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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Sebastian Stein

Service-oriented computing is an increasingly popular approach for providing applications,

computational resources and business services over highly distributed and open systems (such as

the Web, computational Grids and peer-to-peer systems). In this approach, service providers ad-

vertise their offerings by means of standardised computer-readable descriptions, which can then

be used by software applications to discover and consume appropriate services without human

intervention. However, despite active research in service infrastructures, and in service discov-

ery and composition mechanisms, little work has recognised that services areoffered by inher-

ently autonomous and self-interested entities. This autonomy implies that providers may choose

not to honour every service request, demand remuneration for their efforts, and, in general, ex-

hibit uncertain behaviour. This uncertainty is especially problematic for the service consumers

when services are part of complex workflows, as is common in many application domains, such

as bioinformatics, large-scale data analysis and processing, and commercial supply-chain man-

agement.

In order to address this uncertainty, we propose a novel algorithm for provisioning services for

complex workflows (i.e., for selecting suitable services for the constituent tasks of a workflow).

This algorithm uses probabilistic performance information about providersto reason about ser-

vice uncertainty and its impact on the overall workflow. Furthermore, our approach actively

mitigates this uncertainty by employing two key techniques. First, it proactively provisions re-

dundant services for particularly critical or failure-prone tasks (thusincreasing the probability

of success). Second, it recovers dynamically from service failures by re-provisioning services

at run-time (without necessarily receiving explicit failure messages). Unlike existing work in

this area, our algorithm employs principled decision-theoretic techniques to determine which

services to provision, whether to introduce redundant services and when to re-provision failed

services. In doing so, it explicitly balances the cost of provisioning with theexpected value of

the workflow.

To show how our algorithm applies to a range of common service-oriented systems, we consider

a variety of different scenarios in this thesis. More specifically, we firstexamine environments

where the consumer lacks specific knowledge to differentiate between distinct service providers,
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as is common in highly dynamic and open systems. Despite this lack of detailed knowledge, we

demonstrate how the consumer can use redundancy and dynamic re-provisioning to influence

the outcome of a workflow and to deal with uncertainty. Then, we look into systems where the

consumer has more specific knowledge about highly heterogeneous providers. While existing

work has concentrated on selecting the single best provider for each workflow task, we show that

a consumer can often improve its performance by provisioning multiple providers with different

qualities for a single task. Finally, we discuss how our algorithm can be adapted for systems

where consumers and providers reach explicit service contracts in advance. In this context,

we are the first to propose a gradual provisioning approach, whereby the consumer negotiates

contracts for some tasks in advance, but leaves the negotiation of others toa later time. This

approach allows the consumer to better react to uncertain service outcomesand to avoid paying

reservation fees that are later lost when services fail.

Throughout this thesis, we compare our approach empirically to current provisioning algo-

rithms. In doing so, we demonstrate that our approach typically achieves a significantly higher

utility for the service consumer than approaches that do not reason about uncertainty, that rely

on fixed levels of redundancy or service time-outs, and approaches that select single services to

achieve the optimal balance of various performance characteristics. Furthermore, we show that

these results hold over a large range of environments and workflow typesand that our algorithm

copes well even in highly uncertain environments where most services fail.As our approach

relies on fast heuristics to solve a problem that is known to be intractable, it scales well to larger

workflows with hundreds of tasks and thousands of providers. Finally,where it is tractable to

compute an optimal solution, we show empirically that our algorithm achieves a high utility that

is within 87% or more of the optimal.
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ŝ : Z→ Z Ascending sequence of unique starting times in a provi-

sioning decision

sf : Ω Provisioning strategy ifsp failed

sl : Ω Provisioning strategy if task is late

sp : Ω Main provisioning strategy

su : Ω Provisioning strategy ifsp did not result in provisioned

offers

t : C→ N Offer starting times

ta : Ω→ N Strategy advance times steps

tend : P(C)→ R Maps set of offers to offer with largest end time

t̄s,i : R Expected squared duration ofti

tw : Ω→ Z
+ Strategy time intervals
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Chapter 1

Introduction

The digital computer has been one of the most important inventions of the 20th century. Since

its inception in the 1940s, it has had a profound impact on the development ofcontemporary

society, supporting the large-scale automation of business activities, driving scientific progress

and controlling the tools and appliances that we rely on in our daily lives. During its history,

the computer has evolved quickly, from being an isolated and independentcalculating device, to

one that is now often part of complex distributed networks that span the globe.

This ubiquitous connectivity is revolutionising the usage of the computer, allowing users un-

precedented access to a vast range of resources and services — including information reposito-

ries, remote computing facilities and even traditional business services that can be procured on

the World Wide Web. In this context, there is a growing interest in building software applications

that automatically discover and engage these resources, e.g., to execute complex business pro-

cesses that rely on services by external suppliers, or scientific workflows that use data processing

services hosted on remote mainframes.

However, building such software applications is posing new challenges to the research com-

munity, as traditional software engineering approaches are often inadequate in addressing the

heterogeneity, dynamism and openness inherent in large distributed systems. Important issues

that are already being addressed include appropriate methods for the automated discovery of

distributed resources using computer-readable description languages,composition techniques

that automatically combine several services into larger workflows, and standardised frameworks

that allow heterogeneous applications to communicate and exchange data.

Furthermore, an important challenge is the need to deal with fundamentallyautonomoussoft-

ware components. As applications begin to outsource functionality across organisational bound-

aries, they also start to rely on different stakeholders that have their own goals and agendas. Con-

trary to traditional software models, distributed components no longer obey every instruction,

nor act in a deterministic manner. Instead, they follow their own decision-making procedures,

which are opaque to the consumers and primarily represent the interests oftheir owners. As

1



Chapter 1 Introduction 2

such, these components may fail without warning or respond later than anticipated, thus pos-

ing significant risks to consumers that rely on them for important, perhaps business-critical,

services.

This critical, but so far largely unexplored, feature of large-scale distributed systems is the prin-

cipal focus of this thesis. In particular, we investigate how a software application can select,

provision and monitor the services of external providers in a flexible manner to reduce service

failures, meet workflow constraints and react to problems.

We begin in this chapter by outlining the background to our work and by settinga research

agenda. More specifically, in Section 1.1, we discuss current trends in distributed computing.

Then, in Section 1.2, we introduce service-oriented computing, a popular approach for building

applications in distributed systems. Following this, Section 1.3 outlines the field of multi-agent

systems, which we believe is central to achieving flexible service-oriented systems. From the

preceding discussion, we then motivate our research and outline the requirements of our work

in Section 1.4. This is followed by an overview of our research contributions (Section 1.5) and

an outline of the remainder of this thesis (Section 1.6).

1.1 Current Trends in Distributed Computing

The proliferation of large-scale computer networks, such as the Internet, has made it possible

for computer systems across the world to communicate and exchange data (Wittie(1991)). Both

in offices and at home, this new medium has enabled human users to communicateinstantly

via electronic messages (Morris and Ogan (1996)) and to access an unprecedented amount of

information via the World Wide Web (Berners-Lee et al. (1994)).

Given this widespread connectivity, there is growing interest in building computer applications

that interact automatically with each other over networks, in order to share resources and data

without human intervention. On one hand, such automation promises increased efficiency and

economic rewards as applications are able to procure goods and services instantly, according

to their current requirements and the market environment. On the other hand, automation sim-

ply becomes a necessity as systems are increasingly complex, with potentially thousands of

heterogeneous and constantly changing components. Already, some successful applications ex-

ist, where data and functionality are distributed over large distances and across organisational

boundaries (Timmers (1999); Anderson (2004)).

Such large-scale distributed systems can offer advantages to a wide range of users. In industry,

companies are now interested in automating their business processes: for example to make

supply-chains more agile and interoperable across different organisations (Johnson and Whang

(2002)), to automate trading between businesses (He et al. (2003)) or tosell processing time

and specialised services, such as video rendering (Byde (2006)). In fact, in 2005, 7.6 % of

all UK businesses with 10 or more employees already used software to automatically interact
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with and order from suppliers, and for businesses with 1000 or more employees, that figure

was 42.1 % (Avery et al. (2007)). In a similar vein, researchers in academia expect to benefit

from sharing experimental results and expensive hardware (Butler (1999)), an idea epitomised

by the Grid (Foster et al. (2001)). Even home users already commonly participate in large-scale

peer-to-peer networks to share idle processing time (Anderson et al. (2002)) or data (Matei et al.

(2002)).

However, applications in large distributed systems are fundamentally different from traditional,

monolithic software. Rather than being self-contained, deterministic programs, these applica-

tions access software components that are written and maintained by external organisations.

Furthermore, those components reside on remote machines, may not be well documented, con-

tain bugs and are subject to change at any time.

In particular, this means that the interacting software components in these distributed systems are

typically highlyheterogeneous. That is, they are implemented by different programmers, written

in a variety of languages and execute on many distinct platforms. Hence, they often display

different performance characteristics, such as reliability, response timeand cost. Furthermore,

there is considerableuncertaintyin the behaviour of components, as these are usually opaque

and outside the consumer’s direct control. For example, the computer systems of a service

provider may break down without warning due to a local power failure or high demand by

many concurrent consumers. Finally, many large distributed systems areopenin nature, as is

the case with the Internet, where new entities are free to join at any time. This means that

the level of demand for software components can change as more users join, but also that new

and better offerings may become available over time. Similarly, such opennessoften implies

that entities may also leave at any time, which requires software to adapt quickly and make

alternative provisions for critical components.

Clearly, the above characteristics of distributed systems demand a flexible software engineering

approach, that is able to discover and engage heterogeneous and previously unseen components

at run-time. One prominent engineering paradigm with this aim is service-oriented computing,

which we discuss in the following section, and which forms the primary application area of this

thesis.

1.2 Service-Oriented Computing

Service-oriented computing has been suggested as an appropriate paradigm for systems where

many heterogeneous software components interact. In this approach, resources, software func-

tions and other behaviours are offered by their providers as computerservices(Huhns and Singh

(2005)). These services encapsulate key functionalities that consumers can procure in order to

fulfil their own aims and objectives.
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An important feature of service-oriented computing is the dynamic selection process between

services and their consumers. Rather than being explicitly specified a priori by a programmer,

services that achieve a given task are discovered by an application at run-time. For this rea-

son, providers use public registries to publish the necessary interfacesand descriptions of their

services, which are then interpreted and engaged automatically by the service consuming ap-

plication. Such dynamic binding offers some resilience against the dynamism of a distributed

system as an application does not need to rely on the availability of a single provider of a partic-

ular service. Rather, it can choose the most appropriate service provider that is available when

needed.

In most realistic application scenarios, including those mentioned in the preceding section, ser-

vice consumers will need to execute complexworkflows, composed of many services (Deelman

et al. (2003b)). Here, each service contributes some atomic unit of functionality to the overall

goal of the consumer. Often, the output of one service may be passed directly to the next ser-

vice, creating interdependencies between the constituent services of a workflow. Such service

compositions may also contain conditional branches, loops or other patternsthat are commonly

found in generic workflow languages (van der Aalst et al. (2003)).

So far, service-oriented computing has largely focussed on basic protocols and standardised data

formats that enable applications to discover and communicate with each other. As such, it is a

vital enabling technology for distributed systems, but there has been little work on exploring the

inherent uncertainty of services in these systems and the fundamentally autonomous nature of

service providing agents. However, when relying on external providers for vital services, appro-

priate mechanisms and strategies are needed to deal with the associated risk and uncertainty. In

the following section, we introduce the field of multi-agent systems, because we believe that its

methods and models are critical to understanding and addressing these challenges.

1.3 Multi-Agent Systems

When many heterogeneous and independent entities (i.e., the service consumers and providers)

interact in an open system, it is vital to recognise that these often represent distinct stakehold-

ers with different, perhaps conflicting, aims. For example, these entities could include several

service consuming applications, executed by different research laboratories, that all require the

same highly specialised service for their workflows. Likewise, several companies might sell the

same type of service and compete with each other for customers.

A fitting metaphor for such entities is the notion ofagents. These are self-interested entities that

act autonomously in order to achieve their own goals (Jennings (2000); Wooldridge (2002)). Re-

searchers in the field of multi-agent systems have developed powerful models of how such agents

interact, and how computational agents and distributed systems can be engineered to display de-

sirable properties despite their fundamentally self-interested nature (Weiß (1999); Wooldridge

and Ciancarini (2000); Dash et al. (2003)).



Chapter 1 Introduction 5

A central concept of agent-based research is the rationality of individual agents. In order to

meet their goals and objectives (or those of their owners), agents normallyseek to maximise

their private utility, a measure of their personal welfare. Acting in such a way allows the agent

to make appropriate decisions that balance the risks and potential benefits of its actions. It

also implies that a rational agent would not generally offer services for free when there is an

associated cost to itself, and that it may act to the detriment of other agents when this increases

its own utility. As an example, the provider of a scientific supercomputer may offer processing

time to other agents on a Grid, but withdraw these without warning when the computer is needed

by members of its own department.

As a result, the behaviour of an autonomous agent is inherently uncertain for external observers,

including the consumers of its services. Such uncertainty could be manifested by the failure of

a provider to deliver its service (for example, because it can offer the service to a better cus-

tomer, because the service is no longer profitable or simply because it suffered a system crash).

Even when a service is delivered, there will still be uncertainty about when it is completed and

about the quality of the result, as the provider may try to minimise costs to itself, serve several

customers at the same time and possibly rely on third parties for parts of its service.

Furthermore, it is important to realise that when self-interested agents interact, they do so gen-

erally on a mutually beneficial basis, i.e., agents only interact when this increases their own util-

ity. Hence, it is usually necessary to place these agents into an appropriateeconomic context,

where they exchange services for other resources. To this end, expressive mechanisms, such as

negotiation protocols or auctions, have been developed to allow agents to reach mutually bene-

ficial agreements about the provision of services, usually in exchange for financial remuneration

(Sandholm (1999); Jennings et al. (2001)). These mechanisms might include advance provision-

ing and negotiation over various parameters of a service, including its cost,deadline and quality

parameters.

Viewing service providers and consumers as self-interested agents thatinteract through market

mechanisms is highly appropriate for the type of large distributed systems we consider here.

As these agents belong to distinct companies or organisations, they would normally have a

considerable interest in making rational decisions that maximise their own utility and do not

lead to situations that are detrimental to themselves. This is highlighted especially by the current

interest by companies in automating their business processes and offeringspecialised services

to paying customers, in order to gain some economic benefit (as discussed inSection 1.1).

Despite this, the field of service-oriented computing has often failed to view service consumers

and providers as fully autonomous and self-interested agents. Rather, they have been treated as

loosely coupled, but mostly cooperative entities that honour service requests without question.

This is unrealistic, because such an approach neglects the inherent uncertainty of autonomous

agents and fails to acknowledge the need for providers and consumers toreach mutually benefi-

cial agreements over the provision of services.
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Due to these considerations, designing computational agents that rely on external services for

their workflows remains a critical challenge for service-oriented computing. Because of the

unreliability and potential cost of procuring services, such agents must make rational decisions

at run-time according to the interests of their owners. This means that an agent needs to react

to failures in a timely manner to meet its deadlines and that it should minimise costs, butspend

extra resources when appropriate, for example to ensure the successof a particularly critical part

of a workflow. To this end, in the following section we outline the research requirements that

we aim to address in order to build such agents.

1.4 Research Requirements

In this thesis, we are interested indesigning principled tools and methods for building a compu-

tational agent that is capable of executing complex workflows in highly dynamic and uncertain

service-oriented environments. In particular, we aim to use appropriate techniques and method-

ologies from the field of multi-agent systems to extend the currently prevalentperception of

service-oriented computing. In carrying out this work, we devise techniques applicable to real-

istic applications that will be common in large distributed systems and that will depend heavily

on remote services. These applications might include scientific workflows executed on a Grid

infrastructure, business workflows that acquire goods and servicesfrom external providers, or

workflows in peer-to-peer systems, where the consumer relies on a fast-changing population of

providers (for example in an ad hoc network of wireless devices (Corson et al. (1999))). As such,

our work focusses on efficient and scalable techniques that provide fast results in a dynamic set-

ting. This means that we are interested in building boundedly rational agents that achieve good,

“satisficing” results, where it would be impractical to achieve optimality (Simon (1957)).

To frame the thesis, we begin by outlining a set of requirements that detail the types of prob-

lems and system features that we expect our methods to deal with. We present these asmodel

requirements, which pertain to general features of the systems that we investigate (drawn from

the discussion above);workflow requirements, which describe the types of problems that we

expect to cover; andagentrequirements, which outline properties of the techniques that we will

develop.

1.4.1 Model Requirements

This section contains requirements for an appropriate model of a distributedservice-oriented

system. These requirements deal mostly with the inherent autonomy of serviceproviders that

we intend to address.

M.1. Uncertain Service Behaviour

As discussed in Section 1.3, service outcomes are generally uncertain. Atthe very least,

the model must assume uncertainty along the following dimensions:
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a. Service Success

Service success cannot be guaranteed. Even when a provider has agreed to offer a

service or has already started execution, there is still a possibility that the provider

fails to honour the service request.

b. Service Duration

Services do not normally take a fixed amount of time. Rather, this time varies due

to uncertainty in the task itself, the network traffic and the current workloadof the

provider.

M.2. Remuneration for Service Provision

The model must not assume that services are provided free of charge.Usually, some form

of financial remuneration should be given to providers for their services. In particular, the

model should explore the impact of the following common pricing models:

a. Fixed Pricing

Providers charge for services based on a fixed, public price that is known by all

consumers.

b. Flexible Pricing

Providers produce individual quotes for each service request, which may change

between requests and may be valid for short time periods only.

M.3. Service Interaction Models

While most current frameworks consider on demand invocation as the main mechanism

for engaging services, more expressive interaction models have been suggested and should

be considered by the model. These become especially relevant when consumers procure

expensive, complex services that have to be provisioned ahead of time. Hence, an appro-

priate model should explore the following mechanisms:

a. On Demand Invocation

Services are only procured when they are needed. This offers both consumers and

providers high flexibility, but could prove to be too unreliable when a consumer

needs some assurance that a given service is available at a certain time.

b. Advance Provisioning

Agents might negotiate in advance over the provision of a service. Such anapproach

would provide the consumer with some assurance that a provider intends to fulfil a

service at a negotiated future time (although not necessarily a guarantee).

M.4. Provider Heterogeneity

As services are usually offered by distinct agents with varying resources and different

interests, their characteristics can vary considerably. Hence, the same type of service

might be offered by several agents at a different price, response timeand with a different

level of reliability.
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M.5. Dynamism

Over time, the characteristics of service providers and the system as a whole are likely

to change due to varying levels of demand or availability and the changing interests of

individual agents.

1.4.2 Workflow Requirements

In this section, we identify the requirements for the types of workflows that service consuming

agents may face in the environments that we consider.

W.1. Workflow Expressivity

To cover common task compositions, a workflow model must include some basic work-

flow patterns, including:

a. Parallel Task Ordering

Workflows may contain services that can be executed in parallel, for example when

they are completely independent.

b. Sequential Task Ordering

Workflows may also contain dependencies between services, for examplewhere the

output of one service provides the input for another.

W.2. Use of Appropriate Reward Model

An appropriate reward model should be present to express the value ofa workflow. This

should take into consideration not just whether a workflow has been successfully executed

or not, but also the timeliness of this event.

1.4.3 Agent Requirements

This section contains an overview of the requirements that a successful service consuming agent

must meet in a distributed environment.

A.1. Principled Decision Framework

The techniques developed in this thesis must allow an agent to make autonomousdeci-

sions with little or no human intervention. To this end, they should be based on a princi-

pled framework (such as probability and decision theory), in order to yielda generic and

widely applicable model that deals effectively with a range of scenarios. In the context

of such a framework, we will strive to maximise some objective performance criteria, but

not necessarily obtain optimality where this would be impractical.

A.2. Failure Handling

The agent must be able to handle service failures in an appropriate manner. This should

include:
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a. Reactive Failure Handling

When failures occur, it is vital to respond accordingly and minimise the disruption

to a workflow.

b. Proactive Failure Avoidance

When an agent is faced with tight deadlines or when it has to rely on expensive and

time-consuming services, it must deal with failures proactively by taking appropri-

ate actions to reduce their probability of occurrence. This might include advance

provisioning, using more reliable providers or including redundancy in workflows.

A.3. Scalability

The strategies that an agent employs must be scalable to large systems. As theagent

might potentially interact with huge numbers of providers, any strategies mustwork well

in systems of varying sizes. This similarly applies to workflows consisting of many tasks.

More specifically, we expect our strategies to handle systems with thousands of providers

and workflows consisting of hundreds of interdependent tasks1.

A.4. Adaptivity

Our techniques must be able to adapt to new events as they occur, even if they were

not initially planned for. Such adaptation might include selecting faster, more expensive

services when a workflow begins to fall behind schedule, or, conversely, picking cheaper

services when the agent does better than expected.

1.5 Research Contributions

Given the above requirements and our aim of developing suitable methods for building a ser-

vice consuming agent, we have identified the process ofprovisioningservices as a key area to

investigate. Provisioning, i.e., the selection of particular service instances for specific tasks of

a workflow, has received comparatively little attention in the research literature so far, but we

believe that it is vital for controlling and mitigating nondeterministic service performance. Pro-

visioning providers in an appropriate manner will allow a service consumer todifferentiate be-

tween providers that offer a service at differing levels of quality or reliability and to invest extra

resources in tasks that are particularly critical. Furthermore, re-provisioning providers on-the-

fly enables the service consumer to respond quickly to failures and recover partially complete

workflows without starting from scratch.

To this end, we develop a novel model for a distributed system and for simpleworkflows, which

can be used in a wide range of application areas — from Grid to Web services and peer-to-peer

systems. In the context of this model, we describe a number of provisioning strategies, and, in

doing so, advance the state of the art in service provisioning as follows:

1We believe these numbers represent a challenging scenario given the typical numbers of providers and tasks in
complex workflows (Li et al. (2004); Stevens et al. (2004); Zeng etal. (2004)).
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1. We present the first algorithm that provisions multiple services redundantly for partic-

ularly critical workflow tasks in an automatic and principled manner, based onservice

performance information and the predicted benefit of doing so. Introducing such redun-

dancy allows the consumer agent to decrease the probability of workflow failures, and we

show empirically that our algorithm outperforms existing approaches that donot consider

uncertainty or use redundancy in a static manner.

2. We explicitly consider the problem ofcrashfailures in service workflows, where services

appear to work on an assigned task, but in fact never return a result. While existing work

assumes either timely error messages or manually fixed time-out values, we present, for

the first time, a method for flexibly determining how long to wait for services before

re-assigning a task to a different provider.

3. In developing the above two contributions, we show how our techniquescan be applied

in environments where different amounts of performance information is available about

service providers. When this is extremely limited, the agent can use task-specific infor-

mation to make fast decisions within a restricted decision space. In this case, we are the

first to describe how the consumer can address uncertainty proactivelywithout specific

information to distinguish between providers. On the other hand, when the consumer has

detailed knowledge about each provider, it can harness this to not only select the most ap-

propriate one, but also to rely on multiple heterogeneous providers for a single task where

this is beneficial.

4. When services are provisioned using advance agreements, we showthat the service con-

sumer can benefit significantly by gradually provisioning its workflow during execution,

rather than provisioning all tasks at once (as is done by existing work). To enable such

behaviour, we present a novel strategy that predicts the benefit of advance provisioning

and balances this with the risk of losing agreed services due to task conflicts.

5. We discuss a highly adaptive provisioning strategy that continuously incorporates new

information about service performance into its decision-making procedure at run-time,

and changes its behaviour accordingly. In this context, it is the first strategy that uses such

information not only to react to outright failures, but also to make additional provisions

when the workflow begins to fall behind schedule, to reduce its investments when services

perform better than expected, and to realise when to completely abandon aninfeasible

workflow.

These contributions have led to a number of peer-reviewed publications:

• Stein et al. (2006): Stein, S., Jennings, N. R., Payne, T. R. 2006. Flexible provision-

ing of service workflows. InProceedings of the 17th European Conference on Artificial

Intelligence (ECAI-06). pp. 295–299. IOS Press.
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This paper describes a provisioning algorithm that uses redundancy (Contribution 1) and

flexible service time-outs (Contribution 2) to address uncertainty in environments where

highly limited performance information is available (part of Contribution 3).

• Stein et al. (2007a):Stein, S., Jennings, N. R., Payne, T. R. 2007. Provisioning het-

erogeneous and unreliable providers for service workflows. InProceedings of the 6th

International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-07).

pp. 523–525. ACM Press.

This short paper presents a new algorithm for provisioning services when these are highly

heterogeneous (Contribution 3).

• Stein et al. (2007b):Stein, S., Jennings, N. R., Payne, T. R. 2007. Provisioning heteroge-

neous and unreliable providers for service workflows. InProceedings of the 22nd AAAI

Conference on Artificial Intelligence (AAAI-07). pp. 1452–1458. AAAI Press.

This is an extended version of Stein et al. (2007a), presenting a more detailed discussion

of the algorithm, further empirical results and an improved algorithm that finds a solution

in less time.

• Stein et al. (2007c):Stein, S., Payne, T. R., Jennings, N. R. 2007. An effective strat-

egy for the flexible provisioning of service workflows. InProceedings of the Interna-

tional Workshop on Service-Oriented Computing: Agents, Semantics, and Engineering

(SOCASE-07). LNCS 4504. pp. 16–30. Springer.

This paper extends the work in Stein et al. (2006) by improving the techniques used to

predict the expected utility of a provisioned workflow. It also shows empirically that our

algorithm is robust in the presence of inaccurate information about service providers.

• Stein et al. (2008a):Stein, S., Payne, T. R., Jennings, N. R. 2008. Flexible provisioning

of web service workflows.ACM Transactions on Internet Technology, 8(4). ACM Press.

(in press).

This article is a long journal version of the contributions described in Stein etal. (2006)

and Stein et al. (2007c). In addition to these, it contains further empirical results, a

comparison of our heuristic to the optimal strategy, a bioinformatics application example

and a significantly extended discussion of the context and limitations of our work.

• Stein et al. (2008b):Stein, S., Payne, T. R., Jennings, N. R. 2008. Flexible service provi-

sioning with advance agreements. InProceedings of the 7th International Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS-08). ACM Press. (in press).

This paper describes a strategy that gradually provisions services using advance agree-

ments (Contribution 4) and continuously adapts its decisions as new information becomes

available (Contribution 5).
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The research results presented in the above publications are summarised and expanded upon by

this thesis. To guide the reader through the remaining chapters, the followingsection contains a

brief outline of the thesis structure.

1.6 Thesis Outline

The remainder of this thesis is structured as follows: In Chapter 2, we conduct a thorough survey

of current research in the context of our requirements. We are particularly interested in the extent

to which our requirements are already met by current work, what models and frameworks we

can build upon and where further improvements are needed.

Following this, Chapter 3 establishes a formal background for our work.In particular, we pro-

vide a formal model of a service-oriented system, we describe the workflows an agent faces, and

we outline an example application scenario for our work, based on a bioinformatics workflow.

Then, in Chapter 4, we develop a novel provisioning algorithm for environments where limited

performance information is available about service providers. In the samechapter, we conduct

a thorough empirical evaluation and show that the algorithm performs significantly better than

existing approaches. This chapter collates the results published in Stein et al. (2006), Stein et al.

(2007c) and Stein et al. (2008a).

This is then followed in Chapter 5 by an extended system model that includes detailed perfor-

mance information about heterogeneous service providers (i.e., where many providers offer the

same type of service at varying levels of quality). In that chapter, we extend our algorithm for

such environments and show that it outperforms other approaches. Thechapter includes the

results published in Stein et al. (2007a) and Stein et al. (2007b).

Next, in Chapter 6, we consider service-oriented systems, where providers and consumers reach

explicit advance agreements about the provision of services. Again, weoutline a flexible pro-

visioning algorithm to address uncertainty in these systems and demonstrate that it performs

better than the current state of the art. This chapter contains the results published in Stein et al.

(2008b).

We conclude in Chapter 7 with a summary of our research and an outlook on future work. This

is finally followed by the appendices, which provide further backgroundinformation on our

work. In particular, Appendix A investigates how sensitive it is to inaccurate service perfor-

mance information, Appendix B discusses its scalability, Appendix C shows that the problems

we consider are NP-hard, Appendix D derives in more detail some of the equations presented in

the main body of the thesis and Appendix E lists the acronyms we used throughout our work.
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Literature Review

In this chapter, we provide a comprehensive overview of current research in the area of service

provisioning, and evaluate this with respect to our specific requirements outlined in Chapter 1.

The literature review is divided into four main sections. The first three, Sections 2.1–2.3, contain

a survey of the background technologies that our work builds upon. Specifically, we discuss in

more detail the paradigms of service-oriented computing (Section 2.1) and multi-agent systems

(Section 2.2), motivate their use in the context of this research and providesome example ap-

plications. In Section 2.3, we briefly cover reliability engineering as a source of techniques for

addressing uncertainty. In the fourth part of the chapter, Section 2.4, we focus on our overall

research aim of executing complex workflows in service-oriented environments. To this end, we

investigate current approaches and algorithms for provisioning and executing services that are

part of workflows. Finally, we conclude in Section 2.5 by summarising our findings and relating

them back to our original requirements.

2.1 Service-Oriented Computing

As stated in Section 1.2, service-oriented computing is a methodology for offering and consum-

ing resources and functionality over a distributed computer system. Historically, the sharing

of resources between distributed computers has often been consideredand thus it is not a new

concept in itself. However, most early systems were built for a special purpose and so they

usually employed ad hoc mechanisms in order to interoperate (Kahn (1972);Knight (1972);

Kang et al. (1988); Neches (1993)). This meant that the systems were inflexible, relied on static

links between components and used application-specific protocols and datamodels (Singh and

Huhns (2005)). When taken together, these factors led not only to largeadoption costs, but also

required complicated and expensive maintenance when components were added to or removed

from a system (Casati et al. (2001)).

The Service-Oriented Computing (SOC) approach addresses these shortcomings by allowing

services to be discovered and invoked automatically at run-time rather than through manually

13
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FIGURE 2.1: Basic model of the participants in a service-oriented system and their interactions
(arrows originate from the usual initiators of the corresponding interactions).

specified and fixed application interfaces. To illustrate this and to further extend our brief intro-

duction in Section 1.2, Figure 2.1 shows the basic interactions between service consumers and

providers that are a central feature of most contemporary service-oriented systems (Agrawal

et al. (2001); Papazoglou (2003); Huhns and Singh (2005)). Usually, a service provider will

publish descriptions of its services on some registry, which is accessible to potential consumers.

When a consumer requires a certain service, it will then search the registry, obtain the rele-

vant information about providers offering the service, and start to communicate directly with a

chosen provider.

The fundamental advantage of this process is that it is fully automated and requires no hu-

man intervention. This is achieved by using computer-readable descriptionsof services, so

that consumers can automatically match their requirements with service offerings and adapt to

service-specific interfaces and protocols. In order to enable such automation, service-oriented

frameworks normally rely on standardised data formats to describe services and their interaction

protocols (e.g., WSDL and SOAP, which are discussed in Section 2.1.1).

In more detail, Huhns and Singh (2005) give several reasons why such an approach is appropri-

ate for building large open systems consisting of many interacting computationalagents. These

include:

• Services are suitable abstractions of the functions that agents provide to each other (not

least due to the analogous use of the word in the real world). Specifically,they are at a

higher level than components in traditional software modelling approaches (e.g., objects

or procedures), they enforce loose coupling and, hence, simplify the implementation of

complex applications.

• Shared data formats, protocols and computer-readable service interfaces allow heteroge-

neous software components to communicate and interoperate, even if they were imple-

mented in different programming languages, reside on various platforms and were never

specifically designed to exchange data with each other.
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• By publishing service descriptions in public registries, providers are notonly able to ad-

vertise their services to a wide audience, consumers, in turn, benefit from a large choice of

potential services to meet their needs. This allows them to provision appropriate services

dynamically, depending on non-functional selection criteria, including cost, reliability,

quality or trustworthiness.

These reasons, coupled with the more general trends outlined in Section 1.1, have led to a surge

of interest in service technologies. Several major companies offer development platforms and

tools for building service-oriented applications (such as Sun’s Jini1, Microsoft’s .Net platform2

and IBM’s Websphere3). At the same time, a number of standardisation efforts have emerged to

enable the interoperation of services, including CORBA (Yang and Duddy(1996)), Web service

standards (Kreger (2003)) and the Grid service architecture (Talia (2002)).

Because of these trends and the reasons given above, we adopt SOCas a conceptual model for

our own work. In the following sections, we introduce several representative service-oriented

frameworks to give an indication of the current state of the art and to provide target applications

for our research.

2.1.1 Web Services

Web services have become a popular technology for enabling the interactions shown in Fig-

ure 2.1 by providing common protocols and data formats for service consumers and providers

to communicate over the Internet. In more detail, two core technologies governthe use of

Web services: the Web Service Description Language (WSDL) and the Simple Object Access

Protocol (SOAP). The former is a language for describing how to invokea Web service, the

operations it provides, and, in particular, the data types that the service expects and returns

(Christensen et al. (2001)). Messages to and from service providers can be sent using SOAP, a

protocol for exchanging XML documents over the Internet, usually usingthe Hypertext Trans-

fer Protocol (HTTP) (Mitra (2003)). To complement these technologies,the Universal Descrip-

tion, Discovery and Integration (UDDI) specification defines a suitable service registry to allow

providers to advertise their WSDL descriptions and other relevant information to potential con-

sumers (Curbera et al. (2002)).

There are several reasons for the growing popularity of Web services. The ubiquity of TCP/IP

and the potential for worldwide interconnectivity of applications certainly contribute to their

success. Additionally, they can be built using free technologies and exchange data using the

Extensible Markup Language (XML), which is widely supported on a range of platforms and

programming languages (Bray et al. (2004)). Legacy applications can also easily be exposed as

Web services, as usually only a small overhead is needed to create Web interfaces to existing

1http://www.sun.com/software/jini/
2http://www.microsoft.com/net/
3http://www.ibm.com/websphere/
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applications (Coyle (2001)). Another advantage is the fact that specifications for describing and

invoking Web services have been developed in a communal effort led by the W3C4, resulting in

increased standardisation and interoperability.

At this time, Web services are being widely adopted by a range of organisations. This can be

witnessed by an increasing number of companies that offer their servicesover the Internet using

the specifications described above. These include services that facilitatethe automatic trading

of goods (e.g., services offered by Amazon5 and eBay6), information providing services (e.g.,

Web services by Google7 and Yahoo8) and data processing services (e.g., EC29).

In particular due to its spreading popularity, the Web services framework isa natural target

domain for our research. Furthermore, it aligns well with the broad trendsof distributed systems

we identified in Section 1.1:

• Common protocols and platform-independent data formats allowheterogeneousservices

to communicate.

• Services are not directly under the control of their consumers and may therefore display

uncertainty in their behaviour.

• Using the Internet as a basic infrastructure results in an inherentlyopensystem.

Moreover, there has been considerable work on addressing securityissues within the Web ser-

vices framework, which is a key concern in distributed systems (Naedele (2003)). Languages

such as WS-Security and WS-Trust allow service providers and consumers to specify security

mechanisms that they require for their interactions (Nadalin et al. (2006, 2007)). These mech-

anisms typically refer to well-established standards and protocols, e.g., Kerberos (Neuman and

Ts’o (1994)) or X.509 (Cooper et al. (2008)), and address issueslike the authentication of in-

teraction partners, message encryption, message integrity preservation and access policies. As

such, they are essential in providing a basic level of robustness to malicious attacks or eaves-

dropping by third parties. However, they do not directly address the uncertainty and autonomy

of service providers, which may still defect or behave in an erratic manner (despite adhering to

specified security policies).

Given the popularity of Web services, their suitability for open distributed systems and the

existence of a robust infrastructure that already addresses basic security issues, we develop an

abstract model of a service-oriented system in Chapter 3 that is based broadly on the current

Web services framework. Although not explicit in the specifications, usingWeb services as a

basis allows us to construct a model that includes uncertain service behaviours (Requirement

4http://www.w3.org/2002/ws/
5http://aws.amazon.com/
6http://developer.ebay.com/
7http://code.google.com/
8http://developer.yahoo.com/
9http://aws.amazon.com/ec2/
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M.1), heterogeneity (M.4) and dynamism (M.5). Already, the Web servicesframework meets

our requirement for covering on demand service invocation (M.3.a) by providing a mechanism

that depends largely on just-in-time invocation of services.

However, Web services do not readily provide mechanisms that satisfy allof our requirements.

In particular, current Web services are either provided free of charge or use ad hoc payment

mechanisms, often external to the service framework (i.e., consumers arrange payment manually

and through separate systems, as is the case for most companies mentioned above). Such a

process is labour-intensive and incompatible with the vision of service-oriented systems where

services are discovered and selected dynamically depending on the consumer’s needs.

Additionally, Web services typically use simple on demand invocation (Curberaet al. (2002)),

much like remote procedure calls (Nelson (1981)). This widely used metaphor is inappropriate

for services that are offered by autonomous agents, because it implies that Web services are,

like software procedures, dependable and predictable components. Asargued in Section 1.3,

this is an unrealistic assumption. Furthermore, on demand invocation precludes the possibility

of provisioning services in advance — one of our requirements (M.3.b).

In the following sections, we continue to outline some of the most prominent emerging applica-

tions of SOC. Specifically, we describeGrid computingto highlight an important target domain

of our work and show how service remuneration is beginning to be addressed (Section 2.1.2),

we briefly mentionpeer-to-peersystems as a particularly dynamic and open environment (Sec-

tion 2.1.3), and, finally, we give an overview of how the Semantic Web is envisaged to influence

SOC (Section 2.1.4).

2.1.2 Grid Computing

Grid computing is an approach for sharing heterogeneous computational resources (services,

data or simply spare processing cycles) across distributed systems using common protocols and

data formats (Foster and Kesselman (1999); De Roure et al. (2003); Bernholdt et al. (2005)).

For this reason, it is closely related to the field of service-oriented computing, which shares

similar goals. However, Grid computing is a more specialised area that targets the domain of

high-performance applications and inter-organisational collaborations. More specifically, Grid

systems aim to allow companies and research institutes to pool their resourcesdynamically in

order to collaborate on large projects or offer specialised services to each other.

This vision is outlined in detail by Foster et al. (2001), who introduce the notionof a Virtual

Organisation (VO). Here, a VO is a set of individuals and/or institutions that have agreed to

collaborate and share resources, according to a set of well-defined access policies. These VOs

are formed when the need for collaboration arises, for example as one company requires a high-

performance image processing service or as several service providers combine their offerings

to produce a new product. This VO formation process might involve agreements that are made
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by humans outside the Grid system (Verma et al. (2002)), or it might be carried out automati-

cally by software agents that search for and make agreements with appropriate service providers

(Norman et al. (2004)).

These concepts of high-performance distributed computing and the formation of VOs among

heterogeneous resource providers are central to Grid computing, andthis is what defines the

field, rather than a particular implementation. However, several systems andtools have emerged

(Baker et al. (2002)). One prominent example is the Open Grid Services Architecture (OGSA)

(Foster et al. (2002)), which is based on the Web services framework outlined in the previous

section. In this model, Grid resources are offered as Web services, which have been extended

to facilitate the formation of VOs. In particular, this is achieved by defining protocols for man-

aging the lifecycle of services (so that service consumers can claim resources and release them

as needed) and notification mechanisms that keep the consumers informed about the status of

its services. The Globus toolkit (Foster (2005)) provides additional toolsto implement Grid

systems and includes a set of Grid services for common tasks (such as scheduling, monitoring

and discovery services), a messaging infrastructure, security mechanisms and service containers

that facilitate the deployment of new services. Many current Grid implementations use these

technologies to manage increasingly large systems, from the Open Science Grid (Pordes et al.

(2007)), the D-Grid (Gentzsch (2006)) to the National Grid Service (Geddes (2006)).

As such, Grid computing has so far concentrated on building the necessary infrastructure to

allow large numbers of users access to shared resources. This has resulted in systems that are

scalable and secure, but that are also tightly regulated by human administrators and that assume

essentially cooperative participants. Foster et al. (2004) argue that thisleads to considerable in-

flexibility, especially as Grid systems become increasingly heterogeneous and open. To address

this, they propose a synergy of the robust Grid infrastructure with the more flexible decision-

making, coordination and negotiation procedures of multi-agent systems. Ina similar spirit as

the overall aim of this thesis, such procedures would allow software applications to take deci-

sions autonomously in open Grid systems, where service providers are not generally cooperative

and where there is some competition between users.

Against this background, there has already been some interest by the research community in

dealing with competition amongst service consumers. In particular, some haveproposed the use

of appropriate economic models to allocate Grid resources to consumers (Buyya et al. (2001)).

While no standards or widely-used market mechanisms currently exist in the Grid domain,

emerging work is addressing the need to account for the financial remuneration of service use.

For example, the Grid resource broker Nimrod-G (Buyya et al. (2002)) accepts tasks from Grid

users and then allocates them to distributed resources that charge for their services. The current

implementation uses a simple pricing model that employs either fixed prices or demand-based

functions to charge consumers, but the authors discuss at length a variety of other mechanisms,

such as auctions or bilateral negotiation to determine prices. Unfortunately,the Nimrod-G bro-

ker is not directly applicable to our work, because it relies on a centralisedmechanism that

expects truthful service descriptions, does not take into account unreliable providers and offers
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little scope for customised reward functions to guide its decisions (it minimises either cost or

execution time). Nevertheless, the pricing models discussed by the authors offer a first step to-

wards satisfying our requirement for addressing service remuneration(Requirement M.2), and

we will use a similar fixed pricing scheme in our own model in Chapter 3.

While the emphasis of Grid computing has been on building large systems for high-performance

computing with well-defined access policies, security and authentication mechanisms and clear

hierarchies and boundaries of VOs, in the following section we examine an approach to dis-

tributed computing that does not rely on such a well-defined infrastructure.

2.1.3 Peer-to-Peer Computing

Another emerging paradigm for designing distributed systems is Peer-to-Peer (P2P) computing

(Oram (2001); Schoder and Fischbach (2003); Chawathe et al. (2003)). In a similar vein to

SOC and Grid computing, its goal is to enable the sharing of data or resources between large

numbers of heterogeneous agents (Foster and Iamnitchi (2003)). However, the characterising

feature of P2P systems is their self-organising and highly dynamic nature. Although initial

systems such as Napster used central servers to track participants and their shared resources

(Saroiu et al. (2003)), current P2P systems are often entirely decentralised. Rather than relying

on a fixed infrastructure or central servers, these systems form ad hoc networks that connect

each participating agent to a set ofpeers(Zhao et al. (2004)). Each peer is, in turn, connected to

others, forming anoverlaynetwork that is independent from the underlying transport network

(such as the Internet). In these networks, various techniques are employed to allow agents

to discover shared resources. They includeflooding, where queries for resources are sent to

all neighbours and then propagated through the network (Saroiu et al. (2003)), ordistributed

hash tables, which structure the network such that queries can be efficiently routed torelevant

participants (Ratnasamy et al. (2001); Stoica et al. (2001)).

While initial applications for P2P systems were restricted to file sharing betweenhome computer

users (Matei et al. (2002)), the area has spawned several effortsaimed at exploiting processing

cycles of idle desktop computers (Richards (2002); Anderson et al. (2002)). Furthermore, some

work has been carried out to establish generic service frameworks on top of P2P systems (Gong

(2001); Anderson (2004); Stäber and M̈uller (2007)), but none has so far been widely adopted

and most applications in this field remain specialised to one particular purpose (such as file

sharing).

As P2P systems have seen wide deployment with large numbers of participants(rather than

the small-scale Grid prototypes in use today), they most clearly show some of the trends we

predicted in Section 1.3. In particular, they highlight the self-interested nature of participants,

the need to deal with failures and the requirement of employing appropriate mechanisms to

incentivise providers to offer their services (Golle et al. (2001)). Forthese reasons, P2P systems

first offer some simple techniques that may help satisfy our Requirement A.2.Application
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failures, for example when an agent leaves the network before completingits service, are usually

addressed either by trying to contact a different provider or by requesting the same service

redundantly from several providers (Milojicic et al. (2002); Friese etal. (2005)). However, these

approaches are specific to the application, do not take into account the potential costs of service

failures (or unnecessary redundancy), nor do they use domain knowledge to react appropriately

to particularly failure-prone tasks or untrusted service providers. Nevertheless, these methods

form the basis of a more flexible service provisioning strategy that we develop in Chapter 4.

Having discussed several important target domains for our work, we now examine a recent field

that addresses some critical shortcomings of current SOC approachesby drawing on research in

the Semantic Web.

2.1.4 Semantic Web Services

The current state of the art in SOC, as exemplified by the Web services framework in Section

2.1.1, addresses some fundamental issues concerning the interoperabilityof heterogeneous soft-

ware components by standardising shared protocols and data formats. However, the facilities

for dynamically selectingservices are severely restricted. As discussed, WSDL descriptions

published on UDDI registries provide the main mechanism for discovering appropriate services.

Unfortunately, these descriptions contain information only about the data types that the service

accepts and returns and are hence purely syntactic in nature. Yet, to achieve dynamic selection,

a computational agent needs to understand themeaningof a service in relation to its own goals,

i.e., whether a given service is actually sufficient for the task at hand. This is particularly im-

portant as services are offered across organisational boundaries, are written and maintained by

different programmers and hence follow different usage conventions.

To address these shortcomings and to enable the dynamic discovery of services, the area of Se-

mantic Web services is concerned with employing logical formalisms for describing services

(McIlraith et al. (2001); Burstein et al. (2005)). These formalisms are rooted in technologies

emerging as part of the Semantic Web, an effort to present knowledge in acomputer-readable

format across distributed information sources (Berners-Lee et al. (2001)). At the core of these

fields areontologies, formal specifications of conceptualisations (Gruber (1993)) (explicitde-

scriptions of abstract concepts and their logical relationships), and the objects that populate them

(concrete instantiations of abstract concepts).

