout this thesis relate to each othe

7.3 Comparison of Flexible Strategies

In Chapters 4, 5 and 6, we have introduced three flexible provisioniategtes, thdlexible

fast flexibleanddynamic flexiblestrategies (we do not discuss thdl flexible strategy here, as

it is broadly similar to thdast flexiblg. As we described in those chapters in detail, they each
make different assumptions about the information available about sergi@naes and about

how services are provisioned, and so we envisage that each will beadgp to different sets of
scenarios. For example, tlexiblestrategy is suitable for environments where no specific infor-
mation about service providers is available andfttst flexibledeals with cases where previous
observations or a trust model are used to differentiate between heiemgeproviders. Finally,
thedynamic flexiblestrategy addresses more dynamic systems, where provisioning agreements
are made in advance.

Generally, our approach for devising these three strategies hasilbrelm. SMost importantly,
they each aim to maximise the service consumer’s expected utility and they issartbeylobal

Chapter 7 Conclusions and Future Work 204

utility estimation technique. However, to best suit the respective system mtigethree strate-
gies differ in their local task calculations, the decision spaces they corsidethe search al-
gorithms they employ. In the following, we briefly highlight the main distinguisheegdires of
each strategy.

First, theflexible strategy outlined in Chapter 4 exploits the limited information available and
uses efficient, closed-form equations to calculate local task charéicgeriBhese can be quickly
evaluated, even when there are many service providers. Due to tlsésalfaulations and the
limited decision space of; andw; for each task;, the local search mechanism of ttexible
strategy is simple — it carries out a steepest-ascent hill-climb until no more iexmets can

be made (considering neighbours of every workflow task during eacttidn).

Next, thefast flexiblestrategy discussed in Chapter 5 considers a more complex problem. In this
case, heterogeneous providers may be provisioned in parallel or werseg resulting in less
efficient local task calculations. Furthermore, the decision space is thayeconsidered previ-
ously, and these factors have prompted us to adopt a faster, greedjnhiill-This modifies the

first task that offers any improvement to the current allocation, terminéttesaafixed number

of iterations and also carries out random restarts.

Both theflexible and thefast flexiblecover similar system models, and, as explained in Sec-
tion 5.1, systems with homogeneous providers are subsumed by the modiéh eapter 5.
Nevertheless, we believe that thexiblestrategy is more suitable for such scenarios, because it
employs more efficient techniques.

Finally, thedynamic flexiblestrategy addresses a very different system model and also differs
significantly in its provisioning approach. Most importantly, the strategy relremitial high-

level provisioning decisions that do not consider concrete servicedens, but rather use sta-
tistical information about service offers available in the past. This approas necessitated

by the dynamic setting, where the availability of offers changes constarttlywhare it may be
undesirable to provision an entire workflow in advance.

However, such an approach also means that initial provisioning decisiclnsle more uncer-
tainty that is only reduced during execution, when concrete servicesdficome known. For
this reason, thelynamic flexiblecontains an adaptive component that revises the initial provi-
sioning decisions as offers are provisioned at run-time. Finally, theide@pace considered
by thedynamic flexiblestrategy contains more allocations that result in infeasible workflows
(which often lead to a local maximum). Hence, we have had to adopt a sticdoaal search
algorithm and a modified utility function to specifically avoid such maxima.

In conclusion, none of our proposed strategies is intended to repeedefinite solution for all
types of service-oriented systems. Rather, they constitute a set ofagppsy each of which
is best suited for a particular type of environment. Taken together, theyr eowide range of
scenarios that are emerging in current service-oriented architectures

In the following section, we examine a number of promising directions for éutesearch.

Chapter 7 Conclusions and Future Work 205

7.4 Future Work

The work in this thesis can be extended in a variety of ways. First, sometabtagoplication
areas may require certain assumptions of our current model to be relaediscuss how this
might be done in Section 7.4.1. Second, there are a number of extensiboarthse added to
our work to make it more applicable to a wider range of scenarios and wiettiete in Section
7.4.2.

7.4.1 Addressing Model Assumptions

Throughout this thesis, we have built on a simple, abstract model of @s@awnented system,
as outlined in Chapter 3. This allowed us to develop generic techniques ¢hbehleve are
applicable in a wide range of real world scenarios. However, in dev&icg a general model,
we have had to make a number of potentially limiting assumptions that may not haltl in
application areas and which we listed in Section 3.6. Here, we return to tbesejptions and
briefly describe how they may be relaxed in future work.

e Failure Model: While we concentrated on silent crash failures in our work (particularly
in Chapters 4 and 5), it is easy to extend our model to include explicit failussages,
e.g., by including a new mode of failure, where the provider notifies theuroesof its
failure some time after invocation. This would generally reduce the expectediah
of tasks as the consumer does not necessarily need to wait for the expdicife-out or
pre-negotiated service duration, but would not alter our overall sirateg

Considering Byzantine failures is more challenging, but our approaatsfa solid basis
for tackling this problem. As we already rely on redundancy, it is possibiadiode
voting schemes that select the majority of several different service meatkgLamport
et al. (1982); Barborak et al. (1993)). Dealing with correlated faduatso poses new
challenges, but there are a number of existing techniques for modellingamndhig such
correlations and for avoiding services that are prone to correlatedesiliNicola and
Goyal (1990); Weatherspoon et al. (2002); Townend et al. (3008HEse could be adopted
in our work to calculate more accurate, correlated failure probabilities.

e Performance Information: The problem of obtaining accurate performance information
about unreliable service providers will most likely be addressed byleke#orts in the
areas of trust and reputation. However, in systems where the serviserner relies
solely on its own experience rather than a reputation mechanism, it may besiingre
to consider the process of gathering such experiences as parvicEsgrovisioning. As
such, the consumer might explicitly balance the higher certainty in provisi@kmgpwn
and trusted provider with the potential benefit of provisioning an unkngwhpossibly
far cheaper) provider. Dealing with such trade-offs between exjpdorand exploitation
are common in many areas of decision-making and could be incorporatedimimoadel.

Chapter 7 Conclusions and Future Work 206

Furthermore, our model could be extended by considering more compléxjoimabil-
ity distributions that depend on the current time or on other variables. Aseaeribed
earlier, taking these into consideration might be critical for applicationseuinerquality
of services fluctuates over time or with changing levels of network trafflus Would
require appropriate modifications of our task calculations, but we beliat@tin overall
framework would apply similarly.

e Payment Model: It is straight-forward to modify our model to include additional charges
for the disposal of redundant service invocations (e.g., when dealigtiee procure-
ment of physical goods). However, adopting subscription schemesléaving multiple
service invocations at a fixed price would require some revisions of dcumlations and
optimisation algorithms. We believe that this is an interesting future extensiorufor o
work.

e Reward Model: As we use generic local search algorithms in our work, we believe that
it is possible to consider more complex utility functions, including those that diepen
multiple criteria (such as the timeliness and the quality of the overall workflonwugutp
This would make our work more applicable for scenarios such as videernieg, stream-
ing or compression tasks, where the output quality might have a significaattrap the
user’s satisfaction.

e Model Scope:In future work, we will cover more extensive workflow models that may
occur in practice, and which will require small modifications to the way we eagie
performance parameters over the workflow. We envisage that a largbemwf other
domain-specific requirements can be easily incorporated into our ajydogaatacing ap-
propriate constraints on the hill-climbing algorithm. For example, when it is implessib
to provision multiple services in parallel for a particular task, the corredipgrparam-
etern can be held constant &t Similarly, as mentioned in Section 3.1, when there are
close dependencies between several services offered by a singldgpr these can be
aggregated and viewed at a higher level of abstraction as a single gnjtaédook ven-
dor's submitOrderandpayOrderservices might be aggregated, as they only produce the
desired result of ordering a book when used in conjunction).

7.4.2 Future Extensions

To conclude our discussion of future work, we now turn our attention idsvather improve-
ments and extensions to our work that we believe are interesting to purswesfiriute.

One immediate area of further research is the development of improvedtiwsand estimation
techniques for aggregating the global performance parameters oflevesk In particular, our
approach currently estimates the duration of a workflow using a normabdistn along the
critical path of the workflow. However, such an approach generaliyltg in an optimistic

Chapter 7 Conclusions and Future Work 207

estimate, as it uses the mean task durations to find this critical path, withoudeang the
possibility that other tasks outside this path may in fact take longer at run-time.

To improve this, it may be possible to find an analytical solution to the overabigtitty dis-

tribution when certain assumptions about the workflow structure are magetfet the graph
is a tree or that it is reducible). When these assumptions do not hold, tteeeeraimber of
existing techniques that can improve the accuracy of the critical path teghnkpr example,
these include techniques that also take into consideration the varianc&ofdaslculate the
most critical path (Soroush (1994)), that identify a number of candid#teat paths (Dodin
(1984)) or that use simulation to obtain distribution estimates (Cook and Jendi®g¢o)). Any
of these techniques would require few modifications to our proposed model.

Next, it will be interesting to adapt our approach to a range of negotiatiomanéms. Cur-
rently, we use the contract net protocol in Chapter 6, which is a commosiiupde mechanism
for multi-agent systems. However, there are many others that have bmmrspd in the litera-
ture and which we summarised briefly in Chapter 2. We believe that oumturredel can be
adapted for these strategies with only few modifications — for example, thdédnighstrategies
we use in our work can be adapted to refer to the use of different négotfaotocols and pos-
sibly for bidding strategies on these protocols (e.g., how fast to concduateral negotiation
or what service requests to post in a reverse auction).

Moreover, our work can be extended to consider systems that dispigiyex level of dynamism
than considered thus far. As described above, in Section 7.2.6.3, wentiyrconsider that
the availability of offers and their performance characteristics varyrdoog to probability

distributions and a stochastic birth-death process. However, we daimendy assume that
the underlying parameters of these distributions change over time. Cledaslghtbrtcoming

should be addressed in future work, to enable us to model systems vigneifeeant changes
may take place (e.g., where demand for particular services suddenlgnaseatically, or where
new providers with significantly higher reliability enter the system).

Generally, such dynamism will most likely be addressed by work on trustegutation, which
has already considered how to track changes in the performanceritdgee Chapter 2). In
this case, the updated values could simply be used in our existing algorithnpscaigioning
could be adapted at run-time in a similar manner as described in Chapter Gevefpwven
when dynamic trust and reputation information is available, our work on leiggl-strategies
may need to be revised, as it depends on derived performance infonntiaiothe consumer
has accumulated itself. This might be addressed by constantly observimgatket during
execution and updating the strategy library accordingly, possibly byiaenisg only offers
over a limited time-frame.

Finally, the work in this thesis has been concerned with proposing a gefesmigion-making
procedure for flexible service provisioning in distributed systems. A#$,sue have con-
centrated on abstract, high-level concepts when referring to serimesvorkflows, without
grounding our techniques in specific technologies and applications. Wtsladk allowed us

Chapter 7 Conclusions and Future Work 208

to take a general approach, more work will be required to apply our dicgktly to a particular
application and we intend to consider this in future work.