It is envisaged that providers will be able to describe their services in a more expressive way than

has hitherto been possible by using such ontologies. This is due to severaladvantages that these

formalisms offer over the purely syntactical WSDL description. First, ontologies allow service

providers to use common service vocabularies, which describe unambiguously the characteris-

tics that all services share, including how to specify the inputs and outputs,interaction protocols

and the effects of services (Martin et al. (2004a)). Second, as SemanticWeb technologies are

specifically designed to allow the distributed representation of knowledge, service descriptions
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can refer to concepts and objects that are defined elsewhere (Hendler(2001)). This means that

services can use the vocabulary of other domains, for example to describe the types of data they

accept, how they interact with real objects or even how they relate to other service instances.

Third, the use of logical formalisms allows consumers toreasonabout services. Hence, the con-

sumers can pose complex queries about the types of services they need,including specific con-

straints, and then use reasoning algorithms to find matching instances (Paolucci et al. (2002)).

Even when the service providers and consumers use different ontologies or present incomplete

information, as is likely in such heterogeneous scenarios, appropriate knowledge and mapping

rules from distributed sources may help the consumer reason across different vocabularies and

find appropriate matches (Noy and Musen (2002)).

To date, several approaches have been proposed for describing Web services using ontolo-

gies. OWL-S is a service ontology (Martin et al. (2004b)), expressed inthe Web Ontology

Language (OWL), a popular description language developed in the context of the Semantic Web

(McGuinness and van Harmelen (2004)). As such, it builds on parallel efforts to describe knowl-

edge on the Semantic Web, and OWL-S, as well as its predecessor, DAML-S, have been widely

used in research on Semantic Web services (Narayanan and McIlraith (2002); Gibbins et al.

(2003); Sirin et al. (2003); Wu et al. (2003)).

Another approach, the Web Service Modeling Ontology (WSMO) (Roman etal. (2005)), also

provides an ontology for describing services. However, while the overall aims of these efforts

are similar, WSMO differs from OWL-S both in the formalism employed and its overall scope.

WSMO uses its own family of logical modelling languages, most of which are based on Frame

Logic (Kifer et al. (1995)). Furthermore, it includes an associated execution environment, re-

sponsible for discovering, aligning and invoking services. While this extends the functionality

of the approach, it also removes the autonomy of the service consumer to choose its preferred

services and control the reasoning process.

Finally, a generic language for specifying Semantic Annotations for WSDL and XML Schema

(SAWSDL) has recently been published as a W3C recommendation (Kopecký et al. (2007)).

This language allows WSDL descriptions to refer to semantic concepts from ontologies, for

example to formally define Web service operations or their input and output parameters. As

such, it builds closely on an established technology and can therefore easily be used to extend

existing service descriptions. However, unlike OWL-S and WSMO, it doesnot suggest a generic

service ontology and it is agnostic towards any specific formalism for representing semantic

concepts.

In summary, semantic descriptions of services are an important step towardsenabling the dy-

namic discovery and selection of services. While the research outlined here does not satisfy

any of our requirements directly, we mention it because it is developing a vitalenabling tech-

nology for our work, and we envisage our techniques to extend and complement methods in

this area. It should also be noted that significant work on the dynamic composition of services
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has emerged from the field of Semantic Web services. As this topic is related to our goal of

executing workflows of multiple services, we will return to it separately in Section 2.4.2.

As we have seen so far, most work in the area of service-oriented computing has concentrated

on describing the functional properties of services and on enabling heterogeneous applications

to communicate over a common network infrastructure. However, there is an increasing interest

in describing the non-functional characteristics of services, in order toenable consumers to

provision suitable services and to reach explicit contracts with providers.We will outline this

research in the following section.

2.1.5 Quality-of-Service

A growing body of research is beginning to address Quality-of-Service(QoS) issues in service-

oriented computing (Menasce (2002); Ran (2003)). This research acknowledges that relying

only on functional service descriptions is insufficient for the widespread adoption of service-

oriented computing in large distributed systems, and so considers how to describe, monitor and

publish the non-functional properties of services. In particular, many of the service technologies

described earlier have been extended to include properties such as the cost, reliability, response

time, availability and privacy or security guarantees of a service. For example, D’Ambrogio

(2006) describes an appropriate extensions for WSDL, Wang et al. (2006) show how a QoS on-

tology can be added to WSMO and Zhou et al. (2004) develop a similar ontology for DAML-S.

These formalisms allow consumers to reason about the non-functional aspects of services and

formulate more expressive service requests than in frameworks that onlyconsider functional

properties.

There have been several proposals on how this QoS information can be aggregated and made

available to consumers. Ran (2003) describes an extended UDDI registry that allows providers

to publish their non-functional service characteristics and suggests the use of a neutral third

party to certify that these are in fact truthful. In the Web Services Agent Framework (WSAF),

Maximilien and Singh (2004) use service proxies that automatically select appropriate service

implementations based on a consumer’s service request with QoS constraints. These proxies

then monitor the performance of the selected service, collect feedback from the consumer and

use this information to build up more accurate performance profiles for future service selection.

While the above technologies are used to describe the general QoS characteristics of services,

the Web Service Level Agreement (WSLA) language allows a service consumer and provider to

express specific terms for their interactions in the form of a machine-readable contract (Ludwig

et al. (2003)). Besides covering standard performance terms (cost, reliability, response time

and so on), such a Service Level Agreement (SLA) specifies how the performance metrics are

calculated and monitored at run-time (possibly enlisting the support of a third party) and how

the parties should respond in case the terms are violated (e.g., by notifying theconsumer or even

by paying a financial compensation).
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Generally, there has been some interest in enabling explicit advance agreements between con-

sumers and providers for the provision of services. Web Services Agreement (WS-Agreement)

also provides a language for specifying SLAs, but additionally considers the overall lifecycle

of an agreement, including its initial negotiation, possible re-negotiation and expiry (Andrieux

et al. (2007)). However, both WS-Agreement and WSLA only define the necessary languages

and protocols to reach an agreement, without describing how computer applications might make

automatic decisions about these at run-time (in Section 2.2, we will discuss in more detail how

technologies from the field of multi-agent systems may help automate these decisions.).

In the context of Grid computing, Czajkowski et al. (2005) argue that advance provisioning

will become more important over the coming years and gradually replace the current practice

of on-demand provisioning, where resources are made available only when they are actually

needed by the consumer. The authors believe that this will lead to higher reliability and quality

of services, and allow consumers a higher degree of control and flexibility when choosing their

services. This view is supported by an empirical study conducted by Singhet al. (2007). Here,

the authors propose a strategy that provisions Grid resources in advance for a workflow, given

a set of offers from all service providers (which are assumed to be reliable). They show that

their strategy begins to outperform an approach based on on-demand provisioning as workflows

become increasingly parallel and there is an increasing load on the system. Specifically, their

strategy completes workflows in a shorter and more predictable amount of time ata similar cost.

In summary, the current work on QoS in service-oriented computing is a promising development

that will help consumers address the uncertainty and dynamism in large distributed systems. In

particular, consumers can use the performance information available through QoS ontologies

and repositories to select more reliable services that are appropriate fortheir workflows, and

we will discuss a number of current approaches for this in Section 2.4.3. Additionally, explicit

service contracts and advance provisioning further reduce the uncertainty in service-oriented

systems, as consumers can negotiate over the time-scales of services and any penalties that

should be imposed in case of failure. However, using such a contract model does not in itself

provide a reliable system — providers may still fail or defect maliciously, possibly leaving the

system without paying the agreed penalties.

The work mentioned here is vital for addressing our model requirements. First, QoS ontologies

and related work on monitoring service behaviour over time allows us to express non-functional

service parameters of hetergeneous providers (Requirements M.1, M.2.a, M.4 and M.5). Sec-

ond, work on advance provisioning and SLAs (along with the negotiation techniques that we

discuss in Section 2.2.2) is an important enabling technology for reaching advance agreements

and to provide flexible pricing mechanisms (Requirements M.2.b and M.3.b).

Now, having discussed service-oriented systems, applications and related technologies, we turn

towards the field of multi-agent systems. This research area has addressed some issues that are

central to our research, but that have so far been largely overlooked by work on SOC. These in-

clude the need to make rational decisions in uncertain environments, to model service providers
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as automous agents that do not always behave as they are told, and to place interactions of

self-interested agents in the context of appropriate remuneration mechanisms.

2.2 Multi-Agent Systems

In Section 1.3, we introduced the notion of autonomous agents and outlined their importance

in the context of large-scale distributed systems. Specifically, we used themas a metaphor for

service providers and argued that such providers are self-interested and therefore inherently un-

reliable. While autonomous agents provide the general motivation for our work, in this section,

we turn our attention towards particular research topics and techniques thatwere borne out of

research into multi-agent systems.

To this end, in Section 2.2.1, we first look at general techniques for building computational

agents that make decisions on behalf of their human users. Then, in Section2.2.2, we examine

the economic mechanisms and protocols that have been developed to help self-interested agents

reach mutually beneficial agreements. In Section 2.2.3, we discuss current approaches for mod-

elling the trustworthiness of agents and exchanging this using reputation mechanisms. Finally,

in Section 2.2.4, we highlight some existing work that already employs agent-based techniques

to build distributed service-based systems.

2.2.1 Building Decision-Making Agents

The autonomous self-interested agent is a metaphor suitable not only for characterising ser-

vice providers, but also for helping build a service-consuming agent that makes decisions in

uncertain, dynamic environments (recall our overall objective given in Section 1.4). Several

approaches exist for building agents in general (Müller (1996); Wooldridge (2002); Russell and

Norvig (2003)), includingreactiveapproaches that display emergent behaviour by applying sim-

ple rules (Brooks (1986)) or logic-basedreasoningagents that manipulate symbolic knowledge

in order to produce plans that fulfil their goals (Georgeff et al. (1999)). While each of these

techniques has seen some successful applications (Luck et al. (2006); Belecheanu et al. (2006)),

neither applies directly to our work, because we need to take into account uncertainty (Require-

ment M.1) and an economic setting where agents are self-interested and expect some financial

remuneration (M.2).

Instead, we turn towards a field that has been widely applied in settings which include decisions

with uncertain consequences:decision theory(Raiffa (1968)). This field has recently emerged as

an important source of techniques for building computational agents, because of its solid math-

ematical foundation for making the “best” decision under uncertainty (Parsons and Wooldridge

(2002)).
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At the core of this work is the concept of a privateutility functionu : S → R that maps a given

situations from the set of all situationsS to a real numberu(s) — the decision-maker’s value,

or utility, of being in the situations. Such a utility function represents the preferences of the

decision-making agent, so that the agent prefers being in situations1 to being ins2 if and only if

u(s1) > u(s2). The existence of this function arises from several basic assumptions regarding

the agent’s preferences (Von Neumann and Morgenstern (1944)). These assumptions (such as

orderability and transitivity of preferences) furthermore allow us to calculate theexpectedutility

of a gamble that involves several probabilistic outcomes. This is simply done by taking the sum

of the utility values of all potential outcomes, multiplied by their respective probabilities. Hence,

we can write thisexpectedutility as follows:

u([p1, s1; . . . ; pn, sn]) =
∑

i

piu(si) (2.1)

where[p1, s1; . . . ; pn, sn] denotes a gamble that results in situationsi with probabilitypi (with
∑

i pi = 1).

Now, given this utility function to express preferences between situations and gambles with

uncertain outcomes, decision theory includes the decision maker’s actions inthis model. This is

done by treating each decision as a gamble with different outcomes and associated probabilities.

Hence, a decisiondj is treated as a gamble[p1j , s1j ; . . . ; pnj , snj ], wherepij is the probability

that the decision will lead to situationsij . We can then express the expected utility of a decision

dj as follows:

u(dj) =
∑

i

piju(si) (2.2)

Attaching such utility values to decisions offers an obvious tool for choosing one member of

a set of several possible decisionsD (a decision problem): theprinciple of maximum expected

utility (Lindley (1971)). According to this, a decision-maker should always choose the decision

d∗ that maximises the expected utilityu(d∗):

d∗ = argmax
dj∈D

u(dj) (2.3)

This leads us to the definition of arational agent:

Definition 1 (Rational Agent). When faced with a decision problemD, a rational agent always

chooses a decisiond∗ ∈ D that maximises its expected utilityu(d∗).

In practice, rationality can be difficult to achieve — it may be impossible to enumerate all

possible decisions in a given situation or there may simply not be sufficient time for the required
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deliberation. Simon (1957) describes this problem (in the context of a humandecision-maker)

as the principle ofbounded rationality:

The capacity of the human mind for formulating and solving complex problems is

very small compared with the size of the problems whose solution is required for

objectively rational behavior in the real world — or even for a reasonable approxi-

mation to such objective rationality. (Simon, 1957, page 198)

Furthermore, he argues that, as a consequence of this bounded rationality, humans construct

highly simplified models of the world when making decisions. They then make decisions that

are rational with respect to this model, but not even approximately optimal hadthey taken into

account all options and information available to them. Essentially, these models provide de-

cisions that are “good enough”, orsatisficing, for the purposes of the decision-maker without

maximising the overall achievable outcome.

Such a view of decision-making processes is similarly applicable when buildingcomputational

agents. Many seemingly simple decision problems are known to be intractable and so illus-

trate the difficulty of finding an optimal solution within limited time (Brassard and Bratley

(1996)). Yet, in many applications, computer agents need to arrive at solutions within a rea-

sonable amount of time, using only the memory and information that is currently available.

For example, an agent controlling a spacecraft may detect a deviation from its course and must

decide whether to activate its thrusters and at what power (Muscettola et al. (1998)). Now, the

agent’s decision making process is not only bounded by limited memory, processing speed and

inaccurate sensor information, it is effectively situated in a dynamic environment. While delib-

erating, the spacecraft continues to move, perhaps deviating further from its course. Similarly,

the agent could take more sensor readings to improve its information, but again lose valuable

time (and deplete its energy).

In our work, we face similar challenges as outlined by the example above. The systems we

consider are dynamic (Requirement M.5), workflows may have strict time constraints (W.2) and

our methods must be scalable (A.3). More explicitly, Requirement A.1 states that our agent must

make good decisions within the bounds of its limited computational capacity and knowledge.

In order to tackle such difficult problems, Simon and Newell (1958) proposed the use ofheuristic

methods. They modelled these on human problem-solving processes and predicted that such

methods would enable computers to deal with problems previously deemed intractable (such as

chess-playing). In the current literature, heuristics are usually algorithms based on simplified

models of complex domains (Russell and Norvig (2003)). While heuristics can help derive

optimal solutions without the need for an exhaustive search (Pearl (1984)), they often solve

simpler, tractable problems or iteratively improve a candidate solution until a satisfactory answer

is found without necessarily guaranteeing this to be the overall maximum (Golden et al. (1980);

Kirkpatrick et al. (1983); Michalewicz and Fogel (2004)). Such heuristics resemble very closely
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the bounded rationality that Simon observed in human decision-making, and we will use similar

techniques in this thesis to tackle difficult decision problems.

Now, heuristics are often successful in reducing the complexity of problem-solving algorithms.

This might be achieved, for example, by suggesting a polynomial-time approximation to a prob-

lem for which all known exact algorithms have an exponential running-time (Golden et al.

(1980)). Furthermore, there has been considerable effort in the area ofanytimealgorithms (Dean

and Boddy (1988)). These can be interrupted after an arbitrary amountof time t to provide a so-

lution whose quality is a monotonically increasing function oft. Such heuristics are particularly

well suited for the problem we consider (and in particular our Requirement A.3 for scalabil-

ity), as they can be applied in complex environments where time is a critical resource. Finally,

there has also been substantial work on determining decision-theoretically how much timet to

allocate to the solving of a problem (Horvitz (1988); Boddy and Dean (1994)). Such work is a

promising approach for building boundedly rational agents that take the best possible decisions

within a computationally limited framework.

The techniques discussed in this section will help us build a flexible decision-making agent

capable of operating in the dynamic and uncertain environments we consider. In particular, we

outlined some general methodologies employed to enable agents to make rationaldecisions, and

thus satisfy our Requirement A.1. In the following section, we examine how current agent-based

research may help us address Requirements M.2 and M.3.

2.2.2 Cooperation through Negotiation

As discussed in Section 2.1.1, current approaches in Web services typically assume that pro-

viders offer their services unquestioningly and free of charge through remote procedure calls.

Although we described some work in Section 2.1.5 that is beginning to addressthe formation of

advance agreements, it has so far mostly looked at the syntactic definition of contracts and not

how they can be formed automatically by service consumers and providers.This means that such

contracts are typically drawn up manually by human administrators. This is not tenable in highly

dynamic environments, where service providers and consumers are envisaged to discover and

engage each other automatically, and where they are self-interested agents who seek to benefit

from their interactions (as argued in Section 1.3).

In order to reach mutually beneficial agreements,automated negotiationhas been suggested as

a powerful technique in multi-agent systems (Rosenschein and Zlotkin (1994); Jennings et al.

(2001)). This is essentially a distributed search through the space of potential agreements among

several autonomous agents, involving the interchange of relevant information and ultimately

aiming to find an agreement that is acceptable to all participants.

In more detail, Figure 2.2 shows an example negotiation between a provider and a consumer

that demands service X to be performed immediately. Because the provider is unable to fulfil

this request, it responds by making a counter-offer for the same service, but with a delay of ten
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minutes. Also, because it expects remuneration for its effort, it includes a new issue in its offer

— the price for the service. Now, the prospective consumer concedes by accepting some delay

and a payment for the service, but it does not agree with the amounts proposed by the provider,

and so it makes another counter-offer. This is then agreed to by the provider and becomes

binding for both agents.

FIGURE 2.2: Example of two agents negotiating over the provision ofservice X.

As illustrated by this example, there are several key advantages that make negotiation a suitable

model for the interactions of self-interested agents in a service-oriented context. First, it makes

explicit the need to find mutually beneficial agreements and includes the possibility that ser-

vice providers are unwilling to cooperate. Second, it offers considerable flexibility by allowing

agents to explore the space of possible agreements. Hence, new issues can be introduced that

one agent did not consider, the agents can seek compromises and they can coordinate if they

have incompatible goals or other commitments.

One of the first negotiation protocols10 for computational agents was thecontract net(Smith

(1980)). Figure 2.3 shows an example negotiation using this protocol. First,a service-consum-

ing agent announces its requirements for a specific task to a set of potential providers. If they

are available and willing to carry out the task, the providers then bid for the task by replying

to the consumer with their individual characteristics (e.g., the expected qualityof their services

and associated costs). Finally, the consumer chooses the most promising bidder and awards the

task to it.

This protocol has been popular due to its simplicity, distributed nature and its close resemblance

to non-automated contract procurement (especially in the public sector, where such a procedure

is often mandatory). For these reasons, it has been successfully adopted in a variety of domains,

10A negotiationprotocol is the mechanism that governs how agents can exchange information, make proposals
and reach an agreement.
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FIGURE 2.3: Example negotiation using the contract net to provision service X.

from transportation (Kuhn et al. (1993)), to the management of manufacturing systems (Matu-

rana and Norrie (1997)) and robotics (Botelho and Alami (1999)). Furthermore, in the context

of Web services, Paurobally and Jennings (2005) use the contract net protocol to exemplify how

agents can negotiate about WS-Agreement contracts.

Nevertheless, the contract net protocol has a number of disadvantages. It was originally sug-

gested in the context of a system where agents are not self-interested, but rather fully cooper-

ative. Hence, service providers are assumed to report truthfully on their capabilities, there are

no formal clearing rules that determine the winner of a contract and the service consumer is not

required to accept any bids (nor to notify those bidders that it rejects) and it may even cancel

accepted bids at any time before they are completed. For these reasons, thecontract net proto-

col may discourage self-interested service providers from participating. Similarly, there is no

obvious strategy for submitting bids — instead, bidders are forced to speculate about the bids

of other agents and any potentially better offers they might receive from other consumers in the

future (Sandholm (1999)).

Now, in order to develop more suitable negotiation mechanisms for self-interested agents, there

has recently been considerable interest in applying game theoretic principles to multi-agent in-

teractions (Sandholm (1999)). In particular,mechanism design(Dash et al. (2003)) is concerned

with designing protocols that can be proved to show certain desirable properties, such as stabil-

ity (rational agents will act in a predictable manner), individual rationality (agents are better off

by joining the protocol) and Pareto efficiency (it is not possible to improve theoutcome for one

particular agent without decreasing the utility of another).

In this context, several protocols for bilateral (“one-to-one”) negotiation have been proposed.

These include simple mechanisms such as the monotonic concession protocol (Rosenschein and

Zlotkin (1994)) or thealternating offersmechanism suggested by Rubinstein (1982) (where
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alternating offers are exchanged as shown in Figure 2.2). Some of thesehave already been

successfully applied in service-oriented systems. For example, Faratin etal. (1998) modify the

alternating offers mechanism to allow agents to negotiate over the terms on whicha service is

provided.

Another prominent negotiation mechanism that involves many participating parties are auctions.

In an auction, a seller usually offers some item or service for sale, which isthen bid for by the

buyers. Associated with such an auction are strict rules about how bids should be placed, when

the auction finishes and how it should be cleared (who receives the item and at what price). As

for other types of negotiation, these rules can be engineered to guarantee certain game theoretic

properties, and auction theory provides a vast array of auction types for different requirements

(Krishna (2002)). In the context of service-oriented computing, Vulkan and Jennings (2000)

describe how reverse auctions can be used by consumers to solicit bids from many competing

service providers.

A problem with the negotiation schemes presented so far is that agreements are always binding.

That is, once a seller agrees to provide a service, it must do this exactly aspromised. However,

in realistic scenarios, resource availability changes, services take uncertain amounts of time and

a service provider may not have sufficient time to evaluate all contingenciesbefore agreeing to

provide a service. For this reason, binding agreements may discourage providers from partic-

ipating in the mechanism or result in extremely pessimistic strategies, where a provider only

agrees to provide a service if it is certain of its success.

To address this problem, Sandholm and Lesser (1995a) describe theleveled commitment con-

tracting protocol. Here, the agents include explicit decommitment penalties in their negotia-

tions. Rather than acting as deterrents for defection (as is common in the legaldomain), these

penalties allow each agent to drop its commitment to the contract by paying a fixedamount

of money. To demonstrate the value of this approach, the authors prove that it allows agents

to reach agreements in scenarios where this would otherwise not have been possible. Further-

more, they show that both agents can benefit (derive a higher expectedutility) from agreeing to

a leveled commitment contract rather than a fully binding one. In other work, Sandholm and

Lesser (1995b) modify the contract net protocol to include leveled commitments. In this modi-

fied protocol, consumers and buyers are committed to any offers they make (including the initial

announcement), but may decommit by paying the appropriate penalty.

We believe that this contracting protocol is a realistic and practical negotiationmechanism for

the uncertain distributed systems that we consider. Partly for this reason, weadopt it in Chapter 6

to model the automatic negotiation of advance agreements in a service-orientedsystem. Further-

more, it is simpler than some of the other protocols we have discussed, and soadopting it allows

us to concentrate on building a more generic decision-making agent that canbe extended (in

future work) to more specialised market mechanisms.

To summarise this section, carefully engineered negotiation protocols can display a number

of desirable properties that can entice self-interested agents to participateand come to mutually
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beneficial agreements. However, it should be noted that they often make restricting assumptions.

These might include particular types of cost and utility functions that all participants share or it

might be the need for agents to be perfectly rational. In particular, mechanism design often relies

on agents that never deviate from a given protocol. For example, when an agent fails to provide

its service in the leveled commitment protocol, it is assumed to notify its consumer andpay

the appropriate penalty. This is a reasonable assumption for contracts between human traders,

which are enforceable through legal measures. However, as we already argued in Section 2.1.5,

such legal enforcement may be difficult or too costly to pursue in large-scale open systems,

where agents continuously join and leave, where identities may be hidden and where services are

offered across national boundaries. Therefore, it is conceivablethat malicious agents may enter

contracts that they cannot honour or that later turn out to be infeasible. Because we envisage this

to be a critical problem in large distributed systems, we made the treatment of such uncertain

provider behaviour a central requirement of our research (M.1 and A.2).

Against this background, a large body of work in the area of trust and reputation has looked at

how to model such uncertain and possibly malicious behaviour. We discuss this in more detail

in the following section.

2.2.3 Trust & Reputation

Current online marketplaces identify unreliable traders by using rating systems, where the hu-

man users leave feedback for each other (e.g., eBay11 or Amazon Marketplace12). Such systems

allow users to trust each other even if they have not previously interacted, and to avoid per-

sistently malicious participants. Against this background, recent work in multi-agent systems

has been concerned with building similar mechanisms to assist autonomous agents in making

decisions about their potential trading partners (Ramchurn et al. (2004)).

At the simplest level, trust in these models is based purely on past interactionswith other agents.

When an agent honours a contract, this will be remembered and has a positive effect on any fu-

ture decisions to interact with that agent, while defection produces the opposite, negative effect.

However, relying solely on such experience is of limited use, because it is impossible to judge

the behaviour of potential partners with whom no previous interactions have taken place. Hence,

a second level of trust, usually referred to as reputation, is placed on a system, whereby agents

exchange their experiences to form public opinions of others in the system(Sabater and Sierra

(2002)). This approach is non-trivial and remains an open researchchallenge, because agents

can lie and collude to influence the reputation of other agents. They must have an incentive to

share their experience, and care must be taken not to prejudice againstnew entrants to the sys-

tem, but at the same time discourage agents with a bad reputation history to leave and re-enter

the system. These issues are typically overlooked by the work on QoS (Section 2.1.5), and so

11http://www.ebay.co.uk/
12http://www.amazon.co.uk/marketplace/
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it is vital that we consider current approaches for modelling trust and reputation in multi-agent

systems.

Now, there are many such approaches and models that differ in their representation and aggrega-

tion mechanisms (Ramchurn et al. (2004); Teacy (2006); Jøsang et al. (2007)). Some build their

own frameworks to describe degrees of trust using discrete or continuous values (Abdul-Rahman

and Hailes (1997); Sabater and Sierra (2002)), but these often lack the semantic grounding of a

well-established formalism. This is addressed by other work that employs probability theory to

represent trust. These approaches typically model trust as a probabilitydistribution over a binary

event, i.e., the probability that the agent performs the service that is required by the consumer

(Ismail and Jøsang (2002); Wang and Vassileva (2003)).

Specifically, Teacy et al. (2006) outline a particularly interesting approach that uses principled

probabilistic methods to combine direct observations with reputation reports from possibly in-

accurate sources. In particular, their work uses statistical techniques toestablish the confidence

of an agent in its trust values towards other agents based on the number ofprevious interactions

and then improves these, if necessary, by including the opinions of other agents. In so doing, it

filters out opinions that seem improbable, given the agent’s own experience and so their mech-

anism achieves some robustness against untruthful or noisy opinions. In further work, Teacy

(2006) shows how this model can be extended to represent continuous outcomes, such as the

duration of a service invocation.

In summary, the above work on modelling trust is vital as an enabling technology for our own

work. It offers feasible solutions for aggregating opinions about service providers who are

possibly unknown to the consumer and for instantiating QoS ontologies withoutrelying on a

neutral and centralised observer. For these reasons, information provided by a trust model may

help us describe some of the uncertainty that providers display (Requirement M.1) and distin-

guish between heterogeneous providers that offer the same type of service (Requirement M.4).

Furthermore, research on modelling trust probabilistically provides us with aformal mecha-

nism for describing uncertainty and fits naturally with the work on decision theory outlined

in Section 2.2.1. Hence, it will help us build a principled decision making framework under

uncertainty (Requirement A.1).

We now conclude our summary of multi-agent systems by looking at two systems that apply

agent-based techniques to service-oriented scenarios. Both of these research projects aim at

providing a basic infrastructure over which agents can negotiate about the provision of services.

We present these here, because they offer what we believe to be a morerealistic model of

how services will be provisioned in distributed systems (rather than the remoteprocedure calls

predominantly used by Web services).
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2.2.4 Example Agent-Based Applications

The first system we highlight is the Multi Agent Negotiation Testbed (MAGNET) (Collins et al.

(2002)). The aim of this work is to provide a central marketplace, over which service consumers

and providers can interact, and which enforces negotiation protocols and monitors the perfor-

mance of agents. As such, it offers a centralised trust mechanism, but introduces a single point

of failure and raises the question of whether the mechanism itself can be trusted.

In MAGNET, the market allows for many negotiations to run concurrently between many het-

erogeneous agents. While the architecture is intended to eventually support a number of differ-

ent negotiation protocols, the authors describe only one mechanism modelled on a combinatorial

auction. Here, an agent initiates a reverse auction by submitting a request for quotes to the mar-

ket. This request includes a set of tasks that the agent needs to outsource, appropriate precedence

constraints (e.g., taskt1 has to complete before startingt2) and time restrictions (e.g., taskt1
must be started and completed in a given time interval). Interested service providers then submit

sealed bids on combinations of tasks. Finally, the consumer determines the winners by min-

imising the overall cost while satisfying the precedence constraints betweentasks. As such, the

system demonstrates how a complex service-oriented system can be built using an established

market mechanism.

However, the system also suffers from a number of weaknesses. Apart from otherwise being

completely centralised, the responsibility of determining the auction winners is shifted to the

service consumer. This essentially means that the consumer is not bound to the auction proto-

col and can reject any of the offered bids — even if they are in the optimal (least-cost) set of

bids. Furthermore, even if the winner determination problem was solved by the neutral market,

this process is notoriously difficult (Sandholm (2002)) and may lead to scalability problems.

Nevertheless, some interesting work has emerged from this framework regarding uncertain ser-

vice providers. We will return to this during our discussion of current provision techniques in

Section 2.4.3.3.

The second multi-agent system we consider is the Advanced Decision Environment for Pro-

cess Tasks (ADEPT) (Jennings et al. (1996)). This constitutes a less centralised approach for

negotiating over the provision of services. The overall aim of this framework is to provide

an infrastructure for handling complex organisational workflows. Recognising that such work-

flows are usually distributed across several companies, and even separate departments within

one organisation, each of which has their own goals and agendas, the authors suggest the use of

autonomous agents as a natural design metaphor. Not only does such a metaphor encapsulate the

distribution of responsibilities (each agent manages part of the workflow,possibly using the ser-

vices of others), it also deals with conflicts of interest by forcing agents toprovision services in

advance through negotiation. Such a mechanism ensures that services are provided to those that

need them most, it allows agents to coordinate, and it provides some resilienceagainst failures,

because services can be renegotiated at run-time.
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Now, ADEPT is a good model for our own work for several reasons. First, it allows several

negotiations as well as negotiation protocols to operate concurrently and in adistributed manner

(as outlined, for example, by Faratin et al. (1998) and Vulkan and Jennings (2000)). As stated by

our Requirements M.2 and M.3, we envisage a distributed system to offer exactly such a variety

of negotiation mechanisms. It has also been applied to a real business scenario faced by British

Telecom, and so has been shown to work in practice. Finally, negotiations are decentralised

(as they would be in a large distributed system) and agents operate across (but also within)

organisational boundaries, a concept that is becoming central to Grid computing in the form of

virtual organisations (as discussed in Section 2.1.2).

However, as a general framework or design metaphor, ADEPT does not directly address the

problem of unreliable service providers, which is central to our work. Although failures are

considered and providers monitored and penalised appropriately, service consumers do not an-

ticipate failures proactively or use any form of trust measure. Within an organisation, where

agents will generally honour their contracts, this is appropriate, but in the systems we consider,

a purely reactive approach to failures will likely be insufficient.

This concludes our discussion of the agent-based techniques that we build upon in our work.

Before discussing concrete techniques for provisioning workflows in the literature, we briefly

summarise some results from the field of reliability engineering. This line of research has ex-

amined the construction of reliable systems from failure-prone components,and as such has

tackled a similar problem to ours.

2.3 Reliability Engineering

In Section 2.1.3, we have already briefly discussed the use of redundancy to increase the reliabil-

ity of task execution in a peer-to-peer system. This idea of using multiple services (or physical

components) to decrease the overall probability of failure in a system has along history in the

field of reliability engineering. Work in this area has typically been concerned with selecting

an appropriate number of redundant components to build a system with maximumreliability,

given a set of resource constraints. Usually, it is assumed that such systems consist of a series

of connected stages and that a single failure in any stage results in the overall failure of the

system. Hence, work in reliability engineering typically considers variations of the following

optimisation problem (Tillman et al. (1977)):

maximise R = f(n1, n2, . . . , nN )

subject to
∑N

j=1 cij(nj) ≤ ĉi i ∈ {1, 2, . . . , r}
nj ∈ {0, 1, . . . , mj}

(2.4)

wherenj denotes the number of redundant components introduced at stagej of the system (out

of N stages),R is the overall reliability, given as a functionf of all nj , cij(nj) is the amount of

a resourcei (out of r resources) that is spent on usingnj redundant components at stagej, ĉi
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is the overall amount of this resource available, andmj is the maximum number of redundant

components that can be introduced at stagej.

Most commonly, the reliabilityR is simply the product of the success probabilities of all stages,

which again depend on the failure probabilityd of each component:

R = f(n1, n2, . . . , nN )

=
N∏

j=1

(1− dnj+1) (2.5)

Generally these optimisation problems are difficult to solve optimally — in fact, the above

formulation of the problem has been shown to be NP-hard by Chern (1992). They are usually

solved by finding an equivalent integer linear programming formulation and using established

techniques for these (Tillman and Liittschwager (1967); Mizukami (1968);Ghare and Taylor

(1969)) or by employing fast heuristics (Gopal et al. (1978); Kuo (2000); Liang and Smith

(2004)).

While this work on reliability engineering was originally applied in the manufactureof physical

devices, the idea of using redundancy to deal with failures has also beenadopted by software

engineers in the form of n-version programming or similar approaches (Scott et al. (1987); Lyu

and He (1993); Avǐzienis (1995)). Here, critical software functionality is implemented several

times independently by a number of developers and then executed in parallel.If one version

fails or provides incorrect results, a voting mechanism is used to obtain the correct results from

the remaining versions. Huhns et al. (2003) describe how several autonomous software agents

can use similar mechanisms to cooperate in solving a common task and thus perform better and

more reliably than they could if solving the problem in isolation.

Redundancy has also been applied directly to the problem of offering morereliable services in

a distributed system. In particular, traditional Web servers often employ redundancy to seam-

lessly mask failed components (service failover) and to distribute requests toseveral replicated

servers to balance the load on each one (Ingham et al. (1999); Aghdaie and Tamir (2003)). Sim-

ilarly, the use of redundancy has been suggested to build fault-tolerant Web services (Keidl et al.

(2003); Li et al. (2005); Merideth et al. (2005)). However, most ofthis work concentrates on

the required infrastructure to build such robust systems. In work that is more closely related to

the problem addressed in this thesis, Huang et al. (2006) suggest collecting several unreliable,

but functionally equivalent services as part of a larger and more robust “service pool”. When a

consumer requests a service corresponding to the functionality offeredby the pool, each of its

member services is invoked sequentially in a certain order until one of them returns successfully.

In this context, the authors present an algorithm for building such servicepools, in order to meet

some given minimum reliability while minimising the overall invocation time.

We believe that redundancy is a vital technique for addressing unreliabilityin distributed sys-

tems, and the widespread availability of many independent services makes thisa feasible option.
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However, none of the approaches discussed here is directly applicablewhen building a service-

consuming agent. This is because most tackle the problem from the provider’s perspective and

are concerned with building a closed system that requires some initial, fixed investment in order

to achieve a desired level of reliability, but whose components remain static during its lifetime.

A service-consumer, on the other hand, is much more flexible as it may provision additional ser-

vices at run-time only when required. Furthermore, most approaches concentrate on minimising

the cost or maximising the reliability of a system given some constraints (as shown in Equations

2.4 and 2.5). However, it may not be obvious how such constraints shouldbe chosen and which

quality should be optimised, especially when the consumer seeks to balance theoverall reliabil-

ity with the associated cost (e.g., it may be happy to pay $100 for a workflow that is 90% likely

to succeed, but would also pay $50 for one with a success probability of only 75%).

Nevertheless, we will use ideas from reliability engineering in our work andshow how redun-

dant provisioning of services can be used to proactively address service failures in a distributed

system (Requirement A.2.b).

This concludes our discussion of the basic frameworks and technologies which our work builds

upon. We have summarised several key infrastructures that are emerging in the context of

service-oriented computing (including Web services, Grid computing, peer-to-peer systems and

the Semantic Web), we outlined the key technologies that agent-based computing contributes to

our research, and we briefly looked at work in the area of reliability engineering. In the final

part of this chapter, we will now look at particular approaches that a single agent can employ to

execute its workflows in the distributed systems we have discussed so far.

2.4 Executing Service Workflows

Throughout Sections 2.1–2.3, we have concentrated on the main enabling technologies that form

the background of our work. However, as outlined in Chapter 1, our research is primarily con-

cerned withbuilding a computational agent that is capable of executing complex workflows

in highly dynamic and uncertain service-oriented environments. To this end, we now look at

current approaches for doing exactly that and evaluate their respective merits in relation to our

requirements. Specifically, in Section 2.4.1, we begin by looking at currentsolutions for ex-

ecuting workflows in Grid and Web service environments, which have already been deployed

successfully in distributed systems, but often require a substantial manualeffort. Then, in Sec-

tions 2.4.2 and 2.4.3, we examine emerging research that aims to automate the execution of

workflows.

Before proceeding, we briefly elaborate the concept of a workflow, which we introduced in Sec-

tion 1.2. Essentially,a workflow is a set of tasks and their interdependencies, which collectively

achieve some business objective(Hollingsworth (1995); Georgakopoulos et al. (1995); van der

Aalst (1998)). Tasks usually represent atomic activities that contribute tothe overall objective
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and may generate and consume resources (including data). These tasksmay have intricate in-

terdependencies, which dictate how data is passed between them, and in which order they are

executed. As an example, Figure 2.4 shows a workflow from a domain that we are particularly

well acquainted with.

FIGURE 2.4: Example workflow summarising the tasks faced by a PhD student.

Workflows can be expressed in a variety of languages and formalisms, but these often offer

similar constructs for expressing tasks and their dependencies. In this context, van der Aalst

et al. (2003) describe twenty workflow patterns, which they believe cover most scenarios faced

by automated workflow management software. Our example includes the most common of these

in the form of task sequences (e.g., writing the thesis is followed by its defence), parallel tasks

(e.g., the literature review is carried out in parallel with the problem definition)and alternative

branches (e.g., the choice to re-write the thesis or to abandon the workflow).

In the context of distributed systems, workflows are a natural way to express how services can

be engaged in order to achieve some goal. For example, for a scientific Gridapplication, a

workflow may contain different data acquisition and manipulation services that perform complex

calculations on behalf of the scientist (we discuss a detailed example in Section3.5). In a

business scenario, a workflow may encapsulate the process of satisfying a large order from

a customer, which relies on services from the company’s warehouse, billing department and

possibly from external companies (e.g., for logistics, credit services and insurance). In practice,

many current approaches use statically defined workflows that serve as a general template for

specific objectives and are then instantiated at run-time.
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Workflow Execution

Manual Service Selection Dynamic Provisioning Dynamic Composition

Constraint-Based Provisioning

Local QoS

Optimisation

Decision-Theoretic ProvisioningQoS Optimisation

Global QoS

Optimisation

FIGURE 2.5: Current approaches for the execution of service workflows.

Against this background, one of the most prominent workflow descriptionlanguages in the do-

main of Web services is the Web Services Business Process Execution Language (WS-BPEL)

(Curbera et al. (2003); Weerawarana et al. (2005)). Here, a workflow consists of interactions

with Web services and describes the control flow (including basic sequential, parallel and con-

ditional execution) as well as the data flow between services. WS-BPEL builds directly on top

of the Web service standards described in Section 2.1.1 and represents individual services us-

ing their WSDL interfaces. By using such interfaces, rather than references to concrete service

instances, WS-BPEL provides some flexibility for the dynamic selection, or provisioning, of

matching services at run-time. However, as we will see in Section 2.4.1, this is rarely exploited

in practice.

In the following, we consider several current techniques for executing service workflows in

distributed systems. To this end, Figure 2.5 shows a basic taxonomy of this work. Here, we

distinguish between three principal approaches that are prevalent in theliterature:manual ser-

vice selection, where workflows and services are selected by hand,dynamic composition, where

complete workflows are synthesised at run-time using high-level goal descriptions, anddynamic

provisioning, where abstract workflows are instantiated by concrete services automatically at

run-time. We discuss each of these below, justify why the former two are notsuitable for the

systems we consider and so describe work in the area of dynamic provisioning in particular

detail.
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2.4.1 Manual Service Selection

Although Web services and the use of WS-BPEL in particular are gaining in popularity with a

wealth of commercial products now available, many current applications do not select services

dynamically, as is envisaged by the research literature in service-orientedcomputing. Rather,

human programmers specify manually not only the high-level workflows of applications, but

also bind them to concrete Web services at design time (Zimmermann et al. (2003); Pautasso

and Alonso (2005)). For this reason, most contemporary WS-BPEL development tools and

execution engines do not directly support the dynamic discovery and selection of services at run-

time. For example, IBM’s WebSphere Integration Developer13 allows users to build WS-BPEL

workflows, but requires all abstract WSDL interfaces to be manually bound to specific services

before they can be executed. The same applies to other WS-BPEL workflow engines, such as

Oracle’s BPEL Process Manager14, the open source ActiveBPEL engine15 or Apache ODE16.

Similarly, workflows are usually executed in a naı̈ve manner — the execution engine simply en-

sures that services are invoked in the correct order without addressing their reliability or avail-

ability. In effect, the human workflow designer is assumed to have already chosen the most

suitable and reliable services. Hence, WS-BPEL offers no facility for proactively addressing

service failures, nor does it in any way consider most of the features that characterise service

providers in distributed systems (such as heterogeneity, the need for remuneration, negotiation

and dynamic availability).

Despite these shortcomings, it does offer facilities for reactively handlingfailures (Requirement

A.2.a). These are based on traditional exception handling mechanisms that follow pre-defined

procedures for mitigating or correcting a problem before continuing the workflow (forward re-

covery), or that roll-back previous tasks of the workflow to terminate it in aconsistent state

(backward recovery) (Garcia-Molina and Salem (1987); Eder and Liebhart (1995); Casati et al.

(1999)). The latter approach is supported by transaction mechanisms forWeb services, and, in

particular, the WS-Transaction specification (Curbera et al. (2003)),which explicitly provides

mechanisms for cancelling (undoing) previous tasks when failures occur.

To support both forward and backward recovery, WS-BPEL allows workflow designers to spec-

ify fault and compensation handlers that are invoked when failures occur during workflow exe-

cution. However, we believe that neither is a satisfactory approach for addressing failures and

uncertainty. More specifically, supporting transactions requires the provider to surrender some

of its autonomy to the consumer by giving it the option to retrospectively relinquish any com-

mitments. This may result in losses to the provider if it has already started processing a task,

and so we believe that most service providers will be reluctant to offer facilities for rolling-back

13http://www.ibm.com/software/integration/wid/
14http://www.oracle.com/technology/bpel/
15http://www.active-endpoints.com/active-bpel-engine- overview.htm
16http://ode.apache.org/

http://www.ibm.com/software/integration/wid/
http://www.oracle.com/technology/bpel/
http://www.active-endpoints.com/active-bpel-engine-overview.htm
http://ode.apache.org/
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tasks. Forward recovery may be a more viable option (e.g., by substituting providers at run-

time), but fault handlers are typically specified manually and so require a human designer to

predict failures and hard-code possible solutions in advance.

A more flexible solution to this is proposed by Zeng et al. (2005) and Erradiet al. (2006), who

advocate the use of generic exception policies. These specify generalprocedures that the work-

flow engine should carry out when certain failure conditions are encountered during execution.

For example, these procedures might include re-trying the same service several times, switching

to other (possibly redundant) services or terminating the workflow. However, they still need to

be manually specified and do not proactively address services failures.

In summary, WS-BPEL relies heavily on human effort and thus exemplifies a common trend in a

number of widely used workflow languages and execution engines for service-oriented systems.

These include, for example, the Java CoG kit (Laszewski and Hategan (2005)) that is part of the

Globus toolkit, and Taverna, which is a workflow engine specifically developed for enabling the

workflows that bioinformaticians face (Oinn et al. (2004)).

This concludes our review of workflow execution approaches that relyon the manual specifi-

cation of services. We have seen that these are currently being employedin commercial and

academic environments, and that software supporting them is readily available today. They al-

ready offer expressive mechanisms (most notably WS-BPEL) to describe complex workflows,

meeting our Requirement W.1. However, they generally assume highly reliable,or at least co-

operative and benevolent, services. Each item in the workflow is handledby a single service

that is pre-defined by a human programmer, and when failures occur, these are treated as excep-

tions that are handled by manually coded procedures. Some systems retry different providers

upon failure, but this is purely reactive and without regard for the potential costs that might be

incurred. As such approaches are clearly insufficient for the environments we consider (services

are unreliable and require remuneration), we look at the current state ofresearch in the area of

dynamic service composition in the following section.

2.4.2 Dynamic Service Composition

While the work discussed so far relies heavily on human effort, the field of dynamic service

composition represents the other extreme. Specifically, research in this area is concerned with

synthesising entirely new workflows by composing atomic services to achievesome overall

goals (McIlraith et al. (2001); Srivastava and Koehler (2003)). It typically applies AI planning

techniques, which take an initial state, a goal state and a set of operators and then search for a

sequence of operator applications that will result in the desired goal state(Ghallab et al. (2004)).

Now, the operators in this case are service descriptions using such formalisms as OWL-S (which

already contains constructs commonly used in planning) and the result of thecomposition is a
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workflow consisting of concrete service invocations. Hence, such an approach would take a con-

siderable burden from human users who no longer need to be concerned with the construction

of workflows, but rather state their intentions as simple high-level goals.

As planning is difficult in open environments such as the Internet, where theconsumer agent

does not have complete knowledge of the domain and where such knowledge has to be actively

gathered during planning and execution, service composition is still very much an open research

problem. Example approaches include the work by McIlraith and Son (2002), who use logic

programming to compose services. McDermott (2002) and Klusch et al. (2005) adapt exist-

ing planners and the widely used Planning Domain Definition Language (PDDL) (Edelkamp

and Hoffmann (2003)) to Web service scenarios, and Wu et al. (2003) concentrate specifically

on composition approaches that use common Semantic Web technologies such asOWL-S and

OWL.

These composition approaches are very flexible, because they do not rely on static workflows.

Hence, they deal naturally with the dynamism of an open system (Requirement M.5), as they use

only the services that are available at a given time. However, current composition techniques

select services implicitly as part of their planning algorithm and will thereforegenerally pick

the first service that helps fulfil the goal. For this reason, these approaches do not proactively

address potentially unreliable or even malicious services (Requirement A.2.b), but rather assume

that service providers publish truthful descriptions that are always adhered to. Again, failures are

assumed exceptional and usually solved by expensive replanning (Klusch et al. (2005)). Overall,

service composition is unlikely to scale to larger systems (Requirement A.3) dueto the inherent

complexity of planning (Bylander (1994); Erol et al. (1995)). This is a particularly pressing

concern for systems where there might be hundreds or thousands of competing providers.

Hence, we believe that neither completely manual workflow execution nor theautomatic com-

position of new workflows are realistic approaches in the uncertain and dynamic systems we

consider. Due to this reason, we now turn our attention towards work in the area of dynamic

service provisioning.

2.4.3 Dynamic Service Provisioning

To address the complexity inherent in fully automatic service composition and to overcome the

restrictions of manually specified workflows, some research has suggested the use of abstract

workflows, which are dynamically instantiated, or provisioned, at run-time (McIlraith and Son

(2002); Mandell and McIlraith (2003); Sirin et al. (2005)). This workassumes that workflows

for particular objectives usually follow the same basic steps, even if the choice of service in-

stances is different each time, depending on the user’s personal constraints and current service

availability. More specifically, such abstract workflows usually include a number of semantically

annotated abstract tasks (e.g., using generic OWL-S descriptions). At run-time, these abstract
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task descriptions are used to automatically discover service instances, which can then be pro-

visioned for the tasks of the workflow. If necessary, additional planning is used to combine or

substitute abstract workflow fragments (Sirin et al. (2005)) or to add intermediate services, e.g.,

to translate between heterogeneous data representations (Mandell and McIlraith (2003)).

We believe that this approach is promising, because it does not require theservice consumer to

plan from scratch, but still allows it significant flexibility to account for the changing availability

of services. Furthermore, it is well suited for dealing with uncertainty and failures, as portions

of a workflow can easily be re-provisioned when necessary without theneed for expensive re-

planning. Finally, it allows us to take into account and reason explicitly aboutthe non-functional

characteristics of services, such as their cost or reliability, and use this toguide the agent’s

decision-making.

Hence, we concentrate on this process of dynamically provisioning services for an abstract

workflow in our work. As described above and in Section 1.5, we refer toservice provision-

ing asthe selection of particular service instances for specific tasks of a workflow. It should be

noted that, unlike Jennings et al. (1996), we do not necessarily equate provisioning here with

advance negotiation. Rather, a service consumer may provision serviceson demand when they

are required, for example by invoking a Web service. Similarly, the consumer might provision a

service tacitly in advance, but defer its negotiation to a later time.

Against this background, we now look at existing work in this area. This typically assumes that

a service consumer has already discovered a set of potential servicesfor each task using, for

example, service registries such as UDDI or by reasoning over semantic service descriptions

(and this will also be one of the assumptions we make in our own work). We continue to

follow the taxonomy shown in Figure 2.5 and begin by examining constraint-based provisioning

approaches.

2.4.3.1 Constraint-Based Service Provisioning

The first approach we discuss uses decision rules to filter appropriate services. Here, the user

specifies additional constraints on the services it requires, which are then used to differentiate

between multiple offerings. These constraints are often based on non-functional information

about the services and usually make binary decisions whether to accept each service or not.

When more than one service matches, a random choice is made or some tie-breaking rule is

applied.

As an example of this approach, Keidl et al. (2003) define two types of constraints for each

task —preferencesandconditions. Both are logical conditions on the meta-data of potential

services and may contain disjunctive or conjunctive constraints (for example, a constraint might

be that the service must be offered by a company based in the UK and use aparticular encryp-

tion standard). Here, the conditions define which services are eligible andthe preferences are

softer constraints that are applied when more than one service satisfies theconditions. Patel
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et al. (2004) use a similar approach, but express constraints as rules,which can be re-used and

composed for different tasks. For example, there might be rules that define what is considered

a cheapservice (say,cost < £10) and what is areliable service (reliability > 0.95). A

particular task might then require a cheapand reliable service.

To give another example of provisioning with constraints, Mandell and McIlraith (2003) present

an interesting approach that extends BPEL4WS, the predecessor of WS-BPEL, to dynamically

select services based on DAML-S profile descriptions. Here, a theorem prover is employed to

discover concrete services that satisfy the DAML-S profiles given in their modified BPEL4WS

workflows. Due to its reasoning capabilities, the system is also able to add appropriate mapping

services if required (e.g., to convert currencies or different date representations) and handles

additional user constraints on the semantic service profiles (e.g., that only UK-based services

should be used or that the end result must be in a particular format).

Now, the problem with most constraint-based approaches is that they simply narrow down the

choice of appropriate services based on local (task-specific) binarydecisions. They do not dy-

namically and rationally choose appropriate thresholds for these rules, but rather depend on a

human programmer to make this decision. Furthermore, they are very rigid — while a pro-

grammer might introduce a rule that all services should be highly reliable in order to address

uncertainty, this may simply result in unsatisfiable workflows where no services are sufficiently

reliable. In practice, it is necessary to strike a balance between different service parameters

rather than set hard limits for all instances. For example, some tasks may be inherently difficult

to achieve and so the consumer must accept some unreliability, but may be ableto balance this

by choosing only highly reliable services for other tasks. Similarly, a marginally more reliable

service might be substantially more expensive than other services, but it isdifficult to write

appropriate rules that make the best decisions in such scenarios.

In the next section, we will look at some approaches that have considered these issues in more

detail and proposed provisioning techniques based on comparing and ranking services using

their performance criteria.

2.4.3.2 Quality-of-Service Optimisation

A large body of research has considered the provisioning of servicesbased not only on hard

constraints, but also on preferences for different QoS characteristics. As shown in Figure 2.5,

we distinguish here between those approaches that examine and provisiontasks in isolation and

those that consider the impact of each service on the whole workflow. We discuss these local

and global techniques separately in the following.

In their work on using Semantic Web technologies to instantiate abstract workflows, Sirin et al.

(2005) consider the case when many services match a given task. Ratherthan imposing hard

constraints that might result in no or too many matches, they assume preferential independence

between these parameters and then pick a service that is Pareto optimal regarding all dimensions
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(i.e., it selects a service, such that there is no other service that offers abetter performance along

one dimension without also offering worse performance along another).This guarantees that

there is always a matching service and it removes clearly inferior candidates. However, it may

also easily result in arbitrary decisions. For example, if we assume that there are three services,

as shown in Table 2.1, all of these are Pareto optimal (but the consumer is probably best advised

to choose the second one).

Service Cost Reliability
A $1 1%
B $1.5 99%
C $100 99.1%

TABLE 2.1: Example services

In the context of Grid computing, Condor and the related Condor-G use simple ranking schemes

along with constraints for the local provisioning of workflow tasks. Condor is a framework for

allowing consumers to execute computational jobs over a distributed system ofworkstations

(Frey et al. (2001); Thain et al. (2003)). When submitting jobs, consumers specify the types

of resources they need by giving both a set of requirements and a ranking expression. These

are similar to the conditions and preferences described by Keidl et al. (2003), but the ranking

expression might simply be a non-functional property to be maximised. For example, the con-

sumer might require a Unix-based system with a memory of least 512 MB RAM, but when

several resources satisfy this, it will select the one with the highest processor speed.

Now, Condor is particularly interesting, because it also offers some powerful techniques for

tolerating failures. As its primary objective was to harness the computational resources of idle

workstations, it closely monitors all submitted jobs and regularly saves their progress. When

a job is interrupted (usually when a user reclaims the computer), Condor re-distributes it to a

different workstation, where it is then continued. While this job migration is an effective method

for addressing service failures reactively, Condor relies on a largelycooperative environment

(initially, it was deployed for use within one particular organisation). As such, service consumers

are expected to report accurately on their progress and provide intermediate results. Similarly,

there is no explicit notion of costs or remuneration and service consumers can simply retry until

their job succeeds.

While the work so far has looked at each task in isolation, other research has attempted to

consider the impact of provisioning on the overall workflow. This is important, because provi-

sioning a single unreliable service may jeopardise the whole workflow and keeping to an overall

budget may be more important than controlling the expenditure on each single task. To enable

this, a number of QoS aggregation mechanisms have been proposed, in order to calculate overall

performance metrics for workflows, based on the services selected foreach task (Cardoso et al.

(2004); Jaeger et al. (2004)). These are typically simple calculations — for example, the overall

cost of a workflow is the sum of all service costs and its reliability is the overall product of all

service reliability values.
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The goal of a large body of research has been to optimise these aggregated QoS values while

satisfying some overall constraints, such as a deadline or fixed budget (Zeng et al. (2004); Ag-

garwal et al. (2004); Canfora et al. (2005); Xiao and Boutaba (2005)). As an example, consider

the simple workflow given in Figure 2.6. It is assumed that the agent needs tocomplete all four

tasks in the order indicated (t2 andt3 can be invoked in parallel). Table 2.2 contains a list of

services suitable for each task. Now, at the simplest level, a QoS-based agent might provision

providers in order to optimise one of the criteria. As in Xiao and Boutaba (2005), we may be

interested in minimising the overall cost while ensuring the overall duration is less than 100.

In this case, an optimal solution is to provisions11, s21, s31 ands41 for a total cost of 41, a

combined reliability of 0.27 and a duration of 30. A similar approach of optimising one par-

ticular performance measure is taken in the work of Deelman et al. (2003b),who use planning

techniques to minimise the overall time of large Grid workflows.

FIGURE 2.6: Simple workflow consisting of four tasks.

Task Service Cost Reliability Duration
t1 s11 5 0.5 10

s12 10 0.9 5
t2 s21 1 0.75 5

s22 7 1 30
t3 s31 10 0.9 10
t4 s41 25 0.8 10

s42 10 0.99 100

TABLE 2.2: Suitable services for each task

Now, in realistic scenarios, a consumer will be unlikely to optimise only along oneof the QoS

dimensions but will rather want to find a good balance. Hence, it is common to optimise a

weighted sum of all performance measures (Gu and Nahrstedt (2002);Zeng et al. (2004); Can-

fora et al. (2005); Yu and Lin (2005); Ardagna and Pernici (2007); Jaeger and M̈uhl (2007)).

This is typically done by first normalising each of the aggregated measures,for example to range

between 1 and 0 (indicating the best and worst values possible respectively). Then a weighťwi

is attached to each measure with
∑

i w̌i = 1, and the overall weighted sum is optimised. In

other words, ifρ is vector of provisioned services for all tasks (e.g.,ρ = [s11, s22, s31, s41]) and

qi(ρ) is theith aggregated QoS value resulting fromρ (e.g., the overall duration or reliability),

then a QoS-based agent will provision services by solving the following optimisation problem
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(whereQ̂i is a constraint for theith quality):

maximise Q =
∑

i w̌iqi(ρ)

subject to qi(ρ) ≥ Q̂i for all i
(2.6)

To continue the example above, if we weigh all performance measures equally, then the opti-

mal solution becomes[s12, s21, s31, s41] with cost 46, reliability 0.486 and duration 25. Un-

fortunately, such a problem cannot be solved efficiently in general, as we can reduce the 0/1

knapsack problem to it and so prove that it is NP-hard. In practice, integer linear programming

applications are usually employed to solve the QoS problem (Zeng et al. (2004); Aggarwal et al.

(2004); Yu and Lin (2005)), although other approaches, such as genetic algorithms, are occa-

sionally used for complex scenarios (Canfora et al. (2005); Jaeger and Mühl (2007)).

In order to address services failures and execution uncertainty in theseQoS-based provisioning

approaches, Zeng et al. (2004) as well as Canfora et al. (2005) suggest adaptive replanning

mechanisms. These monitor the execution of a provisioned workflow by constantly checking the

progress of services and calculating their impact on the overall aggregated QoS values. When

these breach the overall constraints, the remainder of the workflow is re-provisioned to again

satisfy the constraints. For example, a provisioned service may take much longer than expected

and thereby lead to a breach of the workflow deadline. In this case, the consumer re-provisions

the remaining tasks, using faster services where possible.

While this replanning is purely reactive, Jaeger and Ladner (2005) usethe concept of redundancy

to improve provisioned workflows before execution. Assuming that a workflow has already been

fully provisioned, they show how the addition of redundant services canimprove overall quali-

ties such as the reliability or maximum duration of the workflow. However, their approach has

several weaknesses. Although the authors suggest that redundancy should be added to particu-

larly weak parts of the workflow, they do not discuss the decision-making procedures necessary

to decide which and how many services to add. Furthermore, their approach retains all initially

provisioned services and so it does not consider the case where several cheap, unreliable ser-

vice may offer a better overall quality than the original service. Finally, it uses questionable

aggregation methods that are difficult to justify in practice. For example, Table 2.3 shows how

their method combines two example services invoked in parallel — the new reliabilityis the

probability that at least one service is successful and the new maximum duration is the smaller

duration of the two services. Clearly, this method is unrealistic, resulting in aggregated values

that overestimate the performance of the services.

Service Reliability Maximum Duration
A 1% 1s
B 99% 100s

A and B 99.01% 1s

TABLE 2.3: Example of redundantly provisioned services (Jaeger and Ladner (2005)).
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In conclusion, these QoS-based approaches show some promise. Theyacknowledge some un-

certainty about provider behaviour in the form of reliability measures (Requirement M.1.a), but

usually assume certainty about service durations and other quality measures. By modelling

each service explicitly with different quality values, these approaches address the inherent het-

erogeneity of such services (Requirement M.4). Service costs can alsobe included in the calcu-

lations (Requirement M.2.a), and most of the workflows considered are expressive (Requirement

W.1), containing parallel, sequential and conditional branches (Cardoso et al. (2004)). The re-

ward models are simple as they rely on linear combinations of QoS values, but they take into

account global solution qualities such as the workflow completion time, can be adjusted flexibly

by altering the weight vector and may include complex performance constraints (Requirement

W.2). Finally, QoS provisioning addresses service failures reactively by replanning (A.2.a) and

proactively by taking into consideration an overall reliability measure (A.2.b). There is even

some initial work on including redundancy.

Despite making some progress towards meeting our overall research requirements, we believe

that QoS-based provisioning in its current form is not usable in the environments we consider.

In particular, we note the following shortcomings:

• The weighted QoS function that is optimised is very simple and assumes that issues are

linear, additive and independent. In particular, reliability is treated as just another issue

that is substitutable, at a constant rate, with other qualities of the solution. Such behaviour

is not rational (as defined in Section 2.2.1), will require careful manipulation of the ap-

propriate constraints and weights for each workflow, and so largely defeats the purpose of

designing an agent to automate the execution of workflows (our central research aim).

• The approach does not offer a good solution for generally highly unreliable services.

While it can optimise the overall reliability, the workflow will still fail when all services

in the system are unreliable or when the workflow is simply very long. For example,

when it provisions services with a reliability of99% each for a workflow consisting of

100 tasks, the overall success probability is just under37%. Redundancy may help with

this issue, but current work is insufficient for the reasons outlined above.

• Although some of the above approaches suggest reactive re-planningin case of failures,

they do not reason about this in advance. This is a major shortcoming. For example, con-

stant re-planning may be expensive if services demand some payment foreach invocation,

and so it may result in a large loss for the agent if it still fails to complete the workflow

in time. On the other hand, if services are cheap and plentiful, the agent may succeed

with a high likelihood despite a low initial reliability for the overall workflow. However,

it would need to plan ahead and leave sufficient time in its schedule to attempt sometasks

several times before its deadline.

Another potential criticism is that QoS approaches rely on information that is provided to

them through service descriptions, which may be unreliable or even manipulated in order to
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entice consumers to provision particular services over others. However, as we mentioned in

Section 2.2.3, we believe that such issues are being addressed by trust and reputation mech-

anisms. In fact, work by Sreenath and Singh (2004) is concerned with collaborative service

provisioning based on ratings by other agents, and in other work, Maximilienand Singh (2005)

consider a trust mechanism for QoS-based service provisioning.

To conclude our review of current service provisioning techniques, we look at an area that

we find particularly promising and which begins to consider some of the agent-based work

presented in Section 2.2.

2.4.3.3 Decision-Theoretic Provisioning

So far, we have discussed approaches that provision services based on logical constraints and

rules, or that optimise some numerical parameters of a possible solution. Despite the fact that

services are envisaged to be used in economic contexts, that they will contribute significantly

to the operations of organisations, and that they are consumed in uncertainand competitive

environments, little work has used decision-theoretic principles for provisioning services for

complex workflows.

An exception to this is the work carried out on top of MAGNET, which we introduced in

Section 2.2.4. Collins et al. (2001) consider simple workflows of interdependent tasks, rep-

resented as directed acyclic graphs, that a consumer wishes to complete before a fixed deadline.

Here, the consumer uses decision theory by assigning utilities to various outcomes of the work-

flow (e.g., not attempting the workflow at all, failure after thenth task or overall success), and

then calculates the expected utility of the workflow by multiplying the utility of each outcome

with its respective probability (as we discussed in Section 2.2.1). Because services cost money

and the successful completion of a workflow is assumed to have an explicit monetary value to

the customer, utilities are calculated directly from the loss or profit that each potential outcome

entails17.

Such utility calculations are used by the service consumer in two ways. First, they help the

agent determine a good preliminary schedule for the workflow, which is thenused to solicit

bids from suppliers. Here, the agent might delay expensive tasks to reduce the probability

that the workflow fails after these tasks have been started. Such delays have an impact on the

expected utility, because leveled commitments allow the consumer to withdraw from adeal if

the workflow fails before the task is started (Babanov et al. (2004)). Atthis stage, the agent also

attempts to balance the need to create a tight schedule and finish within the deadline with an

appropriate amount of flexibility to solicit the maximum number of bids of suppliers(Collins

et al. (1999)). With this preliminary schedule, the consumer proceeds to organise a reverse

combinatorial auction (as outlined in Section 2.2.4).

17This is common in decision theory — in fact, the monetary outcomes of gambles are often equated with utility
measures for risk-neutral agents. When agents are risk-sensitive,a non-linear function is usually applied to translate
between them (Raiffa (1968)).
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The second application of utility calculations happens during the provisioningphase. This is

when the consumer receives bids from the suppliers to carry out the requested tasks at the spec-

ified times. The consumer then chooses the set of bids that maximises the expected utility of

its workflow. Due to the complexity of this task, the agent uses simulated annealing rather than

an exhaustive search, which has the added benefit of being an anytime algorithm that can be

stopped when a pre-defined time-limit is reached.

Relating this work back to our requirements, we note that, in addition to addressing most of the

issues covered by QoS-based approaches, it offers a feasible approach towards implementing

an agent that makes (boundedly) rational decisions (Requirement A.1).Furthermore, it demon-

strates how a non-trivial negotiation protocol can be used to provision services in advance (Re-

quirements M.2.b and M.3.b).

Nevertheless, the work is lacking in several areas:

• By relying only on advance negotiation, the work is not applicable to current service-

oriented systems, where interactions are mostly carried out through one-to-one on-de-

mand invocation mechanisms. Eventually, we envisage systems to offer variedforms

of negotiations that coexist (Requirement M.3.b) rather than relying on oneparticular

mechanism.

• Similarly, the service consumer provisions an entire workflow at once, which requires a

high initial investment that may be lost when a single service fails. For this reason, it is

also slow to respond to failures, as it has to organise a new auction for the remainder of

the workflow. In dynamic environments, this is not desirable, especially when the agent

has to work towards a fixed deadline. Also, the authors do not explicitly describe how

such re-provisioning should proceed and how the agent might reason about it in advance.

• As in the QoS-based approach, workflows are still vulnerable in certain scenarios. Again,

we can consider generally unreliable services that will serve as bottlenecks or extremely

large workflows that pose a risk even if the individual providers are highly reliable.

This concludes our literature review of the basic technologies and existing techniques for work-

flow execution and service provisioning. In the final section of this chapter, we briefly sum-

marise our main findings and evaluate the extent to which our requirements aremet by the

current literature.

2.5 Summary

As discussed in this chapter, the research community has devised many solid techniques for pro-

viding services over computer networks, for negotiating about the terms onwhich the services

are provided and for making good decisions under uncertainty and with limitedcomputational



Chapter 2 Literature Review 50

resources. However, little work combines these in order to enable computational agents to ex-

ecute complex workflows autonomously on behalf of their owner in uncertainand competitive

environments — a key problem that is encountered in business and in academia alike.

Some existing work addresses parts of our requirements in isolation. Often,this will provide

us with the necessary tools to tackle our overall research challenge, as isthe case, for example,

with the work on probabilistic trust models by Teacy et al. (2006). In other cases, existing so-

lutions for some of our requirements may be infeasible when considering ouroverall aims, as,

for example, the use of manually specified exception-handling routines in WS-BPEL demon-

strates. Hence, in this section we conclude the literature review by briefly summarising our

main conclusions and evaluating what existing work to build on.

2.5.1 Model Requirements

Current work in Web services, Grid computing and peer-to-peer systemsoffer infrastructures

for providing and consuming services in distributed scenarios. By using common, platform-

independent data formats and protocols, they allow heterogeneous agents to interact and, by

employing emerging techniques from the Semantic Web, to discover each other. As such, these

are the basic enabling technologies that we can build upon, but they do notmodel explicitly the

uncertainty or dynamism that is inherent in the systems we consider.

Recent work on QoS in service-oriented computing models uncertainty usingprobabilistic mea-

sures, which can be obtained either by a centralised observer or through trust and reputation

mechanisms. We believe that this is a promising approach for satisfying Requirement M.1 in

order to represent the possibility that providers may defect or offer their services with vary-

ing qualities. Similarly, such measures can be used to distinguish between heterogeneous agents

(Requirement M.4) and there is some work to consider the dynamism of service-oriented sytems

by tracking changes in performance over time (Requirement M.5).

Currently, interaction mechanisms in service-oriented systems are simple and rely mostly on on-

demand service invocation (Requirement M.3.a). Despite some initial work on the description

of service level agreements, there are no satisfactory mechanisms for automated service remu-

neration and advance agreements (Requirements M.2.b and M.3.b). Such issues are addressed

by separate work in agent-based negotiations, which offers a spectrumof negotiation protocols

for different settings. In this context, we find the leveled commitment contractnet protocol

particularly promising, because it follows similar contracting models in the real world, is easily

implemented and offers the contracting agent flexibility in choosing which offers to accept.
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2.5.2 Workflow Requirements

As workflows have been widely studied in the context of business processes, there is extensive

work on the expressivity of workflows and their semantics. We will draw onthis work when

designing the workflows that service consumers face (Requirement W.1).

However, because the workflows considered in that work are usually designed by humans, they

do not provide associated reward models that might guide an autonomous agent. Work on the

MAGNET system awards agents a fixed price for successful completion.This is a promising

approach as it lends itself well to a decision-theoretic analysis, where cost, payoff and uncer-

tainty are balanced. However, it is a very simple model that takes into account only the binary

outcome of finishing in time or not. In reality, cumulative penalties might apply to late com-

pletion (Requirement W.2). Nevertheless, the approach allows a user to flexibly determine the

value of a workflow and can be extended to cover more expressive reward functions.

2.5.3 Agent Requirements

Service failures are addressed in the literature in several ways. Most workflow engines con-

tain explicitly specified failure-handling routines that deal with failures reactively (Requirement

A.2.a). Such an approach requires a human programmer to foresee problems and is therefore

not applicable for our work. In Condor and most peer-to-peer systems, failures are addressed

in a more appropriate manner by automatically choosing substitute services. Similarly, some

approaches use global workflow replanning to react not only to failures, but also to other events

that breach workflow constraints (e.g., when services take longer than expected). Hence, these

approaches are adaptive, but only react when breaches have already occurred and do not exploit

opportunities (Requirement A.4). Furthermore, this reactive behaviour could be infeasible in

unreliable environments with workflow deadlines, where the consumer is under time-pressure

and cannot retry indefinitely.

Some approaches take a more proactive approach towards dealing with failures (Requirement

A.2.b). Especially, work in decision-theoretic provisioning explicitly models reliability and

strikes a balance between choosing more reliable services and the associated costs. In P2P sys-

tems and the deployment of Web services, techniques from reliability engineering are used and

service redundancy is exploited to provide higher overall reliability, but this is often determined

manually or formulates the redundancy allocation as a static optimisation problem with given

cost or reliability constraints.

Work in decision theory offers some valuable tools for making good decisions within the limits

of a computationally bounded agent (Requirement A.1). Some of these results have already been

applied to a particular provisioning scenario and show some promise for ourwork. However,

much work on service provisioning aims to solve combinatorial problems, whichare generally
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FIGURE 2.7: Summary of the work we build upon in this thesis.

intractable for large cases. Approaches that use heuristic methods seemmost promising here to

satisfy our requirement for scalability (Requirement A.3).

In summary, many of our requirements have been considered in isolation or inthe context of

different research. Hence, there are a number of tools that we can draw upon for our research

problem. However, there is currently no effective general strategy for provisioning services in

realistic distributed environments, where services are neither provided for free nor behave in a

reliable manner. To address this, we build on the work presented in this chapter (summarised in

Figure 2.7) and first outline an abstract model of a service-oriented system in the next chapter.

Then, we consider a range of service-oriented environments, where varying amounts of service

performance information is known to the consumer and where different negotiation mechanisms

are used. In order to address these separately, exploiting the specific characteristics of each

environment, we develop several novel service provisioning strategiesin Chapters 4–6.



Chapter 3

Modelling a Service-Oriented System

To frame the remainder of this thesis, we begin by describing in more detail the systems we

consider, based both on our original requirements given in Chapter 1 and on current service-

oriented technologies outlined in Chapter 2. The purpose of this discussionis to introduce a

number of common assumptions that are used throughout the thesis, and to provide a high-level

description of a service consuming agent and its possible interactions with service providers.

This will form a general system model, which we extend and base our workon in later chapters.

More specifically, we begin in Section 3.1 by defining the basic terminology of our model,

and in Section 3.2, we describe the lifecycle and structure of a workflow. This is followed by

an outline of how service providers behave and the information that is available about them in

Section 3.3. We give a high-level algorithm that formalises the behaviour ofa service consuming

agent (Section 3.4), and we briefly introduce an illustrative workflow from the bioinformatics

domain that will serve as a running example throughout the thesis (Section 3.5). Finally, we

conclude our framework by discussing some of its limitations in Section 3.6.

3.1 Basic Terminology

Our model describes a distributed, service-oriented environment, whereactors can exhibit a

varying degree of reliability, timeliness and autonomy in providing and consuming services. It

assumes several basic concepts (shown in Figure 3.1):

• All participants in service-oriented systems are autonomousagents, i.e., self-interested

entities that seek to maximise their private utility (Jennings (2000)). We distinguish be-

tween two different types of agents:

– Providers offer their capabilities to other agents in the system, usually in exchange

for financial remuneration.

53
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FIGURE 3.1: Basic model concepts (on left) with an example (on right). Arrows indicate
functional (many-to-one) relationships.

– Consumersmake use of the capabilities offered by providers in order to achieve

their goals.

• Tasks are problem instances that a consumer faces in a particular context. Sucha task

can be seen as a desired change in the current state of the agent’s environment or in

its current knowledge. Generally, we will concentrate on tasks that are solved by the

transfer of data or information — for example, such tasks might include compressing a

large dataset, finding the solution to a complex optimisation problem, or comparing a

nucleotide sequence to a database comprising millions of genes. To a lesser extent, our

work also applies to tasks that require actions with a tangible physical effect on the world,

such as the delivery, manufacturing or processing of goods, but we are not concerned

with the associated logistic problems and assume free disposal of unwanted goods (this

assumption is explained in more detail in Section 3.6).

Furthermore, tasks are not further decomposable by their owners and have to be dele-

gated to providers that are able to solve them. Due to this task delegation, we assume

that, from the owner’s perspective, tasks are always in one of two states — completed or

uncompleted. We also assume that there is only one transition from being uncompleted to
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completed when a task is solved, after which it becomes irrelevant to the owner’s current

needs.

• Each task is associated with aservice type. This is an abstract description of the type of

service that is required to solve the task. Different tasks can be associated with the same

service type, but each task has exactly one type. For example, the task ofsearching for

a specific nucleotide sequence in a genome database could be associated with an abstract

data comparison service type.

• Services(or service instances) are concrete implementations of a given service type.

There may be many implementations of a service type, but each service has exactly one

type. These services are behaviours that service-providing agents offer to consumers in

order to help them solve tasks of the appropriate type. In this work, such services are

treated as atomic problem solving units, whose internal realisations are considered as

black boxes and not further considered in this work1. Furthermore, they are generic and

repeatable, that is, they can be procured by different consumers fordifferent tasks, but

each service instance has exactly one provider. An example of a servicecould be a par-

ticular implementation of a genome comparison algorithm offered as a Grid service by a

biological research laboratory (O’Brien et al. (2004)).

The above concepts form the basic terminology of our model. As we are interested in developing

strategies for a single service consumer, we now describe in more detail thebehaviour of such a

consumer and the workflows it executes.

3.2 Workflow Model

Service consumers in distributed systems often face multiple inter-dependenttasks, which to-

gether achieve a more complex objective. For example, several data processing tasks may be

required to sequence and analyse a gene (see Section 3.5), or different parts and materials may

need to be purchased in a procurement scenario. As described in Chapter 2, these tasks and their

dependencies are usually expressed as workflows, and so this notion iscentral to our work. To

this end, we first outline the lifecycle of an abstract workflow (Section 3.2.1), and then formalise

its structure (Section 3.2.2).

1In practice, it may be necessary for the consumer to exchange several messages with the provider in order to
effect the desired behaviour. For example, a book-ordering service may require the consumer to first obtain a unique
book identifier from its catalogue, create a virtual shopping basket, add the book and finally provide payment details.
We do not explicitly cover such detailed interactions in our model, because they depend highly on the implementation
of a particular service and are typically indivisible (i.e., it is generally notpossible to order the book from one service
but provide payment details to another).
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FIGURE 3.2: Lifecycle of a workflow

3.2.1 Workflow Lifecycle

Building on the work on abstract workflows outlined in Chapter 2, a serviceconsumer in our

model proceeds through four stages when executing a workflow (see Figure 3.2):

1. Workflow Selection: First, an abstract workflow is chosen to suit the consumer’s current

objectives. This is generally created either manually by domain experts or automatically

by a planner that uses abstract templates of common service types. Due to thecomplexity

of generating workflows, this may take place offline, allowing the consumer toretrieve

suitable workflows from a repository. At this stage, tasks are only associated with their

abstract service types (e.g., in the form of semantic meta-data) and not yetwith any con-

crete service instances.

2. Matchmaking: Once an abstract workflow has been selected, tasks are mapped to candi-

date service instances via a matchmaking process. Here, the consumer searches a public

service registry or requests matching services from a broker. This stepuses the service

type annotations provided by the abstract workflow to find suitable serviceinstances. Ad-

ditionally, the agent may, at this stage, apply security policies to filter the set ofservice

instances (e.g., to remove services that do not adhere to certain protocolsor encryption

methods, or that cannot provide the necessary security certificates).

3. Provisioning: Given lists of matching services, the consumer now provisions individual

service instances for each task of the workflow. This decision may constitute a tacit inten-

tion by the consumer to invoke the provisioned services for the respectivetasks, and so it is

not necessarily a binding commitment. The purpose of this stage is to allow the consumer

to make predictions about the performance of a provisioned workflow, and to explore the

space of candidate provisioned workflows. Specifically, it is possible for the consumer

to evaluate and optimise the provisioned workflow using an appropriate utility function

that encodes the value of successfully completing the workflow. During thisstage, the

consumer can make use of its own domain knowledge and possibly service performance

information that is available from external sources, to identify particularly failure-prone
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FIGURE 3.3: Example workflow consisting of six interdependent tasks. Circles represent the
tasks inT and arrows represent the dependencies as given byE (transitive dependencies are

omitted for readability).

tasks, and to proactively provision additional or more reliable services where necessary

and where this increases the expected utility of the provisioned workflow.

4. Invocation: When appropriate services have been provisioned, the consumer startsto

invoke the chosen services as dictated by the ordering constraints of the workflow. If

services fail to complete their tasks, the consumer may provision other services, until the

workflow is successfully completed.

In the following section, we formalise the concept of a workflow and show how to describe its

value to the service consumer.

3.2.2 Workflow Structure

As discussed in Chapter 2, a workflow is typically a collection of tasks with appropriate ordering

constraints. For this reason, we model it as a directed acyclic graph. Formally, a workflow is a

tupleW :

W = (T, E, τ, u) (3.1)

where

• T =
{
t1, t2, t3, . . . , t|T |

}
is the set of tasks that make up the workflow.

• E : P(T × T ) is a strict partial order overT , denoting the precedence constraints. An

element(t1, t2) ∈ E means that completion oft1 is necessary fort2 to be started.

• τ : T → T maps each task to an abstract service type, whereT is the set of all such

descriptions.

• u : R → R is a utility function that maps the total completion time of a workflow to the

related reward for the consumer.

To give an example, Figure 3.3 shows a workflow consisting of six tasks withsome dependen-

cies. Here, taskt1 has to complete successfully before any other tasks can be started. Taskt4
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FIGURE 3.4: Relationships between tasks in workflow and abstract service types.

can only be started once taskst3, t2 and (by transitivity)t1 are completed. While this figure

only shows the tasksT and edgesE, Figure 3.4 highlights the relationship between tasks in

the workflow and abstract service types (as given by functionτ ). In this example, several tasks

share the same service type (for examplet1 andt3).

The utility functionu defines how the service consuming agent is rewarded for the successful

completion of a workflow. This represents the value that the agent (or its owner) attaches to the

workflow and may, in practice, be the expected financial gain of completing the workflow, or

simply a private utility value, as commonly used in decision theory (Raiffa (1968)). Here, we

assume that the reward is given only when the whole workflow is completed and that the amount

of the reward depends on the time at which it is completed2. Hence, we use a general utility

function that awards a maximum utilityumax when the workflow is completed within a given

deadlinetmax. When this deadline is exceeded, a penalty rateδ is deducted fromumax for every

unit time step that the agent is late, until the agent gains no more positive utility, in which case

it receives a reward of zero, regardless of whether the workflow is completed at a later stage or

not. Formally, we express the utility functionu as follows (withumax≥ 0, tmax≥ 0 andδ > 0):

u(t) =







umax if t ≤ tmax

umax− δ(t− tmax) if t > tmax andt < tmax + umax/δ

0 if t ≥ tmax + umax/δ

(3.2)

In this context, we usetzero to denote the first integer time step at which the consumer no longer

gains any reward, i.e.,tzero = ⌈tmax + umax/δ⌉. In practice, when the consumer has not com-

pleted the workflow at time steptzero, we treat it as failed and assume that execution will stop

immediately (as doing otherwise is clearly irrational and may lead to infinite execution times).

To illustrate this, Figure 3.5 contains some example utility functions. The function labelled

u1(x) rewards the consumer withumax = 400 up to the deadlinetmax = 100. When this

deadline is exceeded, the utility of the workflow decreases slowly, with a penalty of onlyδ = 4,

thus representing a case where a small delay does not significantly penalise the consumer. In

2This is consistent with much previous work in the area — Collins et al. (2001)reward an agent with a fixed payoff
for completed workflows, while Arunachalam and Sadeh (2004) and Irwin et al. (2004) describe utility functions that
depend on the time of completion.



Chapter 3 Modelling a Service-Oriented System 59

 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250

R
ew

ar
d

Time to Completion

u1(x)
u2(x)
u3(x)

FIGURE 3.5: Examples of some representative utility functions.

contrast to this,u2(x) represents an example where time is more critical. Here,δ = 40 and so

the consumer loses all utility even if it is only 25 time steps late. Finally,u3(x) has no specific

deadline (tmax = 0), rewarding the agent purely based on the amount of time taken.

Given our formal model of a workflow, we now discuss the behaviour ofservice providing

agents.

3.3 Service Provider Model

In this section, we give an overview of how service providers interact with the consumer, and

how we describe the performance of their services. As we will consider different market mech-

anisms and varying amounts of knowledge about services, we restrict our description here to a

brief summary and expand on it in more detail in later chapters.

First, as described above in Section 3.2.1, we assume that there is a mechanism for consumers

to discover the available service instances for each task inT . To this end, we letS = {s1, s2,

. . . , s|S|
}

be the set of all services and we formalise the matchmaking phase in Figure 3.2as

a function,µ : T → P(S), that maps abstract service types to sets of suitable services. For

brevity, we letSi = µ(τ(ti)) (e.g., in Figure 3.1, we haveS1 = {s1, s2, s3, s4}).

Given this information about service instances, the consumer may then decide to invoke them

for the appropriate workflow tasks. This happens either throughon demandinvocation, where

the consumer requests the service only when it is required (this is the focusof Chapters 4 and

5), or through advance agreements (discussed in Chapter 6), where the consumer and provider

first negotiate an explicit contract about when and how the service should be provided. In both

cases, we assume that the consumer incurs some cost for invoking services.

Once a service is invoked for a given task, we consider two main outcomes:success and fail-

ure. If the service succeeds, the consumer receives notification of thissome time after invoca-

tion. However, the exact time for this is usually uncertain, as it depends on network delays, the
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complexity of a given task and the provider’s decisions on how to allocate resources between

competing consumers. If the service fails, we assume that no explicit notification is returned to

the consumer — hence, we primarily considercrashfailures in our work (Cristian (1991)). In

Section 3.6, we briefly outline other types of failures that we do not currently address, and we

show in Chapter 6 how this model can be extended to include explicit failure messages.

An important aspect of our model is that we assume multiple services can be invoked for a single

task. This means that the consumer may invoke several in parallel, for example to increase the

overall likelihood that the task will be completed by one of them. Similarly, it may delegate a

failed task to a different provider. In this context, we assume that a single success is sufficient

and so a task is considered completed as soon as the first invoked serviceis successful. However,

we also assume that the consumer generally has to pay for all invoked services, regardless of the

outcome, but in Chapter 6, we consider scenarios where providers refund or even compensate

the consumer for service failures. Furthermore, throughout the thesis,we assume that outcomes

of different services (or of the same service, but for different tasks) are independent. Again,

we briefly return to this assumption in Section 3.6 and discuss some cases where it does not

necessarily hold.

As outlined in Section 3.2.1, the consumer uses some performance information about service

instances to decide which ones to provision for the tasks of the workflow. Although we will

cover this in more detail in later chapters, we consider a number of basic parameters that describe

each service:

• c(si) ∈ R is the invocation cost of servicesi. Usually, this will be a financial remuneration

paid by the consumer to the service provider, but could also represent acommunication

cost. We assume that it is expressed in the same units as the workflow reward(given by

utility function u(t)).

• f(si) ∈ [0, 1] is the failure probability of servicesi. This is the probability that invoking

the service for a particular task will result in failure (as described above).

• d(si, x) ∈ R is the duration function of servicesi. This is a probability density function

representing the time between sending a request to invoke servicesi and receiving notifi-

cation of a successful outcome (as observed by the consumer and conditional on overall

success). As such, this function encapsulates the general uncertaintyin the service execu-

tion time, including factors such as network propagation delays, competition withother

consumers and task uncertainty. For convenience, we denote the associated cumulative

density function asD(si, x) =
∫ x
0 d(si, y) dy (i.e.,D(si, x) is the probability that the time

between requesting servicesi and being notified of its success isx or less). Intuitively,

we assume that durations are always strictly positive (∀x < 0 · d(si, x) = 0).

In the following section, we present a general algorithm that sketches thebehaviour of a service

consuming agent. This further formalises the consumer’s interactions with theproviders and

forms the basis for our proposed strategies in Chapters 4 – 6.
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3.4 Basic Service Consumer Algorithm

Algorithm 3.1 shows the general behaviour of a service consumer. Here, we concentrate on

the sequence of actions to give us a basic framework for our work, leaving the actual decision-

making procedures (INITIALISE , UPDATE, STOPCONDITION and ENGAGESERVICES) to later

chapters. In this algorithm and throughout our work, we assume that time passes in discrete,

uniform time steps, representing the intervals at which the consumer sensesits environment. To

this end, we denote the first time step ast̂ = 0, the second aŝt = 1, and so on.

At the beginning of the algorithm, two variables are first initialised to keep trackof the current

time (line 2) and the overall profit the consumer has accumulated (line 3). Then, in line 4,

the consumer selects an appropriate workflow,W , to achieve its current objective (denoted

by Λ). This corresponds to the workflow selection stage described in Section 3.2.1 (however,

as we concentrate on the provisioning of a given workflow, we do not cover this stage in more

detail). GivenW , the consumer next performs an initial decision-making procedure, INITIALISE

(line 5). During this, it may discover available services (corresponding tothe matchmaking

phase) and make initial decisions on which services to invoke for the tasks of its workflow (the

provisioning phase).

Lines 7 – 24 constitute the main loop of the algorithm, with each iteration representing the

actions performed during a single time step. In more detail, the variableO in line 8 is first

set to contain information about the most recent service outcomes that occurred between the

current and the previous time step (this is later used to update the consumer’sstate). For now,

we assume thatO : P(T × S) is simply a set of tuples that indicate the tasks and associated

services that have successfully been completed in that time interval (in Chapter 6, we consider

other outcomes as well). Next, in line 9, any penalties for failed services arepaid to the consumer

(we only consider this in Chapter 6). If the outcomes inO suggest that all the tasks have been

completed, the overall profit is calculated usingu(t̂) and the algorithm terminates by returning

the profit and a status message to indicate success (line 11). On the other hand, if the workflow

is not complete and will no longer result in a positive, non-zero reward, the algorithm also

terminates (line 13).

If some tasks are still uncompleted, the consumer updates its internal state based on the service

outcomes (line 15). This involves updating the progress of the workflow and possibly adapting

its initial provisioning decisions. Next, when service providers demand explicit contract nego-

tiations (as discussed in Chapter 6), the consumer may negotiate with service providers (line

16). After this, the consumer may abandon the workflow, for example whenit seems infeasi-

ble to complete it in time (line 17). This is followed by service invocations, during which the

consumer requests any provisioned services to be started (line 20). Thiscorresponds to the in-

vocation stage detailed in Section 3.2.1. Finally, the profit is updated to take into account any

costs incurred during negotiation and invocation (line 21) and the time is advanced (line 22).
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Algorithm 3.1 Service consumer behaviour.
1: procedure SERVICECONSUMER

2: t̂← 0 ⊲ Current time
3: p̂← 0 ⊲ Current profit
4: W ← SELECTWORKFLOW(Λ) ⊲ Select workflow
5: INITIALISE(W ) ⊲ Initial matchmaking and provisioning
6: O ← ∅ ⊲ Variable to hold most recent service outcomes
7: loop ⊲ Main loop
8: O ← recent service outcomes
9: p̂← p̂ + penalties ⊲ Pay out penalties for failed services

10: if all tasks completedthen
11: return (p̂ + u(t̂), success ) ⊲ Successfully completed workflow
12: else ifu(t̂ + 1) ≤ 0 then
13: return (p̂, failed ) ⊲ Failed to complete workflow in time
14: else
15: UPDATE(O) ⊲ Update consumer with outcomes
16: NEGOTIATESERVICES ⊲ Negotiate service provisions
17: if STOPCONDITION = true then
18: return (p̂, abandoned ) ⊲ Abandoned workflow
19: end if
20: INVOKESERVICES ⊲ Invoke services
21: p̂← p̂− costs ⊲ Accumulate costs of provisioned/invoked services
22: t̂← t̂ + 1 ⊲ Advance time
23: end if
24: end loop
25: end procedure
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FIGURE 3.6: Example bioinformatics workflow, based on workflows described by Smith et al.
(1997), Kochut et al. (2003) and O’Brien et al. (2004).

To further illustrate the types of workflows that a consumer in a service-oriented system may

face, we briefly discuss an example workflow in the next section.

3.5 Illustrative Workflow

Throughout this thesis, we illustrate our work using a simple workflow from the bioinformatics

domain — an area that relies heavily on computationally intensive services andthat has increas-

ingly seen the establishment of large distributed Grid systems for sharing resources, as exem-

plified by the GriPhyN (Deelman et al. (2003a)), myGrid (Oinn et al. (2006)) and CombeChem

(Coles et al. (2005)) projects. For our example, we assume that a scientist has just sequenced a

previously unknown gene of a bacterium, and is now interested in visualisingthe shape of the

associated protein. For this, she has to carry out a number of tasks, which are shown in Figure

3.6.

Her initial data comprises a large set of overlapping DNA fragments in the form of chro-

matograms, as is common in shotgun DNA sequencing (Ewing et al. (1998)). These show

characteristic light traces at different wavelengths, corresponding tothe four bases found in a

DNA sequence. As these traces typically contain some noise and errors, thescientist first needs

to run a base-calling service (BaseCall). This translates the chromatograms to the corresponding

base sequences, attaching a quality value to each base in the process thatdenotes how accurate

the assignment of the base is. The resulting base sequences are then assembled to a single con-

tinuous DNA sequence by identifying and merging overlapping fragments, using the quality

values to find and repair errors. This task is performed by a sequence-assembling service, which

also identifies and isolates the coding region of the gene (GeneAssemble).

When the coding region of the gene has been assembled, it is then translatedto the corresponding

amino acid sequence using a simple translation service (Translate). As the primary structure of

the protein, this forms the input to the computationally-intensive folding service(Fold), which

predicts the 3-dimensional shape of the protein based on a search for theconformation with

the lowest free energy. The output of this — a file containing the tertiary structural data — is

then rendered in high resolution using an appropriate graphics service (Render). In parallel with

the folding simulation, the scientist is also interested in comparing the new gene to previously

discovered sequences. To this end, she searches through public collections of known proteins to
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find the closest match using a specialised service (Blast), and then accesses commercial database

services to retrieve structural information about the protein (LookUp). This is rendered again,

and both images are printed as part of a report on a local printer (Print).