In more detail, we believe that our techniques will fit naturally on top of existiogkflow ex-
ecution engines (discussed in Section 2.4.1). As an additional decisidngriaker in these
applications, our algorithm can automate the provisioning of services; giveabstract work-
flow and a suitable service index (which could range from simple manuallyifigEklists of
services to sophisticated semantic matchmaking mechanisms based on OWIA® 8DE).
Furthermore, we believe we can build on and extend work that has alpgadgsed dynamic
provisioning techniques for established technologies, such as Wabeseand WS-BPEL (see
Chapter 2). This might include work by Friese et al. (2005) on self-hgaits-BPEL work-
flows or work by Mandell and Mcllraith (2003) on using semantically antectaservices to
provision abstract WS-BPEL workflows.

This concludes the summary of our research contributions and futute War give further
background information, the following appendices provide some supptanyematerial that
extends the main work presented in this thesis. Specifically, Appendix Asstiat our work
is robust to inaccurate service information, Appendix B investigates tHabdlig of our ap-
proach, Appendix C provides results regarding the hardness of ¢tlésjoning problem, Ap-
pendix D discusses in more detail some of the equations presented in duanegbAppendix E
lists the acronyms used throughout the thesis.

Appendix A
Sensitivity Analysis

Throughout this thesis, we have assumed the service consumer to kbage &xaccurate per-
formance information about the services offered by provider agerasetker, obtaining such
information is clearly a challenging task, as we saw in Chapter 2, and ofterotisaimer will
have to rely on estimated and slightly inaccurate performance informationisTsticularly
the case in open and dynamic systems, where new providers may entestéra sy any time
and where little prior information may be available about their behaviour.

Although the design of appropriate trust and reputation mechanisms hasemthe focus of
this thesis, we briefly show empirically in this appendix that our flexible ambras robust
to moderate inaccuracies in the performance information of services. Tinig & surprising
result as our work already relies on heuristic methods to estimate some of ba whrkflow
parameters. For the sake of this discussion, we focus dtettiblestrategy presented in Chapter
4, as we believe this strategy to be the most vulnerable to inaccurate informiatiparticular,
this strategy assumes all providers to be homogeneous and so small azesumay result in
significantly biased overall estimates.

In order to evaluate the performance of this strategy in the presencecofinage information,
we follow the same experimental setup as in Section 4.5.1, but now systematitaitjuire
errors into the information that is available to a service consumer followinfiekiblestrategy.
To this end, we first evaluate the effect of relying on inaccurate failuvbabilities, and then
examine the impact of inaccurate service duration information. In both ,cagesxpect the
performance of our strategy to decrease as the information becomesdassta.

In our first set of experiments, we consider the case where the consunderestimateshe
failure probability of service providers. Hence, we multiply the actual \&akoe the failure
probabilitiesf (s;) by a scalak; < 1 to provide an inaccurate input to tiexiblestrategy. The
results for various values ef: are shown in Figure A.1. In most cases, the average net profit
gained by the strategy degrades gracefully as the performance infonrbattomes more inac-
curate. In fact, when the (true) failure probability is low in the environmeptt¢ around 0.3),

209

Appendix A Sensitivity Analysis 210

1000

T T
flexible —+—
;\. §=0.95 - - x- -
L e =09 — = -
800 [e T W §&=0.8 -- o~
Y e = gf:O_S A -
Sf=0.1 ——v—
sf=0.0 e

600

400
200
S
o
> 0
o
>
< \
-200 :
-400
-600
.
-800
-1000
0 01 02 03 04 05 06 07 08 09 1

Failure Probability)

FIGURE A.1: Effect of underestimating the failure probability abpiders €5 < 1).

the strategy does well even if the information is up to 90% inaccurate {j.e< 0.1). How-
ever, when the failure probability rises to 0.7 and beyond, the impact ofunaie information
becomes more detrimental to the performance of the strategy. This is palyieviaent when
ey = 0.8, which results in a large net loss at high failure probabilities. This is bectes
strategy provisions a large number of providers in parallel without detgtiit the workflow
is infeasible (and thus, it loses its high investment). Perhaps surprisirtugy) imformation be-
comes even more inaccurate at high failure probabilities, the consumesltegitake smaller
losses again. This is due to the strategy provisioning less providers itheparad therefore
losing less of its investment when the workflow eventually fails. Despite theapmse when
ey = 0.8, the results are promising and show that small inaccuracies in the informapdo (
10%) have little or no effect on our strategy. In most other cases, peafce simply degrades
gracefully as the information becomes more inaccurate.

Next, we are interested in the trends resulting fromerestimatinghe failure probability of
service providers. Hence, we now multiply the failure probabilities by aseala 1 to provide
an inaccurate input to our strategy (using a failure probability of 1 wham&s;) -, > 1). The
results of this are shown in Figure A.2. Not surprisingly, the performanhtiee strategy simply
degrades as the perceived failure probability rises. Because itsibeh&s/more conservative
when it overestimates the failure probability of providers (it will provisiomecessarily many
providers), it never makes a long-term loss. These results show thsirategy performs well,
even when it significantly overestimates failure probabilities. In fact, theatiyeerformance

Appendix A Sensitivity Analysis 211

1000

hexible L
£=1.05 - - x - -
900 e g=l1 — =
RS S §=12 -- -
IS g=15 -+ -
800 Ry §=2.0 -~]
700 RN B SN
E N Y
F\\ ™ \\‘!\
g 600 : = \\
o \ . NN
g 500 ! : SN
© \ % AR
[\] » N
> \ v \ R
< 400 ‘ ! N
\19 | ' _5*
300 ! “ -\
\\ . \ \\
200 : ; e
\ . . \\
\ .
| \
100 : . :
\\ | . \\\7
\ Y v \
0
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Failure Probability)

FIGURE A.2: Effect of overestimating the failure probability ofguiders ¢, > 1).

degrades only slightly when the failure probability is overestimated by ¥9%-(1.1). Even
at 20% €, = 1.2), the performance is extremely good, and at 50% the strategy still performs
reasonably well compared to the case with accurate information.

Apart from the failure probabilities, thigexiblestrategy also relies on probability density func-
tions for the duration of a service execution. Because these will most likebhabed on past
observations and can be subject to noise, we now examine the effeeicofinate information
about these functions. Here, we multiply the scale paramatéthe underlying gamma distri-
bution by a scala¢, to yield an inaccurate duration distribution. By varying the scale parameter,
we ensure that the mean of the distribution is varied proportionally ayi{g.g., where; = 0.5,

the consumer estimates the mean service execution time to be half of the true whilejhe
overall shape of the distribution stays the same.

As before, we first consider the caseunfderestimatinghe duration of service providers;(<

1). The results are shown in Figure A.3. Here, the strategy handles @ncérup to 20%

(eq = 0.8) very well with only a marginal performance decrease. Even when tbe gses to
30% (4 = 0.7), the performance comes close to the case with accurate information. eipwev
as the information becomes even more inaccurate, the strategy performasingty badly.
Also, it is evident that the strategy behaves more erratically at the same timeasiacally,
the average net profit at a given level of inaccuracy increaseg daililre probability rises (this

is because the strategy constantly varies the balance between paralietiahahvocations, the
latter of which is more susceptible to wrong duration estimates).

Finally, Figure A.4 shows the corresponding results when the consoveegstimateshe ser-
vice duration. Here, the performance again degrades slowly as theisesorThis is because the
agent allocates unnecessarily long waiting times to the providers or pravizéwallel providers

Appendix A Sensitivity Analysis 212

1000 T T
flexible ——
I\\1 €409 - -x--
= €d=0.8 — -
800 S €4=0.7 -- &-
T £70.5 -~ -
600
::CE;
& 400
[}
[=))
O R R G
g 200
<
0 =
-200
-400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Failure Probability)

FIGURE A.3: Effect of underestimating the service duration of pdevs ¢, < 1).

1000 T T
flexible —+—
€4=1.05 - - x- -
900 # gLl — -
AN s el.2 - o-
- €15 - - |
800 €=2.0 —
700
‘E 600
o
% 500
g
< 400
300
200
100
0)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Failure Probability)

FIGURE A.4: Effect of overestimating the service duration of powsis €; > 1).

when this is not needed. However, the loss in performance is clearhswel). This is because
the consumer will occasionally wait longer than required or incur extraemdifures by provi-
sioning parallel providers, but in many cases, the providers will simply campiteir services
earlier than anticipated and the consumer will be able to continue the workflowdiataly and
without penalty.

To conclude the sensitivity analysis, the results presented in this sectiartishioour strategy
is robust to small and moderate inaccuracies. In all cases, it perforlinsivesn the information
provided is within 10% of the true value, and often errors up to 20% and [@@&to only

Appendix A Sensitivity Analysis 213

marginal decreases in performance, especially when the consumerlis pessimistic (i.e.,
when it overestimates the failure probability or duration of services). @lygyerformance
generally degrades gracefully as larger errors are introduced intoftrenation that is known
about providers (until they are too large to be of any value to the consunheeg., as, reaches
0.5).

We also identified one case where underestimating the failure probabilitywiflprs can lead
to poor performance. However, this only occurs in very specific sahahen providers are
highly unreliable and when the error in information is a significant 20%. Eeaar strategy
may benefit from identifying these conditions in advance (e.g., by obgethat the expected
utility of a provisioned workflow is very low compared to the expected costvextheless,
the overall results presented here are promising, showing that oumgtiatapplicable even
in environments where completely accurate performance information isilatdegas will be
typical in any large dynamic multi-agent system).

Appendix B

Scalability of Flexible Provisioning

In order to address our Requirement A.3 for scalable techniques, weechacentrated in this
thesis on designing heuristics that are suitable for complex environments wigmarkflows
and many service providers. In particular, our proposed algorithmsitilgg estimates that
can be computed in polynomial time, and we employ local search techniques nwiime
properties, i.e., that can be interrupted after any amount of time to yield &ea@g@rovisioning
solution (the quality of which depends on the time of interruption). Hencetemlmniques can
be applied in scenarios where provisioning allocations for complex probtaresbe calculated
within a reasonable amount of time.

Now, to convey a better understanding of the scalability of our techniqueisvestigate in more
detail the time it takes them to find a good solution when confronted with complexfiows.
As all our strategies proposed in Chapters 4—6 are based on a simildgtexfor estimating the
overall workflow utility @, we concentrate here on tfest flexiblestrategy outlined in Chapter
5, and examine how well it copes with workflows of varying sfzess discussed in Section
4.4.3.2, we have already seen that the time complexity of our estimation technittussspect
to the workflow size, is irO(|7|*) when run initially andO(|T| + |€|) for each subsequent
iteration. Furthermore, we carry out upl0- || iterations of the the main local search routine,
each of which may examine every single tasK’ifsee Algorithm 5.10). Hence, the complexity
of thefast flexiblestrategy is polynomial (if0(|7|* - (|| 4 |£]))). Furthermore, we expect it
to perform better in practice, as it will usually complete each iteration afteramigidering a
small number of tasks.

To measure the provisioning time of tfiest flexiblestrategy in practice, we adopt the same
experimental parameters as in the second half of Section 5.4.9 that cershighly heteroge-
neous environment (in particular those shown in Table 5.7). We then evdsid 0.5 and vary
the number of workflow tasksr. Furthermore, we scale both the maximum workflow utility
umax and the deadlingnax by a factor"S—g. This is done to adjust the problem to the workflow

1This particular strategy is chosen here simply as a representative gtrBieg to the similar estimation tech-
nigues, all strategies display the same general trends.

214

Appendix B Scalability of Flexible Provisioning 215

130 T T

120 fast flexible ——
@ 110
©
c
3 100
(]
2 9 7
£ y
= /
£ 80 /
£
[70 gl
£
5 60 ’
5 50)/
@
5 4 »::/
[o2]
o
:>:’ 30 e

20 /:

10—

0

10 20 30 40 50 60 70 80 90 100

Workflow Size (/)

FIGURE B.1: Average time required by tHast flexiblestrategy to find a provisioning alloca-
tion.

I Q‘\ [- 2
‘ \ ‘«: vu"’ ©py
’ ?é‘ ‘ 6:}»"“.“/ “4

e&“ :Ji/ *".""‘ L
*’07 ““‘Jb\mf %"//4}'2?'7

©);

Yea.

FIGURE B.2: An example workflow witlhr = 100.

size, as larger workflows will incur higher costs and take longer to comphdtexperiments
reported in this appendix were conducted on a PC with an Intel Core 2 2@h2 CPU, 4
GB RAM and running Windows Vista. To obtain 95% confidence intervalsaforesults, the
experiments were repeated 30 times for each workflow size.

Figure B.1 shows the time required by tfast flexiblestrategy to provision workflows as we
increase the workflow sizer from ny = 10 to np = 100. Here, the strategy initially takes
about9.48 + 0.98 seconds to complete a workflow with 10 tasks. This time then rises gradually
as the workflow size is increased — by = 100, it has risen to about 2 minutes10.72 4+ 3.50
seconds). We believe that this is reasonable, considering that sukthomsrare highly complex

Appendix B Scalability of Flexible Provisioning 216

16384 : . :

8192 - opd) -----
_ aoge SteXDE T - %
(%] L7 /i
S 2048 o =
o , /t
3 1024 ;
(] ~
£ 512 -
g 256 ot o o
= 128 - A -
o _
£ 64
c ¥ »
o L7 ~
2 32 : // o
£ 16 o // e
X 8 R
< 4 /7 7
g 4 /,/ / B
< 2 A . -

L P
0.25

1 2 4 8 16 32 64 128 256 512 1024 2048
Workflow Size (1)

FIGURE B.3: Average time required by tHast flexiblestrategy for larger workflows.

and that there are typically hundreds of service providers for eackfla task (in fact, up to
2000, given the distributions in Table 5.7). To illustrate this complexity, FiguesBows an
example workflow withn = 100, as used in these experiments.

Next, Figure B.3 plots the trends of tfeest flexiblestrategy over a different range of workflow
sizes. Here, we consider the provisioning timespf= 2* tasks, wheré = 0,1, ..., 10. These
experiments demonstrate how the algorithm copes with larger workflows &ssuccessively
doubled in size (for this reason, both axes are shown in logarithmic scaleoasth 2). The
overall trend in the graph is promising, highlighting a running time that grovis slightly
more quickly tham (for reference, the graph also displays a function that grows lineatty w
n7 and one that grows quadratically). Although the algorithm begins to takesad=rable time
to find a solution as becomes larger (requiringt78.56 + 175.72 seconds whenr = 512,
3081.37 £ 173.96 seconds when; = 1024 and9621.48 4 433.22 seconds when; = 2048),
the problem still remains tractable when considering such complex envirasr(again, for
illustration of this, Figures B.4 and B.5 show workflows with = 512 andny = 1024,
respectively).

Furthermore, we believe that there is ample scope for refining and spagulihefast flexible

strategy in practice, as we have not so far concentrated on optimising therergkgions of our
algorithms. Such optimisation could be achieved, for example, by considestey, approxi-

mate methods of calculating local task characteristics or by using fasteaprogng languages
(we have used Java for all our simulations). Not least, significant patte @lgorithm can be
distributed to several parallel processors, including the utility calculatibnsighbour alloca-
tions and the restarts of the local search.

Appendix B Scalability of Flexible Provisioning

217

A 1O

AN !
SN/
\gf,\

7
=N S

X
o 4
AN

‘;’l
’,
2 Al

XA
W§agne S

\
N <

=Y

AL
T
l;'t?'/

‘.,"
o : = o VI'V“O“; ‘f/;[él!/
S \} - 2 N APK

D .
‘.

By

I’

/

Wi ¥ AN
""’\ \.ﬂ
K A
WA B g
' o —av\ sy SO/ el
NN =
‘!‘.« 2

V
&
N

©;
\O;
Nl
A%

v
A
=
4
L/

(
| —#

e
19 -‘\0‘

:

I
i
lons

o
5

!

K

FIGURE B.4: An example workflow witm = 512.

Appendix B Scalability of Flexible Provisioning 218

FIGURE B.5: An example workflow with = 1024.

Appendix C

NP-Hardness of Provisioning Problem

In this thesis, we have concentrated on providing fast heuristics fartdgm that is inherently
difficult to solve optimally. To justify this, we have so far referred to resuftshe complexity
of computing duration distributions of workflows, which is known to be a #Ryalete problem
and therefore also NP-hard (Hagstrom (1988)). In this appendixsho@ more formally that
the provisioning problem considered in our work is also NP-hard. To idowe demonstrate
how instances of two well-known NP-hard problems can be reduced,lymgroial time, to
instances of the provisioning problem. We decided to show two such redsichecause they
highlight two different sources of complexity inherent in our problem -stfithe uncertainty of
service durations we consider in Chapters 4 and 5 and, secondly,rti@nadorial problem of
dealing with highly heterogeneous service providers, as considerdubjpt€s 5 and 6.

Throughout this appendix, we consider the following, formal definitiothefservice provision-
ing problem:

Definition 17. (PROVISIONING): Given a workflowW, a set of service instances match-
ing functiony and quality functionsf, D andc, find a (possibly empty) detailed provisioning
allocationa* that maximises the expected net profit of a consumer following it

Now, we want to show the following:
Theorem C.1. PROVISIONING is NP-hard.
More specifically, we recall that a probleXi is NP-hard if we can solve every problem in

NP in polynomial time by solving instances &f in unit time (Garey and Johnson (1979)).
Furthermore, as mentioned above, the following proBlenNP-hard (Hagstrom (1988)):

All input parametersiy/, S, i, f, D andc) are defined in more detail in Chapter 3. The detailed provisioning
allocationa is defined in Section 5.3.1.

2For simplicity, the representation of this problem has been adapted faroblem. In its original form, edges
represent tasks and nodes represent states that enable furtbebtashkis can be quickly converted to our notation.
Furthermore, the author considers task durations of length 0 and dubnitodel specifically excludes instantaneous
services. However, their hardness result holds when considerimgero durations.

219

Appendix C NP-Hardness of Provisioning Problem 220

Definition 18. (PERT CDF): Given a directed acyclic graph= (N, E') (whose nodes and
edges represent tasks and dependencies, respectively), aliatadreability p; for eachn; € N,
such that node:; will have a duration 1 with probability; and duration 2 with probability

1 — p;, and an input time, compute the probability that the overall duration of the graph will
not be more than.

The above problem is NP-hard even when approximating the probabilityitea grror bound
e. Now, to prove Theorem C.1, we show that we could solve an instanc&BTPRCDF in
polynomial time by solving instances oRBPVISIONING in unit time.

Proof. First, construct a set of workflow task®, and a set of edged;’, directly from G.
Then construct: andr, so that each task is mapped to exactly one service instaggewith
f(si) =0, ¢(s;) = 0 and defineD(s;,t), so thatD(s;,t) = 0 fort < 1, D(s;,t) = p; for
1 <t<2andD(s;,t) =1fort > 2.

Next, create a utility function, with tmax = ¢t + 1, umax = 1 andd = umax. Furthermore,
add an additional tasksg; to 7', which precedes all other tasks and is mapped to a single
service instanc8gar With f(sstar) = 0 and D(sstarnt) = 0 for ¢ < 1 and D(sstar t) = 1
otherwise. Now, setting(sstar) = p — €, where0 < € < ¢, we perform a binary search for the
largest possible value € [0, 1] (dividing this interval in steps of), such that the corresponding
PROVISIONING instance returns a non-empty provisioning allocation. As the expecteddewar
of the workflow is equal to the probability that the duration of the originaphiiat or less, and

an empty provisioning allocation will be returned:{fsstart) is greater than this reward, the final
value forp is now the required probability (within the error boug)d

As this transformation and the binary search can be performed in polynimmégs(as the number
of values to consider fop is restricted bye), we can thus solve instances of PERT CDF in
polynomial time if we can solve ROVISIONING in unit time. This proves thatBOVISIONING

is NP-hard. O

As the proof uses only single providers for each workflow task, it ap@opally to the prob-
lem discussed in Chapters 4 and 5. However, in Chapter 5, we also iogrtiael possibility of

choosing between multiple heterogeneous service providers. Thisrigee® another source
of complexity, which applies similarly to the problem described in Chapter 6céleme show

in the following that the provisioning problem is still NP-hard, even wherises always com-

plete within a certain amount of time.

Theorem C.2. PROVISIONING is NP-hard even when service durations are deterministic.

Here, we recall a well-known NP-complete problem (Garey and Joh{i®a®)):

Definition 19. (KNAPSACK): Given a finite set of item$ = {1, 2,3, ..., N}, aweightw(i) €
Z* and avaluey(i) € Z* for each item € I, an overall capacity’ € Z* and avalud/ € Z*,
decide whether there is a subsetC I, sothaty ", ., w(i) < Cand), ., v(i) > V.

Appendix C NP-Hardness of Provisioning Problem 221

To prove Theorem C.2, we show how an instaioaf KNAPSACK can be reduced in polynomial
time to an instanc@® of PROVISIONING.

Proof. Letwvmax be the highest value of any itemInThen, for every iteni € I, create a service
instances; with f(s;) = 0, ¢(s;) = vmax—v(i)+1 and defineD(s;, t) so that the service duration
is always exactlyw(i) 4+ 1 time units (i.e.,.D(s;,t) = 0if t < w(i) + 1 andD(s;,t) = 1 if

t > w(i) + 1). Also, create a service provideg with f(sg) = 0, c(so) = vmax+ 1 and define
D(s;,t), so that the service duration is always exadtlyCreate workflonlV = (T, E, T, u)
with 7" = {t1,ts,...txy} and letE be any total order ofi’. Furthermore, define and, so
thatu(7(t;)) = {si, so}. Also, create utility function, with deadlinétmax = N + C, maximum
utility umax = N (vmax+1) =V + % and penaltyy = umax. This transformation is performed in
O(N).