Now, some service types in this example require a significant computational effort and may take

a considerable amount of time to complete. In this context, our utility function, as given by

Equation 3.2, allows the owner of the service consuming agent (the scientistin this example)

to succinctly encode the overall utility of the workflow and how this relates to thetime taken.

For example, if the scientist needs the results later in the day, but is not overly concerned about

waiting a bit longer, a utility function with a low penaltyδ, such asu1 in Figure 3.5, is appro-

priate. If, on the other hand, the results are critical for a presentation she is giving to a funding

committee in the next 90 minutes, a utility function such asu2 expresses the urgency and high

value of the workflow more suitably.

These examples serve to highlight some of the challenges we seek to address in our work.

Especially in the latter case, uncertain service durations can easily jeopardise the successful

completion of the workflow — for example, when one of the provisioned service instances is

in high demand and therefore takes longer than expected. Similarly, servicefailures can lead

to missed deadlines and to higher costs (as replacement services may need tobe found and in-

voked). Furthermore, the service types discussed above may be offered by many heterogeneous

agents — for example, there may be instances for theRenderservice type that are very expen-

sive and reliable (perhaps because they run on dedicated graphics workstations), but also others

that are cheap, unreliable and usually much slower (these may be executingon simple desktop

machines).

Hence, we need a decision mechanism that can anticipate some of the potentialproblems and

mitigate them by provisioning the workflow in a flexible manner, for example, by provisioning

multiple providers for a given task, by re-provisioning failed tasks and bychoosing appropriately

among several heterogeneous providers. Before discussing our proposed algorithms for this in

detail, we conclude this chapter by detailing some of the limitations of the model we have

adopted. This discussion is necessary, as we have made some assumptionsthat may not always

hold in practice.

3.6 Model Assumptions and Limitations

Although we have striven to present a model that is applicable to a large range of service-oriented

scenarios, we have had to make a number of simplifying assumptions about our problem domain

that may not hold in all potential application areas. On the one hand, these assumptions were

necessary to produce a formal model that is amenable to efficient mathematical analysis, and

on the other hand, they allowed us to present and deal with a general problem rather than con-

centrate on domain-specific constraints that may occur in a concrete application. We believe
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that our assumptions are reasonable in most large distributed systems and that our model consti-

tutes a solid basis for more specific extensions. In this section, we explicitly listand justify the

assumptions we have made.

• Failure Model: We have chosen to focus mainly on silent crash failures at this time.

Compared to explicit failure messages, silent failures are more challenging todeal with

(clearly, a consumer receiving such messages will perform at least aswell as one that does

not). Furthermore, they are realistic in distributed environments, where service providers

do not reveal their internal state, and where network or machine failurescan lead to com-

munication losses. However, we currently do not deal with Byzantine failures, which

include the return of corrupt service results. Hence, we must assume that service results

can be tested for correctness (in fact, many intractable problems can be efficiently veri-

fied), but we plan to relax this limitation in future work.

We also assume that failures (and durations) of different services areindependent of each

other. We believe that this is generally the case in large-scale distributed systems, where

services reside on physically separate machines, use different implementations and do not

directly interfere with each other. Despite this, failures may occasionally be correlated

— e.g., when two services rely on a common third service, or when several systems are

attacked by the same virus.

Furthermore, failures between separate tasks may not always be independent either. For

example, when provisioning the same instance for several tasks, it is possible that there

will be some correlation between the outcomes of these tasks. In some cases,the failure

of certain tasks may also require the consumer to repeat previous tasks (e.g., when the

service input data was first converted by another service to a specific format). However,

we believe that this usually happens within the context of a single task, whereseveral

operations of the same service have to be invoked to achieve the overall objective (and

where a failure would imply repeating these operations with a different provider). While

other dependencies are also possible, we chose not to include such constraints in our

current model for conciseness.

Finally, we do not explicitly consider transient or intermittent failures — hence, we do

not attempt to repeatedly invoke the same failed service for a given task several times

(however, if such a behaviour does not incur additional costs, it can easily be incorporated

into the overall failure probability and duration distribution of a task).

• Performance Information: As we concentrate on the provisioning problem rather than

learning techniques, we assume that the service consumer has accurate performance infor-

mation about the providers for each task3. In practice, such information may be domain

knowledge provided by experts during workflow generation (Ng and Abramson (1990)),

by inference over the task descriptions and related data (Maximilien and Singh (2004)),

or by statistical estimation based on previous interactions with similar services, possibly

3However, we show in Appendix A that our proposed approach is robust to moderate inaccuracies.
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provided by a trusted monitoring service (Teacy et al. (2006)). However, obtaining this

knowledge is clearly non-trivial and has been the subject of much ongoingresearch. Fur-

thermore, there may be tangible costs associated with obtaining such trust information

(e.g., when a monitoring service charges for its information, or when a consumer has to

actively explore the population of providers to gather statistical averages). We do not

cover these costs of querying and maintaining trust information at this time, butwe envis-

age that existing work on the value of information in uncertain environments can be used

to extend our model in the future (Dearden et al. (1999); Teacy et al. (2008)).

Moreover, we currently represent uncertain service durations usingsimple non-condition-

al probability density functions. This is a common approach for modelling stochastic

systems, but it is possible to envisage more detailed joint distributions to be available, for

example to model varying service durations at different times of the day, onweekends, or

based on observations about current network traffic.

• Payment Model: Our model assumes that the service consumer is charged a fixed price

per invocation. We believe that this is realistic in many dynamic service-orientedsys-

tems, where providers and consumers form only loose short-term agreements. However,

it should be noted that other pricing schemes have been proposed, including some that

allow multiple invocations of the same service over a certain period of time (Dan etal.

(2004)).

Additionally, we currently assume free disposal of unwanted services, i.e., that several

successful service invocations for the same task do not incur additionalpenalties above

their normal cost. This may be realistic in Grid scenarios, where the results ofdata pro-

cessing services can be disregarded without costs, but in a supply-chain application, the

disposal of unused goods may incur additional charges (especially forchemicals or dan-

gerous materials).

• Reward Model: Our reward function encodes the value of completing a workflow at a

given time, and it intuitively follows the general form of many contracts in other domains.

However, certain application scenarios might require a more expressivefunction that de-

pends on multiple dimensions (e.g., the overall time and the perceived quality of some

end-product).

• Model Scope: To obtain a general system model, we currently do not consider specific

domain-dependent constraints that may occur in particular workflow applications. For

example, we do not cover cases where service instances have mutually exclusive side-

effects or where there are dependencies between the instances provisioned for several

tasks4. The latter case might occur in scenarios where the choice of an earlier service

instance dictates the applicability of services for subsequent tasks. We also represent

workflows as directed acyclic graphs, which is consistent with much relatedwork, but we

4Most commonly, such dependencies occur when invoking several operations on a service to achieve some higher-
level objective (such as the selection and payment operations when ordering goods online). As described in Section
3.1, these low-level dependencies are subsumed by the high-level service concept we use in our model.
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note that realistic applications often require more complex structures, including branches

and loops.

Furthermore, we do not currently consider explicit transaction mechanisms(i.e., mech-

anisms for coordinating multiple inter-dependent service invocations in order to ensure

a consistent outcome). We believe that such mechanisms are typically subsumed by our

high-level view of tasks that will often include multiple messages between the consumer

and provider, and that may be underpinned by a transaction mechanism (e.g., to ensure that

a book order takes place only when all constituent operations are successful). Despite this,

there are also cases where several high-level tasks may be coordinated via a long-running

transaction. This is common in domains where services are highly interdependent and

where the consumer may need to retain the freedom to retract previous service requests

(e.g., when booking hotels and airline tickets in the travel domain). However,as argued in

Section 2.4.1, we believe that such transaction mechanisms cannot generallybe relied on

for cancelling previous tasks and thereby take a more pessimistic approachin modelling

our system without transactional support.

Finally, in line with the overall aim of this thesis, we focus solely on uncertainty inthe

behaviour of service providers. Hence, we assume that workflows are correct, that appro-

priate matchmaking algorithms correctly identify suitable providers and that the consumer

is able to translate between heterogeneous data formats. In practice, suchproblems are

far from trivial, but they are not the focus of this work.

In Chapter 7, we will re-examine some of these limitations and show how our model can be

extended to handle them.

3.7 Summary

In this chapter, we have outlined a general system model and agent framework, which will form

the basis of our work. In doing so, we have concentrated on formalising the workflows a con-

sumer faces, and we have detailed some assumptions about how the consumer may interact with

service providers. We have also briefly introduced the basic behaviourof providers and dis-

cussed how we quantify the uncertain outcomes of services using probabilistic measures. In

the following chapters, we will elaborate on this model to cover different environments. More

specifically, in Chapter 4, we develop a strategy for cases where services are invoked on demand,

but where the service consumer has no detailed performance information about individual ser-

vices. Then, in Chapter 5, we look at environments where such informationis available to the

consumer. Finally, in Chapter 6, we consider environments where explicit service contracts are

negotiated in advance and where the availability and performance characteristics of services

may change dynamically. We decided to address these scenarios separately, as this allows us

to best exploit the specific characteristics of each one. For example, when limited information

is available, we can perform particularly fast calculations. When considering more complex
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environments, on the other hand, we propose decision algorithms that dealbetter with the larger

decision spaces. Taken together, these techniques therefore represent a set of algorithms and

tools that can be used in a range of different environments.



Chapter 4

Service Provisioning with Limited

Performance Information

Having devised a model for service-oriented systems in the previous chapter, we now outline

a number of strategies for provisioning services for abstract workflows. In this chapter, we

concentrate on systems where services are invoked purely on demand (i.e., without the need

for explicit advance agreements) and where the information about the performance of services

is highly limited (Chapters 5 and 6 will deal with systems where more detailed information

is available and where services are provisioned in advance). To this end, in Section 4.1, we

formalise these assumptions by extending our system model. This is followed bya discussion of

a number of provisioning techniques: in Section 4.2, we begin by outlining anäıvestrategy that

formalises many current approaches towards service provisioning thatdo not consider service

uncertainty. Then, in Section 4.3, we describe three strategies that rely onmultiple services

to satisfy single tasks (parallel(n), serial(w) and hybrid(n,w)) and that are broadly based on

simple redundant strategies found in related work. These are then combined, in Section 4.4,

into aflexibleprovisioning strategy that reasons explicitly about its provisioning decisions and

that constitutes the main contribution of this chapter. The chapter is concludedby a thorough

empirical investigation, in Section 4.5, into the performance of our proposedstrategies.

In devising theflexiblestrategy, we address four of our agent requirements outlined in Section

1.4.3. Specifically, the strategy reacts dynamically to failures by re-provisioning services (Re-

quirement A.2.a) and it avoids failures proactively by redundantly provisioning services where

appropriate (Requirement A.2.b). Furthermore, it makes flexible, automatic decisions with the

aim of maximising the agent’s utility (Requirement A.1) and our approach uses heuristic ap-

proximations that make it suitable for large problem instances (Requirement A.3).

69



Chapter 4 Service Provisioning with Limited Performance Information 70

4.1 Model Extension

We begin by looking at a simple system model, which builds closely on that described in the

previous chapter. As before, we assume that the consumer knows the overall set of services that

may satisfy a given task (denotedSi for taskti). However, we make a number of assumptions

about how the consumer is able to interact with these services and the information it has about

them:

FIGURE 4.1: Information that is available about the services available for each task.

• On demand invocation: In this chapter, we assume that services are always invoked on

demand. To this end, when the consumer decides that execution of a taskti should start

(provided all predecessors ofti have been completed), it simply sends a request to any of

the members ofSi during the INVOKESERVICESprocedure of Algorithm 3.1.

• Limited performance information: We assume that the consumer does not have detailed

performance information about each individual service. Rather, this is restricted to prob-

abilistic estimates and distributions about the setSi as a whole. Specifically, we assume

the following to be available (as shown in Figure 4.1):

– ti is a task in the workflow.

– Tx = τ(ti) is the service type associated with the task.

– Si = µ(Tx) is the set of valid service instances that are capable of completing the

task.

– vi = |Si| is the number of valid service instances.

– fi is the failure probability of a randomly drawn member ofSi.

– ci is the cost1 of each service inSi.

– di is the duration distribution function of a randomly drawn, successful memberof

Si, andDi is the associated cumulative distribution function.

1We assume here that the cost of services is homogeneous withinSi, i.e., that all services cost exactlyci. How-
ever, the techniques developed in this chapter apply similarly when there is some uncertainty in the cost of each
service, withci representing the average cost.
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We make these assumption because they apply in a range of realistic applicationscenarios.

Specifically, on demand invocation is the predominant invocation mechanism in many current

service-oriented systems, where service interfaces are published in registries and then simply

invoked when needed, much like remote procedure calls (as outlined in Chapter 2). Regarding

our second assumption, performance information may be limited for several reasons. First,

more detailed information may simply not be available, for example in the absence of a reliable

reputation mechanism and when the consumer has not had the benefit of a large number of

previous interactions with all providers. Second, the service-oriented systems we consider are

open and dynamic, which may make it difficult to collect specific performanceinformation,

as services enter and leave at will and may even change their identity. Finally, services may

also be homogeneous or highly similar, for example if they rely on the same algorithms or

implementations.

4.2 The Näıve Strategy

We begin by looking at the currently predominant approach to service provisioning in the liter-

ature. This gives us a basic benchmark against which we can evaluate thestrategies we develop

in this section, and, in doing so, serves to highlight the shortcomings of current work.

Now, as described in Chapter 2, most of the current work on Web services focusses solely on

the functional descriptions of services. In such research, descriptions are typically assumed to

be truthful and deterministic, and thus service-consuming agents do not explicitly consider the

provisioning stage, but rather pickany single service that matches their requirements. Since

such a strategy does not consider service failures, we term itnäıveand describe it more formally

as follows:

Definition 2 (Näıve Strategy). A consumer agent following anäıvestrategy always provisions

a single randomly chosen service of the correct type for each task.

Algorithm 4.1 formalises this strategy as an implementation of the abstract procedures intro-

duced in Algorithm 3.1. The first procedure, NAÏVE-INITIALISE , in lines 1 – 11 constitutes the

main decision-making logic. Here, the agent initialises a set,℘, which will contain a mapping

from tasks to services (line 3). This is then populated by finding appropriate service instances

for each task using the matchmaking functionµ (line 5) and then provisioning a service that is

picked uniformly at random from the set of matching instances (line 7).

The remaining procedures are straight-forward — NAÏVE-UPDATE keeps track of any success-

fully completed tasks, NAÏVE-STOPCONDITION always returnsfalse as the strategy does not

reason about the feasibility of the workflow, NAÏVE-NEGOTIATESERVICESdoes nothing as ne-

gotiations are not necessary, and NAÏVE-INVOKESERVICESinvokes the services selected during

the initial provisioning.
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Algorithm 4.1 Näıvestrategy that selects a single valid service for each task.
1: procedure NAÏVE-INITIALISE (W )
2: Tcomp← ∅ ⊲ Keeps track of completed tasks
3: ℘← ∅ ⊲ Provisioning decisions
4: for all ti ∈ T do ⊲ Iterate through tasks
5: Si ← µ(τ(ti)) ⊲ Matchmaking
6: if Si 6= ∅ then
7: sx ∈ Si ⊲ Choose random service
8: ℘← ℘ ∪ {(ti, sx)} ⊲ Store provision decision forti
9: end if

10: end for
11: end procedure

12: procedure NAÏVE-UPDATE(O)
13: Tnew← {ti | ∃sx · (ti, sx) ∈ O} ⊲ Recently completed tasks
14: Tcomp← Tcomp∪ Tnew ⊲ Add to completed tasks
15: end procedure

16: procedure NAÏVE-STOPCONDITION

17: return false ⊲ Never abandon
18: end procedure

19: procedure NAÏVE-NEGOTIATESERVICES

20: do nothing ⊲ Not necessary here
21: end procedure

22: procedure NAÏVE-INVOKESERVICES

23: for all (ti, sx) ∈ ℘ do ⊲ Iterate through℘
24: if ∀(tj , ti) ∈ E · tj ∈ Tcomp then ⊲ Is ti executable?
25: INVOKE(sx, ti) ⊲ Invoke servicesx for taskti
26: ℘← ℘ \ {(ti, sx)} ⊲ Remove to avoid re-invocation
27: end if
28: end for
29: end procedure
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A major shortcoming of thisnäıvestrategy is that it is highly vulnerable to service failures. A

single failure means that the whole workflow is lost, along with all investments already made.

To reduce this risk, we discuss several simple techniques in the following sections for dealing

with service failures.

4.3 Robust Provisioning Strategies

We proceed in this section by presenting three strategies for provisioning services in a manner

that anticipates failures and attempts to reduce their impact on the consumer’s workflows. All of

the following strategies require some manual intervention (by adjusting parameters that dictate

their behaviour) and so are not very well suited to large complex systems, where automation is

not only desirable, but perhaps necessary due to the scales involved.However, the strategies

present the basic techniques that we will use in Section 4.4 to design a flexible, automated

provisioning technique. During our empirical investigation in Section 4.5, theyalso serve to

highlight and quantify the potential benefits of actively dealing with service failures.

4.3.1 Parallel Provisioning

The first strategy we discuss in this context uses parallel provisioning toproactivelycontrol the

effect of unreliable services, thereby addressing our Requirement A.2.b. As discussed in the

previous chapter, a feature of service-oriented systems is the fact thatseveral service instances

may match a single semantic service description. For this reason, a consumer may benefit by

delegating each of its tasks to several providers at the same time, rather thanrelying on a single

service.

To highlight the advantage of this approach, letXn ∈ {success, failure} be a random vari-

able indicating the outcome for a taskti whenn services are invoked in parallel for this task.

The probability that a single service (n = 1) successfully completes the task is thenP (X1 =

success) = 1− fi. When invoking two service instances in parallel (n = 2), we have a success

probabilityP (X2 = success) = 1− f2
i . For the general case withn services, we thus have:

P (Xn = success) = 1− fn
i (4.1)

This means that the probability of success increases as more providers are provisioned for a

single task. However, if a non-zero cost is associated with each provision, then the total cost

incurred rises withn. Based on this, we can formulate a strategy that uses parallel provisioning

to reduce the probability of workflow failures:

Definition 3 (Parallel(n) Strategy). A consumer following aparallel(n) strategy always provi-

sions exactlyn randomly chosen services of the correct type for each task (n is a single constant

for all tasks).
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Algorithm 4.2 Parallel(n)strategy that provisionsn valid services for each task.
1: procedure PARALLEL -INITIALISE (W )
2: n← constant specified by agent owner ⊲ Number of parallel services
3: Tcomp← ∅ ⊲ Keeps track of completed tasks
4: ℘← ∅ ⊲ Provisioning decisions
5: for all ti ∈ T do ⊲ Iterate through tasks
6: Si ← µ(τ(ti)) ⊲ Matchmaking
7: PARALLEL -PROVISION(i, n) ⊲ Provisioning
8: end for
9: end procedure

10: procedure PARALLEL -UPDATE(O)
11: Tnew← {ti | ∃sx · (ti, sx) ∈ O} ⊲ Recently completed tasks
12: Tcomp← Tcomp∪ Tnew ⊲ Add to completed tasks
13: end procedure

14: procedure PARALLEL -INVOKESERVICES

15: for all (ti, Ŝx) ∈ ℘ do ⊲ Iterate through℘
16: if ∀(tj , ti) ∈ E · tj ∈ Tcomp then ⊲ Is ti executable?
17: for all sy ∈ Ŝx do ⊲ Iterate through services in̂Sx

18: INVOKE(sy, ti) ⊲ Invoke servicesy for taskti
19: end for
20: ℘← ℘ \ {(ti, Ŝx)} ⊲ Remove to avoid re-invocation
21: end if
22: end for
23: end procedure

24: procedure PARALLEL -PROVISION(i, n)
25: if Si 6= ∅ then
26: Ŝx ← ∅ ⊲ Set of chosen services, initially empty
27: n′ ← min(|Si| , n) ⊲ Number of services to provision
28: for j = 1 to n′ do
29: sy ∈ Si ⊲ Choose random service
30: Ŝx ← Ŝx ∪ {sy} ⊲ Add service to chosen set
31: Si ← Si \ {sy} ⊲ Remove from set of available services
32: end for
33: ℘← ℘ ∪ {(ti, Ŝx)} ⊲ Store provision decision forti
34: end if
35: end procedure
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For this strategy,n is a fixed constant that is determined by a human user. The strategypar-

allel(1) is equivalent to thenäıvestrategy, and a higher value forn implies a generally higher

resilience against failures. In Algorithm 4.2, we show how the strategy is implemented. This is

similar to thenäıvestrategy, but it now selects up ton services in lines 28 – 32. The PARALLEL -

INVOKESERVICES has been adapted to reflect this, but all other procedures remain unchanged

(PARALLEL -STOPCONDITION and PARALLEL -NEGOTIATESERVICES are not shown here for

brevity).

While reducing the probability of workflow failures, the strategy discussedin this section lacks

any capacity to react to failuresafter they have occurred (Requirement A.2.a). This is addressed

by the strategy in the following section.

4.3.2 Serial Provisioning

The second strategy we propose dealsreactivelywith service failures (Requirement A.2.a).

Rather than relying on parallel provisioning, it re-provisions services when it becomes likely

that a previously provisioned service has failed. To this end, the consumer first provisions a sin-

gle service and then waits for some time. If the service has not been successful after this time,

the consumer assumes it has failed2 and tries a different one, repeating the process if necessary,

until the task has been completed. However, as providers have non-deterministic duration times

and because they do not notify the consumer of failure, the consumer hasto choose an appro-

priate waiting period. This period should give the service a reasonable time tofinish, but should

not waste unnecessary time when it has most likely already failed.

With this in mind, letXs,w ∈ {success, failure} be a random variable indicating the outcome of

invoking up tos service instances in series for a taskti. Here,s is the number of services that

are available in total, as the consumer will continue invoking services until the task is successful

(hence,s = vi = |Si|), andw is the chosen waiting period. To calculate the success probability

of a single service in this case, we can use the cumulative density functionDi, derived fromdi.

Hence, we haveP (X1,w = success) = (1 − fi) · Di(w), where1 − fi is that probability that

the service will succeed, andDi(w) is the probability that this will happen withinw time steps.

Generalising this for invokings services in sequence, we get the overall success probability

2Here and in the remainder of this chapter, any services that are assumed to have failed in this way are subse-
quently ignored by the consumer (even if they succeed at a later time). Wemake this assumption for two reasons:
first, such time-out behaviour is common in many distributed applications and often explicitly part of service-oriented
frameworks (such as CORBA or HTTP-based Web services); second, it allows us to make efficient predictions about
service performance by considering a single invocation at a time (ratherthan many interleaved invocations). How-
ever, in Chapter 5, we show how this assumption can be relaxed.
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when invokings services in series:

P (Xs,w = success) = 1− P (Xs,w = failure)

= 1− P (X1,w = failure)s

= 1− (1− P (X1,w = success))s

= 1− (1− (1− fi) ·Di(w))s (4.2)

This is generally less than the success probability of invoking the same numberof services in

parallel, and the average time taken will also be higher for serial provisioning because of the

additional waiting time that is introduced. On the other hand, the average costdrops, because

costs are only incurred at the time of invocation.

Hence, we define a new reactive strategy as follows:

Definition 4 (Serial(w) Strategy). A consumer following aserial(w)strategy always provisions

exactly one randomly chosen service of the correct type for each task.After a waiting period of

w time units, if no success has been registered yet and if there are still more available services,

the agent re-provisions a new, randomly chosen service and continuesin this manner until the

task is completed or no more services are left (w is a single constant for all tasks).

This strategy is illustrated by Algorithm 4.3. The procedure SERIAL-INITIALISE (lines 1 –

10) now contains a new constantw, which is the waiting time before invoking a new service3.

Furthermore, we have added a variable,Tinv : T → R
+
0 , which keeps track of the invocation

times of tasks (line 3). This is checked at each time step, in order to identify andre-provision

any tasks that have timed out (lines 17 – 22). New invocation times are added toTinv during

invocation (line 26) and removed when the task is eventually successful (line 14).

The two approaches discussed in the preceding sections,serial(w)andparallel(n), cover two of

our original requirements, A.2.a and A.2.b respectively. However, they are currently separate

from each other and so may be less useful in practice. Instead, it is more desirable to devise

a single strategy that addresses both requirements at the same time. For that reason, the fol-

lowing section generalises the preceding strategies and provides us with a basic foundation for

developing a more flexible approach in Section 4.4.

4.3.3 The Hybrid Strategy

In order to address service failures proactively, but also react to failures as they occur, a con-

sumer agent can provision multiple services in parallel, and then re-provisionmore services for

the same task when a failure has occurred. Such a strategy increases theprobability that a task

is completed on the first attempt, but also includes a mechanism for respondingto failures.

3The special case ofserial(∞) is equivalent to thenäıvestrategy.
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Algorithm 4.3 Serial(w)strategy that re-provisions unsuccessful tasks afterw time units.
1: procedure SERIAL-INITIALISE (W )
2: w ← constant specified by agent owner ⊲ Time-out for re-provisioning
3: Tinv ← ∅ ⊲ Keeps track of invocation times
4: Tcomp← ∅ ⊲ Keeps track of completed tasks
5: ℘← ∅ ⊲ Provisioning decisions
6: for all ti ∈ T do ⊲ Iterate through tasks
7: Si ← µ(τ(ti)) ⊲ Matchmaking
8: SERIAL-PROVISION(i) ⊲ Provision (see procedure below)
9: end for

10: end procedure

11: procedure SERIAL-UPDATE(O)
12: Tnew← {ti | ∃sx · (ti, sx) ∈ O} ⊲ Recently completed tasks
13: Tcomp← Tcomp∪ Tnew ⊲ Add to completed tasks
14: Tinv ← {(ti, y) | (ti, y) ∈ Tinv ∧ ti /∈ Tnew} ⊲ Remove completed fromTinv

15: end procedure

16: procedure SERIAL-INVOKESERVICES

17: for all (ti, y) ∈ Tinv do ⊲ Check for timed out tasks
18: if t̂− y ≥ w then ⊲ Invoked at leastw time steps earlier?
19: Tinv ← Tinv \ {(ti, y)} ⊲ Timed out
20: SERIAL-PROVISION(i) ⊲ Re-provision task
21: end if
22: end for
23: for all (ti, sx) ∈ ℘ do ⊲ Iterate through℘
24: if ∀(tj , ti) ∈ E · tj ∈ Tcomp then ⊲ Is ti executable?
25: INVOKE(sx, ti) ⊲ Invoke servicesx for taskti
26: Tinv ← Tinv ∪ {(ti, t̂)} ⊲ Store invocation time
27: ℘← ℘ \ {(ti, sx)} ⊲ Remove for now
28: end if
29: end for
30: end procedure

31: procedure SERIAL-PROVISION(i)
32: if Si 6= ∅ then
33: sx ∈ Si ⊲ Select random service
34: Si ← Si \ {sx} ⊲ Remove from available services
35: ℘← ℘ ∪ {(ti, sx)} ⊲ Store provision decision forti
36: end if
37: end procedure
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The overall success probability of this approach is the same as that ofserialprovisioning given in

Equation (4.2) (when using identical time-out values). This is because although some services

are executed in parallel, their individual success probabilities are unchanged. However, this

hybrid approach allows the consumer to achieve lower execution times than theserial strategy

at the expense of incurring higher invocation costs.

We define this hybrid strategy as follows:

Definition 5 (Hybrid(n,w) Strategy). A consumer following ahybrid(n,w)strategy always pro-

visions exactlyn randomly chosen services of the correct type for each task (or as manyas

available if these are less thann). After a waiting period ofw time units, if no success has been

registered yet and if there is still at least one available service, the agentrepeats this process with

a new set ofn services until the task is completed or until no more services are left (bothw and

n are constants that apply similarly to all tasks).

Thehybrid strategy is formalised by Algorithm 4.4, which follows closely the structure of the

previous algorithms, combining the time-out mechanism of theserialstrategy with the multiple

provisions of theparallel strategy. In fact, thehybrid strategy subsumes all previous strategies

(näıve, parallel andserial). In so doing, it addresses two of our main original requirements,

A.2.a and A.2.b. However, it has several shortcomings that make it less useful for automating

the provisioning of complex workflows:

1. The choice ofn andw are probably critical to the performance of the strategy. When ser-

vices are generally unreliable, a highn might be called for, while the choice ofw depends

on the duration distributions of services and the deadline of the workflow. Currently, this

choice needs to be taken by the owner of the consumer agent, hence shifting the burden

of making rational decisions to a human user. In dynamic environments, with thousands

of services and complex workflows, the choice ofn andw will be time-intensive and

not trivial. Hence, such manual intervention is highly undesirable and detracts from our

Requirement A.1 for building an agent that takes rational decisions on behalf of the user.

2. Currently, specifyingn andw as global constants leads to a highly constrained decision

space. In realistic application scenarios, it is likely that some services will befast and

reliable (e.g., a DNS lookup request taking a fraction of a second), while others could

be time-consuming and unreliable (e.g., running an enzyme folding simulation on an idle

workstation for several hours). In such scenarios, where services are highly variable,

specifying global values forn andw will be unsatisfactory because some services may

benefit more from over-provisioning (highern) than others and because the time taken

for some services will be fundamentally different from others (and hence require different

values forw).
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Algorithm 4.4 Hybrid(n,w)strategy that provisionn parallel services and re-provisions unsuc-
cessful tasks afterw time units.

1: procedure HYBRID-INITIALISE (W )
2: n← constant specified by agent owner ⊲ Number of parallel services
3: w ← constant specified by agent owner ⊲ Time-out for re-provisioning
4: Tinv ← ∅ ⊲ Keeps track of invocation times
5: Tcomp← ∅ ⊲ Keeps track of completed tasks
6: ℘← ∅ ⊲ Provisioning decisions
7: for all ti ∈ T do ⊲ Iterate through tasks
8: Si ← µ(τ(ti)) ⊲ Matchmaking
9: PARALLEL -PROVISION(i, n) ⊲ Provision (see Algorithm 4.2)

10: end for
11: end procedure

12: procedure HYBRID-UPDATE(O)
13: Tnew← {ti | ∃sx · (ti, sx) ∈ O} ⊲ Recently completed tasks
14: Tcomp← Tcomp∪ Tnew ⊲ Add to completed tasks
15: Tinv ← {(ti, y) | (ti, y) ∈ Tinv ∧ ti /∈ Tnew} ⊲ Remove completed fromTinv

16: end procedure

17: procedure HYBRID-INVOKESERVICES

18: for all (ti, y) ∈ Tinv do ⊲ Check for timed out tasks
19: if t̂− y ≥ w then ⊲ Invoked at leastw time steps earlier?
20: Tinv ← Tinv \ {(ti, y)} ⊲ Timed out
21: PARALLEL -PROVISION(i, n) ⊲ Re-provision (see Algorithm 4.2)
22: end if
23: end for
24: for all (ti, Ŝx) ∈ ℘ do ⊲ Iterate through℘
25: if ∀(tj , ti) ∈ E · tj ∈ Tcomp then ⊲ Is ti executable?
26: for all sy ∈ Ŝx do ⊲ Iterate through services in̂Sx

27: INVOKE(sy, ti) ⊲ Invoke servicesy for taskti
28: end for
29: Tinv ← Tinv ∪ {(ti, t̂)} ⊲ Store invocation time
30: ℘← ℘ \ {(ti, Ŝx)} ⊲ Remove to avoid re-invocation
31: end if
32: end for
33: end procedure
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To address these two critical shortcomings, in the following section, we develop a novel strategy

that provisions multiple services for tasks in a flexible manner. This approach takes into consid-

eration the performance characteristics of services and the structure ofthe workflow and then

provisions services based on a heuristic approach.

4.4 Flexible Service Provisioning

Building on the techniques presented in the previous section, we now introduce a novel algo-

rithm for flexibly provisioning services that are part of complex workflows. Unlike our previous

strategies, this approach determines automatically how many services to invokein parallel and

it also chooses an appropriate time-out value. It does this by consideringa more finely-grained

decision problem than thus far considered and by using some information about the expected

performance of services in the system. This approach allows the agent to vary its strategy ac-

cording to the current system conditions, without the need for human intervention. In devising

the strategy we address not only the requirements covered in previous sections (A.2.a and A.2.b),

but also consider the need for making rational decisions (A.1). We also show that our approach

is suitable for larger environments and workflows (A.3).

Due to its autonomous decision-making process that adjusts the agent’s behaviour to its envi-

ronment, we term this approach theflexiblestrategy and summarise it as follows:

Definition 6 (Flexible Strategy). A consumer following aflexible strategy makes appropriate

decisions to provision services for its workflow. To this end, the agent finds suitable numbers of

providers and time-out values for each task in the workflow, so that the agent’s predicted profit

is maximised.

We begin this section by describing our problem as an optimisation task (Section4.4.1). As

solving this turns out to be intractable in practice, we then provide a heuristic approach for

provisioning services (Section 4.4.2).

4.4.1 Problem Formulation

To address the shortcomings of thehybrid(n,w)strategy, outlined in Section 4.3.3, we first for-

mulate a more fine-grained decision problem than so far considered. Instead of choosing global

values forn andw, as in thehybrid approach, we define them as vectors,~n and ~w, correspond-

ing to the tasks in the workflow. In this notation, theith element of vector~n, ni, is the number

of services to be invoked for taskti. Similarly, wi is the associated time-out value, indicating

how long the consumer will wait before invoking another set ofni services for taskti.

Now, we are interested in choosing vectors~n and ~w, so that the expected profit̄u(~n, ~w) is

maximised (the profit is the difference between the reward gained from completing the workflow
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and the costs incurred from all service invocations). More formally, we let ūt(~n, ~w) be the

expected reward and̄c(~n, ~w) the expected cost. Then we can define the expected profit as:

ū(~n, ~w) = ūt(~n, ~w)− c̄(~n, ~w) (4.3)

With this, we can specify the service provisioning problem as an optimisation task:

max
~n,~w∈N|T |

ū(~n, ~w) (4.4)

However, finding a solution for this optimisation problem is far from easy. Simply verifying a

possible solution, i.e., computing the expected profitū(~n, ~w) for given vectors~n and ~w is very

hard. This is because calculating the distribution of the workflow completion time (needed for

ūt) involves the convolution of several probability functions (the duration functions given bỹd),

which is further complicated by the fact that there are usually interdependencies between the

task completion times (as tasks in the workflow depend on their predecessors). In fact, there

is currently no known efficient method4 to solve this problem exactly for arbitrary distributions

(Dodin (1985); Baccelli et al. (1993)).

For this reason, we decided to simplify the problem and devise a heuristic algorithm that sacri-

fices theoretical optimality in favour of a tractable decision algorithm that produces good results

in practice. In particular, we employ a heuristic function for estimating the expected profit,

ũ(~n, ~w). Despite this simplification, we are still faced with the difficult nonlinear integer pro-

gramming problem of optimising̃u(~n, ~w). To address this, we find a good allocation for~n and

~w by carrying out steepest-ascent hill-climbing (Russell and Norvig (2003)), as described in the

following section.

4.4.2 Generic Algorithm for Flexible Service Provisioning

We decided to use a local search algorithm to find a good allocation, because this technique is

widely employed for intractable optimisation problems (Michalewicz and Fogel (2004)). While

the particular method of local search is not central to our work, we carried out experiments

with a range of existing algorithms, including steepest-ascent hill-climbing, simplehill-climbing

(where the first better solution is chosen at each iteration), hill-climbing with random restarts

and simulated annealing. We found that these techniques achieved a similar average profit over

a range of environments, but varied in the number of required parameters(e.g., the annealing

temperature or the number of restarts). As steepest-ascent hill-climbing required no such pa-

rameters and as we observed a generally faster convergence to an optimum compared to simple

hill-climbing, we decided to adopt this approach in our work.

4We consider the hardness of the provisioning problem more formally in Appendix C.
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Algorithm 4.5 formalises our hill-climbing approach. It starts by generating a random initial

provisioning allocation, using the procedure GENERATE-INITIAL shown in lines 19 – 27. For

each task, this procedure first randomly picks the number of parallel services (ni) from the

distributionUd(1, min(vi, ϕi)), where we useUd(a, b) to denote a discrete uniform distribution

over all integers in the interval[a, b], with ϕi chosen so that it represents the smallest number

of services required to ensure a success probability of at least0.999 (based on Equation 4.1).

When this is less than 10, we setϕi = 10, to include the possibility that services are provisioned

redundantly. Choosingni in this way means that we do not start with an unnecessarily high

number of services when there are many available in the system. Next, the procedure determines

an initial waiting time for each task (wi) by sampling from the respective duration distribution

di.

Given this initial allocation for~n and ~w, the algorithm next estimates its expected utility using

the heuristic functioñu (line 3), which we will cover in detail in Section 4.4.3. Then, it begins to

iteratively improve the initial allocation in the loop given in lines 4 – 16. Here, the algorithm first

generates a random set of neighbours of the current allocation using the procedure GENERATE-

NEIGHBOURS (lines 28 – 43). These neighbours are generated by increasing and decreasing

exactly one component of either vector — both in unit steps and in random5 steps, as shown in

lines 32 – 39 (ignoring any neighbours withnx,i < 1 or nx,i > vi). We chose this particular

neighbour generation function, because it allows the algorithm to explore close neighbours (by

varying the parameters in unit steps, which usually results in only small changes in the expected

utility), but also because it quickly traverses larger parts of the search space when necessary

(by considering random steps). The algorithm then estimates the expected utility of each of the

generated neighbours and adopts the best of these as the current solution. This continues until

no generated neighbour of the current solution results in a higher expected utility.

This hill-climbing procedure is placed in the context of our abstract consumer model in Algo-

rithm 4.6. It is called in the procedure FLEXIBLE -INITIALISE , where it provisions all tasks in

the workflow (line 5). In line 6 the agent then decides if it should proceed with the workflow,

which depends on whether it expects to gain a positive utility (the decisiondstop is used by the

updated FLEXIBLE -STOPCONDITION procedure in lines 21 – 23). The remainder of the al-

gorithm is mostly identical to thehybrid(n,w)strategy, with the exception that the agent now

uses the vectors~n and ~w to guide its provisioning decisions, rather than globally set constants.

Specifically, if the allocation is promising, the agent proceeds to discover services and provision

them in lines 10 – 13. These are then invoked in the updated FLEXIBLE -INVOKESERVICES

procedure, which now uses~w and~n to time out tasks and to re-provision.

So far, we have given an algorithm for a flexible service consumer based on a hill-climbing

approach. However, we have not discussed the heuristic utility function,ũ(~n, ~w), which is

central to the algorithm. This shortcoming is addressed in the following section.

5Forni, we select the change from uniform distributions. Forwi, we sample from the duration distribution (using
the inverse of the cumulative density function,D−1

i , to generate a sample that is larger and one that is smaller than
the current waiting time).
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Algorithm 4.5 Hill-climbing algorithm for provisioning services.
1: procedure FIND-ALLOCATION(W )
2: ~n, ~w ← GENERATE-INITIAL (W ) ⊲ Generate initial allocation
3: u← ũ(~n, ~w) ⊲ Estimate utility
4: repeat ⊲ Main hill-climbing loop
5: uold← u ⊲ Store utility at start of iteration
6: ~n∗, ~w∗ ← ~n, ~w ⊲ Best neighbour found so far
7: N ←GENERATE-NEIGHBOURS(~n, ~w) ⊲ Randomly generate neighbours
8: for all (~n′, ~w′) ∈ N do ⊲ Check all neighbours
9: u′ ← ũ(~n′, ~w′) ⊲ Utility of neighbour

10: if u′ > u then ⊲ If neighbour is more promising...
11: u← u′ ⊲ ...update
12: ~n∗, ~w∗ ← ~n′, ~w′

13: end if
14: end for
15: ~n, ~w ← ~n∗, ~w∗ ⊲ Choose best overall neighbour
16: until u = uold ⊲ Until no more improvement is made
17: return (~n, ~w) ⊲ Return best allocation found
18: end procedure

19: procedure GENERATE-INITIAL (W )
20: ~n, ~w ← vectors of size|T |
21: for i = 1 to |T | do
22: ϕi ← max(10, ⌈−3/ log10(fi)⌉) ⊲ Maximum number of initial services
23: ni ← sample fromUd(1, min(vi, ϕi)) ⊲ Random number of providers
24: wi ← sample fromdi ⊲ Random waiting time
25: end for
26: return ~n, ~w
27: end procedure

28: procedure GENERATE-NEIGHBOURS(~n, ~w)
29: N ← ∅ ⊲ Set of neighbours
30: for i = 1 to |T | do ⊲ Consider each task
31: (~n1, ~w1), . . . , (~n8, ~w8)← (~n, ~w) ⊲ Create eight copies
32: n1,i ← ni + 1 ⊲ Now slightly modify each copy
33: n2,i ← ni − 1 ⊲ nj,i is theith component of~nj

34: w3,i ← wi + 1 ⊲ wj,i is theith component of~wj

35: w4,i ← wi − 1
36: n5,i ← ni + x, wherex is sampled fromUd(2, vi − ni)
37: n6,i ← ni − x, wherex is sampled fromUd(2, ni − 1)
38: w7,i ←

⌈
D−1

i (x)
⌉
, wherex is sampled fromUc(Di(wi), 1)

39: w8,i ←
⌈
D−1

i (x)
⌉
, wherex is sampled fromU(0, Di(wi))

40: N ← N ∪ {(~n1, ~w1), . . . , (~n8, ~w8)} ⊲ Add copies toN
41: end for
42: return N
43: end procedure
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Algorithm 4.6 Flexiblestrategy that provisions services based on a heuristic function.
1: procedure FLEXIBLE -INITIALISE (W )
2: Tinv ← ∅ ⊲ Keeps track of invocation times
3: Tcomp← ∅ ⊲ Keeps track of completed tasks
4: ℘← ∅ ⊲ Provisioning decisions
5: ~n, ~w ← FIND-ALLOCATION(M) ⊲ Find best allocation
6: if ũ(~n, ~w) ≤ 0 then ⊲ Is utility estimate non-positive?
7: dstop← true ⊲ ...then abandon workflow
8: else ⊲ ...otherwise continue
9: dstop← false

10: for all ti ∈ T do ⊲ Iterate through tasks
11: Si ← µ(τ(ti)) ⊲ Matchmaking
12: PARALLEL -PROVISION(i, ni) ⊲ Provision (see Algorithm 4.2)
13: end for
14: end if
15: end procedure

16: procedure FLEXIBLE -UPDATE(O)
17: Tnew← {ti | ∃sx · (ti, sx) ∈ O} ⊲ Recently completed tasks
18: Tcomp← Tcomp∪ Tnew ⊲ Add to completed tasks
19: Tinv ← {(ti, y) | (ti, y) ∈ Tinv ∧ ti /∈ Tnew} ⊲ Remove completed fromTinv

20: end procedure

21: procedure FLEXIBLE -STOPCONDITION

22: return dstop ⊲ Abandon if allocation yields non-positive utility
23: end procedure

24: procedure FLEXIBLE -INVOKESERVICES

25: for all (ti, y) ∈ Tinv do ⊲ Check for timed out tasks
26: if t̂− y ≥ wi then ⊲ Invoked at leastwi time steps earlier?
27: Tinv ← Tinv \ {(ti, y)} ⊲ Timed out
28: PARALLEL -PROVISION(i, ni) ⊲ Re-provision (see Algorithm 4.2)
29: end if
30: end for
31: for all (ti, Ŝx) ∈ ℘ do ⊲ Iterate through℘
32: if ∀(tj , ti) ∈ E · tj ∈ Tcomp then ⊲ Is ti executable?
33: for all sy ∈ Ŝx do ⊲ Iterate through services in̂Sx

34: INVOKE(sy, ti) ⊲ Invoke servicesy for taskti
35: end for
36: Tinv ← Tinv ∪ {(ti, t̂)} ⊲ Store invocation time
37: ℘← ℘ \ {(ti, Ŝx)} ⊲ Remove to avoid re-invocation
38: end if
39: end for
40: end procedure
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FIGURE 4.2: Possible state transitions as consumer invokes services in sequence.

4.4.3 Utility Prediction

As discussed above, we use a heuristic function,ũ(~n, ~w), to approximate the expected utility

of an allocation. We need such an approximation due to the inherent difficultyof calculating

the distribution of the workflow completion time. Based closely on Equation 4.3, wedefine the

heuristic utility function as (omitting the parameters for brevity):

ũ = r̃ − c̃ (4.5)

Here,r̃ andc̃ are estimates of the expected reward and cost of the allocation, respectively (both

unconditional on overall success of the workflow). In the following, wedescribe how these

estimates are calculated from a number of parameters for the individual tasks — the success

probabilitypi, expected cost̄ci, expected completion timēti and varianceσ2
i . First, in Section

4.4.3.1, we outline how the parameters are calculated for each taskti. Then, in Section 4.4.3.2,

we show how these calculations are used to derive the overall values forr̃ andc̃.

4.4.3.1 Local Prediction

Given the probabilistic information about service instances discussed in Section 4.1 and an allo-

cation,(ni, wi), we begin by calculating the success probability of a task,pi. This is the overall

probability that the task will eventually be successfully completed when following the alloca-

tion (ni, wi). This does not depend onni, because it is irrelevant for the success probability

whether services are invoked in series or in parallel. Hence, we use Equation 4.2 to determine

pi as follows:

pi = 1− (1− (1− fi) ·Di(wi))
vi (4.6)

Next, we calculate the expected costc̄i, which depends on the expected number of invocations

that are carried out for the task, before it is successful. To illustrate this, Figure 4.2 shows the

possible state transitions of a service-consuming agent. In state1, the agent invokes the first

set ofni services. With probabilitŷpi = 1 − (1 − (1 − fi) ·Di(wi))
ni at least one of these is

successful, but with probability1−p̂i none of them will succeed. In the latter case, the consumer

then invokes a new set ofni services (in state2). This process repeats until one invocation is
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successful or no more services are available (for now, we assume thatvi mod ni = 0, so that

there are up tom = vi/ni invocations of exactlyni services each).