Next, we show that the solutiar® to this new RROVISIONING instanceP is sufficient to answer
the original KNAPSACK instancefC. More specifically, we show that* is empty (no services
are provisioned) if and only if the answer Xois “no”. We prove this by contradiction in two
steps:

1. Assume thatv* is empty and the answer 10 is “yes”. Then we can use the solution to
KC to find a provisioning allocation which is guaranteed to complete the workflow in time
t < N+ C, and whose costis< Numax— V + N. Since this would result in a net profit
of at Ieas%, o cannot be empty, and this is a contradiction.

2. Assume that* is non-empty and the answer %0 is “no”. Now, each task irv* has
exactly one provisioned service provider, as any other choice wouldb®ptimat. Let
T’ be the set of tasks for which services; has been provisionéd The time for the
workflow cannot be more than the deadlid€; o (w(i) + 1) + >, e/ 1 < N + C.
This implies)_, . w(i) < C (the first constraint ok’). Furthermore, the total cost
incurred must not be more thaiax: ZtieT/(Umax— v(i)+1)+ ZtieT/T/ (Vmax+ 1) <
N (vmax+1) =V — 1. This implies)_, v v(i) > V. As both constraints of are now
shown to be satisfied, the answekiacannot be “no”, and this is a contradiction.

We conclude that there is a polynomial time decision procedure fBYRSACK if instances of
PROVISIONING can be solved in unit time. As MAPSACK is NP-hard, so is ROVISIONING.
O

Although the model used in Chapter 6 is different from tlORISIONING problem described
above, the proof of Theorem C.2 can be adapted for that chapter. tndetail, we can consider

3An optimal solution may contain unnecessary service providers thaeses invoked. We ignore these here as
they have no effect on the net profit or the following discussion.
T ={t; €T |3t €L a*(t:) = {(si,)} }.

Appendix C NP-Hardness of Provisioning Problem 222

a static market, where the returned offers for any call for proposelye correspond to the ser-
vice instances outlined above, regardless of the time step that is requéstadent following
an optimal strategy will then start to buy offers from the market if and onlyafKlnAPSACK
instance on which it is based is satisfiable.

In conclusion, the results in this appendix demonstrate that the provisiorobtem is inher-
ently hard and that there is no polynomial time algorithm to solve it optimally, unfeS$P

Appendix D

Derivations of Equations

This appendix contains detailed derivations of some of the equations meéserChapter 4.
To this end, each of the following sections outlines and references n¢legaations from that
chapter.

D.1 Expected Task Cost (Equation 4.9)

Based on Figure 4.2, we first write the expected cost as a sum:

& = nici+fi- (nici + fi- (nici + fi- (ot fi (nici))))
m instances of;c;
= mici + fi-mici + fEonici+ P omici o+ T nae
= niCi‘(1+fi+fi2+.--+f?71>

m—1
= miei y fF (D.1)
k=0

Unfortunately, this sum grows with the number of available provideys,To make it more
tractable, we note that it is a geometric series and multiply Equation Df1: by

fi'éi:nicz"(fz’“‘ff'*’-u“‘f{nil_‘_fim) (D.2)
Then, we deduct Equation D.2 from D.1:
(1—fi) G = nici((1+ﬂ+ﬁ2+...+ﬁm*1>
~ (2 i)
= i (1- ") (D.3)

223

Appendix D Derivations of Equations 224

Rewriting this, and assuming that < 1, we have:

1—fm
1-f;

(D.4)

C; = N;C; -

D.2 Expected Task Duration (Equation 4.14)

As before, we write the expected task duration as a weighted sum of albf@sutcomes:

ti = plz ';dkff_l (1 - fz)
— ;.i((k—l)-wi+m)'ffl (1-7)
bok=1
m—1
_ pl (- wi+) fF (1=) (D.5)
' k=0

Again, it is possible to rearrange this and rewrite it in closed form. In pdaticwe assume that
fi < 1and note tha}_:° | f¥k = fi/(fi — 1)

tipi = mz k- wi + pq) - (1—fz>
k=0

) m—1 . m—1
= (1 - fl) (ikui + fzkkwl>
k=0 k=1
= (1-f) (u@- (Z fE=1r Z fﬁ)
k=0 k=0
k=1 —0

k
NOEES fi—fr (m-nfr
= (I1—-7F) 1 -
(f)< _fz v ((1_fz) 1_fz))

— (1= B o Z DA

7 (D.6)

Appendix D Derivations of Equations 225

D.3 Expected Squared Waiting Time (Equation 4.20)

First, we express the expected squared waiting time by considering ailbjgomstcomes:

7 '2m71 .
E(A%,) = (11_1;): kz K2 fr (D.7)
? =0

In order to express this in closed form, we consider only the summation amkran interme-
diate result from Equation D.6 (as before assuming 1):

m—1 A 1— fm
fF= 2 D.8
; .y (D.8)

Differentiating this with respect tgﬁi yields:

m—1 _ Afrn rm—1
gt 100 (D.9)
paard A=fi? 1-f
This can be multiplied by; to obtain:
m—1 fm+1 m]@m
kfF = . (D.10)
k=0 1 - fZ) 1- fz
Differentiating and multiplying again finally yields the following:
m—1
§jk?ﬁ? ———(fit [2=m? [= @mA+1-2m°) [T (2m—1-m?) f/*7?) (D.11)

=0 1_f1)

Combining this with Equation D.7, we obtain:

EMly) = (i o mt -
(A= Fm—

(2m 41 —2m?) fmH 4 (2m — 1 — m?) fm+?) (D.12)

Appendix E

Acronyms

ADEPT Advanced Decision Environment for Process Tasks
HTTP Hypertext Transfer Protocol

MAGNET Multi Agent Negotiation Testbed

OGSA Open Grid Services Architecture

OWL Web Ontology Language

P2P Peer-to-Peer

PDDL Planning Domain Definition Language

QoS Quality-of-Service

SAWSDL Semantic Annotations for WSDL and XML Schema
SLA Service Level Agreement

SOAP Simple Object Access Protocol

SOC Service-Oriented Computing

UDDI Universal Description, Discovery and Integration

VO Virtual Organisation

WSAF Web Services Agent Framework

WS-BPEL Web Services Business Process Execution Language
WSDL Web Service Description Language

WSLA Web Service Level Agreement

WSMO Web Service Modeling Ontology

XML Extensible Markup Language

226

Bibliography

Abdul-Rahman, A. and Hailes, S. 1997. A distributed trust modePrbteedings of the 1997
Workshop on New Security Paradigmpages 48—60.

Aggarwal, R., Verma, K., Miller, J., and Milnor, W. 2004. Constraint dniveeb service com-
position in METEOR-S. IrProceedings of the IEEE International Conference on Services
Computing 2004 (SCC 2004), Shanghai, Chipages 23-30. IEEE Computer Society Press.

Aghdaie, N. and Tamir, Y. 2003. Fast transparent failover for relialgle service. IrProceed-
ings of the 15th IASTED International Conference on Parallel and DisteithlComputing
and Systems (PDCS), Marina del Rey, Updges 757-762. ACTA Press.

Agrawal, R., Bayardo, R. J., Gruhl, D., and Papadimitriou, S. 2001. Vmeiervice-oriented
architecture for rapid development of web applicationsPioceedings of the 10th Interna-
tional World Wide Web Conferengeages 355-365. IEEE Computer Society Press.

Anderson, D. P. 2004. BOINC: a system for public-resource compuatittgstorage. IfPro-
ceedings of Fifth IEEE/ACM International Workshop on Grid Compuytpages 4 — 10.

Anderson, D. P, Cobb, J., Korpela, E., Lebofsky, M., and Werthimeg(D2. SETI@home:
an experiment in public-resource computi@pmmunications of the ACM5(11):56-61.

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, Pruyne,
J., Rofrano, J., Tuecke, S., and Xu, M. 2007. Web services agreespecifica-
tion (ws-agreement). Technical Report GFD-R-P.107, Open Gridnfrordavailable at
http://mww.ogf.org/documents/GFD.107.pdf).

Ardagna, D. and Pernici, B. 2007. Adaptive service composition in flexpbocesseslEEE
Transactions on Software Engineerjrgg:369—-384.

Arunachalam, R. and Sadeh, N. 2004. The 2003 supply chain manageatkng agent com-
petition. InProceedings of the 6th International Conference on Electronic Conen{éeEC
'04), Delft, The Netherlandpages 113-120. ACM Press.

Avery, V., Chamberlaine, E., Summerfield, C., and Zealey, L., editors Z&&1is on the Digital
Age The Office for National Statistics.

227

http://www.ogf.org/documents/GFD.107.pdf

BIBLIOGRAPHY 228

Avizienis, A. 1995 Software Fault Tolerangehapter The Methodology of N-Version Program-
ming, pages 23-46. Wiley.

Babanov, A., Collins, J., and Gini, M. 2004. Harnessing the searchafmmal bid schedules
with stochastic search and domain-specific heuristicsAAMAS '04: Proceedings of the
Third International Joint Conference on Autonomous Agents and Mutiteggstemspages
269-276, Washington, DC, USA. IEEE Computer Society.

Baccelli, F., Jean-Marie, A., and Liu, Z. 1993. A survey on solution mettHodtask graph
models. In ®tz, N., Herzog, U., and Rettelbach, M., editofgbeitsberichte der IMMD
volume 26 (14), chapter Second QMIPS Workshop, pages 163-18&rsii@t Erlangen-
Nurnberg, Erlangen.

Baker, M. A., Buyya, R., and Laforenza, D. 2002. The grid: Intéomal efforts in global
computing.International Journal of Software Practice and Experien82(15).

Barborak, M., Dahbura, A., and Malek, M. 1993. The consensubl@mo in fault-tolerant
computing.ACM Computing Survey25(2):171-220.

Belecheanu, R. A., Munroe, S., Luck, M., Payne, T. R., Miller, T., Mciayr P., and Pe-
choucek, M. 2006. Commercial applications of agents: Lessons,ierpes and challenges.
In Proceedings of the Fifth International Conference on Autonomous AgadtMultiagent
Systems

Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F., and Secret994. The world-wide
web. Communications of the ACN37(8):76 — 82.

Berners-Lee, T., Hendler, J., and Lassila, O. 2001. The Semantic \B&bntific American
284(5):34-43.

Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M., CheakeA., Cinquini, L.,
Drach, B., Foster, |., Fox, P., Garcia, J., Kesselman, C., Markel, R.,Ibtmid D., Nefedova,
V., Pouchard, L., Shoshani, A., Sim, A., Strand, G., and Williams, D. 2006.€8ith system
grid: supporting the next generation of climate modeling resed&abceedings of the IEEE
93(3):485-495.

Boddy, M. and Dean, T. L. 1994. Deliberation scheduling for problaivisg in time-
constrained environmentartificial Intelligence 67(2):245-285.

Botelho, S. and Alami, R. 1999. M+: a scheme for multi-robot cooperatiaugir negotiated
task allocation and achievement. Pnoceedings of the 1999 IEEE International Conference
on Robotics and Automatipmolume 2, pages 1234-1239.

Brassard, G. and Bratley, P. 199%6undamentals of Algorithmicdrentice-Hall.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeaf004. Extensible
Markup Language (XML) 1.0 (Third Edition). Technical report, W3C.

BIBLIOGRAPHY 229

Brooks, R. 1986. A robust layered control system for a mobile rdidE Journal of Robotics
and Automation2(1):14-23.

Burstein, M., Bussler, C., Finin, T., Huhns, M., Paolucci, M., Sheth, A., Willia®s and
Zaremba, M. 2005. A semantic web services architectaternet Computing, IEEF9(5):72
—-81.

Butler, D. 1999. Computing 2010: from black holes to bioloiature 402:C67—C70.

Buyya, R., Abramson, D., and Giddy, J. 2001. A case for economy gridtacture for service
oriented grid computing. 140th Heterogeneous Computing Workshop HCW 2001

Buyya, R., Abramson, D., Giddy, J., and Stockinger, H. 2002. Economdetador resource
management and scheduling in grid computir@oncurrency and Computation: Practice
and Experiencel4(13-15):1507-1542.

Byde, A. 2006. A comparison between mechanisms for sequential congaaerce auctions.
In Proceedings of the Fifth International Conference on Autonomous AgadtMultiagent
Systems

Bylander, T. 1994. The computational complexity of propositional STRIRS8ning.Artificial
Intelligence 69(1-2):165-204.

Canfora, G., Penta, M. D., Esposito, R., and Villani, M. L. 2005. QoSraweplanning of com-
posite web services. IRroceedings of the IEEE International Conference on Web Services
(ICWS'05), Orlando, USApages 121-129. IEEE Computer Society.

Cardoso, J., Sheth, A., Millerb, J., Arnoldc, J., and Kochutb, K. 2004alify of service for
workflows and web service processedournal of Web Semantics: Science, Services and
Agents on the World Wide Wel(3):281-308.

Casati, F., Ceri, S., Paraboschi, S., and Pozzi, G. 1999. Specificatibrma@hementation
of exceptions in workflow management systemCM Transactions on Database Systems
24(3):405-451.

Casati, F., Dayal, U., and Shan, M.-C. 2001. E-business applicatiosgppty chain manage-
ment: challenges and solutions.Rroceedings of the 17th International Conference on Data
Engineeringpages 71 — 78.

Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., and Shenk@&)%. iaking gnutella-
like P2P systems scalable. iGCOMM '03: Proceedings of the 2003 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computermanications pages
407-418, New York, NY, USA. ACM Press.

Chern, M.-S. 1992. On the computational complexity of reliability redundatiogation in a
series systemOperations Research Letterkl(5):309-315.

BIBLIOGRAPHY 230

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, 5.\2@0 Services Description
Language (WSDL) 1.1. Technical report, W3C.

Cohen, P. R. 199%mpirical methods for artificial intelligenceMIT Press, USA.

Coles, S., Frey, J. G., Hursthouse, M. B., Light, M. E., Meacham, K. ErvidaD. J., and
Surridge, M. 2005. ECSES - examining crystal structures using ‘@sgiea demonstrator
employing web and grid services to enhance user participation in crystghloigrexperi-
ments.Journal of Applied Crystallographys8(5):819-826.

Collins, J., Bilot, C., Gini, M., and Mobasher, B. 2001. Decision Procességent-Based
Automated ContractingdEEE Internet Computings(2):61-72.

Collins, J., Ketter, W., Gini, M., and Mobasher, B. 2002. A multi-agent negjotidgestbed for
contracting tasks with temporal and precedence constraintsrnational Journal of Elec-
tronic Commercge7(1):35-57.

Coallins, J., Tsvetovas, M., Sundareswara, R., van Tonder, J., Gini,nd Mobasher, B. 1999.
Evaluating risk: flexibility and feasibility in multi-agent contracting. In Etzioni, ®iller,
J. P., and Bradshaw, J. M., editoRroceedings of the Third International Conference on
Autonomous Agents (Agents’9pages 350-351, Seattle, WA, USA. ACM Press.

Cook, T. M. and Jennings, R. H. 1979. Estimating a project’s completion timebdison
using intelligent simulation methodsThe Journal of the Operational Research Society
30(12):1103-1108.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., #kdVPa2008. Internet
X.509 public key infrastructure certificate and certificate revocation liRL(Grofile. RFC
5280, IETF.

Corson, M. S., Macker, J., and Cirincione, G. 1999. Internet-basdulerad hoc networking.
IEEE Internet Computing3(4):63—70.

Coyle, F. 2001. Breathing life into legach Professional3(5):17 — 24.

Cristian, F. 1991. Understanding fault-tolerant distributed syste@smmunications of the
ACM, 34(2):56-78.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and Weeramar, S. 2002. Unrav-
eling the Web services web: an introduction to SOAP, WSDL, and UDBEE Internet
Computing 6(2):86—-93.

Curbera, F., Khalaf, R., Mukhi, N., Tai, S., and Weerawarana, S..2008 next step in Web
services.Communications of the ACM6(10):29-34.

Czajkowski, K., Foster, I., and Kesselman, C. 2005. Agreement-basednce management.
Proceedings of the IEEP3(3):631-643.

BIBLIOGRAPHY 231

D’Ambrogio, A. 2006. A model-driven WSDL extension for describing teS of web ser-
vices. International Conference on Web Services 2006 (ICWS [i#)es 789—-796.

Dan, A., Davis, D., Kearney, R., King, R., Keller, A., Kuebler, D., Ludwid., Polan, M.,
Spreitzer, M., and Youssef, A. 2004. Web services on demand: WS8l&n automated
managementiBM Systems Journat3(1):136—158.

Dash, R. K., Parkes, D., and Jennings, N. R. 2003. Computational mieghdesign : A call to
arms.|EEE Intelligent System48(6):40-47.

De Roure, D., Baker, M., Jennings, N., and Shadbolt, N. 2003. Thhutwo of the Grid. In
Berman, F., Fox, G., and Hey, A., edito@;id Computing: Making The Global Infrastructure
a Reality pages 65-100. John Wiley & Sons.

Dean, T. and Boddy, M. 1988. An analysis of time-dependent plannisigjgms. InProceed-
ings of the Seventh National Conference on Atrtificial Intelligepeges 49-54.

Dearden, R., Friedman, N., and Andre, D. 1999. Model based bayesoration. InPro-
ceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligebéd’'99), pages
150-159.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Koranda, S., Lazzarini, AhtdMes., Papa,
M. A., and Vahi, K. 2003a. Pegasus and the Pulsar Search: From MatmdExecution on
the Grid. InParallel Processing and Applied Mathematics: 5th International Confegen
PPAM 2003, Czestochowa, Poland, September 7-10,,2@03me 3019 / 2004.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blacklrn,azzarini,
A., Arbree, A., Cavanaugh, R., and Koranda, S. 2003b. MappingradtsComplex Work-
flows onto Grid Environmentslournal of Grid Computingl(1):25-39.

DeGroot, M. H. and Shervish, M. J. 200Probability and Statistics Addison-Wesley, third
edition edition.

Dodin, B. 1984. Determining the k most critical paths in pert netwo@gerations Researgh
32(4):859-877.

Dodin, B. 1985. Bounding the project completion time distribution in PERT nétsv@Dpera-
tions Researct33(4):862—-881.

Edelkamp, S. and Hoffmann, J. 2003. PDDL2.2: The Language forldesiCal Part of the 4th
International Planning Competition. Technical Report 195, Institutrdformatik, Freiburg,
Germany.

Eder, J. and Liebhart, W. 1995. The workflow activity model WAMOPhoceedings of the 3rd
International Conference on Cooperative Information Systems, Viétusdria pages 87—-98.

Erol, K., Nau, D. S., and Subrahmanian, V. S. 1995. Complexity, decidahiliyundecidability
results for domain-independent plannigtificial Intelligence 76(1-2):75-88.

BIBLIOGRAPHY 232

Erradi, A., Maheshwari, P., and Tosic, V. 2006. Recovery policiegfitrancing web services
reliability. In Proceedings of the IEEE International Conference on Web Servic¥8$106),
Chicago, USApages 189-196. IEEE Computer Society.

Ewing, B., Hillier, L., Wendl, M. C., and Green, P. 1998. Base-calling abmated sequencer
traces using phred. i. accuracy assessnteahome ResearcB(3):175-185.

Faratin, P., Sierra, C., and Jennings, N. R. 1998. Negotiation decisiotidas for autonomous
agents.Int. Journal of Robotics and Autonomous Systei§3-4):159-182.

Foster, 1. 2005. Globus toolkit version 4: Software for service-¢ei@rsystems. In Jin, H.,
Reed, D. A,, and Jiang, W., editol&|P International Conference on Network and Parallel
Computing volume 3779 ofecture Notes in Computer Scienpages 2—13. Springer.

Foster, I. and lamnitchi, A. 2003. On death, taxes, and the convergd#neeer-to-peer and
grid computing. InPeer-to-Peer Systems Il: Second International Workshop, IPTIRS 2
Berkeley, CA, USA, February 21-22, 2003 Revised Papetame 2735 oL ecture Notes in
Computer Scienggages 118 — 128. Springer.

Foster, 1., Jennings, N. R., and Kesselman, C. 2004. Brain meets bvdimnGrid and agents
need each other. IRroceedings of the 3rd International Conference on Autonomoustagen
and Multi-Agent Systempages 8-15.

Foster, |. and Kesselman, C., editors 19%8e grid: blueprint for a new computing infrastruc-
ture. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Foster, |., Kesselman, C., Nick, J., and Tuecke, S. 2002. The Phygiofdage Grid: An Open
Grid Services Architecture for Distributed Systems Integration. Techrépalrt, Open Grid
Service Infrastructure WG.

Foster, I., Kesselman, C., and Tuecke, S. 2001. The anatomy of theEgrabling scalable
virtual organizations.International Journal of High Performance Computing Applications
15(3):200-222.

Frey, J., Tannenbaum, T., Livny, M., Foster, |., and Tuecke, S. 2@hdor-G: A computa-
tion management agent for multi-institutional grids.HRDC '01: Proceedings of the 10th
IEEE International Symposium on High Performance Distributed Comp@tiRipC-10'01)
page 55, Washington, DC, USA. IEEE Computer Society.

Friese, T., Miller, J. P., and Freisleben, B. 2005. Self-healing execution of bisspresesses
based on a peer-to-peer service architecturePraiteedings of the 18th International Con-
ference on Architecture of Computing Systems (ARCS '05), SystertsAsp©rganic and
Pervasive Computing, Innsbruck, Austrisolume 3432 ofLecture Notes in Computer Sci-
ence pages 108-123. Springer-Verlag.

Garcia-Molina, H. and Salem, K. 1987. Sagas. Pioceedings of the 1987 ACM SIGMOD
International Conference on Management of Data (SIGMOD '87),Bancisco, USApages
249-259. ACM Press.

BIBLIOGRAPHY 233

Garey, M. R. and Johnson, D. S. 19@omputers and Intractability: A Guide to the Theory of
NP-CompletenesdV. H. Freeman & Co., New York, NY, USA.

Geddes, N. 2006. The national grid service of the ukséond IEEE International Conference
on e-Science and Grid Computing (e-Science’'@épes 94—-100.