We note from this diagram that the consumer is guaranteed to pay the full cost of invoking all

ni services for taskti (nici) at least once. After this, the consumer generally has to pay again if

the previously invoked set of services has failed (each with probability1− p̂i). Formally, we let

f̂i = 1− p̂i and give the expected cost for taskti as follows6:

c̄i = nici + f̂i ·
(

nici + f̂i ·
(

nici + f̂i ·
(

. . . + f̂i · (nici) . . .
)))

︸ ︷︷ ︸

m instances ofnici

(4.7)

= nici ·
m−1∑

k=0

f̂k
i (4.8)

= nici ·
1− f̂m

i

1− f̂i

(4.9)

Equation 4.9 is the expected cost for taskti, assuming thatvi mod ni = 0. To generalise this

result for cases wherevi mod ni 6= 0, we note that the consumer will invoke all remaining

services on its last try. For this case, we letm = ⌊vi/ni⌋ be the number of full invocations

(ni services each) andr = vi mod ni be the remaining number of services afterm invocations.

Then, the consumer will paycr = cir for the last invocation if all previous services have failed

(which happens with probabilitŷfm
i ). To generalise Equation 4.9, we simply include this cost:

c̄i = nici ·
1− f̂m

i

1− f̂i

+ f̂m
i cir (4.10)

Next, we are interested in calculating the expected timet̄i until the task is completed. We

define this as the mean time until the first service completes the task successfully, conditional on

overall success (i.e., that at least one service is successful). First, we letµi be the mean duration

of a single invocation, conditional on overall success. In other words,given thatni services

are invoked and that at least one completes successfully before time-outwi, µi is the expected

duration of the fastest successful service.

To calculateµi, we first letD̂i(x) be the cumulative (non-conditional) probability that at least

one out ofni services has finished successfully by timex:

D̂i(x) = 1− (1− (1− fi) ·Di(x))ni (4.11)

6For the sake of readability, we do not provide a full derivation here, but rather refer the reader to Appendix D.
This appendix contains a more thorough treatment of this and other equations throughout the thesis (we will indicate
this in the text where appropriate).
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With this, we calculateµi as follows:

µi =
1

D̂i(wi)

wi∑

k=1

k ·
(

D̂i(k)− D̂i(k − 1)
)

(4.12)

Now, to calculate the overall expected time of the task, we again assume thatvi mod ni = 0

and follow similar reasoning as for the expected cost by considering Figure 4.2. When the

consumer succeeds after state1, its expected duration is thenµi, and if it succeeds after state2,

the expected duration iswi + µi. We can formulate the general case, after thekth invocation as:

d̄k = (k − 1) · wi + µi (4.13)

The associated non-conditional probability of this event (succeeding after thekth invocation)

is f̂k−1
i

(

1− f̂i

)

. Using this, and conditioning on an overall success, we can now write the

expected time for taskti as7:

t̄i =
1

pi
·

m∑

k=1

d̄kf̂
k−1
i

(

1− f̂i

)

=
1

pi
·

m−1∑

k=0

(k · wi + µi) · f̂k
i

(

1− f̂i

)

=
1

pi
·
(

µi(1− f̂m
i ) + wi

f̂i −mf̂m
i + (m− 1)f̂m+1

i

1− f̂i

)

(4.14)

To generalise this whenvi mod ni 6= 0, we again letm = ⌊vi/ni⌋ be the number of full

invocations andr = vi mod ni the remaining services. We also letλi be the mean duration to

the first success whenr services are invoked (calculated analogously toµi in Equation 4.12),

and we letf̌r be the probability of failure when invokingr services in parallel. Then we can add

the impact of the remaining services to extend Equation 4.14:

t̄i =
1

pi

(

µi(1− f̂m
i ) + wi

f̂i −mf̂m
i + (m− 1)f̂m+1

i

1− f̂i

+ f̂m
i (1− f̌r)(λi + mwi)

)

(4.15)

Finally, to calculate the variance,σ2
i , of the task, we letCi be a random variable representing

the duration of the task, conditional on its success (note, its expected value, E(Ci), is equal to

t̄i). We are interested in the variance of this variable, VAR(Ci), which we calculate as follows:

σ2
i = VAR(Ci)

= E(C2
i )− E(Ci)

2 (4.16)

7See Appendix D for a detailed derivation.



Chapter 4 Service Provisioning with Limited Performance Information 88

We can calculate E(Ci)
2 as given by Equation 4.15, but to calculate E(C2

i ), further steps are

necessary. First, we consider two cases, as before: (1) the task is successful during the firstm =

⌊vi/ni⌋ full invocations, and (2) the task is successful in the last invocation withr = vi mod ni

parallel services (ifr 6= 0). We use two random variables to denote the durations in each case —

Ai andBi, respectively (again, these are conditional on the task being successful in each case).

In order to treat both cases separately, we can now re-write E(C2
i ), lettingPA be the probability

that case (1) occurs, andPB the probability that case (2) occurs, both conditional on overall

success:

E(C2
i ) = PAE(A2

i ) + PBE(B2
i )

=
1− f̂m

i

1− f̌rf̂m
i

E(A2
i ) +

f̂m
i (1− f̌r)

1− f̌rf̂m
i

E(B2
i ) (4.17)

Furthermore, we separate each of these durations into the total time spent waiting for unsuccess-

ful invocations that are timed-out (we denote these asAWi andBWi) and the time that passes

during the last invocation before the first service is successful (denoted asADi andBDi), and

we note that these two components are independent of each other in our model. Beginning with

the first case, we thus write:

E(A2
i ) = VAR(Ai) + E(Ai)

2

= VAR(AWi) + VAR(ADi) + (E(AWi) + E(ADi))
2

= E(A2
Wi)− E(AWi)

2 + E(A2
Di)− E(ADi)

2 + (E(AWi) + E(ADi))
2

= E(A2
Wi) + E(A2

Di) + 2E(AWi)E(ADi) (4.18)

The expected duration of a single invocation, E(ADi), is equal toµi, which we calculate using

Equation 4.12. The expected squared duration, E(A2
Di), is similarly calculated by multiplying

the term inside the summation byk2 instead ofk. The expected waiting time, E(AWi), is

obtained from Equation 4.14:

E(AWi) =
wi

(1− f̂i)(1− f̂m
i )

(f̂i −mf̂m
i + (m− 1)f̂m+1

i ) (4.19)

To derive8 the expected squared waiting time, E(A2
Wi), we follow similar reasoning as for Equa-

tion 4.14:

E(A2
Wi) =

(1− f̂i)w
2
i

1− f̂m
i

m−1∑

k=0

k2f̂k
i

=
w2

i

(1− f̂m
i )(1− f̂i)2

(f̂i + f̂2
i −m2f̂m

i −

(2m + 1− 2m2)f̂m+1
i + (2m− 1−m2)f̂m+2

i ) (4.20)

8See Appendix D for a detailed derivation.
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Next, whenvi mod ni 6= 0, we also need to calculate the expected squared duration if the

consumer is successful on the last invocation, E(B2
i ). This is done analogously to Equation 4.18,

simplified by the fact that a constant waiting time (mwi) is associated with the last invocation:

E(B2
i ) = VAR(Bi) + E(Bi)

2 = E(B2
Wi) + E(B2

Di) + 2E(BWi)E(BDi)

= (mwi)
2 + E(B2

Di) + 2mwiE(BDi) (4.21)

The remaining terms, E(BDi) and E(B2
Di), are calculated as E(ADi) and E(A2

Di), discussed

above.

We have now finished analysing the performance characteristics of a single taskti given an al-

location(ni, wi) and some knowledge about the services available for the task. In particular,

we can calculate the success probability of the task (pi in Equation 4.6), the expected cost of

attempting the task (̄ci in Equation 4.10), the expected completion time of the task, conditional

on its success (̄ti in Equation 4.15), and its variance (σ2 in Equation 4.16). Given these calcula-

tions for each task, we are now interested in estimating the expected rewardr̃ and the expected

cost c̃ for the overall workflow, which are required for our heuristic utility function given in

Equation 4.5.

4.4.3.2 Global Prediction

We now calculate a number of global performance characteristics for the overall workflow, be-

ginning with the estimated total cost,c̃. This is the sum of all task costs, each multiplied by the

respective success probabilities of their predecessors in the workflow(whereri is the probability

that taskti is ever reached):

c̃ =
∑

{i|ti∈T}

ric̄i (4.22)

ri =

{

1 if ∀tj · ((tj , ti) /∈ E)
∏

{j|(tj ,ti)∈E} pj otherwise
(4.23)

Next, to estimate the expected reward of the allocation, we need a duration distribution for the

complete workflow (again, conditional on overall success). To this end,we employ a technique

from operations research (Malcolm et al. (1959)), and evaluate thecritical pathof the workflow

(i.e., the path that maximises the sum of all mean task durations along it). To obtain an estimated

distribution for the duration of this path, we approximate it with a normal distribution that has a

meanλW equal to the sum of all mean task durations along the path and a variancevW equal to

the sum of the respective task variances. This approach exploits the central limit theorem, which

states that the sum of arbitrary independent random variables can be approximated using such a

distribution9. Hence, the corresponding probability density function for the workflowduration
9This theorem holds when the number of variables approaches infinity andmakes some assumptions about the

variables, e.g., that their third moments must be finite (DeGroot and Shervish (2002)). However, we have verified
that this approximation works well in practice, even when considering small workflows (see Section 4.5.7).
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is:

dW (x) =
1√

vW 2π
e
−

(x−λW )2

2vW (4.24)

with

λW =
∑

{i|ti∈C}

t̄i (4.25)

vW =
∑

{i|ti∈C}

σ2
i (4.26)

whereC is the set of tasks on the critical path.

Next, we use the distributiondW (x) to estimate the expected reward of the allocation. In so

doing, we assume that workflow finishing times can be continuous, in order toderive a closed,

analytical solution. This introduces a small error in the results, as the time modelwe employ

is actually discrete. However, we believe this error is negligible, as time steps will typically be

small compared to the overall workflow duration (and our experimental results support this). To

this end, we assume overall success and denote the corresponding expected reward with̃rs:

r̃s =

∫ ∞

0
dW (x)u(x) dx (4.27)

In order to calculate this, we letDW (x) =
∫ x
−∞ dW (y) dy be the cumulative probability func-

tion10 of dW (x), we letDmax = DW (tmax) be the probability that the workflow will finish no

later than the deadlinetmax andDlate = DW (tlast)−DW (tmax) the probability that the workflow

will finish after the deadline but no later than timetlast =
umax

δ +tmax (both conditional on overall

success).

Next, we consider three distinct cases, as derived from Equation 3.2 for u(t). First, the workflow

may finish within the deadlinetmax — in this case, which happens with probabilityDmax, the

consumer will receive the full reward,umax. Second, the workflow may finish aftertlast — this

happens with probability1 −DW (tlast), and here the consumer receives no reward (and so we

can ignore it). Finally, the workflow may finish between these two times, which happens with

probabilityDlate. Becauseu(t) is linear on this interval, we can calculate the expected reward

in this case by applyingu(t) to the mean time on the interval, which we denote byt̄late. Hence,

we can re-write Equation 4.27:

r̃s = Dmax · umax + Dlate · u(t̄late) (4.28)

10This is a common function that is usually approximated numerically. In our implementation, we use the SSJ
library (http://www.iro.umontreal.ca/ ˜ simardr/ssj ).

http://www.iro.umontreal.ca/~simardr/ssj
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Now, we calculatētlate:

t̄late =
1

Dlate

∫ tlast

tmax

dW (x)x dx

= λW + (e
−(tmax−λW )2

2vW − e
−(tlast−λW )2

2vW )

√
vW

Dlate ·
√

2π
(4.29)

Finally, this reward (̃rs) is only obtained when the workflow is successful. Hence, we calculate

the overall probability of success,p, as the product of allpi:

p =
∏

{i|ti∈T}

pi (4.30)

This allows us to summarise our heuristic utility function as follows:

ũ = p · (Dmax · umax + Dlate · u(t̄late))− c̃ (4.31)

Using this heuristic function, it is now possible to use steepest-ascent hill-climbing as described

at the beginning of this section. Through observations, we have seen that our hill-climbing

algorithm quickly converges to a good solution11. In particular, the heuristic functioñu can be

solved efficiently in quadratic time. The bottleneck here is the calculation for Equations 4.22

and 4.23. However, after the initial calculation, only small adjustments need to be made at each

iteration of the hill-climbing procedure, further reducing the run-time of calculating ũ. In this

case, it is bounded by the critical path problem used in Equations 4.25 and 4.26, which has a

run-time inO(|T | + |E|) where|T | is the number of tasks in the workflow and|E| the number

of direct, non-transitive edges12.

To illustrate the behaviour of ourflexible strategy, we briefly outline the provisioning of an

example workflow in the following section.

4.4.4 Illustrative Example

In this section, we discuss how the example workflow introduced in Section 3.5is provisioned

by our algorithm, and how the various performance measures from the previous section are

calculated and used in practice. For this example, the appropriate service types are detailed

in Table 4.1, along with their failure probabilities, invocation costs, numbers available, their

11On average, around six iterations are needed per task in the workflow. During the experimental evaluation of
our algorithm (see Section 4.5), a solution was typically found within 250ms (10 tasks) or 5s (50 tasks) on a 3GHz
Pentium 4 with 1GB RAM.

12We also assume that the probability density functions of service invocation durations and related expected values,
as calculated in Equation 4.12, can be efficiently calculated (or else approximated).



Chapter 4 Service Provisioning with Limited Performance Information 92

respective duration distributions13 and associated means and variances. These were chosen to

represent a set of services with variable performance characteristics— for example,Translate

is a cheap, fast and unreliable service type, whileRenderis expensive, slow and reliable.

Service Fail. Cost ($) Number Duration Mean Var.
Prob. (min.)

BaseCall 0.2 1 50 Gamma(1.5,2) 3 6
GeneAssemble 0.1 5 50 Gamma(5,2) 10 20
Blast 0.3 2 500 Gamma(5,3) 15 45
LookUp 0.5 5 10 Gamma(1.5,1.5) 2.25 3.375
Render 0.1 10 25 Gamma(30,3) 90 270
Translate 0.7 0.5 200 Gamma(1,1) 1 1
Fold 0.2 10 5 Gamma(3,30) 90 2700
Print 0.2 2 20 Gamma(2,3) 6 18

TABLE 4.1: Service types used in the example workflow.

Now, for our illustrative example, we assume that the scientist has a deadlineof four hours, and

values the workflow at $150, which decreases by $1 for each minute thatit is late. Figure 4.3

shows the initial allocation for the workflow. As outlined in Section 4.4.2, the algorithm begins

here by randomly provisioning service instances for the constituent tasksof the workflow.

To illustrate the calculations14 our algorithm performs on this allocation, we consider the upper

Rendertask in the workflow (t4). Here, the algorithm first calculates the probability of success

for the task,p4, using Equation 4.6. As there are a number of service instances (v4 = 25), this

probability isp4 = 1 − (1 − (1 − 0.1) · 0.62)25 = 1.00. Next, the algorithm calculates the

expected cost,̄c4, using Equation 4.10. This is high (c̄4 = 1 · 10 · 1−0.443725

1−0.4437 = 17.98), because

the initial allocation will ignore any services that finish after the mean duration (even if they are

successful). Finally, the expected completion time,t̄4, is calculated using Equation 4.15. Again,

this is high (̄t4 = 1
1 ·(80.22155·(1−f̂25

4 )+94·(f̂4−25·f̂25
4 +(25−1)·f̂25+1

4 )· 1
1−f̂4

) = 155.19,

wheref̂4 = 0.44367) for the same reason as the expected cost.

Given these values for all tasks in the workflow, the algorithm next derives the overall expected

performance measures for the workflow (these are summarised in the box tothe right of the

workflow). First, the overall success probability,p, is calculated using Equation 4.30. This

is low, due to the inappropriate time-out value for theFold task (t6), which results in a high

failure probability of that task (p =
∏

{i|ti∈T} pi = 1.007 · 0.26 = 0.26). The expected

cost, c̃, is estimated next using Equation 4.22. In this case, we derive an estimated cost of

c̃ =
∑

{i|ti∈T} ric̄i = 175.25 for the whole workflow. After this, the algorithm estimates

13We assume that services in this example follow a gamma distribution Gamma(k, θ) with pdf p(x, k, θ) =
xk−1e−

x
θ Γ(k)−1θ−k, which has been chosen because it is well suited for uncertain service times that are always

positive, but are not usually bounded above. The gamma distribution also includes common other distributions such
as the exponential and Erlang distributions, both of which are often used inthe analysis of service and queueing
times (Trivedi (2001)). However, this choice is only for illustrative purposes — in practice, an arbitrary distribution
can be used to model service durations.

14For readability, all values presented here are reported to two decimal places, except where additional precision
is necessary during the calculations.
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FIGURE 4.3: Initial provisioning allocation.

FIGURE 4.4: Finally provisioned workflow.

the distribution of the overall completion time by summing the expected completions times

and variances along the critical path, using Equations 4.25 and 4.26. This yields a mean of

λW =
∑

{i|ti∈P} t̄i = 1.620+5.356+10.867+2.747+155.187+2.130 = 177.91 and a variance

of vW =
∑

{i|ti∈P} σ2
i = 0.87+2.81+36.63+4.88+12759.06+1.18 = 12805.43. Using these

as the mean and variance of a normal distribution (dW (x) in Equation 4.24, which was derived

using the central limit theorem), we estimate that the workflow will finish within the deadline

tmax with probabilityDmax =
∫ tmax

−∞ dW (y)dy = 0.708395. We also estimate that the probability

of finishing between the deadline andtlast is Dlate =
∫ tlast
tmax

dW (y)dy = 0.261157. In the lat-

ter case, we calculate the expected completion time using Equation 4.29 (t̄late = 296.766592).

Finally, using these intermediate values in Equation 4.31 yields a total utility estimate ofũ =

0.262624 · (0.708395 ·150+0.261157 ·u(296.766592))−175.245220 = −140.94. This is low

because of the high degree of parallelism in the workflow (resulting in unnecessary expenses)

and the low overall success probability (resulting in a low estimated reward).
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FIGURE 4.5: Provisioned workflow with shorter deadline and higher reward.

To improve this initial allocation, our algorithm now repeatedly considers a number of neighbour

allocations and, at each iteration, picks the one that promises the highest estimated profit. This

is repeated until no more improvements can be made. Figure 4.4 shows the finalallocation

found by our algorithm, which includes several tasks where providers have been provisioned

in parallel, but mostly relies on serial provisioning as this saves money. Contrasting this with

the initial allocation, the improvements are clearly visible — for example, the expected cost of

theRendertask in the upper branch (t4) has now been reduced from̄c4 = 17.98 to 11.11 and

its expected duration has been lowered, simply by choosing a more appropriate waiting time

(from t̄4 = 155.19 to 109.84). It is also evident that the structure of the workflow has been

taken into account — two providers have been provisioned in parallel forthe lowerRendertask

(t7), despite being the same type of service. This means that the task is faster (t̄7 = 84.41), but

also more expensive (c̄7 = 20.22) than its counterpart in the upper branch. This is beneficial,

because the durations of the lower tasks are generally longer, and so theconsumer has to invest

more resources in order to meet its workflow deadline. Overall, the consumer now expects to

finish within the deadlinetmax = 240 with probabilityDmax = 0.7593, and between the deadline

andtlast = 390 with probabilityDlate = 0.2397. In the latter case, its expected finishing time is

t̄late = 276.4548, leading to an overall estimated utility ofũ = 0.9977 · (0.7593 · 150 + 0.2397 ·
u(276.4548))− 77.6572 = 63.13.

To give a second example, Figure 4.5 shows the same workflow in a scenario where the scientist

requires her results in a far shorter time period (within 150 minutes), where she values the

outcome more highly (the value is now$1000), and where the penalty is higher than in the

previous example ($20 per minute). Here, our algorithm is using a far higher level of redundancy

than previously, because that allows the agent to finish more quickly and reliably. For example,

for theRendertask in the lower branch, the algorithm has now provisioned 5 services in parallel,

which is very expensive (̄c7 = 50.00), but also results in a low expected duration (t̄7 = 73.32)

necessary to meet the overall deadline. Nevertheless, the algorithm still chooses to provision

a single service for theLookUptask. As before, this is because the tasks on the lower branch
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take longer, and so the consumer can save some costs by executing the upper tasks in series.

Overall, the consumer now expects to finish within the deadlinetmax = 150 with probability

Dmax = 0.78 and it is late with probabilityDlate = 0.22 (in which case its expected finishing

time is t̄late = 163.23). Due to the high levels of redundancy, the estimated expected cost has

now more than doubled compared to the previous case (c̃ = 167.35), but the overall higher

reward results in a high estimated utility ofũ = 762.22 that justifies the expenses.

In order to evaluate this strategy and to compare it against less flexible approaches, in the fol-

lowing section, we describe a set of experiments that we carried out to this end.

4.5 Empirical Evaluation

In this section, we experimentally compare our proposed strategies to the currently predominant

näıveapproach15. The aim of this part of our work is to compare the performance of our strate-

gies to current approaches when there is some uncertainty in the behaviour of services. We also

intend to verify that our flexible strategy in particular takes appropriate decisions and makes an

overall profit over a variety of environments while achieving high success rates. We decided to

conduct an experimental study (rather than an analytical one), because of the inherent difficulty

of calculating workflow completion distributions (see Section 4.4.1).

To this end, we investigate the average profit gained by all strategies, as well as the average

proportion of successfully completed workflows. We begin in Section 4.5.1 bydescribing our

experimental testbed and our methodology. In Section 4.5.2, we outline a set of hypotheses to

guide our experiments and in Sections 4.5.3–4.5.5 we present our results. Then, in Section 4.5.6,

we show how our strategy deals with larger workflows, and in Section 4.5.7, we compare it to

the optimal strategy (for a simplified scenario).

4.5.1 Testbed and Methodology

In order to analyse our strategies experimentally, we developed a computersimulation of a

service-oriented system. In this simulation, the system is populated by agents offering services,

as described in Chapter 3. During each experimental run, a random workflow is first created

according to some pre-defined variables. These include the number of tasks in the workflow, the

service types that should be included, and a parameter indicating the parallelism of the workflow.

The latter is a variable ranging from 0 to 1, where 0 results in completely linear workflows (i.e.,

the task dependencies form a total order), while 1 causes workflows to be completely parallel

(i.e., there are no dependencies between tasks). Any intermediate value indicates the number

15As we assume limited information about each task, thenäıve strategy also subsumes a number of other QoS
optimisation approaches that were discussed in Chapter 2. This is because they rely on more detailed information
about individual service instances and user-specified constraints that are not available in our model.
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FIGURE 4.6: Several random workflows with 10 tasks, 3 different services types (indicated by
the task labels) and varying degrees of parallelism.

of edges that should be introduced as a proportion of the number of edges possible16 (Figure

4.6 shows some example workflows17). This workflow is then executed by a service-consuming

agent using one of the strategies outlined earlier in this chapter. These runs are episodic and

each involves the execution of exactly one workflow, with no interactions between successive

runs.

To analyse the performance of a particular strategy, our simulation executes a large number of

experimental runs (the data in this section was collected using 1,000 runs foreach experimental

setup) and then records the following statistics18:

• The proportion of successful workflows for the strategy (where the strategy completes the

workflow within timet, so thatu(t) > 0).

• The average profit of the strategy (the profit of a workflow execution isthe difference

between the utility rewardu(t) for completing the workflow and the incurred cost).

These indicate the extent to which the consumer agent manages to complete its workflows within

the given time-constraints and whether it manages to achieve a high averageprofit at the same

time, without making an overall loss.

For the data presented in Sections 4.5.3 – 4.5.5, we used workflows with 10 tasks and a paral-

lelism parameter of 0 (i.e., without parallel tasks). This means that the experiments presented

here are particularly relevant to scenarios where workflows are highlyinterdependent. By using

such linear workflows, we were also able to check some of our results analytically to verify that

16We implement this by randomly populating an adjacency matrix until the giventhreshold is reached.
17To avoid confusion, it should be noted that Figure 4.6(c) represents asingle workflow with 10 tasks, four of

which are immediately executable. Parts of the workflow are entirely disconnected in this case, because of the high
level of parallelism.

18To test for statistical significance, we also record the variances of all averages.
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our simulation is correct (in particular, we verified the results presented in Sections 4.5.3 and

4.5.4).

Furthermore, we assumed that there were 1,000 services for every taskwith each service having

a cost of 10 and a gamma distribution with shapek = 2 and scaleθ = 10 as the probability

distribution of the service duration. We set a deadline of 400 time units for each workflow,

an associated maximum utility of 1,000 and a penalty of 10 per time unit. We also performed

similar experiments in a variety of environments, including heterogeneous andparallel tasks,

and observed the same broad trends that are presented in the following section (some of these

results are presented in Section 4.5.6).

To prove the statistical significance of our results, we averaged data over 1,000 test runs and

performed an analysis of variance (ANOVA) where appropriate to determine whether the strate-

gies we tested produced significantly different results (Cohen (1995)). When this was the case,

we carried out pairwise comparisons using the least significant difference (LSD) test. Thus, all

results reported in the following sections are statistically significant (at thep = 0.001 level).

4.5.2 Hypotheses

Before discussing the results of our experiments, we outline four hypotheses that drive our in-

vestigation. The first two are concerned with the effects of the two basic, non-flexible strategies,

parallel(n) andserial(w). The aim of these hypotheses is to show that it is possible to achieve

better results using simple techniques for handling failures than when relyingon thenäıvestrat-

egy.

Hypothesis1. Adopting strategyparallel(n) in uncertain environments can lead to an improve-

ment in the average profit over thenäıvestrategy.

Hypothesis2. Adopting strategyserial(w) in uncertain environments can lead to an improve-

ment in the average profit over thenäıvestrategy.

The other two hypotheses are concerned with evaluating theflexiblestrategy. Here, we present

two hypotheses concerned with the average profit and the success probability. This presents

the flexible strategy in more detail than the previous two strategies due to its importance to our

research.

Hypothesis3. The flexible strategy produces a higher profit than any of the other examined

strategies, averaged over all cases.

Hypothesis4. The flexible strategy successfully completes a higher proportion of workflows

than any of the other examined strategies, averaged over all cases.

To evaluate Hypotheses 1 – 4, we tested each of the four strategiesnäıve, parallel(n), serial(w)

andflexibleusing the same experimental variables (as outlined in Section 4.5.1). We summarise

the results by discussing each hypothesis separately.
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FIGURE 4.7: Effect of provisioning different numbers of services in parallel (data shown with
95% confidence intervals).

4.5.3 Parallel Provisioning (Hypothesis 1)

In our first experiment, we compared the performance of strategyparallel(n)19 with the näıve

approach in environments where services have a varying probability of failure, as shown in

Figure 4.7 (throughout this section, we vary the failure probability in steps of 0.01 from 0 to

1). From this, it is clear that there is a considerable difference in performance between the

different strategies — the average profit gained by thenäıvestrategy falls dramatically as soon

as failures are introduced into the system. In this case, the average profitgained by provisioning

single services falls to around 0 when the failure probability of services is only 0.3. A statistical

analysis reveals that thenäıvestrategy dominates the other two when there is no uncertainty in

the system. However, as soon as the failure probability is raised to0.02, parallel(2) begins to

dominate the other strategies. Between 0.35 and 0.65,parallel(6) then becomes the dominant

strategy as increased service redundancy leads to a higher probability of success. Above this,

the parallel strategies do not yield better results than thenäıvestrategy as they also begin to fail

in most cases.

Summarising these trends, it is obvious that parallel provisioning yields a considerable improve-

ment over thenäıveapproach in a range of environments. For example, when the failure prob-

ability is 0.2, provisioning two services results in an average profit of497.2 ± 26.6 (with 95%

confidence interval), while thenäıvestrategy achieves only58.2 ± 17.9. This leads us to con-

clude that theparallel(n)strategy can indeed lead to an improvement and, hence, that Hypothesis

1 holds. However, no parallel strategy dominates the other and they all eventually make losses

when the probability of failure increases to such an extent that the chosenredundancy levels do

not suffice to ensure success. In this context, it is interesting to note the losses of each strategy

become smaller again after a certain minimum is passed (e.g.,parallel(6) reaches a minimum

19Here, we arbitrarily chosen = 2 andn = 6 as representative of the general trends displayed by the strategy as
more services are provisioned.
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FIGURE 4.8: Effect of different amounts of waiting times for serialprovisioning (data shown
with 95% confidence intervals).

when the failure probability is around 0.8). This is because the strategies fail earlier in the work-

flow and therefore lose a lower investment. In conclusion, parallel provisioning is sensitive to

the right choice ofn and might even lead to an overall loss if the wrong parameter is chosen.

4.5.4 Serial Provisioning (Hypothesis 2)

We carried out a similar experiment to verify the advantage of serial provisioning over thenäıve

strategy (see Figure 4.8). Here, again, there is a marked improvement over the näıve strategy

for failure probabilities up to and including 0.5. This improvement is due to the fact that serial

provisioning responds to failures as they occur, while only paying for additional services when

necessary. However, as the failure probability rises, this strategy begins to miss its deadlines and

hence incurs increasingly large losses.

Overall, a significant improvement in the average profit for some environments leads us to con-

clude that Hypothesis 2 holds. Again, the strategy is sensitive to the choice of parameterw, but

this time,serial(30)dominatesserial(100)when there is uncertainty, until both make a loss.

4.5.5 Flexible Provisioning (Hypotheses 3 and 4)

To show how theflexiblestrategy compares against thenäıve provisioning approach and our

non-flexible strategies, Figure 4.9 plots the average profit of various strategies against the service

failure probabilities. Here, it is clear that the flexible approach performs better than any of the

other strategies. This is due, in part, to the flexibility of the strategy that allows itto provision

more services for later parts of the workflow, where success becomes more critical as a higher

investment has already been made. The flexible approach also combines thebenefits of the

other strategies, allowing the agent to choose between parallel (e.g., whenthere is little time)

and serial provisioning (e.g., when the agent can afford the extra waitingtime) or a mixture
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FIGURE 4.9: Average profit of flexible strategy (data shown with 95% confidence intervals).
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FIGURE 4.10: Success probability of flexible strategy (data shown with 95% confidence inter-
vals).

of the two. Although performance degrades as services become more failure-prone, flexible

provisioning retains a relatively high average profit when all other strategies start to make a loss.

Furthermore, the strategy avoids making an overall loss due to its prediction mechanism, which

ignores a workflow when it seems infeasible.

In Figure 4.10, we plot the success probability of each strategy against the service failure prob-

abilities. While maximising the workflow success probability was not the primary aimof de-

vising theflexiblestrategy, the results show that the strategy performs very well over a range of

environments. More specifically, it initially completes almost all workflows successfully, and

maintains this trend up to a failure probability of 0.8, by which all other approaches have large

failure rates. When this failure probability is exceeded, the strategy suddenly begins to ignore

all workflows, because it cannot find a feasible allocation to offer a positive return. While the

parallel(6) strategy still succeeds in a small fraction of workflows, it is incurring significant

losses, as explained in the previous sections.
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FIGURE 4.11: An example workflow consisting of 50 tasks.

From these results, it is clear that hypotheses 3 and 4 hold. While there aresome cases where

other strategies achieve similar results (e.g., when services never fail), theflexible strategy

achieves consistently good results, and, averaged over all results discussed in Sections 4.5.3–

4.5.5, dominates all other strategies. This is summarised in Table 4.2, which contains the per-

formance statistics of our representative strategies, averaged over allenvironments we tested

(using the same data as in Figures 4.7–4.10). These results highlight the benefits of our strate-

gies, and show that theflexiblestrategy by far outperforms thenäıve approach. In particular,

we achieve an improvement of approximately 700% in average profit and successfully complete

around 80% of all workflows. To show that these results also hold in otherscenarios, in the next

section, we consider a more complex case than the workflows discussed sofar.

Strategy Average Profituc Profit vs näıve Success rateps

näıve 65.16± 1.68 1 0.095± 0.002
serial(100) 142.47± 2.46 2.19± 0.07 0.258± 0.003
parallel(2) 177.98± 2.37 2.73± 0.08 0.272± 0.003
parallel(6) 180.06± 1.86 2.76± 0.08 0.626± 0.003
serial(30) 217.12± 3.06 3.33± 0.10 0.439± 0.003
flexible 523.90± 2.20 8.04± 0.21 0.795± 0.003

TABLE 4.2: Summary of results with 95% confidence intervals

4.5.6 Performance in Complex Environments (Hypotheses 3 and4)

In the previous section, we examined the performance of our strategies in the context of a small,

sequential workflow with only one type of service. As mentioned above, thisallowed us to

verify some results analytically. In this section, we briefly present the results of a more complex

problem, and, in doing so, demonstrate that the same overall trends can be observed.

For this experiment, we created random workflows that consist of 50 tasks and have a parallelism

parameter of 0.25. We also chose a random service type for each task from a set of seven

types that are detailed in Table 4.3. These service types were chosen to display a variety of

parameters. For example,T1 is extremely fast and will almost certainly complete by the next



Chapter 4 Service Provisioning with Limited Performance Information 102

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  20  40  60  80  100  120

D
ur

at
io

n 
de

ns
ity

 p
(t

)

Time t

T2
T4
T5
T6

(a) Example service durations

 0

 200

 400

 600

 800

 1000

 0  500  1000  1500  2000  2500

R
ew

ar
d

Time to Completion

u(x)

(b) Utility function

FIGURE 4.12: Experimental settings: (a) shows some service duration functions and (b) gives
the utility function we use.

time step following its invocation, while, at the other end of the scale,T4 andT6 both have a

mean duration of 50 time units (Figure 4.12(a) shows the duration functions for some of the

services). Services of typeT1 are also very cheap (0.1 units), while those ofT7 cost 20 times as

much.

Service Cost ($) Duration Mean Var.
(min.)

T1 0.1 Gamma(1,0.1) 0.1 0.01
T2 0.1 Gamma(1,10) 10 100
T3 1 Gamma(5,1) 5 5
T4 1 Gamma(5,10) 50 500
T5 2 Gamma(10,1) 10 10
T6 2 Gamma(10,5) 50 250
T7 2 Gamma(100,0.1) 10 1

TABLE 4.3: Service types used to test complex workflows.

Furthermore, we assumed that there were 100 instances of each servicetype, and we used a

utility function with a deadline of 1,000 time units, a penalty of 1 per time unit and a maximum

utility of 1,000 (this is shown in Figure 4.12(b)). Again, we tested our strategies in environments

where services have different failure probabilities (0,0.01,0.02,. . . ,1),but this time we included

some variance in the failure probabilities of different service types. Specifically, during each

experimental run for a particular average failure probabilityf , we assigned a failure probability

to each service type that was drawn from a beta distribution20 with parametersα = f · 10 and

β = 10−α (unlessf = 0 or f = 1, in which case all services had the same failure probability).

This process, which was repeated for all 1,000 runs for each value off , meant that the average

failure probability of all service types would approachf , but still allowed considerable variance

between the different types of services.

With these experimental settings21, we again tested theflexiblestrategy against several other

approaches (see Figure 4.13). Here, a similar pattern as shown in Figure4.9 emerges and our

flexibleapproach clearly dominates the other approaches when service success is uncertain (i.e.,

20The beta distribution was simply chosen because it always ranges between 0 and 1.
21These parameters were chosen to exemplify the performance of the strategy. We have experimented with other

values and observed the same broad trends.
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FIGURE 4.13: Average profit for various strategies when faced with complex workflows (data
shown with 95% confidence intervals).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
ro

po
rt

io
n 

S
uc

ce
ss

fu
l

Failure Probability

naïve
parallel(3)

parallel(10)
flexible

FIGURE 4.14: Success probabilities for various strategies when faced with complex workflows
(data shown with 95% confidence intervals).

when the failure probability is greater than 0). When no services fail (failure probability is 0),

the flexible strategy does as well as thenäıveapproach and better than any of the others.

To complete the summary of this experiment, Figure 4.14 shows the success probabilities of the

strategies we tested. Again, the flexible strategy performs very well compared to the other ap-

proaches. It initially completes at least as many workflows as the other strategies, then stays at a

high level and only starts to drop below 90% when the failure probability risesto 70%. Overall,

the results presented in this section further highlight the promise of flexible provisioning tech-

niques and show that our strategy is applicable to large workflows with heterogeneous service

types and parallel workflow tasks. In particular, the results confirm thatour hypotheses 3 and 4

hold in these environments, as the same trends as in the previous section are observed.
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FIGURE 4.15: Average profit offlexiblestrategy (with 95% confidence intervals), compared to
the optimal strategy for 3 tasks in (a) and to the near-optimal strategy for 10 tasks in (b).

4.5.7 Optimality of Flexible Provisioning

As discussed previously, theflexiblestrategy uses a heuristic utility function and a hill-climbing

mechanism that is not optimal in general. However, adopting this heuristic method has made

the provisioning of complex workflows tractable. In this section, we comparethe performance

of our algorithm to the theoretical optimal. More specifically, we first show our results in a

simple environment (we consider a workflow with 3 sequential tasks, each of which has a cost

of 3, duration distribution Gamma(2,4), 20 providers, and a utility function with deadline 30,

maximum utility 100 and penalty 10). This scenario allows us to solve our originaloptimisation

problem (as given by Equation 4.4) analytically. This is then followed by an analysis of the

environment used in Sections 4.5.3 – 4.5.5. Because deriving the optimal solution is intractable

in this case, we designed a newanalytical flexiblestrategy. This is based on ourflexiblestrategy,

but accurately calculates the expected utility, rather than relying on a heuristic function. It then

repeatedly performs a hill-climbing search with random restarts (we restartthe algorithm 200

times with random initial allocations). We believe that this is a reasonable approximation to

the optimal, and, in fact, there is no significant difference between its performance and the

theoretical optimal in the smaller environment.

Figure 4.15 shows the average profit of our strategy in these two environments (here, failure

probabilities were varied in steps of 0.1 due to the computational cost of calculating an optimal

solution). In both cases, while clearly sub-optimal, our strategy comes closeto the expected

utility of the optimal or near-optimal strategies. In fact, when averaging overthe failure prob-

abilities we examined, for 3-task workflows (Figure 4.15(a)), ourflexiblestrategy achieves an

average utility of41.7±0.7, compared to the optimal expected utility of42.5, which corresponds

to achieving98.2 ± 1.7% of the optimal. For 10-task workflows (Figure 4.15(b)), we achieve

even closer results with an average utility of512.0± 7.0 compared to the near-optimal expected

utility of 516.1. In fact, a t-test confirms that this is not a statistically significant difference

(p = 0.764). This improvement, compared to the smaller workflows, may be due to our reliance

on the central limit theorem to estimate the duration distribution. When the workflows become
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larger, this tends to give more accurate estimates. Overall, these results arepromising, because

they show that our strategy achieves a level of performance that is closeto the optimal in the

environments we tested, using a fast heuristic method that is tractable even for large workflows.

4.6 Summary

In this chapter, we outlined five strategies for provisioning services as part of complex workflows

in environments where little information is known about the available services. The first four of

these strategies are based on related work in the area. Specifically, thenäıveapproach uses no

knowledge about the performance characteristics of services and simply provisions a single ran-

dom service for each task in the workflow. The following strategies,parallel(n), serial(w)and

the compositehybrid(n,w), deal with potential services failures by proactively invoking multiple

services for each task and by responding to failures by re-provisioning new services. However,

these strategies rely on a human decision-maker to choose the parametersn andw (respectively

the number of services to invoke in parallel and the waiting time before re-provisioning). This

shortcoming is finally addressed by the novelflexiblestrategy, which provisions services flex-

ibly and without human intervention based on the performance characteristics of services and

the constraints imposed by the workflow and its reward function.

After introducing these strategies, we described a number of empirical experiments. These high-

lighted the benefits of theflexibleapproach, which consistently outperformed all other strategies

and managed to maintain a high success probability of around 95% even whenindividual ser-

vices had an 80% failure probability. This strategy meets our original requirements by dealing

with service failures both reactively (Requirement A.2.a) and proactively(A.2.b). It also deals

with uncertainty in a principled manner (Requirement A.1) by taking decisions that maximise

the consumer’s predicted utility, and we have shown that it deals well with larger workflows and

environments with many services (Requirement A.3).

However, we have so far only looked at systems where the information about services is highly

limited. We argued that there are many realistic application areas for this case,but there are

clearly other environments where the consumer may have more detailed information about in-

dividual services and where these might be highly heterogeneous. We address this case (and

thereby our Requirement M.4) in the following chapter.



Chapter 5

Service Provisioning with

Heterogeneous Providers

We now turn our attention to environments where more finely-grained information about service

instances is available to the consumer. Specifically, we assume that providers offer their services

at varying levels of quality and that the consumer has some information to distinguish these

services. For example, the consumer may know that certain data-processing services offered

by large companies are more reliable than their cheaper counterparts running on idle desktop

computers. Similarly, a given provider may offer tier-based services, whereby the consumer

may pay a higher service fee, in order to receive a better quality of service. Such tier-based

services might be implemented, for example, by elevating the priority of a consumer in the

provider’s scheduling algorithm, hence resulting in a shorter and more certain service duration.

As outlined in Chapter 3, we again assume that the consumer has obtained such performance

information about services either through previous interactions or a suitable trust mechanism.

When such heterogeneity exists in the system, the provisioning problem becomes more difficult,

as its dimensionality increases: rather than just considering the number of parallel services and

their waiting times, the consumer now needs to consider which service instances should be

provisioned. To address this problem (and our original Requirement M.4), we extend our work

from the previous chapter. Specifically, in Section 5.1, we describe a system model that includes

heterogeneous services. As there is already existing work that proposes a provisioning approach

for a similar case, we briefly formalise that approach for our framework inSection 5.2. Next,

we return to our flexible provisioning strategy and show how it can be adapted for systems

with heterogeneous providers in Section 5.3. Finally, in Section 5.4, we showempirically that

our extended approach performs well in practice by benchmarking it against the algorithms in

Section 5.2 and others from the state of the art.

106
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5.1 Model Extension

In contrast to the previous chapter, we now assume that the consumer hasa cost, failure prob-

ability and duration distribution associated with each service instancesi, rather than for the

whole setSi (c(si), f(si) andd(si, x), as introduced in Section 3.3). Additionally, we introduce

the notion of servicepopulations, which describe services that display identical behaviour and

performance characteristics. Formally, we letP = {P1, P2, P3, . . . , P|P |} be a set partition of

S, whose members are disjoint subsets ofS with
⋃

i Pi = S. Any two memberssx andsy of a

given populationPi always have the same failure probability, duration distribution and cost, and

each service type that is mapped tosx by µ is also mapped tosy.

FIGURE 5.1: Information that is available about the service populations for each task.

In more detail, Figure 5.1 illustrates this extended system model. Here, thirteen services are able

to solve taskti, as given by the setSi. Furthermore, this set is again partitioned into four smaller

sets,Pp, Pq, Pr andPs, each of which represents a group of service instances whose behaviour

is identical. For example,sk andsl here have the same failure probability, duration distribution

and cost, butsk andsm will differ in some or all of their performance characteristics.

The model presented here includes both the cases where the consumer has detailed information

about each service instance (see Figure 5.2(a)), and where it has only limited information about

the whole setSi, as assumed in the previous chapter (see Figure 5.2(b)). The notion of service

populations is introduced for convenience, because we believe that it is acommon feature of

distributed systems, where a number of agents may use the same service implementation, might

(a) Information about each service inSi. (b) Information limited to overall setSi.

FIGURE 5.2: Examples where different levels of information about the services inSi are avail-
able (dashed lines denote the partitions ofSi).
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adhere to certain quality standards, or where the consumer’s knowledgeabout service providers

is limited (e.g., in the absence of more accurate information, a service consumermay simply

classifyPp = {sa, sb, sd, sf} as cheap, unreliable providers, andPq = {sc, se, sh} as reliable,

but expensive providers1).

In contrast to the previous chapter, we also no longer assume that previous services are ignored

as soon as a task is re-provisioned. Hence, it is now possible that the consumer invokes service

s1 for a given task, waits for some time, then invokess2 for the same task, but later receives a

response froms1, thereby completing the task. We make this change to our model here, because

we believe that it is a more realistic assumption when services are highly heterogeneous and

especially when different service populations follow varying duration distributions. To illustrate

this with an example, the consumer might be able to choose from two populations for a par-

ticular task:P1, which contains reliable, slow and expensive services, andP2, which contains

unreliable, fast and cheap services. In this case, its best strategy may be to invoke one service

from each population, followed by more services fromP2, invoked in series and with short time

intervals to account for the population’s short service duration. Such behaviour would be inef-

fective if we assumed that a service fromP1 is ignored as soon as a second service fromP2 is

invoked.

Now, as we discussed in Chapter 2, there is already a significant body ofresearch that has

considered the provisioning of services in environments where they are highly heterogeneous.

Typically, such research has concentrated on optimising weighted sums of various quality-of-

service parameters, but without planning for service uncertainty in a principled manner. In the

following section, we formalise this approach in the context of our system model. This gives us

an additional benchmark against which to compare our extended flexible approach (discussed in

Section 5.3).

5.2 QoS-based Provisioning

This section is based closely on the provisioning strategies described by Zeng et al. (2004), but

many similar approaches are widely used in the literature (Aggarwal et al. (2004); Jaeger and

Mühl (2007)). We already briefly introduced these strategies in Section 2.4.3.2, and here we

simply elaborate them against the background of our system model. We startfirst by describing

a local strategy that makes myopic decisions about the provisioning of eachtask during execu-

tion (Section 5.2.1), and then we discuss a global provisioning strategy thatprovisions entire

workflows before execution (Section 5.2.2).

1As in Chapter 4, we assume that the probabilistic performance characteristics in this case express the uncertainty
and variability of providers within a population. As before, the cost of providers within a population is assumed
homogeneous, but our work similarly applies when there is some uncertainty about the cost and we only know its
expected value.
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5.2.1 Local Weighted Optimisation

This strategy provisions each task only when it becomes available and without considering the

impact of provisioning on the overall workflow (e.g., whether the workflowwill likely succeed

within the given deadline or whether the overall workflow cost will exceedthe maximum utility).