Gentzsch, W. 2006. D-grid, an e-science framework for germantgt®nnThe Fifth Interna-
tional Symposium on Parallel and Distributed Computing (ISPDC'pépes 12-13.

Georgakopoulos, D., Hornick, M. F., and Sheth, A. P. 1995. An Qeerof Workflow Man-
agement: From Process Modeling to Workflow Automation Infrastructistributed and
Parallel Databases3(2):119-153.

Georgeff, M., Pell, B., Pollack, M., Tambe, M., and Wooldridge, M. 1998e Delief-desire-
intention model of agency. In Mler, J., Singh, M. P., and Rao, A. S., editdPspceedings of
the 5th International Workshop on Intelligent Agents V : Agent Theorieshit&ctures, and
Languages (ATAL-98Yolume 1555, pages 1-10. Springer-Verlag: Heidelberg, Germany.

Ghallab, M., Nau, D., and Traverso, P. 20@¥utomated Planning: Theory and Practicklor-
gan Kaufmann.

Ghare, P. M. and Taylor, R. E. 1969. Optimal redundancy for reliabilitgaries systems.
Operations Researcii7(5):838-847.

Gibbins, N., Harris, S., and Shadbolt, N. 2003. Agent-based semantisaeveices. INWWW
'03: Proceedings of the Twelfth International Conference on World Wieg, \Mages 710—
717, New York, NY, USA. ACM Press.

Golden, B., Bodin, L., Doyle, T., and Jr., W. S. 1980. Approximate travedmigsman algo-
rithms. Operations Resear¢l28(3):694—711.

Golle, P., Leyton-Brown, K., Mironov, |., and Lillibridge, M. 2001. Indems for sharing in
peer-to-peer networks. In Fiege, L.{Ml, G., and Wilhelm, U., editorglectronic Commerce
: Second International Workshop, WELCOM 2001 Heidelberg, Geymidavember 16-17,
2001, volume 2232 ot ecture Notes in Computer Scienpage 75. Springer.

Gong, L. 2001. JXTA: a network programming environmerlEEE Internet Computing
5(3):88-95.

Gopal, K., Aggarwal, K. K., and Gupta, J. S. 1978. An improved algoritbmréliability
optimization.IEEE Transactions on ReliabilityR-27(5):325-328.

Gruber, T. R. 1993. A translation approach to portable ontologkesowledge Acquisition
5(2):199-220.

Gu, X. and Nahrstedt, K. 2002. A scalable QoS-aware service agfipagnodel for peer-to-
peer computing grids. IRProceedings of the 11th IEEE International Symposium on High
Performance Distributed Computingages 73— 82.

BIBLIOGRAPHY 234

Hagstrom, J. N. 1988. Computational complexity of PERT problexetworks 18:139-147.

He, M., Jennings, N., and Leung, H. 2003. On agent-mediated electrommerce. IEEE
Transactions On Knowledge And Data Engineerih§(4):985-1003.

Hendler, J. 2001. Agents and the semantic wetelligent Systems, IEEA6(2):30 — 37.

Hollingsworth, D. 1995. The workflow reference model. TechnicaldgepC00-1003, Work-
flow Management Coalition.

Horvitz, E. J. 1988. Reasoning under varying and uncertain resgorgstraints. li*roceedings
of the Seventh National Conference on Artificial Intelligence (AAAI 198&)es 111-116.
Morgan Kaufmann.

Huang, G., Zhou, L., Liu, X.-Z., Mei, H., and Cheung, S.-C. 2006. Rerémce aware service
pool in dependable service oriented architectumurnal of Computer Science and Technol-
ogy, 21(4):565-573.

Huhns, M. N., Holderfield, V. T., and Gutierrez, R. L. Z. 2003. Achigvgoftware robustness
via large-scale multiagent systems. S$oftware Engineering for Large-Scale Multi-Agent
Systemgpages 171-210.

Huhns, M. N. and Singh, M. P. 2005. Service-Oriented Computing: Kayc€pts and Princi-
ples.IEEE Internet Computingd(1):75-81.

Ingham, D. B., Panzieri, F., and Shrivastava, S. K. 1999. Construdtipgndable web services.
In Advances in Distributed Systems, Advanced Distributed Computing: Hgonithms to
Systemspages 277-294. Springer-Verlag.

Irwin, D. E., Grit, L. E., and Chase, J. S. 2004. Balancing risk and méwaa market-based
task service. IfProceedings of the 13th IEEE International Symposium on High Perfocma
Distributed Computing (HPDC-13 '04), Honolulu, USpages 160-169. IEEE Computer
Society.

Ismail, R. and Jgsang, A. 2002. The beta reputation systerRroeeedings of the 15th Bled
Conference on Electronic Commer&ied, Slovenia.

Jaeger, M., Rojec-Goldmann, G., andiM, G. 2004. QoS aggregation for web service com-
position using workflow patterns. Rroceedings of the Eighth IEEE Enterprise Distributed
Object Computing Conference (EDOC 200gages 149-159.

Jaeger, M. C. and Ladner, H. 2005. Improving the QoS of WS compositiased on redun-
dant services. IProceedings of the 2005 International Conference on Next Generdtan
Services Practices (NWeSP 2005), Seoul, Kgrages 189-194. IEEE Computer Society.

Jaeger, M. C. and khl, G. 2007. QoS-based selection of services: The implementation of
a genetic algorithm. iKiVS 2007 Workshop: Service-Oriented Architectures und Service-
Oriented Computing (SOA/SOC), Bern, Switzer|grajes 359-370. VDE Verlag.

BIBLIOGRAPHY 235

Jennings, N. R. 2000. On Agent-Based Software Engineerirgytificial Intelligence
117(2):277-296.

Jennings, N. R., Faratin, P., Johnson, M. J., Norman, T. J., O’'Briean®.Wiegand, M. E.
1996. Agent-based business process managemaigrnational Journal of Cooperative
Information System$(2—3):105-130.

Jennings, N. R., Faratin, P., Lomuscio, A. R., Parsons, S., Sierra,dC\Waoldridge, M. 2001.
Automated negotiation: prospects, methods and challerigernational Journal of Group
Decision and Negotiatigri0(2):199-215.

Johnson, M. E. and Whang, S. 2002. E-business and supply chaageraent. An overview
and frameworkProduction and Operations Managemgeh1(4):413-423.

Jgsang, A., Ismail, R., and Boyd, C. 2007. A survey of trust and répataystems for online
service provisionDecision Support System#3(2):618-644.

Kahn, R. 1972. Resource-sharing computer communications netwétaceedings of the
IEEE, 60(11):1397 — 1407.

Kang, Y., Herzog, J., and Spragins, J. 1988. FISHNET: a distributeluitacture for high-
performance local computer networkEEE Transactions on Computer37(1):119 — 123.

Keidl, M., Seltzsam, S., and Kemper, A. 2003. Reliable web service exearnibdeployment
in dynamic environments. IRroceedings of the International Workshop on Technologies for
E-Services (TESYyolume 2819 ot ecture Notes in Computer Scienpages 104-118.

Kifer, M., Lausen, G., and Wu, J. 1995. Logical foundations of objgnted and frame-based
languagesJournal of the ACM42(4):741-843.

Kirkpatrick, S., C. D. Gelatt, J., and Vecchi, M. P. 1983. Optimization by simdlateealing.
Science220(4598):671-680.

Klusch, M., Gerber, A., and Schmidt, M. 2005. Semantic web service cadtigroplanning
with OWLS-XPlan. InProceedings of the 1st International AAAI Fall Symposium on Agents
and the Semantic Web, Arlington, U$@ages 55-62. AAAI Press.

Knight, J. 1972. A case study: Airlines reservations syster®soceedings of the IEEE
60(11):1423 — 1431.

Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., aratddso, J. 2003.
IntelliGEN: A distributed workflow system for discovering protein-proteitenactions.Dis-
tributed and Parallel Database43(1):43-72.

Kopecky, J., Vitvar, T., Bournez, C., and Farrell, J. 2007. SAWSDL: Semantiotations for
WSDL and XML schemalEEE Internet Computingl1(6):60-67.

Kreger, H. 2003. Fulfilling the Web services promi€@mmunications of the ACM6(6):29-ff.

BIBLIOGRAPHY 236

Krishna, V. 2002 Auction Theory Academic Press.

Kuhn, N., Miller, H., and Miller, J. 1993. Task decomposition in dynamic agent societies.
In Proceedings of the International Symposium on Autonomous Deceett&izstems 1993
(ISADS 93)pages 165-171.

Kuo, W. 2000. An annotated overview of system-reliability optimizatitBEE Transactions
on Reliability; 49(2):176-187.

Lamport, L., Shostak, R., and Pease, M. 1982. The byzantine geneshlemp. ACM Transac-
tions on Programming Languages and Systems (TOPL443):382-401.

Laszewski, G. and Hategan, M. 2005. Workflow concepts of the jawa Kb Journal of Grid
Computing 3(3—4):239-258.

Li, P., Hayward, K., Jennings, C., Owen, K., Oinn, T., Stevens, R., Be&¢ and Wipat,
A. 2004. Association of variations in i kappa b-epsilon with graves deseamg classical
and mygrid methodologies. PRroceedings of UK e-Science Programme All Hands Meegting
pages 832—-839.

Li, W., He, J., Ma, Q., Yen, I|.-L., Bastani, F., and Paul, R. 2005. A fram&wo support sur-
vivable web services. IRroceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Papers, Denver,,p&8e 93.2. IEEE Computer Soci-
ety.

Liang, Y.-C. and Smith, A. 2004. An ant colony optimization algorithm for thdurelancy
allocation problem (RAP)IEEE Transactions on Reliabilifyp3(3):417-423.

Lindley, D. V. 1971.Making DecisionsJohn Wiley & Sons Ltd.

Luck, M., McBurney, P., Shehory, O., and Willmott, S. 20@&ent Technology: Computing as
Interaction (A Roadmap for Agent-Based ComputirggentLink.

Ludwig, H., Keller, A., Dan, A., King, R. P., and Franck, R. 2003. Welviee level agree-
ment (WSLA) language specification. Technical Report 1.0, IBM Catpon. (available at
http://www.research.ibm.com/wsla/WSLASpecV1-2003012 8.pdf).

Lyu, M. and He, Y.-T. 1993. Improving the n-version programming pssdérough the evolu-
tion of a design paradigmEEE Transactions on Reliabilify#2(2):179-189.

Malcolm, D. G., Roseboom, J. H., Clark, C. E., and Fazar, W. 1959. Apglicaf a technique
for research and development program evaluatidperations Researci7(5):646—669.

Mandell, D. and Mcllraith, S. 2003. Adapting BPEL4WS for the Semantic Wéite Bottom-
Up Approach to Web Service Interoperation. Pnoceedings of the Second International
Semantic Web Conference, Sanibel Island, U@&\ime 2870 of_ecture Notes in Computer
Sciencepages 227-241. Springer-Verlag.

http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

BIBLIOGRAPHY 237

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, Sardyanan, S.,
Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and 8yKa2004a. OWL-S:
Semantic Markup for Web Services. Technical report, OWL-S Coalition.

Martin, D., Paolucci, M., Mcllraith, S., Burstein, M., McDermott, D., McGuingeb., Parsia,
B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., and Sycarap84l2 Bringing Se-
mantics to Web Services: The OWL-S Approach.Pimceedings of the First International
Workshop on Semantic Web Services and Web Process CompositioWFEA2ZH04), San
Diego, USA volume 3387 ofLecture Notes in Computer Sciengeges 26—42. Springer-
Verlag.

Matei, R., lamnitchi, A., and Foster, P. 2002. Mapping the Gnutella netwil#EE Internet
Computing 6(1):50 — 57.

Maturana, F. P. and Norrie, D. H. 1997. Distributed decision-makinggusia contract net
within a mediator architecturdecision Support Systenz0(1):53—-64.

Maximilien, E. and Singh, M. 2005. Multiagent System for Dynamic Web Sesvi®election.
In Proceedings of the AAMAS Workshop on Service-Oriented Computihg@aent-Based
Engineering (SOCABE), Utrecht, The Netherlanolges 294-301.

Maximilien, E. M. and Singh, M. P. 2004. A framework and ontology for aiync web services
selection.|EEE Internet Computing3(5):84—93.

McDermott, D. 2002. Estimated-regression planning for interactions with Bébices. In
Proceedings of the 6th International Conference on Al Planning anéddimg (AIPS’02),
Toulouse, Francepages 204-211. AAAI Press.

McGuinness, D. and van Harmelen, F. 2004. OWL Web Ontology Larggy@agrview. Rec-
ommendation, W3C. (available http://www.w3.0rg/TR/2004/REC-owl-fea-
tures-20040210/).

Mcllraith, S. A. and Son, T. C. 2002. Adapting Golog for Composition ah8stic Web Ser-
vices. InProceedings of the Eighth International Conference on KnowledgeeReptation
and Reasoning (KR2002), Toulouse, Franuages 482—-493. Morgan Kaufmann.

Mcllraith, S. A., Son, T. C., and Zeng, H. 2001. Semantic Web ServitEEE Intelligent
Systemsl6(2):46-53.

Menasce, D. 2002. QoS issues in web servitEEE Internet Computings(6):72—75.
Merideth, M. G., lyengar, A., Mikalsen, T., Tai, S., Rouvellou, |., anda¢anhan, P. 2005.
Thema: Byzantine-fault-tolerant middleware for web-service applicationBroceedings of

the 24th IEEE Symposium on Reliable Distributed Systems (SRDS’'05)dOrldB8A pages
131-142. IEEE Computer Society.

Michalewicz, Z. and Fogel, D. B. 2004 ow to solve it: Modern HeuristicsSpringer-Verlag,
2nd edition.

BIBLIOGRAPHY 238

Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Ridh B., Rollins,
S., and Xu, Z. 2002. Peer-to-peer computing. Technical Report M2-57R1, Hewlett-
Packard.

Mitra, N. 2003. SOAP Version 1.2 Part 0: Primer. Technical report, W3C

Mizukami, K. 1968. Optimum redundancy for maximum system reliability by the nietfio
convex and integer programmin@perations Resear¢hi6(2):392—-406.

Morris, M. and Ogan, C. 1996. The internet as mass medidournal of Communicatign
46(1):39-50.

Muller, J. P. 1996.The Design of Intelligent Agents: A Layered Approagblume 1177 of
Lecture Notes in Computer Scien&pringer.

Muscettola, N., Nayak, P. P., Pell, B., and Williams, B. C. 1998. Remote agehbldty go
where no ai system has gone befobetificial Intelligence 103(1-2):5-47.

Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., and Granqvist, H. 200//s-trust 1.3.
Technical report, OASIS.

Nadalin, A., Kaler, C., Monzillo, R., and Hallam-Baker, P. 2006. Web sebssgecurity: Soap
message security 1.1 (ws-security 2004). Technical report, OASIS.

Naedele, M. 2003. Standards for xml and web services sec@iyputer 36(4):96-98.

Narayanan, S. and Mcllraith, S. A. 2002. Simulation, verification andaated composition of
web services. IfProceedings of the Eleventh International Conference on World Wide Web
pages 77-88. ACM Press.

Neches, A.-L. 1993. FAST - a research project in electronic commeitectronic Markets
3(3):25-27.

Nelson, B. 1981. Remote procedure call. Technical report, Xerog.Cor

Neuman, B. and Ts'o, T. 1994. Kerberos: an authentication serviceofoputer networks.
IEEE Communications Magazing2(9):33-38.

Ng, K.-C. and Abramson, B. 1990. Uncertainty management in expegrgsIEEE Expert:
Intelligent Systems and Their Applicatiqh§2):29—-48.

Nicola, V. F. and Goyal, A. 1990. Modeling of correlated failures angcwinity error recovery
in multiversion softwarelEEE Transactions on Software Engineerin$(3):350—-359.

Norman, T. J., Preece, A., Chalmers, S., Jennings, N. R., Luck, M.,,Maibg, Nguyen, T. D.,
Deora, V., Shao, J., Gray, A. W., and Fiddian, N. J. 2004. Agentebfmsenation of virtual
organisationsKnowledge-Based System3(2—4):103-111.

BIBLIOGRAPHY 239

Noy, F. and Musen, A. 2002. Evaluating ontology-mapping tools: Reagngs and experi-
ence. InProceedings of OntoWeb-SIG3 Workshop at the 13th Internationale@orce on
Knowledge Engineering and Knowledge Managemeasges 1-14.

O’Brien, A., Newhouse, S., and Darlington, J. 2004. Mapping of sciemifirkflow within the
e-protein project to distributed resourcesPiloceedings of UK e-science All Hands Meeting
(AHM 2004), Nottingham, UKpages 404-409. EPSRC.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, Mu\ér, T., Glover, K.,
Pocock, M. R., Wipat, A., and Li, P. 2004. Taverna: a tool for the cortiposand enactment
of bioinformatics workflowsBioinformatics 20(17):3045—-3054.

Oinn, T., Greenwood, M., Addis, M., Alpdemir, M. N., Ferris, J., Glover,Baoble, C., Goderis,
A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M. R., Senger, M., StesjeR., Wipat, A.,
and Wroe, C. 2006. Taverna: lessons in creating a workflow envirotifmethe life sciences.
Concurrency and Computation: Practice and Experierd&410):1067-1100.

Oram, A. 2001.Peer-to-Peer: Harnessing the Power of Disruptive Technolog@®Reilly &
Associates, Inc., Sebastopol, CA, USA.

Paolucci, M., Kawamura, T., Payne, T. R., and Sycara, K. P. 2002. r@&nmaatching of web
services capabilities. IRroceedings of the First International Semantic Web Conference
(ISWC 2002), Sardinia, Itajyvolume 2342 ofLecture Notes in Computer Scienqeges
333-347. Springer-Verlag.

Papazoglou, M. 2003. Service-oriented computing: concepts, ¢hdassics and directions. In
Proceedings of the Fourth International Conference on Web Inform&ystems Engineering
(WISE 2003)pages 3-12.

Parsons, S. and Wooldridge, M. 2002. Game theory and decision timaoniti-agent systems.
Autonomous Agents and Multi-Agent System(i3):243-254.

Patel, C., Supekar, K., and Lee, Y. 2004. Provisioning resilient, adapt@b services-based
workflow: A semantic modeling approach. IEEE International Conference on Web Ser-
vices (ICWS’04)pages 480-487.

Paurobally, S. and Jennings, N. R. 2005. Protocol engineeringdbrservices conversations.
Engineering Applications of Artificial Intelligenc&8(2):237-254.

Pautasso, C. and Alonso, G. 2005. Flexible binding for reusable catioposf web services.
In Proceedings of the 4th International Workshop on Service ComposBiGr2005) pages
151-166.

Pearl, J. 1984Heuristics: Intelligent search strategieAddison-Wesley.

Pordes, R., Petravick, D., Kramer, B., Olson, D., Livny, M., Roy, A., Av®., Blackburn, K.,
Wenaus, T., Wirthwein, F., Foster, |., Gardner, R., Wilde, M., Blatecky, A., McGee,rd, a

BIBLIOGRAPHY 240

Quick, R. 2007. The open science gridburnal of Physics: Conference Serig8:012057
(15pp).

Raiffa, H. 1968. Decision Analysis: Introductory Lectures on Choices Under Uncertainty
McGraw-Hill, Inc., USA.

Ramchurn, S. D., Huynh, D., and Jennings, N. R. 2004. Trust in multiagestemsKnowledge
Engineering Revieyd 9(1):1-25.

Ran, S. 2003. A model for web services discovery with Q8&secom Exch4(1):1-10.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Schenkerp$. 20scalable content-
addressable network. IBIGCOMM ’'01: Proceedings of the 2001 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Qorications pages
161-172, New York, NY, USA. ACM.

Richards, W. 2002. Virtual screening using grid computing: The seea&nproject.Nature
Reviews Drug Discovery (7):551-555.

Roman, D., Lausen, H., Keller, U., de Bruijn, J., Bussler, C., Domingueedsét, D., Kifer, M.,
Kopecky, J., Lara, R. Oren, E., Polleres, A., and Stollberg, M. 2008b Bérvice Modeling
Ontology (WSMO). Technical Report D2v1.1., DERI.

Rosenschein, J. S. and Zlotkin, G. 19%Rles of Encounter: Designing Conventions for Auto-
mated Negotiation Among Computeihe MIT Press.

Rubinstein, A. 1982. Perfect equilibrium in a bargaining moéslonometrica50(1):97-109.

Russell, S. and Norvig, P. 200Atrtificial Intelligence: A Modern ApproachHrentice-Hall, 2nd
edition.

Sabater, J. and Sierra, C. 2002. Social ReGreT, a reputation mal ba social relations.
ACM SIGecom Exchange3(1):44-56.

Sandholm, T. W. 1999. Distributed rational decision making. In Weil3, G., reddaltia-
gent Systems: A Modern Approach to Distributed Artificial Intelligepages 201-258. MIT
Press, Cambridge, MA, USA.

Sandholm, T. W. 2002. Algorithm for optimal winner determination in combindtatiations.
Artificial Intelligence 135(1-2):1-54.

Sandholm, T. W. and Lesser, V. R. 1995a. Advantages of Leveled Comntit@antracting
Protocol.Proceedings of the Thirteenth National Conference on Atrtificial Intelligehd 26—
133.

Sandholm, T. W. and Lesser, V. R. 1995b. Issues in automated negotaticglectronic com-
merce: Extending the contract net framework. In Lesser, V. R., editoceedings of the
First International Conference on Multi-Agent Systems (ICMAS'@B)ges 328-335, San
Francisco, CA, USA. The MIT Press: Cambridge, MA, USA.

BIBLIOGRAPHY 241

Sandholm, T. W. and Lesser, V. R. 1996. Advantages of a leveled comntittoetracting
protocol. InProceedings of the Thirteenth National Conference on Artificial Intelligenc
Portland, OR.