More specifically, when taskti becomes available, it provisions and immediately invokes a

matching services∗ that maximises a weighted sum:

s∗ = argmax
s∈µ(τ(ti))

3∑

i=1

w̌i ·Qi(s) (5.1)

Qi(s) =

{

0 if qmax,i = qmin,i
qmax,i−qi(s)
qmax,i−qmin,i

otherwise
(5.2)

whereq1(s) = c(s) is the service cost,q2(s) = f(s) is its failure probability andq3(s) =
1

D(s,tzero)

∑tzero
t=1 t · (D(s, t)−D(s, t− 1)) is its mean duration (provided it succeeds withintzero

time steps). The values forqmax,i andqmin,i are the largest and smallest of these parameters

among the services that are considered, and each weightw̌i ∈ [0, 1] attaches a relative impor-

tance to the associated parameter (with
∑

i w̌i = 1).

For the purpose of our experiments, we setw̌1 = w̌2 = w̌3 = 1
3 , which strikes a balance

between the various qualities (in most environments, we did not observe a significant difference

in performance when adopting other weight distributions). With this, we define thelocal strategy

as follows:

Definition 7 (Local Strategy). An agent following alocal strategy provisions a services∗ for

each task, so that the weighted sum given in Equation 5.1 is maximised (withw̌1 = w̌2 = w̌3 =
1
3 ).

Typically, such a local strategy re-provisions services immediately upon failure. However, as

we assume silent failures, it is again necessary to introduce explicit time-outvalues in order

to produce an adaptive strategy. Furthermore, it is possible to increase the robustness of the

strategy by including redundancy:

Definition 8 (Local(n,w) Strategy). An agent following alocal(n,w)strategy orders all matching

services in descending order of the sum given in Equation 5.1 and then provisions the firstn

services. If the task has not been successful afterw time steps, it repeats this process with the

remaining services until the task has been completed.

As such, the strategy makes provisioning decisions about services based on their performance

characteristics and reacts to failures when they occur, but considers only single tasks in isola-

tion. The strategy we discuss in the following section addresses this limitation by aggregating

performance characteristics over the entire workflow.
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5.2.2 Global Weighted Optimisation

This is perhaps the most widely adopted approach for provisioning services in the literature

(Aggarwal et al. (2004); Jaeger and Mühl (2007); Zeng et al. (2004)), as we already discussed

in Section 2.4.3.2. An agent using this approach considers the whole workflow, provisioning a

service for each task, so that a weighted sum similar to Equation 5.1 is maximised.This sum

now aggregates the quality parameters over the entire workflow and may contain constraints,

such as an overall budget or time limit. More specifically, letρ ∈ S |T | be a vector of|T |
services, such thatρi ∈ µ(τ(ti)) is the service provisioned for taskti. The global provisioning

approach then finds a vectorρ∗ that maximises the weighted sum:

ρ∗ = argmax
ρ∈S|T |

3∑

i=1

w̌i · Q̂i(ρ) (5.3)

whereQ̂i(ρ) is again a normalised quality metric, derived from one of the three following work-

flow qualities:

• q̂1(ρ) =
∑

i c(ρi) is theworkflow cost,

• q̂2(ρ) =
∑

i ln(1− f(ρi)) is the natural logarithm of theworkflow success probability2,

• q̂3(ρ) is theworkflow duration3.

Furthermore, this optimisation problem may be subject to constraints on these quality parame-

ters. In practice, we derive these directly from our workflow model as follows:

q̂1(ρ) ≤ umax (5.4)

q̂3(ρ) < tzero (5.5)

Respectively, these denote that the agent should not spend more than theinherent value of the

workflow, and that it should aim to complete the workflow before it receives no more utility

from completion. Thus, we define the global strategy as follows:

Definition 9 (Global Strategy). An agent following aglobalstrategy selects a vector of services

ρ∗ that maximises Equation 5.3 (witȟw1 = w̌2 = w̌3 = 1
3 ), subject to the constraints given by

Equations 5.4 and 5.5.

Although some existing global strategies adapt to failures, they typically assume explicit failure

messages. Thus, we introduce an explicit time-out parameter, as before:

2The logarithm is used here, so that the success probability can be expressed as a sum and thus solved by existing
linear integer programming techniques.

3This is calculated by aggregating the mean service durations (given byq3(s)) along the critical path, as described
in Section 4.4.3.2.
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Definition 10 (Adaptive Global(w) Strategy). An agent following anadaptive global(w)strategy

provisions services as the global strategy. However, when a provisioned service has not been

successful afterw time steps, the agent re-provisions the respective task and all other tasksthat

have not been invoked yet. In doing so, it adjusts the constraints in Equations 5.4 and 5.5 to take

into account the time that has already passed and the total expenditure incurred. Regardless of

w, the strategy also re-provisions all uncompleted tasks whenq̂3(ρ) ≥ tzero.

As discussed in Section 2.4.3.2, these strategies have a number of shortcomings, and so we

describe a more flexible approach based on our previous work in the following section. In

Section 4.5, we will then return to the QoS-based approaches and use themas benchmarks

against which to compare our proposed strategies.

5.3 Flexible Service Provisioning

In this section, we extend our flexible provisioning strategy to deal with heterogeneous services.

Our new strategy builds closely on the techniques introduced in the previouschapter, but we

adapt the local task predictions to account for the extended model outlinedabove. We also

consider a more finely-grained decision problem than before by allowing the number of parallel

services and time-out values to vary during the execution of a single task, and we propose a

modified local search algorithm that takes into account the larger search space.

Our discussion of the flexible strategy for heterogeneous services is divided into five main sec-

tions. We begin by formalising the provisioning problem with our modified model (Section

5.3.1), followed by our extended local search and consumer algorithms (Section 5.3.2). In Sec-

tion 5.3.3, we describe how to adapt the local task predictions for the more complex model of

this chapter. As the strategy discussed here considers a large solution space, we outline in Sec-

tion 5.3.4 how it may be simplified for cases where time is critical. Finally, we illustrate our

modified strategy using the bioinformatics workflow from Section 3.5.

5.3.1 Problem Formulation

In the previous chapter, our flexible provisioning strategy optimised two parameters for each

task: the number of parallel services (ni) and a waiting time before provisioning more services

(wi). As we now assume more information to be available about individual service instances,

we clearly want to take this into consideration and extend the problem accordingly. A simple

approach might be to introduce a third decision variable to indicate from whichpopulation

services should be selected. Such an approach would require minimal modifications of the work

discussed in the previous chapter, but it is likely to be insufficient in most cases, as the consumer

will often benefit from provisioning services from different populations for a single task. This is

particularly evident when populations are small, as in Figure 5.2(a), or when the consumer can



Chapter 5 Service Provisioning with Heterogeneous Providers 112

benefit from provisioning services from several populations concurrently (for example, when

relying on services with very different characteristics, as described inSection 5.1, or when there

is little difference between the populations).

For these reasons, we decided to extend the consumer’s decision spacein this chapter and con-

sider adetailed provisioning allocationthat constitutes a plan of which services to invoke for a

given task and at what time (as long as the task is still uncompleted):

Definition 11 (Detailed Provisioning Allocation). A detailed provisioning allocation is a map-

pingα : T → (S → N) that associates each task inT with the provisioned services for that task

and their respective invocation time steps.

FIGURE 5.3: A detailed provisioning allocation with three servicepopulations.

This allows the consumer to provision services of different populations withvarying invoca-

tion times. As an example of this, Figure 5.3 shows an allocation for a particular task ti,

α(ti) = {(sa, 0), (sb, 0), (sc, 0), (sd, 15), (se, 40), (sf , 40), (sg, 70)}. Here, the consumer first

provisions a set of cheap and unreliable services to be invoked at time step0 (sa, sb andsc).

If these are not successful by time step 15, the consumer will then proceed to invoke a service

from a more reliable and more expensive population (sd), followed 25 time steps later by two

more services of the same population (se andsf ). After a longer time-out period, the consumer

then invokes the most reliable and expensive service available (sg). Using this allocation, the

consumer initially exploits the cheaper services, as there is a possibility that they complete the

task successfully. When this is not the case, the consumer then switches to the more reliable

services to ensure that the task is eventually completed successfully.

Having defined this allocation, we now extend our definition of theflexiblestrategy (Definition

6) to cover heterogeneous services and term the new strategydetailed flexible, as it considers a

more finely-grained decision problem:

Definition 12 (Detailed Flexible Strategy). A consumer following adetailed flexiblestrategy

makes appropriate decisions to provision services for its workflow. To thisend, the agent finds

a suitable detailed provisioning allocation, so that the agent’s predicted profit is maximised.

Again, we can formulate this as an optimisation problem:

max
α

(ūt(α)− c̄(α)) (5.6)
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whereūt(α) is the expected reward of following allocationα andc̄(α) is the associated expected

cost.

This problem is computationally hard for the same reasons as described in theprevious chapter,

and so we decided to take a similar approach in solving it. However, the problem here is more

complex, as we now consider a larger decision space than before (this complexity is further

investigated in Appendix C). This means that we require a modified local search technique,

which we outline below (Section 5.3.2). This is followed in Section 5.3.3 by a discussion of an

updated utility estimation approach that takes into account the model extensionsdescribed in

Section 5.1.

5.3.2 Updated Generic Algorithm

Our modified algorithm, shown in Algorithm 5.7, follows broadly the same structure as that in

Section 4.4.2. In more detail, it starts in line 2 by generating a random allocationα, which is

then iteratively improved, based on an estimated utility value (lines 5–20). During each iteration,

the algorithm picks a random taskti from the workflow (line 9), and considers each of a set of

neighbours ofα, which are obtained by randomly applying small changes to the provisioned

services for taskti (line 11). During this process, the algorithm keeps track of the best neighbour

so far, which is then used as the new allocationα for the following iteration (line 15). If no

better neighbour is found for taskti, the algorithm continues to consider all other tasks in a

random order. It terminates when the main search loop is executedmaxFailed 4 times without

discovering a better solution, at which point the currentα is returned (line 21).

Now, the local search procedure in Algorithm 5.8 depends on two procedures: GENERATE-INI-

TIAL and GENERATE-NEIGHBOURS. Respectively, these create an initial solution and generate

neighbour allocations of a givenα, as described in the following.

5.3.2.1 Initial Provisioning Allocation Creation

The GENERATE-INITIAL procedure, detailed in lines 23–36, initially provisions a random non-

empty subset ofSi for each taskti (line 27), assigning an invocation time that is sampled from

Ud(0, tzero− 1) to each provisioned service5. Finally, the service times assigned to each task

are altered in such a way that there is at least one service with an invocationtime of 0 (line

32). This is achieved by the procedure TRUNCATE-ALLOCATION in lines 37–44, which finds

the minimum invocation time (m) of a provisioned service for a given task and deducts this

from every invocation time. This ensures that there are no unnecessarydelays before the first

invocation.
4This accounts for the fact that we select random neighbours and may miss potentially better solutions. In our

work, we set this to10, in order to balance the quality of the solution with the time taken to find it.
5As defined in Section 3.2.2,tzero is the first time step at which the consumer no longer receives any reward for

completing a workflow.
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Algorithm 5.7 Modified hill-climbing algorithm for finding provisioning allocationα.
1: procedure FIND-ALLOCATION(W )
2: α← GENERATE-INITIAL (W ) ⊲ Generate initial allocation
3: u← ũ(α) ⊲ Estimate utility
4: nfailed← 0 ⊲ Keep track of unsuccessful iterations
5: repeat ⊲ Main loop
6: nfailed← nfailed + 1 ⊲ Increase counter
7: T ′ ← T ⊲ Copy set of tasks
8: while nfailed > 0 ∧ |T ′| > 0 do ⊲ No betterα found and more tasks left?
9: ti ∈ T ′ ⊲ Random choice

10: T ′ ← T ′ \ ti ⊲ Removeti
11: N ← GENERATE-NEIGHBOURS(α, ti) ⊲ (see Algorithm 5.8)
12: for all α′ ∈ N do ⊲ Check all neighbours
13: u′ ← ũ(α′) ⊲ Utility of neighbour
14: if u′ > u then ⊲ If neighbour is more promising...
15: (α, u)← (α′, u′) ⊲ ...update
16: nfailed← 0 ⊲ Reset counter
17: end if
18: end for
19: end while
20: until nfailed ≥ maxFailed ⊲ Continue until too many unsuccessful iterations
21: return α ⊲ Return best allocation found
22: end procedure

23: procedure GENERATE-INITIAL (W )
24: α← ∅ ⊲ Initialise overall allocation
25: for all ti ∈ T do ⊲ Consider all tasks
26: A← ∅ ⊲ Allocation for ti
27: SA ∈ P(Si) \ {∅} ⊲ Random non-empty subset ofSi

28: for all sj ∈ SA do ⊲ Store each service
29: t← sample fromUd(0, tzero− 1) ⊲ Random provisioning time
30: A← A ∪ {(sj , t)} ⊲ Store provisioning decision
31: end for
32: A←TRUNCATE-ALLOCATION(A) ⊲ Truncate
33: α(ti)← A ⊲ Store task allocation
34: end for
35: return α
36: end procedure

37: procedure TRUNCATE-ALLOCATION(A)
38: A′ ← ∅ ⊲ Initialise truncated set
39: m←minimum provisioning time inA
40: for all (sj , t) ∈ A do ⊲ Truncate each mapping
41: A′ ← A′ ∪ {(sj , t−m)}
42: end for
43: return A′

44: end procedure
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Algorithm 5.8 Neighbour generation procedure for a provisioning allocationα.
1: procedure GENERATE-NEIGHBOURS(α, ti)
2: A← α(ti) ⊲ Allocation for ti
3: Aprov← set partition ofA, partitioned by populationsa

4: Ax ∈ Aprov ⊲ Select random partition
5: (s, t) ∈ Ax ⊲ Select random service/time
6:

7: Sall ← set partition ofSi, partitioned as aboveb

8: Sunprov← asSall, excluding services inAc

9: Sother← asSunprov, excluding services from same population assd

10: Ssame← set containing all unprovisioned services from same population asse

11:

12: α1, α2, . . . , α8 ← α
13: α1(ti)← α1(ti) \ {(s, t)} ⊲ Remove(s, ot)
14:

15: Sx ∈ Sother ⊲ Select random member
16: sn1 ∈ Sx ⊲ Select random service
17: α2(ti)← α1(ti) ∪ {(sn1, t)} ⊲ Replaces by sn1

18:

19: sn2 ∈ Ssame ⊲ Select random service
20: α3(ti)← α3(ti) ∪ {(sn2, t)} ⊲ Add new servicesn2

21:

22: α4(ti)(s)← t− 1 ⊲ Decreaset by 1
23: α5(ti)(s)← t + 1 ⊲ Increaset by 1
24: α6(ti)(s)← x, with x sampled fromUd(0, t− 2) ⊲ Decreaset randomly
25: α7(ti)(s)← x, with x sampled fromUd(t + 2, tzero− 1) ⊲ Increaset randomly
26:

27: sn3 ∈
⋃

Sy∈Sunprov
Sy ⊲ Pick random unprovisioned service

28: tn3 ← sampled fromUd(0, tzero− 1) ⊲ Random provisioning time
29: α8(ti)← α8(ti) ∪ {(sn3, tn3)} ⊲ Add new servicesn3

30:

31: for j = 1 to 8 do
32: αj(ti)← TRUNCATE-ALLOCATION(αj(ti)) ⊲ Truncate new allocation
33: end for
34:

35: return {α1, α2, α3, α4, α5, α6, α7, α8} ⊲ Return all neighbours
36: end procedure

aAprov = {Ax | Ax ⊆ A ∧ Ax 6= ∅ ∧ ∃Py ∈ P · ∀s, t · (((s, t) ∈ A ∧ s ∈ Py) ⇔ (s, t) ∈ Ax)}
bSall = {Px | Px ∈ P ∧ Px ⊆ Si}
cSunprov = {Px | Px 6= ∅ ∧ ∃Py ∈ Sall · ∀sz ∈ Py · (sz ∈ Px ⇔ ¬∃t · (sz, t) ∈ A)}
dSother = {Px | Px ∈ Sunprov∧ ¬∃Py ∈ P · (Px ⊆ Py ∧ s ∈ Py)}
eSsame= {sx | ∃Py ∈ P · Sz ∈ Sunprov, (s ∈ Py ∧ Sz ⊆ Py ∧ sx ∈ Sz)}
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Algorithm 5.9 Overall behaviour of thedetailed flexiblestrategy.
1: procedure DETAILED-FLEXIBLE -INITIALISE (W )
2: α← FIND-ALLOCATION(M) ⊲ Find best detailed allocation
3: Tinv ← ∅ ⊲ Keeps track of invocation times
4: Tcomp← ∅ ⊲ Keeps track of completed tasks
5: if ũ(α) ≤ 0 then ⊲ Is utility estimate non-positive?
6: dstop← true ⊲ ...then abandon workflow
7: else ⊲ ...otherwise continue
8: dstop← false

9: end if
10: end procedure

11: procedure DETAILED-FLEXIBLE -UPDATE(O)
12: Tnew← {ti | ∃sx · (ti, sx) ∈ O} ⊲ Recently completed tasks
13: Tcomp← Tcomp∪ Tnew ⊲ Add to completed tasks
14: end procedure

15: procedure DETAILED-FLEXIBLE -STOPCONDITION

16: return dstop ⊲ Abandon if allocation yields non-positive utility
17: end procedure

18: procedure DETAILED-FLEXIBLE -INVOKESERVICES

19: for all ti ∈ T \ Tcomp do ⊲ Consider all uncompleted tasks
20: if ∀(tj , ti) ∈ E · tj ∈ Tcomp then ⊲ Is ti executable?
21: if ∃y · (ti, y) ∈ Tinv then ⊲ Has invocation started?
22: t̂start← Tinv(ti)
23: else
24: t̂start← t̂ ⊲ Start invoking now
25: Tinv(ti)← t̂
26: end if
27: t̂i ← t̂− t̂start ⊲ Time steps afterti was started
28: for all sx ∈ {sx | (sx, t̂i) ∈ α(ti)} do
29: INVOKE(sx, ti) ⊲ Invoke servicesx for taskti
30: end for
31: end if
32: end for
33: end procedure
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5.3.2.2 Neighbour Generation

The GENERATE-NEIGHBOURSprocedure is shown separately in Algorithm 5.8. This procedure

creates a set of neighbours of a given allocationα by considering a taskti. To this end, it first

partitionsα(ti) into sets that correspond to particular service populations and selects oneof

these at random (line 4). The algorithm then picks a random service/time pair, (s, t), from the

selected set (line 5). Given this, the following transformations are applied separately toα, in

order to generate a set of eight neighbours,α1, α2, . . . , α8:

• α1 (line 13): Services is removed.

• α2 (line 17): Services is replaced by a random service,sn1, from a different population.

• α3 (line 20): A new service,sn2, from the same population ass is added to the allocation.

• α4 (line 22): The invocation time for services is decreased by a single time step.

• α5 (line 23): The invocation time for services is increased by a single time step.

• α6 (line 24): The invocation time for services is decreased by a random amount.

• α7 (line 25): The invocation time for services is increased by a random amount.

• α8 (line 29): A random unprovisioned service,sn3, from any suitable population is pro-

visioned at a random time.

In doing this, any impossible transformations are ignored (e.g., when all appropriate service

providers are already provisioned, we do not perform the transformations forα2, α3 andα8)6.

Furthermore, we again alter the provisioning times of all new neighbours to ensure that there are

no unnecessary delays (line 32).

We have now described how our algorithm generates candidate solutions and finds a good pro-

visioning allocation by performing a local search. Algorithm 5.9 briefly summarises the overall

strategy by showing how these procedures are used in the context of our generic agent frame-

work. In the following section, we outline the utility estimation function,ũ, which is used in

lines 3 and 13 of Algorithm 5.7 to estimate the expected utility of a candidate solution.

5.3.3 Utility Prediction

Due to the effectiveness of the heuristic function introduced in the previous chapter, we use the

same overall form for̃u in this chapter (omitting the parameterα for brevity):

ũ = p

∫ ∞

0
dW (x)u(x) dx − c̃ (5.7)

6To keep the listing concise, this is not shown in Algorithm 5.8.
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wherep is the overall success probability of the workflow,dW is an estimated probability density

function for the completion time of the workflow if successful andc̃ is an estimated cost.

Now, p, dW andc̃ are obtained by aggregating a number of local parameters for each task inthe

workflow, in the same manner as described in Section 4.4.3.2. However, dueto the inclusion of

heterogeneous services, it is necessary to adapt the local task calculations to our extended model,

and we detail these adaptations in the remainder of this section. As before, we are interested in

calculating four key parameters for each workflow taskti, given an allocationα(ti):

• The success probabilitypi.

• The expected cost̄ci.

• The expected completion timēti.

• The variance of the completion timeσ2
i .

To calculate these, we define a number of terms. First, we letD̂(sx, t) be the probability that a

servicesx has completed its service successfully within no more thant time steps of invocation

(not conditional on overall success):

D̂(sx, t) = (1− f(sx)) ·D(sx, t) (5.8)

Furthermore, we letIi(α, t) = {(x, y) | (x, y) ∈ α(ti) ∧ y ≤ t} be the set of provisioned ser-

vices and associated times that are invoked at mostt time steps after taskti was started. Com-

bining this with Equation 5.8, we can calculate the probability that the task is completed suc-

cessfully within no more thant time steps, denotedEi(α, t):

Ei(α, t) = 1−
∏

(x,y)∈Ii(α,t)

(1− D̂(x, t− y)) (5.9)

To illustrate Equations 5.8 and 5.4, we return to the example allocation shown in Figure 5.3

(α(ti) = {(sa, 0), (sb, 0), (sc, 0), (sd, 15), (se, 40), (sf , 40), (sg, 70)}), and assume that the pro-

visioned services have failure probabilities, durations and costs as shown in Table 5.1. For ex-

ample, each of the three initially provisioned services,sa, sb andsc, has a failure probability of

f(sx) = 0.8, follows an exponential7 distribution with meanµ = 20 for its duration and has

a cost of 5. In this context, Figure 5.4 showsD̂(sx, t) for the provisioned services, offset by

their respective invocation times, as well as the overall success probabilityfor the taskEi(α, t).

This demonstrates how the individual duration distributions influenceEi(α, t) as more services

are invoked over time, and how the overall success probability rises quickly by provisioning

unreliable services redundantly.

7We use Exp(µ) to denote an exponential distribution with pdfp(x, µ) = µ−1e
− x

µ .
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FIGURE 5.4: Cumulative success probabilities for allocation in Figure 5.3.

Service(sx) Fail. Prob. (f(sx)) Duration (d(sx, t)) Cost (c(sx))
sa, sb, sc 0.8 Exp(15) 5
sd, se, sf 0.6 Gamma(10,2) 10

sg 0.1 Gamma(3,3) 25

TABLE 5.1: Service performance characteristics used in Figure 5.4.

Given Ei(α, t) in Equation 5.4, we can now calculate the four performance parameters given

above. To do this, we disregard any service outcomes that occur more than tzero time steps after a

task becomes available — this provides us with a limited time horizon to consider, beyond which

the consumer is certain to gain no more utility. Hence, the success probabilitypi is simply the

probability that the task has been successfully completed by any of the invoked services by time

tzero:

pi = Ei(α, tzero) (5.10)

For example, iftzero = 100, then the overall success probability of the provisioned task shown

in Figure 5.4 ispi = Ei(α, 100) = 1− 0.83 · 0.63 · 0.1 = 0.99.

Next, to calculate the expected costc̄i, we sum the costs of all provisioned services, each mul-

tiplied by the probability that the task has not been successfully completed by their respective

invocation times:

c̄i =
∑

(x,y)∈α(ti)

(1− Ei(α, y)) · c(x) (5.11)

Continuing the example above, the consumer is guaranteed to pay the costs for the first three

services, while later costs depend on whether the initial services have been successful:̄ci =

3 · 5 + 0.66666 · 10 + 0.36693 · 2 · 10 + 0.12199 · 25 = 32.05.
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In order to calculate the expected completion timet̄i (again, conditional on overall success),

we evaluate all possible outcomes, noting that the consumer receives any service outcomes at

discrete time steps:

t̄i =
1

pi

tzero∑

t=1

t · (Ei(α, t)− Ei(α, t− 1)) (5.12)

Using this, it is straight-forward to calculate the associated varianceσ2
i :

σ2
i = −t̄2i +

1

pi

tzero∑

t=1

t2 · (Ei(α, t)− Ei(α, t− 1)) (5.13)

Applying these to the allocation shown in Figure 5.4 results in an expected completion time of

t̄i = 33.72 and a variance ofσ2
i = 642.44.

Unfortunately, the calculations described above are less tractable than those presented in Section

4.4.3.1. This is for two reasons. First, we now consider the impact of each individual service on

the task performance throughout the duration of the task (while we previously grouped them into

multiple service invocations that were independent from each other). Second, Equations 5.12

and 5.13 compute a sum over all time steps totzero, which is potentially a very large number

(depending on the form of the utility functionu).

Now, the first issue is an inherent feature of the more complex problem faced in this chapter and

means that the time of computing the performance characteristics for each taskrises linearly

with the number of services provisioned for that task. To address the second issue, we decided

to approximate both Equations 5.12 and 5.13 by iteratively dividing the interval[1, tzero] into

smaller segments, each time assumingEi to be linear on the segments, until a desired minimum

error is reached. Specifically, in our work, we approximate Equation 5.12until it is within 0.1

time steps of the true value, and then we calculate Equation 5.13 over the same segments. This

means that our approximations are close to the real values, but require less computational effort.

Given the success probabilitypi (Equation 5.10) of each task, the expected costc̄i (Equation

5.11), the expected completion timet̄i (Equation 5.12) and varianceσ2
i (Equation 5.13), we can

now calculate an overall success probability for the workflow, an estimate for its cost and we

again use a normal distribution to approximate the workflow duration, as described in Section

4.4.3.2. This allows us to calculate the estimated utility of an allocationα, as shown in Equation

5.7.

This concludes our discussion of thedetailed flexiblestrategy. In the following, we describe a

second strategy,fast flexible, that includes some modifications to reduce the search space and

convergence time of our provisioning approach.
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5.3.4 Fast Flexible Strategy

A potential drawback of the above strategy is the fact that it explores a large state-space by

modifying a single service at a time. This may take a long time to converge to a good solution,

especially when there are many services in the system. To address this, we decided to sim-

plify the full flexiblestrategy and consider a coarser decision problem, similar to that discussed

in Chapter 4. Hence, rather than considering services individually, we associate three integer

values with each possible service populationPk for a given taskti:

• nk,i ∈ {0, 1, 2, . . . , |Pk|}: the number of services to invoke in parallel (0 means none are

invoked).

• wk,i ∈ {1, 2, 3, . . . , tzero}: the number of time steps to wait before invoking more services

from the same population.

• bk,i ∈ {0, 1, 2, . . . , tzero}: the number of time steps to wait before the first set of services

is invoked.

Here,nk,i andwk,i correspond toni andwi used in the previous chapter, whilebk,i is intro-

duced to allow the consumer to vary the starting times for different service populations (e.g.,

to delay the invocation of more expensive services until after cheaper services have been at-

tempted). Again, the provisioning allocation is only followed until the task has been completed

successfully. We summarise this allocation as asimplified provisioning allocation:

Definition 13 (Simplified Provisioning Allocation). A simplified provisioning allocation is a

tuple β = (n, w, b), where each component is a functionn, w, b ∈ (Z × Z) → Z, such that

n(k, i) = nk,i, w(k, i) = wk,i andb(k, i) = bk,i, as defined above.

To give an example, Figure 5.5 shows an allocation for a single taskti with three possible service

populations,P1, P2 andP3. Here, the consumer provisions two services of populationP1 in

parallel (n1,i = 2), and repeats this invocation every 20 time steps (w1,i = 20), starting as soon

as the task becomes available (b1,i = 0). When the task has not been completed successfully by

time step 30, the consumer invokes a single service of the more reliable population P2 (b2,i = 30

andn2,i = 1), repeating this every 20 time steps (w2,i = 20). Finally, at time step 70, the

consumer invokes a service of the most reliable populationP3 (b3,i = 70 andn3,i = 1), but does

this only once (settingw3,i = tzero ensures that the service will be invoked at most once).

With this simplified allocation, we define thefast flexiblestrategy as follows:

Definition 14 (Fast Flexible Strategy). A consumer following afast flexiblestrategy makes ap-

propriate decisions to provision services for its workflow. To this end, theagent finds a suitable

simplified provisioning allocation, so that the agent’s predicted profit is maximised.
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FIGURE 5.5: A simplified provisioning allocation with three service populations.

Algorithm 5.10 Fast algorithm for finding a simplified provisioning allocationβ.
1: procedure FAST-FIND-ALLOCATION(W )
2: g ← number of iterations ⊲ Pre-defined constant
3: h← number of random restarts ⊲ Pre-defined constant
4: βbest ⊲ Keeps track of best allocation found
5: ubest← 0 ⊲ Keeps track of estimated utility of best allocation found
6: for c = 1 to h do
7: β ← FAST-GENERATE-INITIAL (W ) ⊲ Generate initial allocation
8: u← ũ(CREATE-DETAILED(β)) ⊲ Estimate utility
9: nfailed← 0 ⊲ Keeps track of contiguous unsuccessful iterations

10: nall ← 0 ⊲ Keeps track of all iterations
11: repeat ⊲ Main loop
12: (nfailed, nall)← (nfailed + 1, nall + 1) ⊲ Increase counters
13: T ′ ← T ⊲ Copy set of tasks
14: while nfailed > 0 ∧ |T ′| > 0 do ⊲ No betterβ found and tasks left?
15: ti ∈ T ′ ⊲ Random choice
16: T ′ ← T ′ \ ti ⊲ Removeti
17: N ← FAST-NEIGHBOURS(β, ti) ⊲ (see Algorithm 5.8)
18: for all β′ ∈ N do ⊲ Check all neighbours
19: u′ ← ũ(CREATE-DETAILED(β′)) ⊲ Utility of β′

20: if u′ > u then ⊲ If neighbour is more promising...
21: (β, u)← (β′, u′) ⊲ ...update
22: nfailed← 0 ⊲ Reset counter
23: end if
24: end for
25: end while
26: until nfailed ≥ maxFailed ∨ nall ≥ g ⊲ Too many iterations?
27: if u > ubest then
28: (βbest, ubest)← (β, u)
29: end if
30: end for
31: return CREATE-DETAILED(βbest) ⊲ Return best allocation found
32: end procedure
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Algorithm 5.11 Allocation conversion procedure.
1: procedure CREATE-DETAILED((n, w, b))
2: α← ∅
3: for all ti ∈ T do ⊲ Consider each task
4: α(ti)← ∅
5: for all Pk ∈ {Pk ∈ P | Pk ⊆ Si} do ⊲ ...and population
6: t′ ← b(k, i) ⊲ First provision time
7: if n(k, i) > 0 then
8: P ′ ← Pk ⊲ Copy population
9: while |P ′| > 0 ∧ t′ ≤ tzero do ⊲ No services left or time exceeded?

10: cmax← min(|P ′| , n(k, i)) ⊲ How many service to provision
11: for c = 1 to cmax do
12: sx ∈ P ′ ⊲ Random choice
13: P ′ ← P ′ \ {sx} ⊲ Removesx from P ′

14: α(ti)← α(ti) ∪ {(sx, t′)} ⊲ Provisionsx

15: end for
16: t′ ← t′ + w(k, i) ⊲ Advance time
17: end while
18: end if
19: end for
20: end for
21: return α
22: end procedure

Algorithm 5.12 Fast initial allocation generation procedure.
1: procedure FAST-GENERATE-INITIAL (W )
2: (n, w, b)← (∅, ∅, ∅) ⊲ Initialiseβ
3: for all ti ∈ T do ⊲ Iterate through all tasks
4: P ′ ← {Pk ∈ P | Pk ⊆ Si ∧ Pk 6= ∅} ⊲ All suitable populations
5: repeat
6: for all Pk ∈ P ′ do
7: n(k, i)← sample fromUd(0, |Pk|) ⊲ Random number of services
8: w(k, i)← sample fromUd(1, tzero) ⊲ Random waiting time
9: b(k, i)← sample fromUd(0, tzero) ⊲ Random initial waiting time

10: end for
11: until P ′ = ∅ ∨ ∃k · n(k, i) 6= 0 ⊲ Ensure a service is provisioned forti
12: end for
13: return FAST-TRUNCATE-ALLOCATION((n, w, b))
14: end procedure
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Algorithm 5.13 Procedure to remove unnecessary waiting times at start of task.
1: procedure FAST-TRUNCATE-ALLOCATION((n, w, b))
2: for all ti ∈ T do
3: K ← {k | n(k, i) > 0} ⊲ Population indices with provisioned service forti
4: bmin← mink∈K b(k, i) ⊲ Find minimum initial waiting time
5: for all k ∈ K do
6: b(k, i)← b(k, i)− bmin ⊲ Deductbmin from all initial waiting times
7: end for
8: end for
9: return (n, w, b)

10: end procedure

Algorithm 5.14 Neighbour generation procedure for a simplified allocationβ.
1: procedure FAST-NEIGHBOURS(β, ti)
2: β1, β2, . . . β12 ← β ⊲ Initialise neighboursa

3: K ← {k | Pk ∈ P ∧ Pk ⊆ Si} ⊲ Indices of all populations forti
4: k ∈ K ⊲ Pick one at random
5:

6: n1(k, i) = n1(k, i)− 1 ⊲ Decreasenk,i by 1
7: n2(k, i) = n2(k, i) + 1 ⊲ Increasenk,i by 1
8: n3(k, i) = sampled fromUd(0, n3(k, i)− 2) ⊲ Decreasenk,i randomly
9: n4(k, i) = sampled fromUd(n4(k, i) + 2, |Pk|) ⊲ Increasenk,i randomly

10:

11: w5(k, i) = w5(k, i)− 1 ⊲ Decreasewk,i by 1
12: w6(k, i) = w6(k, i) + 1 ⊲ Increasewk,i by 1
13: w7(k, i) = sampled fromUd(1, w7(k, i)− 2) ⊲ Decreasewk,i randomly
14: w8(k, i) = sampled fromUd(w8(k, i) + 2, tzero) ⊲ Increasewk,i randomly
15:

16: b9(k, i) = b9(k, i)− 1 ⊲ Decreasebk,i by 1
17: b10(k, i) = b10(k, i) + 1 ⊲ Increasebk,i by 1
18: b11(k, i) = sampled fromUd(0, b11(k, i)− 2) ⊲ Decreasebk,i randomly
19: b12(k, i) = sampled fromUd(b12(k, i) + 2, tzero) ⊲ Increasebk,i randomly
20:

21: for j = 1 to 12 do
22: βj ← FAST-TRUNCATE-ALLOCATION(βj(ti)) ⊲ Truncate new allocation
23: end for
24:

25: return {β1, β2, . . . , β12} ⊲ Return all neighbours
26: end procedure

aHere, we use(nx, wx, bx) to denote the components ofβx. Hence,nx(k, i) is the number of parallel services
of populationPk, provisioned for taskti by allocationβx.
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To implement this strategy, we again use a local search, as shown in Algorithm5.10. This is

mostly identical to thedetailed flexiblestrategy, but includes a number of minor differences.

First, as we are interested in reducing the overall time to find a good solution, we exploit the

anytimeproperty of our local search and terminate its main loop (lines 11–26) afterg iterations.

However, as this may result in terminating the algorithm before it is was able to reach a good so-

lution, we performh random restarts and use the best solution. Here, bothg andh are constants

defined by the user to balance the speed of obtaining a solution with its quality8.

Furthermore, thefast flexiblestrategy now operates on a simplified provisioning allocation as its

candidate solution, but converts this to a detailed provisioning allocation to estimate its utility

and to store its final allocation (using the CREATE-DETAILED procedure shown in Algorithm

5.11). The procedure to generate an initial solution has also been adaptedand now selects a

random allocation for eachnk,i, wk,i andbk,i (using the FAST-GENERATE-INITIAL procedure

shown in Algorithm 5.12).

Similarly, new neighbours are created by randomly varyingnk,i, wk,i andbk,i for a particular

population and task in unit and random steps (as described by the FAST-NEIGHBOURSproce-

dure in Algorithm 5.14). As for thedetailed flexiblestrategy, all allocations are altered so that

at least one service is invoked immediately when the task becomes available (using the FAST-

TRUNCATE-ALLOCATION procedure in Algorithm 5.13). Finally, because the output of the

FAST-GENERATE-INITIAL procedure is a detailed provisioning allocation, the basic consumer

algorithm for thefast flexibleis identical to that of thedetailed flexible(Algorithm 5.9).

Before proceeding to conduct a detailed empirical evaluation of both strategies presented so far,

we briefly return to the bioinformatics workflow introduced in Section 3.5 and show how the

detailed flexiblestrategy provisions it when there are heterogeneous services.

5.3.5 Illustrative Example

To illustrate the approach developed in this chapter, we again use the bioinformatics workflow

shown in Figure 3.6, but now assume that there are several heterogeneous populations that satisfy

each service type. To this end, we include populations with the same performance characteris-

tics as those discussed in Section 4.1, as well as two additional populations foreach type (see

Table 5.2). Generally, we have chosen these to offer certain trade-offs compared to the original

population — e.g., services inP1 are more reliable and faster than those inP0, but also three

times as expensive, while services inP22 are slower but also more reliable than those inP21.

As the overall mechanism of the strategies is similar to that in the previous chapter, we only de-

scribe the final allocations of thedetailed flexiblestrategy9. In more detail, Figure 5.6 shows the

8We useg = 10 · |T | andh = 5, because these values lead to good results in a variety of environments.
9We do not treat thefast flexiblestrategy here, as it behaves in a similar manner as thedetailed flexible.
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detailed provisioning allocations10 that the local search procedure of thedetailed flexiblestrat-

egy found during two example runs with the same utility functions as first described in Section

3.5 (onenormalscenario with a four-hour deadline, and oneurgentscenario with a 150-minute

deadline). The respective cumulative success probabilities of each task, as given byEi(α, t) in

Equation 5.9, are shown in Figure 5.7. Finally, Figure 5.3 summarises the performance param-

eters of all tasks and the overall workflow, given the two allocations.

Now, the allocations in Figure 5.6 illustrate some general trends of the strategy. First, we notice

that all allocations include some redundancy, which is usually achieved by provisioning multiple

services in series, but also frequently by provisioning several services in parallel (e.g., for task

t1 in the normal case, which is started by invoking three services of the relatively slow and

unreliable populationP5 at the same time). Next, the strategy normally relies on several service

populations throughout the execution of a task. For example, taskt3 is started in both cases

by invoking cheaper services fromP10 first, but as these run out, the strategy switches over to

services fromP9 to continue executing the task. Similarly, for taskt6, the strategy provisions

services fromP18 andP20 in parallel, as the latter is very cheap, but still has a small chance of

success.

Finally, it is clear that the strategy also adapts appropriately to changing deadlines and utility

values. Comparing the allocations for the normal workflow with its urgent counterpart, many

tasks in the latter case are provisioned with higher levels of redundancy. For example, rather

than the single service provisioned initially fort7 in the normal case, the strategy immediately

provisions two services in parallel, followed soon by a third when the workflow is urgent. This

increases the probability of success and also shortens the completion time of the task, as is evi-

dent by the cumulative success probability over time, shown in Figure 5.7. For similar reasons,

the intervals between successive service invocations fort3 are shortened in the urgent case. In

some cases, the strategy even changes the populations it relies on as the workflow becomes

more urgent and valuable. For example, for taskst1, t2 andt6, it initially provisions services

from populations that were not used at all before. These are more expensive and more reliable

services that are better suited for the high value and tight deadline of the urgent workflow.

Overall, this flexible adaptation is summarised both by the cumulative success probabilities in

Figure 5.7, which rise more quickly in the urgent case, and by the overall characteristics in Table

5.3, where tasks are generally more expensive but also much quicker.

In the following section, we evaluate our strategies over a range of settings.

10For brevity, these allocations are only shown to time step 150, but while the strategy provisioned further services
at later times, these have little impact on the results for each task.



Chapter 5 Service Provisioning with Heterogeneous Providers 127

Service Pop. Fail. Cost Num. Duration Mean Var.
Prob. ($) (min.)

BaseCall P0 0.2 1 20 Gamma(1.5,2) 3 6
(t0) P1 0.1 3 10 Gamma(1,2) 2 4

P2 0.1 1 1 Gamma(1,2) 2 4
GeneAssemble P3 0.1 5 25 Gamma(5,2) 10 20
(t1) P4 0 10 1 Gamma(5,2) 10 20

P5 0.3 1 10 Gamma(10,2) 20 40
Blast P6 0.3 2 50 Gamma(5,3) 15 45
(t2) P7 0.8 0.1 50 Gamma(10,10) 100 1000

P8 0.05 10 5 Gamma(2,1) 2 2
LookUp P9 0.5 5 10 Gamma(1.5,1.5) 2.25 3.375
(t3) P10 0.5 4 2 Gamma(1.5,1.5) 2.25 3.375

P11 0.75 5 10 Gamma(0.5,0.5) 0.25 0.125
Render P12 0.1 10 25 Gamma(30,3) 90 270
(t4, t7) P13 0.01 100 5 Gamma(20,2) 40 80

P14 0.9 1 25 Gamma(30,3) 90 270
Translate P15 0.7 0.5 50 Gamma(1,1) 1 1
(t5) P16 0.7 0.1 50 Gamma(10,2) 20 40

P17 0 25 10 Gamma(1,1) 1 1
Fold P18 0.2 10 5 Gamma(3,30) 90 2700
(t6) P19 0.05 50 1 Gamma(3,5) 15 75

P20 0.75 1 1 Gamma(50,2) 100 200
Print P21 0.2 2 20 Gamma(2,3) 6 18
(t8) P22 0.05 2 10 Gamma(5,5) 25 125

P23 0.9 0.1 30 Gamma(2,3) 6 18

TABLE 5.2: Service types used in the example workflow.

Task Success Cost Mean Variance Utility
Prob. Duration

Non-Urgent Workflow(tmax = 240, δ = 1, umax = 150)
t0 1.00 1.22 3.23 9.16
t1 1.00 3.13 17.94 51.76
t2 1.00 2.70 41.71 3347.25
t3 1.00 8.50 28.93 1745.16
t4 1.00 11.24 106.06 2586.45
t5 1.00 2.06 3.13 7.46
t6 0.99 22.33 72.80 1851.81
t7 0.99 11.79 100.77 1326.09
t8 1.00 2.41 6.00 25.04
Overall 0.98 65.26 203.87 3271.32 73.25

Urgent Workflow(tmax = 150, δ = 20, umax = 1000)
t0 1.00 2.73 2.24 1.94
t1 1.00 10.00 10.50 20.70
t2 1.00 10.14 4.75 148.28
t3 1.00 8.61 11.98 281.14
t4 1.00 21.14 83.86 273.00
t5 1.00 2.74 1.92 1.46
t6 1.00 55.37 18.51 269.73
t7 1.00 30.18 80.16 152.04
t8 1.00 3.48 4.16 9.26
Overall 1.00 144.39 117.49 455.14 843.54

TABLE 5.3: Finally provisioned workflows using thedetailed flexiblestrategy.
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5.4 Empirical Evaluation

In this section, we investigate whether our strategies can achieve significant improvements over

currently prevalent approaches in environments where services are heterogeneous and unreli-

able, and we compare our two strategies (detailedandfast flexible) to each other. In the follow-

ing, we first describe our experimental setup and then report our results.

5.4.1 Experimental Setup

To test the performance of our strategies, we simulate a service-oriented system in a similar

manner as described in Section 4.5.1, but now assume there are several heterogeneous service

populations for the different tasks of a workflow. More specifically, Table 5.4 lists a number of

controlled variables and distributions that we use in this section to generate services and work-

flows. As in the previous chapter, the main variable we vary throughout our experiments is

theaverage failure probabilityof services in the system (denoted asΦ). This allows us to test

our strategies in the presence of varying degrees of unreliability. All other variables given in the

table are kept static throughout our experiments, both for consistency and to allow a fair compar-

ison between environments with different failure probabilities11. As in the previous chapter, we

obtain statistical significance by repeating all experiments 1000 times with new randomly gen-

erated services and workflows, and carry out appropriate statistical tests and ANOVA at the 95%

confidence level (for larger workflows, we occasionally carry out fewer repetitions, as indicated

in the text).

In more detail, we first generate five service types,T = {T1, T2, T3, T4, T5}, and assign an

average cost, duration shape and scale to each12, which are drawn from the respective continuous

uniform distributions given in Table 5.4. As in Section 4.5.6 of the previous chapter, when

0 < Φ < 1, we also add some variance to the failure probabilities of different servicetypes by

assigning a failure probability to each type that is drawn from a beta distribution with a mean

equal toΦ and a variance equal to 0.01 (theinter-type failure variance). This gives us the broad

characteristics of different services types in our simulated environment. To give an example,

Table 5.5 shows a set of randomly generated service types with overallΦ = 0.5, demonstrating

how this generation process results in service types with highly varying characteristics. For

example,T3 is cheap and slow with a mean duration of 27.32, whileT4 is more than three times

as expensive but has a mean duration of only 2.77.

As we are mainly interested in heterogeneitywithin service types in this chapter, we next gen-

erate a number of service populations for each of the five service types.More specifically, for

each type, we create a number of service populations equal to an integer drawn from the discrete

11The values in Table 5.4 were chosen as a plausible workflow scenario. We have carried out a number of ex-
periments with other environments and workflows, and observed the same broad trends as those reported in this
chapter.