Saroiu, S., Gummadi, K. P., and Gribble, S. D. 2003. Measuring and amgly® characteris-
tics of napster and gnutella hostultimedia System®(2):170-184.

Schoder, D. and Fischbach, K. 2003. Peer-to-peer prosp&mimmunications of the ACM
46(2):27-29.

Scott, R., Gault, J., and McAllister, D. 1987. Fault-tolerant software relialiitgeling.IEEE
Transactions on Software Engineerjri®E-13(5):582-592.

Simon, H. A. 1957. Models of man, social and rational : mathematical essays on rational
human behavior in a social settingViley.

Simon, H. A. and Newell, A. 1958. Heuristic problem solving: The nexade in operations
researchOperations Researcié(1):1-10.

Singh, G., Kesselman, C., and Deelman, E. 2007. A provisioning model andnitparison
with best-effort for performance-cost optimization in grids Pimceedings of the 16th Inter-
national Symposium on High Performance Distributed Computing (HPD{;, {fages 117—
126, New York, NY, USA. ACM Press.

Singh, M. P. and Huhns, M. N. 2005Service-Oriented Computing : Semantics, Processes,
Agents John Wiley & Sons, Inc., USA.

Sirin, E., Hendler, J., and Parsia, B. 2003. Semi-automatic Composition oSafefces using
Semantic Descriptions. Meb Services: Modeling, Architecture and Infrastructure workshop
in ICEIS 2003 Angers, France.

Sirin, E., Parsia, B., and Hendler, J. 2005. Template-based compositgamahtic web ser-
vices. INAAAI Fall Symposium on Agents and the Semantic Web, Arlington, ptgyes
85-92. AAAI Press.

Smith, R. G. 1980. The contract net protocol: High-level communicationcamdrol in a
distributed problem solvetEEE Transactions On Computei29(12):1104-1113.

Smith, T. M., Abajian, C., and Hood, L. 1997. Hopper: software for autorgalata tracking
and flow in DNA sequencingComput. Appl. Bioscil3(2):175-182.

Soroush, H. M. 1994. The most critical path in a pert netwditke Journal of the Operational
Research Society5(3):287-300.

Sreenath, R. M. and Singh, M. P. 2004. Agent-based service seledtiomal of Web Seman-
tics: Science, Services and Agents on the World Wide ¥8j261-279.

BIBLIOGRAPHY 242

Srivastava, B. and Koehler, J. 2003. Web Service Composition - @uB@autions and Open
Problems. InProceedings of ICAPS’'03 Workshop on Planning for Web Servibesito,
Italy.

Staber, F. and Nller, J. P. 2007. Evaluating peer-to-peer for loosely coupled busitakab-
oration: A case study. IBusiness Process Managemendlume 4714 ol_ecture Notes in
Computer Sciencgpages 141-148.

Stein, S., Jennings, N. R., and Payne, T. R. 2006. Flexible provisiohseyace workflows. In
Proceedings of the 17th European Conference on Artificial IntelligeBE&A(-06), Riva del
Garda, Italy, pages 295-299. 10S Press.

Stein, S., Jennings, N. R., and Payne, T. R. 2007a. Provisioning eterous and unreli-
able providers for service workflows. Iroceedings of the 6th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), Honolulu,'HaW&A, pages
523-525. ACM Press.

Stein, S., Jennings, N. R., and Payne, T. R. 2007b. Provisioning geterous and unreliable
providers for service workflows. IRroceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence, Vancouver, Canadpages 1452—-1458. AAAI Press.

Stein, S., Payne, T. R., and Jennings, N. R. 2007c. An effectivegyrédethe flexible provi-
sioning of service workflows. IfProc. Workshop on Service-Oriented Computing: Agents,
Semantics, and Engineering (SOCASE), Honolulu, Hawai'i, Ushume 4504 ofLecture
Notes in Computer Sciengeages 16—30. Springer.

Stein, S., Payne, T. R., and Jennings, N. R. 2008a. Flexible provisiohingb service work-
flows. 8(4). (in press).

Stein, S., Payne, T. R., and Jennings, N. R. 2008b. Flexible servigssioring with advance
agreements. IRProceedings of the 7th International Conference on Autonomous Agedts
Multiagent Systems (AAMAS), Estoril, Portugadges 249-256. ACM Press.

Stevens, R. D., Tipney, H. J., Wroe, C. J., Oinn, T. M., Senger, M., LBrilV., Goble, C. A.,
Brass, A., and Tassabehji, M. 2004. Exploring williams-beuren syndnasireg mygrid.
Bioinformatics 20(Suppl. 1):303-310.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan2081. Chord: A
scalable peer-to-peer lookup service for internet applicatigtM SIGCOMM Computer
Communication Reviev@1(4):149-160.

Talia, D. 2002. The Open Grid Services Architecture: where the grid neetg/eb. IEEE
Internet Computing6(6):67— 71.

Teacy, W. T. L. 2006.Agent-Based Trust and Reputation in the Context of Inaccurate Infor-
mation Sources PhD thesis, School of Electronics and Computer Science, University of
Southampton.

BIBLIOGRAPHY 243

Teacy, W. T. L., Chalkiadakis, G., Rogers, A., and Jennings, N. R8.2@&quential decision
making with untrustworthy service providers. Broceedings of the 7th International Con-
ference on Autonomous Agents and Multiagent Systems

Teacy, W. T. L., Patel, J., Jennings, N. R., and Luck, M. 2006. TRAVDGst and reputation
in the context of inaccurate information sourcdsurnal of Autonomous Agents and Multi-
Agent System42(2):183-198.

Thain, D., Tannenbaum, T., and Livny, M. 2003. Condor and the gridddrman, F., Hey, A.,
and Fox, G., editorsGrid Computing: Making The Global Infrastructure a Realithap-
ter 11, pages 299-335. John Wiley and Sons, Ltd.

Tillman, F. A., Hwang, C. L., and Kuo, W. 1977. Optimization technigues fsteay reliability
with redundancy: A reviemEEE Transactions on ReliabilifyR-26:148-155.

Tillman, F. A. and Liittschwager, J. M. 1967. Integer programming formulatioconstrained
reliability problems.Management Scienc&3(11):887-899.

Timmers, P. 1999Electronic commerce : strategies and models for business-to-busiaelss tr
ing. Wiley.

Townend, P., Groth, P., and Xu, J. 2005. A provenance-aware tegiddwult tolerance scheme
for service-based applications. Rroceedings of the Eighth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC’05), Seatfg, phges 258—
266. IEEE Computer Society.

Trivedi, K. 2001. Probability and Statistics with Reliability, Queuing, and Computer Science
Applications John Wiley & Sons, Inc., USA, 2nd edition.

van der Aalst, W. M. P. 1998. The application of petri nets to workflow rgangent. The
Journal of Circuits, Systems and Computed€l):21-66.

van der Aalst, W. M. P., ter Hofstede, A., Kiepuszewski, B., and Bako2003. Workflow
PatternsDistributed and Parallel Database44(3):5-51.

Verma, D., Sahu, S., Calo, S., Beigi, M., and Chang, I. 2002. A policyicefor grid comput-
ing. In Parashar, M., editoGrid Computing - GRID 2002 : Third International Workshop
pages 243 — 255. Springetr.

Von Neumann, J. and Morgenstern, O. 194%eory of games and economic behavirin-
centon University Press.

Vulkan, N. and Jennings, N. R. 2000. Efficient mechanisms for thelg@bgervices in multi-
agent environment®ecision Support Systen8(1-2):5-19.

Wang, X., Vitvar, T., Kerrigan, M., and Toma, I. 2006. A QoS-aware t&a model for
semantic web services. Bervice-Oriented Computing 2006 (ICSOC 20@6Jume 4294 of
Lecture Notes in Computer Scienpages 390-401.

BIBLIOGRAPHY 244

Wang, Y. and Vassileva, J. 2003. Bayesian network-based trust mimdBroceedings of the
IEEE/WIC International Conference on Web Intelligence (W1 20p8yes 372—-378.

Weatherspoon, H., Moscovitz, T., and Kubiatowicz, J. 2002. Intrasgetailure analysis:
Avoiding correlated failures in peer-to-peer systemsPlaceedings of the 21st IEEE Sym-
posium on Reliable Distributed Systems, Osaka, Japages 362—-367. IEEE Computer So-
ciety.

Weerawarana, S., Curbera, F., Leymann, F., and Ferguson, T.5.2D05. Web Services
Platform Architecture Prentice-Hall.

Weil3, G., editor 1999Multiagent systems: A modern approach to distributed artificial intelli-
gence MIT Press.

Wittie, L. 1991. Computer networks and distributed syste@mmputey 24(9):67 — 76.

Wooldridge, M. 2002 An Introduction to MultiAgent System3ohn Wiley & Sons, Chichester,
England.

Wooldridge, M. and Ciancarini, P. 2000. Agent-oriented software @sging: The state of the
art. In Ciancarini, P. and Wooldridge, M., editoFrst International Workshop on Agent-
Oriented Software Engineeringages 1-28.

Wu, D., Sirin, E., Hendler, J., Nau, D., and Parsia, B. 2003. Automatic emfices composition
using SHOP2. IMorkshop on Planning for Web Servicgégento, Italy.

Xiao, J. and Boutaba, R. 2005. QoS-aware service composition aptaéida in autonomic
communicationlEEE Journal on Selected Areas in Communicatj@812):2344— 2360.

Yang, Z. and Duddy, K. 1996. CORBA: a platform for distributed objemtputing. ACM
SIGOPS Operating Systems Revi8®2):4-31.

Yu, T. and Lin, K. 2005. Service selection algorithms for composing comgéexices with
multiple QoS constraints. IRroceedings of the Third International Conference on Service
Oriented Computing (ICSOC2005), Amsterdam, The NetherJamiigme 3826 ofLecture
Notes in Computer SciencBpringer.

Zeng, L., Benatallah, B., Ngu, A. H., Dumas, M., Kalaghanam, J., and C&rig004. QoS-
aware middleware for web services composititFEEE Trans. Softw. Eng30(5):311-327.

Zeng, L., Lei, H., jang Jeng, J., Chung, J.-Y., and Benatallah, B. 200kyRisiven exception-
management for composite web servicesPtaceedings of the Seventh IEEE International
Conference on E-Commerce Technology (CEC'@apes 355-363, Washington, DC, USA.
IEEE Computer Society.

Zhao, B., L. Huang; Stribling, J., Rhea, S., Joseph, A., and Kubiatowic2004. Tapestry:
a resilient global-scale overlay for service deploymdBEE Journal on Selected Areas in
Communications22(1):41 — 53.

BIBLIOGRAPHY 245

Zhou, C., Chia, L.-T., and Lee, B.-S. 2004. DAML-Q0oS ontology for welvices. IrProceed-
ings of the IEEE International Conference on Web Services (ICWS) 2884 Diego, USA
pages 472-479. IEEE Computer Society.

Zimmermann, O., Tomlinson, M. R., and Peuser, S. 20@&spectives on Web Services: Ap-
plying SOAP, WSDL and UDDI to Real-World Projec&pringer.