12As before, these represent the parametersk andθ of a gamma distribution.
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Variable Value

Environmental Variables
Average Failure Probability (Φ) varied
Number of Types 5
Populations Per Type Ud(3, 10)
Services Per Population Ud(1, 100)
Average Type Cost Uc(1, 10)
Average Duration Shape (k) Uc(1, 10)
Average Duration Scale (θ) Uc(1, 5)
Inter-Type Failure Variance 0.01
Intra-Type Failure Variance 0.005
Intra-Type Variance 0.05

Workflow Variables
Workflow Length 10
Workflow Parallelism 0.25
Deadline (tmax) 100
Maximum Utility (umax) 1000
Penalty (δ) 50

TABLE 5.4: Controlled variables

Type Cost Fail. Gamma Gamma
Prob. Shape Scale

T1 7.57 0.55 5.45 4.19
T2 8.06 0.42 3.14 2.47
T3 2.53 0.40 6.60 4.14
T4 8.63 0.49 2.59 1.07
T5 4.12 0.58 4.88 1.78

TABLE 5.5: Example of randomly generated services types (withΦ = 0.5).

uniform distributionUd(3, 10), and populate each of these with a number of services drawn

fromUd(1, 100). We then use the type-specific characteristics determined above to furtherchar-

acterise each population. To this end, we draw the failure probability for a population from a

beta distribution with a mean equal to the type-specific failure probability and a variance equal

to 0.005 (theintra-type failure variance). Furthermore, we determine the service cost of each

population as the product2 ·y ·z, wherey is the type-specific average cost andz is sampled from

a beta distribution with mean 0.5 and variance 0.05 (theintra-type variance). This is repeated

for the duration parameters (resamplingz for each). To give an example, Table 5.6 shows some

randomly generated populations forT3 andT4 from Table 5.5. Here, it is clear that services of

typeT3 are generally cheaper and slower than those of typeT4 (as they are based on the over-

all type characteristics), but there is still considerable heterogeneity between populations of the

same type. For example, services inPi are particularly cheap, but much slower than the more

expensive services fromPe.

Finally, workflows always consist of 10 tasks, with a parallelism of 0.25, and we defineu(t)

by settingtmax = 100, umax = 1000 and δ = 50. The matching functionτ is created by

mapping each task to the services of a randomly chosen service type. This process ensures
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Popu- Type Num. of Cost Fail. Gamma Gamma
lation Services Prob. Shape Scale
Pa T3 76 2.38 0.43 8.67 5.79
Pb T3 8 3.44 0.33 6.99 2.91
Pc T3 87 2.82 0.48 6.86 2.82
Pd T3 61 2.90 0.45 4.60 4.05
Pe T4 52 11.52 0.50 0.39 0.99
Pf T4 63 13.60 0.50 4.03 1.19
Pg T4 58 8.12 0.36 4.61 0.66
Ph T4 59 5.90 0.47 0.70 0.88
Pi T4 18 3.77 0.43 1.98 0.83
Pj T4 28 10.72 0.47 4.52 1.08

TABLE 5.6: Example of randomly generated populations (based on the types in Table 5.5).

that our strategies are tested across a large spectrum of randomly generated environments, with

considerable heterogeneity across service types and within the populations of a given type. To

evaluate our strategies, we compare them to the following seven benchmark strategies:

• näıve: As discussed in Section 4.2, this strategy provisions a single service for each task

in the workflow (chosen randomly from all matching services).

• hybrid(n,w): As discussed in Section 4.3.3, this strategy provisions multiple services for

each task in the workflow, but does so in a fixed manner without explicitly considering

the service parameters. Specifically, thehybrid(n,w)strategy provisions sets ofn random

service providers in parallel, everyw time-steps after a task becomes available.

• local: For each task, this strategy selects the service that maximises a weighted sum of its

performance characteristics, as described in Section 5.2.1.

• adaptive local(n,w): Similar to the above, this strategy selects then best services and

repeats this provisioning everyw time steps until the task is completed.

• global: This strategy provisions a single service for each workflow task, in order to max-

imise a weighted sum of aggregated performance characteristics, as discussed in Section

5.2.2. We implemented this strategy using the ILOG CPLEX optimisation package.

• adaptive global(w): As above, but this strategy treats services as failed when they takew

time steps or longer, and re-provisions them accordingly.

• best hybrid/local/global: To approximate the upper bound achievable by any of the pa-

rameterised strategies (hybrid(n,w), adaptive local(n,w)andadaptive global(w)), we test

a large range of possible parameters13 and then select the best performing strategy for a

given environment (i.e., for eachΦ value).

13To limit the time required to compute this upper bound, we test each(n, w) ∈ {1, 2, . . . , 19, 20} ×
{1, 2, 3, 4, 5, 10, 15, . . . , 45, 50, 60, . . . , 90, 100, 150,∞}. Although this means we that we do not testall pos-
sible parameters, we observed that the strategies do not generally achieve significantly different results between
these intervals.
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5.4.2 Hypotheses

During our empirical investigation, we are interested in four hypotheses. The first seeks to

establish whether simple, non-flexible redundancy is potentially beneficial inthe environments

we consider. The last three evaluate our flexible strategies, both by comparing them to the

non-flexible approaches and to each other.

Hypothesis5. Adopting thehybrid(n,w)strategy can lead to a significant improvement in the

average profit over thenäıvestrategy, when appropriate values forn andw are chosen.

Hypothesis6. Thedetailed flexiblestrategy achieves a higher average profit than thehybrid(n,w)

strategy over all environments considered, and for alln andw.

Hypothesis7. The detailed flexiblestrategy achieves a higher average profit than any non-

adaptive QoS-based strategy over all environments considered.

Hypothesis8. Thedetailed flexiblestrategy achieves a higher average profit than any adaptive

QoS-based strategy.

Hypothesis9. The fast flexiblestrategy finds a solution in less time than thedetailed flexible

strategy.

Hypothesis10. Thefast flexiblestrategy does not achieve a significantly different average profit

from thedetailed flexiblestrategy.

In the following sections, we consider each of the above hypotheses separately.

5.4.3 Hybrid Results (Hypothesis 5)

During our first set of experiments, we were interested in evaluating the performance of the

hybrid(n,w)strategy, in order to ascertain whether redundant provisioning could be used to deal

with uncertain service providers (Hypothesis 5). To examine this, we compared the performance

of the näıve strategy to thehybrid(n,w)strategy with various parameter choices forn andw.

Figure 5.8 shows our results in four distinct environments, with varying values ofΦ. More

specifically, Figure 5.8(a) shows an environment where services never fail (Φ = 0.0), then

Figures 5.8(b) and 5.8(c) show environments where services increasingly fail (Φ = 0.3 and

Φ = 0.6), while Figure 5.8(d) shows the case where services are guaranteed tofail (Φ = 1.0). In

these figures, thenäıvestrategy is marked by a circle (the left-most point withn = 1, w =∞).

It is clear that there are choices forn andw that significantly outperform thenäıve strategy.

However, the figures show that the best-performing strategies are different in all environments.

For example, when services never fail, the highest average profit (727.83± 8.96) is achieved by

hybrid(3,60). When the failure probability rises to0.3, hybrid(5,45)obtains the highest profit

(594.41 ± 19.20), and atΦ = 0.6, the best performing strategy ishybrid(8,30)with a profit of

315.07 ± 25.91. This is because the higher level of redundancy allows the consumer to cope

better with uncertainty, but incurs unnecessary costs when services are reliable. Similar to our
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results in the previous chapter, this indicates the need for a more flexible wayof provisioning

services than the static method employed by the hybrid strategy, and it provides us with a basic

benchmark to evaluate our work against.

Finally, Figure 5.9 compares some representativehybrid(n,w)strategies to thenäıve strategy

over a range of environments with different failure probabilities. It is obvious here that thenäıve

strategy is outperformed14 by other strategies, thus validating Hypothesis 5.

5.4.4 Flexible Provisioning Results (Hypothesis 6)

Next, we compared the performance of our flexible approach to thehybrid(n,w)strategy over

a range of environments (Hypothesis 6). To this end, Figure 5.10 shows the average profit

of the detailed flexiblestrategy and thebest hybridstrategy, which represents an upper bound

achievable by anyhybrid(n,w)strategy. For reference, this graph also includes thenäıvestrategy,

which does not address uncertainty or service heterogeneity in any way.

Here we note that thebest hybridstrategy performs well in most environments, with its profit

decreasing gradually as the average failure probability rises. It only starts making a small net

loss atΦ = 0.8 and beyond (at which point it is equivalant to thenäıvestrategy, as this invokes

the smallest number of services). However, it should be noted that thebest hybridstrategy is a

purely speculative approach that is based on retrospectively selectingthe best parameter forn

andw, and so it is not a viable option in realistic scenarios.

Now, thedetailed flexiblestrategy performs even better than thebest hybridstrategy, and does

so consistently over all values forΦ we tested. When there is no uncertainty in the system, it

achieves almost maximum utility as it is able to select the cheapest providers available, and thus

obtains an average profit that is around twice as high as thenäıve approach. Beyond this, the

average profit decreases slowly, and continues to make a positive profit even whenΦ = 0.8 and

Φ = 0.9, at which point all other strategies make an overall loss. AtΦ = 1.0, the strategy

makes neither a loss nor a profit, as it recognises the workflow as infeasible and thus makes no

investments.

The good performance of thedetailed flexiblestrategy is due to two reasons. First, the strategy

is able to flexibly provision multiple services redundantly for its tasks when there is uncertainty,

and it is able to re-provision services when they have apparently failed. In this way it operates in

a similar manner as thebest hybridstrategy, but uses a decision-theoretic framework and knowl-

edge about its environment to pick appropriate levels of redundancy andtime intervals between

invocations (rather than determining these retrospectively). Second, thedetailed flexiblestrategy

is able to exploit the heterogeneity of services (and tasks) and pick the mostsuitable services

14An ANOVA rejectsH0 that all means are equal for failure probability0.3 (F = 694.11 andp < 0.001). A
second t-test to comparenäıvewith hybrid(10,∞) (for example)rejectsH0 that both strategies achieve the same net
profit in favour ofHA thathybrid(10,∞) achieves a higher net profit (T = 55.36 andp < 0.001).
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FIGURE 5.8: Average profit ofhybrid(n,w)andnäıvestrategies in environments with varying
values ofΦ (shading indicates profit).
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FIGURE 5.10: Performance of thedetailed flexiblestrategy.

available, or even rely on multiple services of different heterogeneous populations at the same

time.

Averaged over all values forΦ, thedetailed flexiblestrategy achieves an average net profit of

535.66 ± 8.29, while thebest hybridstrategy achieves only362.49 ± 7.74. This supports15

Hypothesis 6. For comparison, the best individual hybrid strategy we tested, fixed(5,25)(as

shown in Figure 5.9), achieves an average profit of263.4 ± 9.1, while thenäıvestrategy only

achieves48.33± 4.24.

5.4.5 Non-adaptive QoS-based Provisioning Results (Hypothesis 7)

In our next set of experiments, we considered the performance of thelocal andglobal strate-

gies. As stated by Hypothesis 7, we expected these to perform worse thanour detailed flexible

strategy, because they do not adapt to failures at all.

Figure 5.11 shows the results of these strategies (along with thenäıve and detailed flexible

strategies, for reference). Clearly, they consistently perform better than thenäıve approach,

as they provision providers based on their performance characteristics. Hence, they tend to

complete workflows faster, at a lower cost and with a higher success probability. Theglobal

strategy here performs slightly better than thelocal strategy when the failure probability is low,

because the former reasons explicitly about the overall duration with respect to the duration

constrainttzero and thus generally finishes workflows earlier. Despite this, whenΦ reaches 0.4,

both begin to make a net loss as they do not react to failures and complete onlyaround 1% of all

workflows successfully.

15A t-testrejectsH0 that thedetailed flexiblestrategy achieves the same average net profit as thebest hybrid(over
all environments) in favour ofHA thatdetailed flexibleachieves a higher net profit withT = 29.94 andp < 0.001.
Further t-tests for all individual failure probabilities confirm this result (all with p < 0.001).
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FIGURE 5.11: Performance of the non-adaptive QoS-based strategies.

It is obvious that thedetailed flexiblestrategy performs better than thelocalandglobalstrategies,

which, respectively, achieve117.18± 8.64 and100.94± 5.79. This supports16 Hypothesis 7.

5.4.6 Adaptive QoS-based Provisioning Results (Hypothesis 8)

Given the poor performance of the non-adaptive QoS-based approaches, we next investigated

how their adaptive counterparts perform. We expected these to generallyachieve a lower net

profit than ourdetailed flexiblestrategy (Hypothesis 8), as they rely on simple weighted sums to

guide the service provisioning.

Figure 5.12 shows a number of exampleadaptive local(n,w)strategies:adaptive local(2,90),

local(4,40)andlocal(11,25). We selected these particular parameters, because they are some of

best-performing strategies we tested and because they display the general trends of the strategy

as higher redundancy and shorter time-outs are introduced. Much as weobserved earlier with

the parallel(n) andserial(w) strategies, it is clear that the strategies here are well suited only

for particular environments. For example, theadaptive local(2,90)performs very well when

services always succeed, but as the failure probability rises, more aggressive strategies that

rely on higher redundancy quickly begin to outperform it. Even when the failure probability is

high, some strategies can achieve a good positive profit, but typically make alarge loss when

workflows become infeasible (this is most evident with theadaptive local(11,25)strategy, as the

failure probability rises above 0.8.

The figure also shows the hypotheticalbest localstrategy. This performs very well and is clearly

better than thebest hybridstrategy from the preceding section, as it chooses services based on

their quality parameters rather than randomly. It also approaches the performance of thedetailed

flexiblestrategy. In fact, although thedetailed flexibleachieves a higher average profit than the

16A t-testrejectsH0 that thedetailed flexiblestrategy achieves the same average net profit as thelocal strategy in
favour ofHA thatdetailed flexibleachieves a higher net profit withT = 84.33 andp < 0.001. The corresponding
H0 comparing thedetailed flexiblestrategy and theglobal is rejected withT = 68.54 andp < 0.001.
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FIGURE 5.12: Performance of the adaptive local QoS-based strategies.

best localover all failure probabilities, the difference is not statistically significant17 atΦ = 0.4

andΦ = 0.5. However, as thebest localis a purely speculative strategy, the results confirm that

ourdetailed flexiblestrategy adopts suitable levels of redundancy for its respective environment.

Similarly, the shape of the graph suggests that thedetailed flexiblestrategy has a higher ad-

vantage over thebest localstrategy towards the extremes ofΦ. We believe this is because our

strategy increasingly relies on provisioning allocations that cannot be expressed within the pa-

rameters of anyadaptive local(n,w)strategy. In particular, whenΦ is high, our strategy mixes

different service populations and is generally more sensitive to small differences between the

performance characteristics of different service types. On the other hand, whenΦ is low, our

strategy typically provisions single services, followed, after some long time-out period, by a

number of redundant services (to ensure the task is completed).

Next, Figure 5.13 shows various representativeadaptive global(w)strategies (each experiment

was repeated 250 times due to the more time-intensive nature of the strategies).These follow

similar trends as theadaptive local(n,w)strategies — initially, the strategies with longer time

out values perform better, but as the failure probability increases, the more aggressive strategies

achieve a higher profit. As before, none of the strategies is particularly well suited for all envi-

ronments and sometimes they even incur a substantial loss as the failure probability rises. The

best globalagain provides an appropriate upper bound, which is here slightly lower than thebest

local described above. This is because the global approaches do not include explicit redundancy

and so have to rely on extremely short time out values in order to meet their deadlines.

17A t-test acceptsH0 that the net profits are equal atΦ = 0.4 andΦ = 0.5 with T = 1.27, p = 0.203 and
T = 1.75, p = 0.080, respectively. It is rejected at all other failure probabilities withp = 0.022 or less.
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FIGURE 5.13: Performance of the adaptive global QoS-based strategies.

To conclude, when averaging over all environments, thebest localstrategy achieves a profit of

482.98±8.26 and thebest globalstrategy achieves a slightly lower profit of428.13±17.04. Both

strategies are outperformed by ourdetailed flexiblestrategy (with average profit535.66± 8.29),

thus supporting18 our Hypothesis 8.

5.4.7 Fast Flexible Search Time (Hypothesis 9)

Given the promising results of thedetailed flexiblestrategy, we were interested in how it com-

pares to thefast flexiblestrategy. Due to the simplified search space, we expectedfast flexibleto

reach a solution faster (Hypothesis 9).

To investigate this, we recorded the time taken by each strategy to reach a provisioning allocation

during the experiments outlined in the previous section (these were executedon 2.2 GHz AMD

Opterons with 1.98 GB RAM). Measured over allΦ, the average time ofdetailed flexibleis

37.82± 0.51s, the average time offast flexibleis only4.82± 0.04s, thus reducing the run-time

by over 85%. This supports19 Hypothesis 9. Similarly, the respective standard deviations are

27.29 ± 0.36s (72% of the average) and1.88 ± 0.02s (39% of the average), indicating that the

time of fast flexibleis also significantly less variable. The overall better convergence time of the

fast flexiblestrategy is not surprising, as we have reduced the search space and introduced an

artificial cut-off time for its hill-climbing procedure.

18A t-test rejectsH0 that ūdetailed = ūlocal in favour ofHA that ūdetailed > ūlocal with T = 8.82 andp < 0.001.
Similarly, a t-testrejectsH0 that ūdetailed = ūglobal in favour of HA that ūdetailed > ūglobal with T = 17.73 and
p < 0.001.

19A t-testrejectsH0 that t̄fast = t̄detailed in favour ofHA that t̄fast < t̄detailedwith T = 126.56 andp < 0.001.
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FIGURE 5.14: Performance comparison offast/detailedstrategies.

5.4.8 Fast Flexible Profit (Hypothesis 10)

While taking less time to converge to a good solution, we were next interested in how the quality

of the solution obtained by thefast flexiblestrategy compares to thedetailed flexiblestrategy

(Hypothesis 10).

To compare the performance of both strategies, we recorded their average net profit in the same

environments as discussed in the preceding section. The resulting data is shown in Figure 5.14,

and it indicates that they are highly similar. In fact, when averaging over allfailure probabilities,

the average net profits are536.0±8.23 (detailed flexible) and539.0±8.03 (fast flexible). Hence,

their overall performance is not significantly different, supporting20 Hypothesis 10. This trend

continues when comparing the results individually for all values forΦ > 0.0. The only excep-

tion is atΦ = 0.0, when thedetailed flexibleslightly outperforms thefast flexiblestrategy. This

is because the former is able to provision single providers initially, but can provision multiple

providers at a later time if the single service takes unusually long. However,the difference is

minor — atΦ = 0.0, thedetailed flexiblestrategy achieves an average net profit of924.5± 6.8

while thefast flexibleachieves890.4± 9.4.

This result indicates that it is not necessary to search the full space of all possible provisioning

allocations. Rather, it is sufficient to select an appropriate number of providers to provision in

parallel as well as a time-out value after which more services are provisioned. This is because

a service consumer can generally gain little from altering the number of parallel providers or

the frequency of provisions as times passes compared to the overall gain that the introduction of

redundant services offers.
20A t-testacceptsH0 that the net profits, averaged over all environments, are equal (ūdetailed= ūfast) with T = 0.57

andp = 0.572.
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FIGURE 5.15: Performance of the adaptive local QoS-based strategies with large workflows.

5.4.9 Performance in Complex Environments

So far, we examined the performance of our strategy in environments with smallworkflows.

To investigate whether the trends shown in previous sections hold for larger workflows, we

repeated the above experiments for workflows consisting of 100 tasks, with a maximum utility

umax = 10000, deadlineumax = 1000 and penaltyδ = 50. All other parameters remain the same

except for the inter-type failure variance, which is set to 0 (otherwise, there is a high likelihood

that some types have a failure probability close to 1 even whenΦ < 1, thus making the entire

workflow infeasible). We also now generate 25 distinct service types andrepeat all experiments

250 times (due to the more complex nature of these workflows).

Figure 5.15 plots the results of several representativeadaptive local(n,w)strategies, their upper

boundbest localand our flexible strategy (due to the more complex environments and the small

difference between our strategies, we only show the results of thefast flexiblestrategy here).

The broad trends are similar as those described in Section 5.4.6. However,we now note that in

most environments, there is someadaptive local(n,w)that achieves a higher average profit than

our flexible approach. The main reason for this is that our strategy usuallychooses provisioning

allocations with few initial providers and higher redundancy after some time has passed, thus

resulting in a high task duration and variance. Although such an allocation results in a high

estimated utility (in particular due to a low overall cost), our critical path technique is slightly

inaccurate and underestimates the completion time. This inaccuracy is exacerbated in this case

by the high task duration variances, which increase the probability that tasks not on the estimated

critical path will become critical at run-time. Hence, we observed that our strategy often finishes

a short time aftertmax, thus incurring a penalty on its eventual reward. Theadaptive local(n,w)
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FIGURE 5.16: Performance of the adaptive global QoS-based strategies with large workflows.

strategies, on the other hand, almost always finish some time beforetmax and thereby achieve

the maximum utilityumax.

These results are mirrored by theadaptive globalstrategies, as shown in Figure 5.16. Here,

there are again some strategies for most environments that achieve a higherprofit than ourfast

flexiblestrategy. This is mostly for the same reasons as mentioned above, and additionally the

adaptive globalstrategies adapt dynamically to new information as it becomes available. More

specifically, the strategy frequently replans during execution and thereby takes into account the

performance of past services. Thus, it can react to services that take longer than expected (and

therefore become part of the critical path), which theflexiblestrategy does not currently do.

In conclusion, these results show that our strategy still manages to obtain a high average profit

even when services are highly uncertain. However, we noted that it is often outperformed by

hypothetical strategies that retrospectively choose time-out and redundancy parameters. This

contradicts our Hypothesis 8 as thebest localandbest globalachieve a higher average profit

than thefast flexiblestrategy.

Nevertheless, the results indicate that our strategy performs well in selecting good provisioning

allocations without the need for manually setting parameters and it typically achieves a profit

that is close to thebest localandbest globalstrategies. In more detail, thefast flexiblestrategy

achieves an average profit of6413.87± 139.35, while thebest localobtains6942.23 ± 126.94

and thebest globalachieves6598.73± 135.88.

Furthermore, while setting the best parameters forn andw in some environments results in

a higher average profit than thefast flexiblestrategy, the same parameters often perform very

badly in other scenarios (e.g., the adaptiveadaptive local(5,15)strategy performs very well at
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Variable Value

Environmental Variables
Average Failure Probability (Φ) varied
Number of Types 12
Populations Per Type Ud(3, 10)
Services Per Population Ud(1, 200)
Average Type Cost Uc(1, 80)
Average Duration Shape (k) Uc(1, 40)
Average Duration Scale (θ) Uc(1, 10)
Inter-Type Failure Variance 0.0
Intra-Type Failure Variance 0.005
Intra-Type Variance 0.05

Workflow Variables
Workflow Length 50
Workflow Parallelism 0.25
Deadline (tmax) 2000
Maximum Utility (umax) 25000
Penalty (δ) 37.5

TABLE 5.7: Controlled variables for complex environments.

Φ = 0.8, but incurs a severe loss atΦ = 0.9). Thus, our results support a weaker version of

Hypothesis 8:

Hypothesis11. Thefull flexiblestrategy achieves a higher profit (averaged over all environments

considered) than any parameterised adaptive QoS-based strategy.

Finally, as a result of observing that both the local and global strategies typically finish com-

fortably within the deadline, we believe that the scenario covered so far in this section does

not represent a particularly challenging environment, where simple strategies that do not reason

specifically about the cost of failures (both the financial cost and the additional time incurred)

can perform well. For this reason, we briefly discuss a more challenging case below.

In these experiments, we alter a number of our controlled variables, as shown in Table 5.7 to

represent a more challenging environment, where services are potentiallymore expensive (we

increase the maximum cost from 10 to 80) and service times are significantly longer and display

a higher variance than in the scenarios considered so far (we quadruple the maximum shape

and double the maximum scale parameters). We believe that thefast flexibleis more suitable

for such environments, as it is able to determine how to balance these different, possibly highly

variable qualities. Again, we repeat all experiments 250 times to obtain statisticalsignificance.

Figure 5.17 shows the performance of thefast flexibleand a number ofadaptive localstrategies

in these environments. Clearly, thefast flexiblenow outperforms all other strategies. This is due

on one hand to the more heterogeneous environment that requires the agent to carefully balance

the benefit of redundant provisioning with the associated cost. On the other hand, the more

challenging deadline (given the significantly longer service durations) causes thelocal strategies

to frequently miss the overall deadlinetmax and thus incur a penalty. In fact, the individual local
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FIGURE 5.17: Performance of the adaptive local QoS-based strategies in highly heterogeneous
environments.
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FIGURE 5.18: Performance of the adaptive global QoS-based strategies in highly heteroge-
neous environments.

strategies often incur a significant negative loss as they provision many services, but do not

complete the workflow in time.

These broad trends are mirrored by theadaptive globalstrategies shown in Figure 5.18. The

overall profit of these strategies is slightly lower than the local strategies and their overall loss at

high failure probabilities is also lower (as they explicitly reason about their budget limit and as

they do not provision redundant services). However, they are still consistently outperformed by

thefast flexiblestrategy over all failure probabilities.

Concluding this section, we have observed that there are certain environments where simple

strategies may outperform thefast flexiblestrategy. However, finding these simple strategies

is non-trivial and picking the wrong one may result in a significant loss. Furthermore, when

considering more heterogeneous environments with challenging deadlines,we found that the

flexible strategy quickly outperforms any other existing strategy. Finally, wenoted that thefast
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flexiblestrategy achieves good results throughout all environments considered, never incurs a

net loss (unlike most other strategies) and often achieves a strictly positiveprofit even when

services are highly unreliable.

Given this, in the following section, we aim to quantify how close the flexible provisioning

approach can come to highest possible overall profit.

5.4.10 Optimality of Flexible Provisioning

To examine how well thefast flexiblestrategy performs compared to the optimal, we carried

out another set of experiments. However, due to the inherent difficulty of computing an optimal

solution, we decided to benchmark the strategy against an upper bound ofthe optimal that can

be efficiently calculated. More specifically, we simplify the provisioning problem in two ways

that significantly reduce the complexity of finding an optimal solution. First, we assume that

there is no time constraint on the completion of a workflow (i.e.,u(t) = umax, regardless of

the eventual completion timet). Second, we consider only linear workflows with parallelism 0.

These two assumptions allow us to concentrate only on balancing service failure probabilities

and their costs, and to disregard the complexities of interleaving parallel tasks. Clearly, an

optimal strategy for this simplified problem represents an upper bound for the corresponding

optimal strategy in an environment with some deadline and penalty.

Now, given these assumptions, it is straight-forward to determine an optimal strategy and cal-

culate its expected utility. First, we exploit the simple workflow structure and start with the

last task in the workflow (t|T |). Clearly, the optimal strategy will invoke services that max-

imise the expected utility of that task, regardless of the services invoked forearlier tasks. We

also note that a servicesi will eventually be invoked by the optimal strategy if and only if

the task has not been completed yet and the expected utility of invokingsi is positive (i.e.,

(1− f(si)) · umax− c(si) > 0). Finally, if several services are invoked by the optimal strategy,

it will always invoke them in descending order of the ratioη(si) = 1−f(si)
c(si)

(it is easy to show

that doing otherwise would result in a lower expected utility). This means that we can quickly

determine the optimal strategy for the last workflow task by ordering all services in descending

order ofη(si) and discarding those where(1 − f(si)) · umax− c(si) ≤ 0. By constructing a

simple decision tree from this, we can calculate the expected utility for that task.Given this

utility, we can then repeat the process iteratively for all preceding workflow tasks until we have

an overall workflow strategy and an associated expected utility.

This procedure is summarised in Algorithm 5.15, which iterates over the workflow tasks, as

described above, in the main loop in lines 4–16. For each task, it computes a task-specific

expected utility value,̄u′, by considering the contribution of each service that will be invoked,

from last to first (as calculated in line 10, this depends on the cost, the probability of success

and the utility the agent expects to gain from completing the task,ū). This task-specific utility
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Algorithm 5.15 Upper bound on the expected utility of the optimal strategy.
1: procedure COMPUTE-UPPER-BOUND(W )
2: ū← umax ⊲ Start with maximum utility
3: i← |T | ⊲ Begin from last task
4: while i > 0 do
5: ū′ ← 0 ⊲ Utility so far for this task
6: S′

i ← Si ⊲ Set of suitable service instances
7: while |S′

i| > 0 do ⊲ Consider one service at a time
8: s← argmaxsj∈S′

i
−η(si) ⊲ Pick next service to consider

9: if η(si) · ū > 1 then ⊲ If feasible to invoke this...
10: ū′ ← (1− f(s)) · ū− c(s) + f(s) · ū′ ⊲ ...include its impact on̄u′

11: end if
12: S′

i ← S′
i \ {s} ⊲ Remove it fromS′

i

13: end while
14: ū← ū′

15: i← i− 1 ⊲ Continue with predecessor
16: end while return ū ⊲ Return final utility
17: end procedure

is then used as̄u for the preceding task and the process is repeated until a final expectedutility

value is returned in line 16.

Now, using this procedure, we can calculate an upper bound for the average profit of the optimal

provisioning strategy (on a sequential workflow). Generally, we observed that this upper bound

is very high compared to the performance of any of the other strategies we have tested. This is

most likely due to the deadline, which presents a significant constraint and necessitates the more

expensive parallel provisioning of services. To evaluate the effect of this constraint in more

detail and to compare the performance of our strategy to the optimal as its environment becomes

increasingly similar to the simplifying assumptions we made above, we tested our strategy on

workflows with varying deadlines.

In more detail, we adopt mostly the same experimental conditions as described inSection 5.4.1,

but this time we consider a workflow consisting of 25 sequential tasks withumax = 25000 and

carry out 500 repetitions of all experiments. We also draw the average type cost from a new

distribution,Uc(5, 100), in order to place slightly greater emphasis on service costs (rather than

the duration). As in the previous section, we set the inter-type variance to 0to avoid infeasible

workflows.

Figure 5.19 shows the results of our experiments as we gradually increasethe workflow deadline

(the upper boundplotted on the graph is the average expected utility obtained by Algorithm

5.15, rather than the result of any experimental run). Here, we see clearly that the deadline

has a considerable influence on the performance of the strategy. Whentmax = 125, the fast

flexiblestrategy achieves barely any positive utility. This is because it has to rely onexpensive

parallel redundancy to complete its workflows within the deadline and this is often infeasible in

the environment considered here (in fact, even whenΦ = 0.0, the strategy ignores over 90% of

its workflows).
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FIGURE 5.19: Performance comparison of thefast flexiblestrategy with upper bound on opti-
mal strategy.

Strategy Deadline Average Profit % of Upper Bound

upper bound ∞ 705.63± 18.20 100.00

fast flexible 125 14.32± 3.21 2.03± 0.46
fast flexible 250 146.39± 10.84 20.75± 1.63
fast flexible 500 399.53± 16.37 56.62± 2.74
fast flexible 1000 551.47± 17.93 78.15± 3.24
fast flexible 100000 620.69± 16.98 87.96± 3.31

TABLE 5.8: Results of thefast flexiblestrategy compared to an upper bound of the optimal.

As we increase the deadline, thefast flexiblestrategy begins to gradually perform better, as it

can rely more on the cheaper serial provisioning. In fact, the largertmax, the more similar the

performance of thefast flexiblestrategy becomes to the upper bound of the optimal. When

tmax = 100000, the deadline no longer presents a significant constraint on the consumerand so

that environment is most similar to the assumptions we made in calculating the upper bound.

Here, thefast flexiblestrategy achieves an overall average profit that is87.96 ± 3.31% of the

upper bound (the complete results are shown in Table 5.8). This is a promisingresult that shows

thefast flexiblestrategy comes close to the optimal despite relying on a simple local search. We

believe the remaining discrepancy in average profit is caused by our early termination of the

hill-climbing procedure and by encountering local maxima. Hence, in the following chapter, we

will consider a more stochastic search technique that is able to escape suchlocal maxima.

5.5 Summary

In this chapter, we looked at environments where a single workflow task maybe satisfied by a

large number of highly heterogeneous services. Within this context, we first extended our system

model and then proposed a number of modifications to theflexiblestrategy from Chapter 4 to

deal with heterogeneous services. These modifications allowed us to address a more complex
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problem, but also resulted in a strategy (thedetailed flexiblestrategy) that explores a larger

decision space than our previous strategy. To speed up the search fora good solution, we then

proposed afast flexiblestrategy that considers a smaller solution space and also terminates its

search after a fixed number of iterations.

In empirical experiments, we showed that both our modified flexible approaches outperfom cur-

rently prevalent provisioning approaches in most environments, and thatthey achieve a positive

profit even when services fail in 80-90% of cases (at which point all other strategies makes a

loss). Thus, in addition to meeting the same requirements as in the previous chapter, the work

presented in this chapter additionally meets our research requirement to deal with heterogeneous

services (Requirement M.4).

Together, Chapters 4 and 5 present a set of tools that the designer of aservice-consuming agent

can use in environments where services are invoked on demand. The work in the former chapter

is particularly suitable for cases where there is either little difference in the services that satisfy a

given task, or when there is considerable uncertainty about this difference. In such systems, our

approach determineshow manyservices to provision andwhento re-provision services to deal

with failures, using fast calculations. The work presented in the latter chapter expands on this

and also answers the question ofwhich services to provision when there are many competing

candidates offering different levels of quality.

However, so far we have considered only a simple market mechanism, where services are always

available on demand and at fixed prices. In the following chapter, we will extend this and look

into systems where service availability changes over time (Requirement M.5), where prices are

uncertain (Requirement M.2.b), and where the consumer may reach advance agreements with

providers, possibly in return for discounted or more reliable services (Requirement M.3.b).



Chapter 6

Service Provisioning with Advance

Agreements

So far, we have looked at service-oriented systems where providers offer services without the

need for explicit contract negotiations, and where the population of available services is static

throughout the execution of a workflow. As discussed in Chapter 2, this applies to many current

service-based systems, in which services are advertised on a registry and accessed by consumers

on demand. However, there is increasing interest in building systems wherethe provision of

services is negotiated and an explicit service-level agreement, or contract, is agreed upon in

advance (as motivated in Section 2.1.5).

To this end, in this chapter, we address such systems by first extending our system model to

include service negotiations using a market-based mechanism (Section 6.1).This is followed,

in Section 6.2, by a discussion of a novel provisioning strategy. In contrast to the approaches

presented in previous chapters, this strategy does not initially provision specific services for all

workflow tasks, but rather takes high-level decisions about how and when to provision work-

flow tasks during execution. These are then constantly adapted and refined during execution as

the agent interacts with the dynamic market. Finally, we evaluate this strategy in Section 6.3.

Hence, we deal with our last outstanding model requirements to address systems where prices

are not fixed (Requirement M.2.b), where advance agreements are entered into with providers

(Requirement M.3.b) and where service populations are dynamic (Requirement M.5). In so do-

ing, we also show how the agent can adapt its decisions throughout execution as new information

becomes available (Requirement A.4).

6.1 Model Extension

To address more dynamic systems with flexible pricing and advance agreements, we substan-

tially modify our model in this section. Most importantly, we now include a negotiationprocess,

149
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Term Description
s(o) : T Theservice typeoffered (equal to the requested type).
t(o) : N Thestarting timeat which the service can be invoked (equal to the re-

quested time).
cr(o) : R Thereservation cost, which must be paid immediately by the consumer

when entering the contract.
ce(o) : R The execution cost, which is the remaining cost (after the reservation

cost) that the consumer must pay when invoking the service.
d(o) : Z

+ Theduration, i.e., the number of time steps it will take for the service to
complete.

δf (o) : R Thefailure penalty, which is paid to the consumer when the service fails
to complete successfully within the agreed duration.

TABLE 6.1: Service contract terms.

whereby the consumer and provider agree on the terms of a provided service before it is invoked.

To this end, we use the contract-net protocol, as it is simple and has been widely used in dis-

tributed multi-agent systems (see Section 2.2.2).

Hence, rather than having access to static performance information aboutservice instances,

the consumer interacts with a service market to discover the current availability and quality of

services. To this end, at a given time step, it may send acall for proposals, ϕ : T × N, to

the service market to request a particular type of service at a certain time step. For example,

ϕ = (T1, 2) indicates that the consumer requires a service of typeT1 to start at time step2.

In response to each call, the market returns a set ofoffers, Cϕ ⊆ C. These are potential contracts

that the service providers participating in the system are willing to offer to the consumer (C is the

set of all offers). Each offero ∈ Cϕ contains a number of terms, as given in Table 6.1. Although

based on the performance characteristics introduced in Section 3.3, thereare some differences

to our previous model. Specifically, a service instance is now offered at aspecific time step only

(t(o)) and we use a more expressive cost model, which splits the investment of theconsumer into

two parts — an initial reservation cost (cr(o)) and an execution cost (ce(o)). This cost model

is more realistic in the contracting scenario we consider in this chapter, because it requires the

consumer to pay the provider for its commitment to execute the service at a later time, but it

does not necessarily require the full cost of the service if the consumerlater changes its mind1.

Furthermore, we also extend our model to include a penalty,δf (o) : R, that is payable by the

provider upon service failure and that constitutes a compensation to the consumer (or simply a

refund of the service costs ifδf (o) = cr(o) + ce(o)).

This process of requesting services and receiving responses may berepeated arbitrarily often

during a given time step for different time steps or service types (we assumethat the offers

returned for two requests with the same service types and times are always identical during a

particular time step). Furthermore, we assume that the consumer has some information about

the probabilities of the possible outcomes of each offer, as shown in Table 6.2 (in practice, these

1As outlined in Section 2.2.2, such leveled payments are common in related work (Sandholm and Lesser (1996);
Collins et al. (2001)).
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Probability Description
Ps(o) : [0, 1] Thesuccess probabilityis the probability that the service will be com-

pleted successfully within the agreed duration.
Pf (o) : [0, 1] The failure probability is the probability that the service will not be

completed successfully within the agreed duration and that the provider
will pay the failure penaltyδf (o).

Pd(o) : [0, 1] Thedefection probabilityis the probability that the service will not be
completed successfully and that the provider will also fail to pay the
agreed penaltyδf (o) (e.g., if the provider leaves the market, maliciously
disregards the market rules or if the service simply crashes).

TABLE 6.2: Performance information (outcome probabilities).

may be obtained through a trust and reputation mechanism, or through previous interactions).

Together, these probabilities describe all possible, mutually exclusive outcomes of an offer, such

thatPs(o) + Pf (o) + Pd(o) = 1. As in previous chapters, we assume that the outcomes of any

two distinct offers are independent.

During the same time step as receiving offers from the market, the consumer may provision2

any number (or none) of these offers for the tasks of its workflow. To do this, it sends a single

acknowledgement to the market,a : Ct̂ → T , that maps offers to the corresponding tasks of

the workflow, whereCt̂ is the set of all offers received during the time step. At this point, the

consumer must pay the reservation costs of all provisioned offers, andany offers not in the

domain ofa are implicitly assumed to be rejected. We also assume that the consumer may

provision several offers for a single task (as we did previously).

At the end of each time step, the consumer may invoke its provisioned offers (including those

provisioned during previous time steps), provided that all relevant precedence constraints given

byE have been satisfied and that the agreed starting time matches the current time. The outcome

of the invocation is one of the outcomes listed in Table 6.2, but we assume that it isnot known

until the beginning of the time step at which the service is scheduled to end (e.g.,if invoking

offer o with t(o) = 15 andd(o) = 10, the consumer will only be notified of the outcome at the

beginning of time stept = 25).

The extended system model described in this section meets the remaining model requirements

outlined in Section 1.4.1. In particular, we now consider flexible service pricing (Requirement

M.2.b), as the cost of a service is not fixed or publicly known, but ratherdetermined through a

negotiation process. Furthermore, services are provisioned explicitly in advance (Requirement

M.3.b) and the number of offers and their characteristics may vary dynamically (Requirement

M.5). Given this extended model, we continue in the following section by describing a flexible

provisioning strategy that provisions services in advance.

2To avoid any confusion, it is important here to note that our use of the word “provisioning” is more specific in
this chapter than in the remainder of the thesis. While we used it earlier to denote any implicit decision by the agent
to invoke a particular service, we now use it only when the agent has decided to accept, and pay for, a particular
service offer.
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6.2 Flexible Provisioning

In designing a flexible provisioning strategy in environments with advance agreements, we fol-

low the same basic approach as discussed in the previous chapters. However, we have had to

make a number of significant changes to account for the more complex provisioning scenario.

We briefly summarise these here before outlining the details of the strategy in thefollowing

sections.

First, the flexible pricing and more dynamic environment means that the consumer no longer has

complete information about the exact availability and performance characteristics of services be-

fore requesting offers and provisioning them. This could be addressedby provisioning the entire

workflow in advance (i.e., requesting and provisioning offers for every task in the workflow at

time step̂t = 0). However, doing so is not practical for large workflows or when services have

a high probability of failure, as some tasks may not be completed as planned, thereby resulting

in missed starting times of later tasks in the workflow.

strategy selected

provisioned

completed

...

t1

t3

t2

t4

t5

t6

(a) (b) (c)

FIGURE 6.1: Progressive provisioning of a workflow over time.

For this reason, we decided to design a strategy that provisions workflows progressively through-

out execution, as outlined by Figure 6.1. In more detail, the consumer agentfirst makes simple

high-level decisions about how and when to provision each task in the workflow, but without

requesting or committing to any service offers yet (Figure 6.1 (a)). Theseinclude decisions

about how long in advance they should be provisioned, how to select among competing offers

and how much time to leave between successive tasks (considering that someservices may fail

and thus jeopardise the successful execution of later offers). Using statistical information based

on past observations of the market, these high-level decisions allow the agent to estimate the

various task parameters used in Chapters 4 and 5, and thus obtain an overall estimated utility.

Based on these initial decisions, the consumer then gradually requests andselects concrete offers

for the workflow, as shown in Figure 6.1 (b). Here, it has provisioned some tasks in advance,

e.g., because they tend to be of better quality when a longer advance notice isgiven to the

providers, or because they are scarce services that are difficult to procure at short notice. How-

ever, it has also left some tasks unprovisioned, e.g., because they are plentiful and can easily be

provisioned exactly when required, or because the completion time of the preceding tasks is too

uncertain. Then, as tasks are completed successfully, further tasks are provisioned as required

(Figure 6.1 (c)).
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The second significant difference to our previous work is that we now perform the provisioning

in a more adaptive manner, thereby addressing Requirement A.4. That is,rather than following

the initial decisions blindly throughout workflow execution, the consumer now adapts its deci-

sions as new information becomes available. We make this change, because the initial high-level

decisions use statistical performance information that may turn out to be inaccurate when the

actual offers become known. Similarly, making the strategy more adaptive allows it to react ap-

propriately to unexpected outcomes of tasks. For example, when an initially reliable offer turns

out to be unsuccessful, the consumer may need to adapt its provisioning strategies for later tasks

of the workflow, in order to meet the overall deadline.

Before we start to discuss the strategy in detail, we briefly summarise it below as an optimisation

problem.

6.2.1 Problem Formulation

As in previous chapters, we are interested in building a rational agent thatacts to maximise its

expected utility. Hence, we want our agent to adopt aprovisioning strategyΨ that maximises

the difference between the reward and cost of following it. Here, we useprovisioning strategy

to denote a set of decisions for each workflow task about how the agentintends to complete it.

This may either be a high-level decision about how to provision it in the future, or a concrete set

of offers that have already been provisioned for it. In both cases, theagent may also associate

further decisions for contingencies with a task, but we will discuss and formalise this later. In

this context, we define the overall agent strategy we develop in this chapteras follows:

Definition 15 (Dynamic Flexible Strategy). A consumer following adynamic flexiblestrategy

makes appropriate decisions to provision services for its workflow. To thisend, the agent finds a

suitable provisioning strategyΨ, so that the agent’s predicted profit is maximised. Furthermore,

the agent continuously incorporates new service outcomes into its predictions and adapts its

provisioning strategy accordingly.

Following the notation of Chapters 4 and 5, we formulate this as an optimisation problem:

max
Ψ

(ūt(Ψ)− c̄(Ψ)) (6.1)

whereūt(Ψ) is the expected reward of following the provisioning strategyΨ and c̄(Ψ) is the

associated expected cost.

In the following, we discuss ourdynamic flexiblestrategy in more detail. We start by showing

how the basic task parameters used in previous chapters can be calculatedfrom a given set of

offers (Section 6.2.2). Then we discuss how we use high-level task strategies to estimate the

outcomes of tasks before provisioning, and how these strategies can be combined into simple

contingency plans for each task (Section 6.2.3). In Section 6.2.4, we showhow the consumer

decides when to begin provisioning each task and in Section 6.2.5, we brieflydiscuss how the
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overall utility of a complete workflow is estimated. Similar to the work in previous chapters,

this is used in Section 6.2.6 as a basis for a local search alrogithm. Finally, we discuss how

our agorithm adaptively improves its decisions at run-time as more information about available

offers and invocation outcomes become known (Section 6.2.7), and we summarise the strategy

based on our generic agent algorithm (Section 6.2.8).

6.2.2 Task Provisioning

In this section, we outline some basic calculations to predict the outcome of provisioning a

certain set of offers for a workflow task. These calculations are central to the remainder of this

discussion, as we use them both when the consumer has decided what offers to provision for the

task, and also to derive the performance characteristics of high-level task strategies.

In this context, we refer to a chosen set of offers for a particular task as aprovisioning decision:

Definition 16 (Provisioning Decision). A provisioning decisionγi ⊆ C is a set of offers (of the

correct type) that the consumer has provisioned for a taskti.

x x+1 x+2 ...
t

o1

t(o1)

d(o1)

t(o1) + d(o1)

o2

o3

o4

x+6 ...

o5

FIGURE 6.2: An example provisioning decision for a single task.

As an example, Figure 6.2 shows the provisioning decisionγi = {o1, o2, o3, o4, o5}, where five

distinct offers have been provisioned for a single task.

We also assume that we have a cumulative probability density function,Ei(t), that describes the

probability that any predecessors ofti will have completed successfully by timet. Here, we

assume thatEi(t) is conditional on the successful completion of all predecessors.
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Now, first we are interested in calculating the expected cost of a provisioning decision. This is

simply the sum of all offer reservation costs and expected execution costs3:

c̄t = c̄r + c̄e (6.2)

wherec̄r is the sum of all reservation costs:

c̄r =
∑

o∈γ(ti)

cr(o) (6.3)

andc̄e is the overall expected execution cost for all offers. To calculate this, we define a number

of auxiliary terms:

• ŝ : Z → Z is a sequence of all unique start times of the offers inγi in ascending order

(i.e., ŝ(1) is the earliest unique starting time of any offer inγi, ŝ(2) the second earliest,

and so on). For the offers in Figure 6.2,ŝ = {(1, x), (2, x + 1), (3, x + 2), (4, x + 6)}.

• p̂s : Z → R is a sequence of real numbers, each of which represents the probabilitythat

the corresponding element in̂s is the first time step at which offers inγi can be invoked

(depending on the completion time of the task’s predecessors, as given byEi). More

formally, for all n ∈ N, such that1 ≤ n ≤ |ŝ|:

p̂s(n) =

{

Ei(ŝ(n)) if n = 1

Ei(ŝ(n))− Ei(ŝ(n− 1)) otherwise
(6.4)

• opre : (Z × Z) → P(C) is a function that maps two time slots,t̂1 and t̂2, to the set of

offers that start on or after̂t1 and end on or beforêt2 (i.e.,opre(t̂1, t̂2) = {c ∈ γi | t(o) ≥
t̂1 ∧ t(o) + d(o) ≤ t̂2}). For example, in Figure 6.2,opre(x + 1, x + 10) = {o2, o3, o4}.

• oafter : Z→ P(C) is a function that maps a time slot,t̂, to the set of offers that start on or

after t̂ (i.e.,oafter(t̂) = {c ∈ γi | t(o) ≥ t̂}).

• cinv : C→ R maps an offer to the expected cost of invoking it:

cinv(o) = ce(o)− Pf (o)δf (o) (6.5)

• pinv : (C× Z)→ R maps an offer and a time step,t̂, to the probability that the offer will

eventually be invoked, given that execution of the task starts at time stept̂:

pinv(o, t̂) =
∏

o′∈opre(t̂,t(o))

(
1− Ps(o

′)
)

(6.6)

3Here, and in the following, we assume that it is never rational for the consumer to invoke a service that is no
longer needed (i.e., that the expected execution cost is never negative). This assumption keeps the calculations more
concise, but can be easily relaxed.
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Given these, we calculate the overall expected execution cost,c̄e, by considering each possible

starting time for the task (given bŷs), and then the respective offers that may be executed given

the starting time:

c̄e =

|ŝ|
∑

a=1



p̂s(a) ·
∑

o∈oafter(ŝ(a))

(pinv(o, ŝ(a)) · cinv(o))



 (6.7)

Next, we consider three different overall outcomes of following a provisioning decisionγi for

taskti:

• Late: The predecessors ofti complete late, such that no offer inγi is ever executed.

• Failed: At least one offer inγi is executed, but none succeeds.

• Successful:At least one offer inγi is executed and successfully completes the task.

For each of these, we calculate a probability that this outcome occurs (pl, pf , ps, respectively),

an expected end time when the outcome is known (dl, df , ds), and the variance of this time (vl,

vf , vs). We consider these outcomes separately, as we will later construct contingency plans

that the agent may take when a task has been unsuccessful (see Section 6.2.3.2).

Now, treating each of the parameters separately, we can calculate the probability that the prede-

cessors completelateas follows:

pl = 1− Ei(ŝ(|ŝ|)) (6.8)

The associated expected end time is simply the highest starting time of any offer,and the vari-

ance of this is 0:

dl = ŝ(|ŝ|) (6.9)

vl = 0 (6.10)

When the provisioning decision hasfailed, we again examine each possible task starting time

separately (as in Equation 6.7). Hence, the probability of this event is:

pf =

|ŝ|
∑

a=1



p̂s(a) ·
∏

o∈oafter(ŝ(a))

(1− Ps(o))



 (6.11)

The expected end time of this outcome now depends on the latest end time of a group of failed

offers, again evaluated for different starting times:

df =
1

pf
·

|ŝ|
∑

a=1



p̂s(a) · tend(oafter(ŝ(a))) ·
∏

o∈oafter(ŝ(a))

(1− Ps(o))



 (6.12)
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wheretend : P(C)→ R is a function that maps a set of offers to the highest end time within that

set:

tend(C) = max
o∈C

(t(o) + d(o)) (6.13)

The variance of this can be calculated in a similar manner, using the expected squared end time:

vf = −d2
f +

1

pf
·

|ŝ|
∑

a=1



p̂s(a) · tend(oafter(ŝ(a)))2 ·
∏

o∈oafter(ŝ(a))

(1− Ps(o))



 (6.14)

Finally, the probability that the decision will result in asuccessfulexecution of the task is then:

ps = 1− pf − pl (6.15)

The expected end time in this case depends on the end time of the first successfully executed

offer. To calculate this, we use an auxiliary function,cend : Z → P(P(C) × Z), that maps a

time step,̂t, to a set of tuples, each of which consists of a set of offers that start on or aftert̂ and

that end on a common time step, as well as the respective end time. Formally:

cend(t̂) = {(C, e) | C 6= ∅ ∧ e ∈ Z ∧ C ⊆ oafter(t̂)

∧∀c ∈ oafter(t̂) · c ∈ C ⇔ t(o) + d(o) = e
}

(6.16)

To give an example, for the provisioning decision in Figure 6.2,cend(x + 1) = {({o3}, x +

8), ({o2, o4}, x + 10), (o5, x + 11)}.

Then we use this to calculate the probability of each possible end time and thus theexpected

end time:

ds =
1

ps
·

|ŝ|
∑

a=1



p̂s(a) ·
∑

(C,e)∈cend(ŝ(a))

(

e ·
(

1−
∏

o∈C

(1− Ps(o))

)

·

∏

o′∈opre(ŝ(a),e−1)

(
1− Ps(o

′)
)







 (6.17)

The variance is calculated in a similar manner as in Equation 6.14:

vs = −d2
s +

1

ps
·

|ŝ|
∑

a=1



p̂s(a) ·
∑

(C,e)∈cend(ŝ(a))

(

e2 ·
(

1−
∏

o∈C

(1− Ps(o))

)

·

∏

o′∈opre(ŝ(a),e−1)

(
1− Ps(o

′)
)







 (6.18)

The calculations outlined above now allow us to determine similar performance parameters as

we have used in previous chapters, including the success probability of aprovisioned task, its

expected cost, end time and variance of the end time. However, as we discussed at the beginning
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of Section 6.2 and as shown in Figure 6.1, the consumer agent will typically not provision an

entire workflow at once, and therefore it will not know the exact offers available for each task

until later during execution. For this reason, we rely on averages for these figures, which have

been learnt over time by observing offers on the market. We describe this information in more

detail in the next section.

6.2.3 High-Level Task Strategies

In order to make predictions about unprovisioned tasks, our flexible provisioning approach first

selects simple high-level task strategies for each task. These are decisionrules that the agent will

later use to submit a call for proposals for the task and to select from the returned offers, and that

have some associated statistical information about their performance. For example, such a high-

level strategy might be to submit a call for proposals some time before the task actually becomes

executable, and then to provision the most reliable offer available, or it mightbe to provision the

five cheapest offers at the last moment, when the task is already executable. Depending on the

market conditions, such strategies may have very different performance characteristics — the

former might result in a cheaper and more reliable execution of the task than the latter, but also

carry a risk that the arranged starting time cannot be met if the preceding tasks finish later than

expected.

In this section, we formalise these high-level strategies, outline how the agent learns statistical

information about them by observing the market and describe how to construct simple contin-

gency plans to deal with failures.

6.2.3.1 Strategy Library

High-level provisioning strategies are available to the consumer as a libraryof strategies,l :

T → P(Ω), that maps each service type to a set of strategies (Ω is the set of all strategies). Each

strategyω ∈ Ω is described by a number of parameters, as shown in Table 6.3. The first two

of these prescribe how the consumer will formulate its call for proposals, e.g., if ta(ω) = 100

andtw(ω) = 3, it will request services 100 time steps in advance and for three consecutive time

steps. The latter two describe how it will select from the returned offers.Here, we consider

four simple selection strategies for parameterϑ(ω): {cost , unreliability , end time ,

balanced }. The first three indicate that the consumer will always choose the offerswith,

respectively, the lowest expected cost (cr(o)+ce(o)− Pf (o)δf (o)), the lowest probability of not

succeeding (1−Ps(o)) or the lowest end time (t(o) + d(o)). The selection strategybalanced

will pick the offers that minimise a sum of these parameters, each normalised to the interval

[0, 1], so that0 corresponds to the offer with the lowest parameter and1 to the highest. We

also assume that there is a high-level strategy not to do anything,ωnull (i.e., the agent will stop

executing the task).
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Parameter Description
ta(ω) : N Number of time steps to provision offers in advance.
tw(ω) : Z

+ Time interval to request services for.
n(ω) : Z

+ Maximum number of offers to provision.
ϑ(ω) Strategy for choosing offers to provision when more thann(ω)

offers are available.

TABLE 6.3: Task strategy parameters.

Furthermore, we assume that the consumer has some performance information about each of

the strategies, which it previously learnt by observing the response of the market to various

calls for proposals. Specifically, we assume that the consumer has repeatedly submitted calls

of proposals corresponding to its known strategies to the market, calculatedthe probabilities

and expected values described in Section 6.2.2 and built up statistical averages for these, with-

out necessarily provisioning or invoking any services. In doing so, weassume that tasks are

invoked in isolation, i.e., that there are no predecessors and so∀t̂ · Ei(t̂) = 1. These statis-

tics are summarised in Table 6.4. Here,ǫ denotes the overall outcome of the strategy, with

ǫ ∈ {success , unavailable , failed } (which refers to the same outcomes as described

in Section 6.2.2 with the addition ofunavailable , which we introduce to denote the case

where no offers were found). We also do not include thelate outcome here, because we exam-

ine tasks in isolation.

In more detail, these statistics are derived directly from those discussed in Section 6.2.2. The

first three,čr(ω), če(ω) and č(ω) are based on Equations 6.3 and 6.7. The next,p̌(ω, ǫ), is

based on Equations 6.11 and 6.15, as well as on the frequency with which the consumer fails

to find any offers. Finally, the duration, squared duration and derivedvariance are obtained

using similar calculations as in Equations 6.12, 6.14, 6.17 and 6.18 (with small modifications

to calculate the duration from the first time step the original request was submitted for, and to

record only the squared duration rather than the variance).

Statistic Description
čr(ω) : R Average of the reservation cost.
če(ω) : R Average of the expected execution cost.
č(ω) : R Overall expected cost (c̄r(ω) + c̄e(ω)).
p̌(ω, ǫ) : [0, 1] Average of the probability of outcomeǫ.
ď(ω, ǫ) : R Average of the expected time until outcomeǫ is known (mea-

sured from first time step that call for proposals was submitted
for).

ď2(ω, ǫ) : R Average of the expected squared time untilǫ is known.
ṽ(ω, ǫ) : R Variance of time (̃v(ω, ǫ) = ď2(ω, ǫ)− ď(ω, ǫ)2).

TABLE 6.4: Average performance statistics when following strategy ω
(ǫ ∈ {success , unavailable , failed }).

These strategies now allow the consumer agent to make some predictions about the likely out-

comes, the cost and duration for completing a task, given that it adopts a certain strategy (see
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Figure 6.5 in Section 6.2.9 for some example strategies and the performance statistics). How-

ever, assigning a single strategy to each task is unlikely to be sufficient in uncertain environments

as the consumer needs some capabilities to plan for contingencies and predict their impact on

the cost and feasibility of the workflow. Hence, we decided to include several contingent strate-

gies that the consumer will use if its primary strategy was not successful. Wedescribe these in

the following section.

6.2.3.2 Planning for Contingencies

The contingent strategies we consider are shown in Figure 6.3. Here,sp is the main strategy the

consumer will use to provision the task, but it also has a number of strategiesto fall back on if

the initial offers were not successful:

• sl is used to re-provision offers when the preceding tasks in the workflow have not been

completed by the time the initial offers are available for invocation. In this case,the

consumer will wait until the preceding tasks have completed and then provision new offers

usingsl.

• su is used when either all initial offers were cancelled, or when the initial strategy did not

result in any provisioned offers at all. In the latter case, the agent waits until all preceding

tasks have been completed and then adoptssu.

• sf is adopted when the initial offers were started, but did not complete successfully. It is

carried out as soon as the last offer completes unsuccessfully.

sp

pml

sl

su

sf

task conflict?

unavailable?

all offers failed?

repeat?

repeat?

repeat?

FIGURE 6.3: Task contingencies.

To further extend the number of strategies we consider, we note that the consumer might con-

tinue to repeat certain strategies until a task is completed (e.g., when the consumer does not

have a tight deadline, it may decide to select the cheapest offer on the market, attempt it, and,

in case of failure, simply try another cheap offer until the task is eventually completed). Hence,

we extend the space of possible strategies forsl, su andsf by adding a repeated strategy,ωr

for eachω ∈ Ω. Generally, these repeated strategies will be carried out as soon as the previous

attempt is known to have failed, except when no suitable offers were found at all — in this case,

the agent waits a time step before attempting the strategy again.
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Now, for the repeated strategies, we derive their performance statistics from their non-repeated

counterparts as follows4. First, we assume that, given an infinite number of attempts, the task

will eventually be successful (provideďps(ω) > 0):

p̌s(ωr) =

{

1 if p̌s(ω) > 0

0 if p̌s(ω) = 0
(6.19)

Next, the expected cost will rise if there is a chance of failure:

č(ωr) = (čr(ω) + če(ω)) ·
∞∑

n=0

(1− p̌s(ω))n =
čr(ω) + če(ω)

p̌s(ω)
(6.20)

The duration will also rise. To calculate this, we useďs̄(ω), ď2
s̄(ω) and ṽs̄(ω) to denote the

expected value, expected squared value and variance of the duration when following strategyω,

given that it either fails or is not started:

ďs̄(ω) =
p̌f (ω)ďf (ω) + p̌u(ω)

p̌f (ω) + p̌u(ω)
(6.21)

ď2
s̄(ω) =

p̌f (ω)
(

ď2
f (ω) + ṽf (ω)

)

+ p̌u(ω)

p̌f (ω) + p̌u(ω)
(6.22)

ṽs̄(ω) = ď2
s̄(ω)− ďs̄(ω)2 (6.23)

Now, we let d̂s̄(ω) = ďs̄(ω) + ta(ω), which accounts for the extra time that is needed to re-

provision, and we calculate the repeated duration, its expected square and variance as follows:

ďs(ωr) = p̌s(ω) ·
∞∑

n=0

(1− p̌s(ω))n
(

ďs(ω) + n · d̂s̄(ω)
)

= ďs(ω) + d̂s̄(ω)
1− p̌s(ω)

p̌s(ω)
(6.24)

ď2
s(ωr) = p̌s(ω)

∞∑

n=0

(

(1− p̌s(ω))n ·

((

ďs(ω) + nd̂s̄(ω)
)2

+ ṽs(ω) + nṽs̄(ω)
)
)

= ďs(ω)2 + ṽs(ω) +
(

2d̂s̄(ω)ďs(ω) + ṽs̄(ω)
)

·
1− p̌s(ω)

p̌s(ω)
+ d̂s̄(ω)2

(
2− 3p̌s(ω)

p̌s(ω)2
+ 1

)

(6.25)

ṽs̄(ωr) = ď2
s̄(ωr)− ďs̄(ωr)

2 (6.26)

Finally, the task strategy is annotated with amaximum late probability, pml : [0, 1). This is the

largest acceptable probability that the task will not be executable when the offers provisioned by

4For conciseness, we use subscriptss, u and f to refer to various outcomes. For example,p̌s(ωr) =
p̌(ωr, success).
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sp can be invoked (i.e., that some of its predecessors will not be completed yet). Later we will

also use this parameter to decide exactly when to provision each task (see Section 6.2.4), but for

now it allows us to calculate some probabilities and expected values related to thetask.

Specifically, the overall success probability can be obtained by simply considering all branches

of Figure 6.3 that result in success:

pi = pmlp̌s(sl) + (1− pml) (p̌s(sp) + p̌n(sp)p̌s(su) + p̌f (sp)p̌s(sf )) (6.27)

The expected reservation cost is the average reservation cost of the primary strategy:

cri = čr(sp) (6.28)

The expected execution cost is again calculated by considering the probabilities of all contin-

gencies:

cei = pmlč(sl) + (1− pml) (če(sp) + p̌n(sp)č(su) + p̌f (sp)č(sf )) (6.29)

We use similar calculations for the expected time (denotedt̄i) and its expected square (denoted

t̄s,i), both conditional on overall success as we are not interested in the durations of tasks that

have not been completed:

t̄i = p−1
i

(
pmlp̌s(sl)

(
ta(sl) + ďs(sl)

)
+

(1− pml)
(
p̌s(sp)ďs(sp)+

p̌n(sp)p̌s(su)
(
ďn(sp) + ta(su) + ďs(su)

)
+

p̌f (sp)p̌s(sf )
(
ďf (sp) + ta(sf ) + ďs(sf )

)))
(6.30)

t̄s,i = p−1
i

(

pmlp̌s(sl)
(

ṽs(sl) +
(
ta(sl) + ďs(sl)

)2
)

+

(1− pml)
(
p̌s(sp)ď

2
s(s) + p̌n(sp)p̌s(su)·

(

ṽn(sp) + ṽs(su) +
(
ďn(sp) + ďs(su) + ta(su)

)2
)

+

p̌f (sp)p̌s(sf ) (ṽf (sp) + ṽs(sf )+
(
ďf (sp) + ďs(sf ) + ta(sf )

)2
)))

(6.31)

The five parameters described above — the success probability of a task,pi, the expected reser-

vation cost,cri, the expected execution cost,cei, the expected duration,̄ti, and the expected

squared duration,̄ts,i — as well as the variance,vi, which can be calculated as in Equation 6.23,

give some general performance metrics for each task, given a set of strategies. Our agent uses

them to estimate the overall expected utility of an execution strategy, which we willelaborate in

Section 6.2.5.

However, so far we have looked at each task in isolation, calculated task durations without taking

into account the initial provisioning time (ta(sp)) and we have used an artificial late probability.
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In the following section, we address these issues by adding an initial waiting timeto the task

duration, and we elaborate on our use of the maximum late probability, showinghow it is used

to determine exactly when to start provisioning a task.

6.2.4 Provision Timing

In some environments, it may be beneficial for the service consumer to givea longer notice

period to the service provider (indicated by a largeta(sp)). However, in these cases, the con-

sumer either has to wait longer (if it provisions services only when the respective tasks become

available), or it has to accept an additional risk (if it provisions servicesbefore the outcomes and

completion times of any preceding tasks are certain). To express the amountof risk a consumer

is willing to take when provisioning a particular task, we use the maximum late probability pml

introduced in the previous section. This is the largest acceptable probabilitywhen provision-

ing taskti that one of the predecessors ofti will still not have been completed successfully by

the time stepti was provisioned for. More formally, the consumer will provision taskti with

primary strategysp at the earliest possible time stept̂ wherepml ≥ 1 − Ei(t̂ + ta(sp)). Ex-

pressing the starting time of a task in such a way allows us to succinctly expresswhen to start

provisioning relative to other tasks in the workflow.

Generally, aspml becomes smaller, the gap between the starting time ofti and the end times of

preceding tasks becomes larger. This means that the consumer may take longer to execute the

workflow, but it also reduces the risk of expensive re-provisioning.To estimate this delay (de-

notedŵi), we examine the predecessors ofti and determine the task during which provisioning

will take place so that the above condition forpml is satisfied. To this end, as in previous chap-

ters, we again consider only the critical path to taskti. We then proceed backwards along the

critical path to identify the task during which to provisionti, as shown in Algorithm 6.16. Here,

the inputC is a set of tasks on the critical path to taskti, which we define as the longest path

to the task considering the complete duration of each preceding task (the sumof the expected

durationt̄i and the waiting timêwi). The functionsd, w andv map each of the elements ofC
to their respective durations, waiting times and variances (asw of a given task is established by

the algorithm, we run it iteratively in topological order over all workflow tasks).

The algorithm returns a tupler = (tx, t, w, p̂l) : ((T ∪{none })×N×R×[0, 1]). Here,tx is the

task during which services forti should be provisioned (or the special casenone if provisioning

should start immediately) andt is the time of provisioning, relative to the starting time of task

tx (specifically, the first time step for whichtx will be provisioned). The returned valuew is the

expected amount of time between the last completion time of any of the predecessors ofti and

the first time step for whichti was provisioned — this is effectively the expected time that the

agent will waste due to provisioning services in advance. Finally,p̂l is a revised late probability

that is used by the consumer to update its calculations for the task, as described in the previous

section (̂pl ≤ pml).
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Algorithm 6.16 Algorithm to determine the provisioning time.
1: procedure DETERMINEPROVISIONTIME(C, d, w, v, pml, sp, ti)
2: if pml = 0 ∨ |C| = 0 ∨ ta(sp) = 0 then
3: return (ti, 0, ta(sp), 0) ⊲ No advance provisioning required
4: end if
5: dpre ← 0 ⊲ Total duration of tasks precedingti
6: vpre ← 0 ⊲ Total variance of tasks precedingti
7: t← −1 ⊲ Provisioning time
8: while C 6= ∅ ∧ t < 0 do ⊲ Step backwards along critical path
9: tx ← element ofC that is nearest toti

10: C ← C \ tx
11: dpre ← dpre + d(tx)
12: vpre ← vpre + v(tx)

13: t←
⌈

Φ−1
mpre,vpre

(1− pml)
⌉

− ta(sp) ⊲ Determine target provisioning time

14: if t < 0 then ⊲ Negativet indicates earlier provisioning
15: dpre ← dpre + w(tx) ⊲ Add waiting time beforetx
16: end if
17: end while
18: if t < 0 then
19: tx ← none ⊲ Provision immediately
20: t← 0
21: end if
22: p̂l ← 1− Φmpre,vpre(t + ta(sp)) ⊲ Calculate actual late probability

23: w ←
∫ t+ta(sp)
t φmpre,vpre(x)(t + ta(sp)− x)dx ⊲ Calculate waiting time

24: if t > 0 then
25: w ← w + ta(sp)Φmpre,vpre(t) ⊲ Add time if tasks complete early
26: end if
27: return (tx, t, w, p̂l)
28: end procedure

Briefly, the algorithm begins in line 2 by considering the trivial case wherepml = 0, where the

task has no predecessors, or where the provisioning strategy containsno advance notice time.

In these cases, the consumer will always start provisioning only when thetask itself becomes

available (tx = ti and t = 0), it will always need to wait the advance provisioning period

(w = ta(sp)) and there will never be any conflicts with preceding tasks (p̂l = 0).

In all other cases, the algorithm will work backwards from taskti along the critical path to find

a suitable tasktx for commencing the provisioning. At each step, it estimates the time it will

take from that task untilti becomes executable by using a normal distribution with mean and

variance equal to the sum of all duration means and variances along the path so far. Using the late

probabilitypml, the algorithm then determines the earliest acceptable provisioning time, relative

to the start time oftx (line 13). If this is negative, it continues to consider further predecessors

of ti. If no suitable task is found in the set of predecessors, the consumer willprovision the task

immediately (i.e.,tx = none , line 19). Finally, the algorithm calculates the expected waiting

time, considering both the case that the predecessors finish after provisioning but beforeti is

started (line 23) and that they finish beforeti is even provisioned (line 25).
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t1
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t2 t5

t6

dpre = 20

vpre = 10

t = -10

t4

pl = 0.07

w = 5.62

Step 1:

Step 2:

Step 3:

considered tasks

FIGURE 6.4: Algorithm 6.16 operating on an example workflow.

To illustrate this algorithm, Figure 6.4 shows how it determines the waiting time for a single

task in an example workflow. Here, we assume that it has already been executed on taskst1 –

t5, which now have associated waiting times, and is about to examine taskt6. For this task, the

agent has chosen an advance provisioning time of 35 time steps (ta(sp) = 35) and a maximum

late probabilitypml = 0.1.

The algorithm starts from the task in question,t6, and initialises the duration and variance of

the predecessors it considers, as well as the current provisioning time (dpre, dpre andt). This is

shown in step 1, which corresponds to the end of line 7 in the algorithm.

Following this, the algorithm enters its main loop and begins to traverse the criticalpath to task

t6 backwards (the critical path is shown by uninterrupted arrows). Step 2 shows the state of the

algorithm at the end of line 13 during its first iteration. Here, it considers provisioning the task

during the execution oft4, but as the duration of the task is too short (dpre = 20) compared to

the required advance provisioning time of 35, the algorithm determines a negative provisioning

time and so continues to consider tasks along the critical path.
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Next, it examines taskt2, which is shown in step 3 (corresponding to the end of line 13 during

the second iteration of the main loop). The algorithm estimates that taskst2 andt4 will have a

mean durationdpre = 36.5 and variancevpre = 14. This means that the target provisioning time

in line 13 is positive witht = 7 (i.e., taskt6 should be provisioned 7 time steps after the starting

time step oft2). Before terminating, the algorithm calculates that the actual late probability of

taskt6 is now only 7% (̂pl = 0.07) and that the expected waiting time associated witht6 is 5.62.

Before we discuss the overall utility calculations of the workflow in the following section, it is

important to note that the algorithm presented here is simply a heuristic approach for estimating

the durations of tasks and for determining appropriate provisioning times. Itrelies on several

simplifying assumptions that do not generally hold. Specifically, in contrast toChapters 4 and

5, task durations are no longer independent of each other when the agent has provisioned offers

in advance (i.e., when one task is taking longer, then this may have an impact onthe duration of

following tasks). Furthermore, our treatment of task waiting times simplifies the real problem, as

they are not independent from task durations and may also lead to a reduction in variance along

the workflow, which we do not consider here. Finally, the algorithm uses anormal distribution

even when considering a small number of tasks, and this can lead to inaccurate results.

Despite these simplifications, we chose to adopt the algorithm to make fast predictions about

waiting and provisioning times, where an accurate analytical solution is infeasible (for similar

reasons that led us to adopt the critical path method in previous chapters).As we use an adaptive

provisioning approach, these possibly inaccurate estimates are continuously revised during exe-

cution and eventually replaced by concrete offers, as we discuss in more detail in Section 6.2.7.

Furthermore, our empirical experiments in Section 6.3 show that our approach works well in

practice.

6.2.5 Utility Estimation

As discussed in the previous sections, we can now calculate a number of performance parameters

for every task of the workflow, given a set of strategies and a maximum lateprobability for each

task. This allows us to estimate the overall utility of the workflow. These calculations are similar

to those employed in previous chapters, but we outline them briefly below forcompleteness.

First, the overall success probability of the workflow is simply the product of all task success

probabilities:

p =
∏

i∈I

pi (6.32)

whereI is the set of all task indices.

Next, the overall expected workflow cost can be estimated by taking the sumof all task execution

costs, each multiplied by the probability that they are reached, and all reservation costs, each
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multiplied by the probability that they are paid for:

c̃ =
∑

i∈I



cei

∏

j∈Bi

sj + cri

∏

j∈Pr(i)

sj



 (6.33)

whereBi is the set of the indices of all tasks that precedeti, andr(i) is a function that returns

the index of the task during whichti will be provisioned (i.e., the index oftx in Algorithm 6.16,

or, if tx = none , we assumePr(i) = ∅ and
∏

j∈∅ sj = 1).

We approximate the duration of the workflow again using the critical path and anormal distri-

bution. To this end, we first attach a predicted completion time and variance to each task:

di,end = ŵi + t̄i + di,pre (6.34)

vi,end = vi + vi,pre (6.35)

di,pre =

{

0 if Bi = ∅
maxj∈Bi

dj,end otherwise
(6.36)

vi,pre =

{

0 if Bi = ∅
vargmaxj∈Bi

dj,end otherwise
(6.37)

Next, we estimate the overall workflow duration and variance using the task that is expected to

finish last:

λW = dl,end (6.38)

vW = vl,end (6.39)

where l = argmax
i∈I

di,end (6.40)

Given these, we estimate the final expected reward, conditional on overall success, using a

normal approximation:

r̃ =

∫ ∞

0
dW (t) · u(t)dt (6.41)

which can be written in closed form and quickly calculated as shown in Equations 4.28 and

4.29 in Section 4.4.3.2. Finally, we combine the parameters to derive an estimate for the overall

expected utility:

ũ = p · r̃ − c̃ (6.42)

In the following section, we describe how we use this utility estimation technique to find a good

provisioning strategy.
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Algorithm 6.17 Local Search Algorithm
1: procedure OPTIMISE(Ψ, nmax, nfail , nexp,Θ,α)
2: i, f ← 0
3: repeat
4: Ψ′ ← GENERATERANDOMNEIGHBOUR(Ψ)
5: ∆ũ← PREDICTUTILITY (Ψ′) − PREDICTUTILITY (Ψ)
6: if ∆ũ > 0 then
7: Ψ, f ← Ψ′, 0
8: else
9: x← drawn uniformly at random from[0, 1]

10: if x ≤ e∆ũ/(Θαi) then
11: Ψ← Ψ′

12: end if
13: end if
14: i, f ← i + 1, f + 1
15: until i = nmax∨

(
f > nfail ∧ i > nexp

)

16: return Ψ
17: end procedure

6.2.6 Optimisation Algorithm

We again perform a local search to find a set of high-level strategies for each task. However,

when employing the hill-climbing algorithms used in previous chapters, we noticedthat the

agent frequently ended its search in a local maximum, where it attempts to provision a single,

cheap service for the first task and then gives up, thus obtaining a small negative profit. To

avoid such behaviour, we decided to adopt simulated annealing, which is less prone to suffer

from local maxima than deterministic local search techniques (Kirkpatrick et al. (1983)). The

optimisation algorithm is shown in Algorithm 6.17 and follows the general structure of our

previous algorithms. In particular, it is provided with an initial candidate solution, Ψ, which we

here informally5 assume to be a function that maps each workflow taskti to a tuple consisting of

the task’s high-level strategies and its maximum late probability:(spi, sui, sfi, sli, pmli). Given

this, the algorithm then repeatedly generates a random neighbour ofΨ (line 4), accepting it as

the new candidate solution if it yields a higher utility than the original (line 7), or,with a certain

probability, if its utility is less. As is common in simulated annealing, this probability depends

on the utility difference, an initial temperatureΘ, a decay factorα and the number of steps so

far. The algorithm terminates afternmax steps or if a better solution has not been found afternfail

consecutive attempts (this applies only after the firstnexp steps, to allow the algorithm an initial

exploration phase).

For the neighbour generation in line 4, we first choose uniformly at random6 whether to change

the strategy associated with a particular task or the structure of the workflow. In the former case,

we pick a random taskti and randomly apply one of the following changes:

5We will expand on this in Section 6.2.8.
6All random choices in this section assign equal probabilities to all outcomes.
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• All strategies (spi, sui, sfi, sli) and the late probability,pmli, are re-assigned randomly

from the available options.

• One of the task strategies,ω, is picked and changed toω′ so that exactly one of its pa-

rameters (ta(ω′), tw(ω′), n(ω′), ϑ(ω′)) is different from the original. This is done in one

of four ways: either by increasing or decreasing the parameter by a single step, or by

randomly choosing one of the remaining higher or lower values.

• One of the task strategies,ω, is picked and changed in one of the three following ways: to

a randomω′, to its repeated or non-repeated equivalent, or toωnull.

• The late probability,pmli, is changed top′mli in one of three ways: by randomly choosing

a value from(pmli, 1), from (0, pmli), or by settingp′mli = 0.

When altering the structure of the workflow, we change the precedence constraintsE to E′

by either introducing or removing temporary edges. This allows us to represent the fact that the

consumer may prefer to delay the provisioning or invocation of certain tasksuntil the outcome of

other tasks is known. For example, the consumer might decide to delay a particularly expensive

task until it knows the outcome of another, highly unreliable task. Clearly, wenever remove

the original edges inE, pick only from new edges that do not introduce cycles and we update

transitive dependencies, so thatE′ remains a strict partial order.

In testing our optimisation algorithm, we noticed that we could consistently improve itsperfor-

mance by making small adjustments, which are, for brevity, not shown in Algorithm 6.17. First,

we apply an additional penalty to solutions that result in a negative expectedutility, to generate

a new expected utility value,̃u′, as follows:

δfail = (1− p)umax (6.43)

δlate = (λW /td− 1)umax (6.44)

ũ′ =







ũ if ũ > 0

ũ− δfail if ũ ≤ 0 ∧ λW ≤ td

ũ− δfail − δlate otherwise

(6.45)

This further encourages the algorithm to avoid the local maximum described above. Second,

we found that we could generally decrease the time to find a good solution by immediately re-

considering the same neighbour generation strategy in line 4 if the previouslygenerated neigh-

bour yielded a higher utility.

So far, we have discussed how the consumer can make high-level decisions about the provision-

ing of its workflow. In the next section, we describe how our mechanism is extended to deal

with new information as it becomes available during execution.
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6.2.7 Dynamic Adaptation

As we use a local search approach, our provisioning strategy is easily extended to incorporate

information at run-time and act on it if necessary. For example, if seemingly reliable services

suddenly fail, the agent may need to re-provision the task and possibly even change its strategies

for later tasks in the workflow, in order to meet its deadline. Similarly, the agentmay come

across new opportunities; for example, if it discovers a particularly attractive offer on the market

and is able to immediately provision it for a current task.

From the discussions above, it should be clear that it is straight-forwardto incorporate informa-

tion about the performance of services into our calculations. First, when the consumer provi-

sions services for a particular task (according tosp and at the time determined by the procedure

in Section 6.2.4), we use the calculations in Section 6.2.2 for a provisioning decision γi to im-

mediately replace those forsp. This gives us a more accurate estimate of the probabilities of

various outcomes, the late probability, the completion time and the cost for the task. Similarly,

as services fail, we remove them from their respective tasks, and when reservation or invoca-

tion payments are made, we remove the respective costs from the calculations, as we aim to

maximise the expected utility of the remaining workflow.

Next, we also refine the overall completion time of the task. Specifically, we consider two cases:

the preceding tasks finish in time for at least one of the provisioned offersto be invoked or

they finish too late for any provisioned offer to be invoked. In the former case, we can use

the equations from Sections 6.2.2 and 6.2.3 with minor modifications to derive a probability

distribution for the completion time that assigns probabilities to the various end times of the

provisioned offers and uses a normal approximation if the provisioned offers fail. In the latter

case, when there is a conflict with the previous task, we use a normal approximation with mean

and variance as follows:

mi,late = ta(sl) + ďs(sl) + (1− Ei(t̂s))−1

∫ ∞

t̂
E ′i(x)xdx (6.46)

vi,late = ṽs(sl) + (1− Ei(t̂))−1

∫ ∞

t̂
E ′i(x)x2dx−m2

i,late (6.47)

Combining these two cases into a single distribution (each occurring with probability 1 − p̂l

and p̂l, respectively) gives us a more accurate estimate of the completion time for the task, as

we now take into account the provisioned offers. We use this distribution instead of the simpler

normal approximation asEi in the calculations above and in those presented in Section 6.2.2.

Furthermore, we modify the neighbour generation procedure describedin Section 6.2.6 to con-

sider adding to or removing offers from an already provisioned task. These are chosen randomly

from all available offers or from the set of offers that the agent plansto provision during that

time step (as we will discuss in the next section, offers are not provisioneduntil the end of a

time step). More specifically, in addition to changing the structure and high-level provisioning

strategies during the neighbour generation procedure, we include the possibility of changing a
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provisioned task. When this occurs, we select a random task that has a concrete provisioning

decisionγi, and randomly carry out one of the following changes:

• Add offer: We first sample a valuetr from an exponential distribution with meanλ−1 =
1

|γi|

∑

o∈γi
t(o) − tmin, wheretmin is the lowest starting time inγi (when

∑

o∈γi
t(o) −

tmin = 0, we useλ−1 = 1). Then we submit a request for offers for time stept =

tr + tmin − 20, and add a random returned offer toγi. This process allows us to select a

random offer, but with a bias towards offers at a similar time as those already in γi.

• Remove offer: If |γi| > 1, select a random offer that has been added toγi during the

same time step and remove it again.

Finally, we also modify Algorithm 6.16 to terminate its main loop when it examines a task

that has already been provisioned. This is because the agent has already decided when to start

invoking that task and, as a result, the normal approximation will be far less accurate. Ift is still

negative at this stage, we use the starting time of the provisioned task as an anchor and infer the

absolute provisioning time from there (e.g., ift = −10 and the earliest provisioned service is to

start at time stept(o) = 120, the algorithm returns the timet = 110 and specifies the target task

tx = none to signal that the task should be provisioned at an absolute time step).

To conclude our discussion of the dynamic flexible strategy, we now summarise it in the context

of our generic agent algorithm from Section 3.4.

6.2.8 Updated Generic Algorithm

In this section, we provide a final overview of the strategy that addresses the optimisation prob-

lem outlined in Section 6.2.1. In particular, building on the work described in previous sections,

we now define the provisioning strategyΨ more formally as a tuple:

Ψ = (α, β, γ, dβ , dγ , E′) (6.48)

whereα, β andγ are a set partition ofT , describing the current state of each workflow task.

Here,α contains the tasks that have been completed successfully,β contains the tasks for which

some offers have been negotiated, andγ contains the tasks for which no offers are currently

provisioned. The functionsdβ anddγ provide further information about the agent’s high-level

decisions for the members ofβ andγ, respectively. Based on previous sections,dβ(ti) of a

provisioned taskti ∈ β is:

dβ(ti) = (γi, sli, sui, sfi) (6.49)

whereγi is the set of offers already provisioned forti, while the other objects refer to the

contingent strategies. Similarly,dγ(tj) of a tasktj ∈ β is:

dγ(tj) = (spj , slj , suj , sfj , pmlj) (6.50)
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Algorithm 6.18 Summary of Flexible Provisioning Strategy

1: t̂← 0
2: Ψ← create initial strategy
3: abandoned← false
4: repeat
5: Ψ← update strategy with recent service outcomes
6: repeat
7: Ψ← local search for better strategy
8: Ψ← use high-level strategies to provision services
9: until Ψ was not altered in line 8

10: if PREDICTUTILITY (Ψ) > 0 then
11: provision new services
12: invoke services that are due
13: else
14: abandoned← true
15: end if
16: t← t + 1
17: until abandoned= true or workflow completed

wherespj is the primary provisioning decision andpmlj is the late probability. Finally,E′ :

P(T × T ), is the current set of edges.

Given this, Algorithm 6.18 contains a high-level overview of thedynamic flexiblestrategy. At

time t̂ = 0, the consumer creates an initial execution strategyΨ to form the basis of its local

search7 (line 2). Then, at each time step, the consumer first updates its current plan with any ser-

vice outcomes (line 5), followed by an optimisation process that refines the plan by changing its

high-level task strategies and by altering already provisioned offers (line 7), as described in the

previous two sections. In line 8, the agent considers the provisioning of due tasks, as determined

by the algorithm described in Section 6.2.4. It does this by carrying out the associated primary

strategy, but only temporarily associates the chosen offers with the workflow for now (they are

not yet explicitly provisioned). If any such provisions are added to the workflow, the consumer

then repeats the optimisation stage, so that the initially chosen offers can be improved (and

possibly replaced by better ones), and this continues until no more new tasks are provisioned.

Following that, if the consumer expects to receive a positive utility from continuing the plan,

it provisions any new offers that have been added to the workflow during that time step and

invokes due services (lines 11 and 12). This procedure continues untilthe consumer either does

not expect to gain any utility from its current plan or the workflow is completed.

Clearly, it is time-consuming for the service-consumer to carry out a long optimisation stage

during every time step of the simulation — especially as the expected utility of the workflow

7In our work, we start with a simple allocation that usesωr with ta(ωr) = 0, tw(ωr) = 10, n(ωr) = 1
and ϑ(ωr) = unreliability as the primary and contingent strategies (all repeated) for every task and set
pml = 0.01. We believe that this already constitutes a feasible strategy in most environments, as it includes repeated
provisioning to deal with failures but without relying on expensive redundancy. We have empirically verified this
and noted a quicker convergence than a completely random initial strategy.
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will not change at each step. Hence, we have found it sufficient to carry out further optimisation

of the current allocation only when its expected utility changes significantly from an earlier

estimate, and also to vary the amount of time spent during the optimisation depending on the

magnitude of the change in utility.

More specifically, we have experimented with various optimisation strategies and found the

following approach to work quickly and effectively in a variety of environments. First, we

always carry out an extensive initial simulated annealing run with the parameters given in the

first row of Table 6.5. This is repeated up to 3 times if the resulting allocation does not yield a

positive expected utility. Then, at each time step, we calculate the differencebetween the current

expected utility and the total costs incurred so far. We carry out a “long” optimisation run (see

Table 6.5) if this value is at least 40% higher or lower than the same value whenthis was last

run. Otherwise, if it is at least 20% higher or lower than after the last optimisation run, we run a

“quick” optimisation procedure. Clearly, these parameters can be easily adjusted for particular

problems. For example, when time is critical,nmax can be set to a fixed cut-off time.

nmax nfail nexp Θ α Threshold
initial -1 5000 2000 100 0.999 -
short -1 75 200 50 0.99 0.2
long -1 1000 500 50 0.99 0.4

TABLE 6.5: Simulated annealing parameters.

For completeness, Algorithms 6.19 and 6.20 contain more detailed descriptions of the strat-

egy, based on the generic agent algorithm from Section 3.4. To fit our extended model, we

now assume that the parameter to the UPDATE procedure is a set of tuplesO : P(C × T ×
{succeeded , failed }), each of which indicates that an offer for a particular task has either

been successful or failed (this includes both a defection and failure with compensation). For the

sake of readibility, we have left a number of procedures undefined, asthese are straight-forward,

but would require a number of additional data-structures and housekeeping procedures. Instead,

we outline them only briefly below:

• REALISESTRATEGIES(Ψ): This procedure iterates through all tasks inγ and identifies

those that are due to be provisioned, based ontx andt returned by the DETERMINEPRO-

VISIONTIME procedure (this is the case either iftx = none andt ≤ t̂, or if the earliest

offer for tx was invokedt or more time steps ago). It then requests and provisions offers

for those tasks based on the associated primary strategy. If none are found, it adoptssui

and ignores the task for the remainder of the time step.

• PROVISIONSERVICES(Ψ): Any offers that the agent has decided to provision in this time

step (during the REALISESTRATEGIESand OPTIMISE procedures) are now actually pro-

visioned.

Before we outline the empirical results of the strategy, we now briefly discuss an illustrative

example of how it provisions workflows in practice.
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Algorithm 6.19 Main procedures of the dynamic flexible provisioning strategy.
1: procedure ADVANCE-FLEXIBLE -INITIALISE (W )
2: ulong← 0 ⊲ To store utility of last long optimisation
3: ushort← 0 ⊲ To store utility of last medium optimisation
4: i← 0
5: repeat
6: Ψ← GENERATE-INITIAL (W ) ⊲ Generate initial strategy
7: Ψ← OPTIMISE(Ψ,−1, 5000, 2000, 100, 0.999) ⊲ Optimise strategy
8: i← i + 1
9: until PREDICTUTILITY (Ψ)> 0 ∨ i = 3

10: end procedure

11: procedure GENERATE-INITIAL (W )
12: dγ ← {(ti, (ωr, ωr, ωr, ωr, 0.01)) | ti ∈ T} ⊲ Initial decisiona

13: Ψ← (∅, ∅, T, ∅, dγ , E)
14: return Ψ
15: end procedure

16: procedure ADVANCE-FLEXIBLE -UPDATE(O)
17: for all (ox, ti, succeeded ) ∈ O do ⊲ Iterate through successful offers
18: α← α ∪ {ti} ⊲ Add to successful tasks
19: β ← α \ {ti}
20: remove mapping ofti from dβ

21: end for
22: for all (ox, ti, failed ) ∈ O do ⊲ Iterate through failed offers
23: if ti ∈ β then
24: γi ← γi \ {ox} ⊲ Remove offer
25: if γi 6= ∅ then
26: dβ(ti)← (γi, sli, sui, sfi) ⊲ Update offers for task
27: else
28: β ← β \ {ti} ⊲ No longer provisioned
29: γ ← γ ∪ {ti}
30: spi ← sfi ⊲ Adopt failure strategy
31: if sfi is repeatingthen
32: sli, sui, sfi ← sfi ⊲ Repeat failure strategy in future
33: else
34: sli, sui, sfi ← ωnull ⊲ Do not repeat in future
35: end if
36: dγ(ti)← (spi, sli, sui, sfi, pli) ⊲ Store strategy
37: remove mapping ofti from dβ

38: end if
39: end if
40: end for
41: repeat similarly for lateb offers (adoptingpli if necessary)
42: end procedure

aHere,ωr is chosen such thatta(ωr) = 0, tw(ωr) = 10, n(ωr) = 1 andϑ(ωr) = unreliability .
bThese are offers that are due this turn (t(ox) = t̂), but cannot be invoked as their predecessors have not been

completed yet.
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Algorithm 6.20 Implementation of the NEGOTIATESERVICESprocedure.
1: procedure ADVANCE-FLEXIBLE -STOPCONDITION

2: return PREDICTUTILITY (Ψ) ≤ 0
3: end procedure

4: procedure ADVANCE-FLEXIBLE -INVOKESERVICES

5: for all ti ∈ β do ⊲ Iterate through provisioned tasks
6: for all ox ∈ γi do ⊲ Iterate through all offers for taskti
7: if t(ox) = t̂ then ⊲ Check time
8: INVOKE(ox, ti) ⊲ Invoke offer
9: end if

10: end for
11: end for
12: end procedure

13: procedure ADVANCE-FLEXIBLE -NEGOTIATESERVICES

14: long← false
15: short← false
16: repeat
17: unew← PREDICTUTILITY (Ψ) +p̂
18: if

∣
∣ulong/unew− 1

∣
∣ ≥ 0.4 then

19: long← true
20: Ψ← OPTIMISE(Ψ,−1, 1000, 500, 50, 0.99) ⊲ Long optimisation
21: else if|ushort/unew− 1| ≥ 0.2 then
22: short← true
23: Ψ← OPTIMISE(Ψ,−1, 75, 200, 50, 0.99) ⊲ Short optimisation
24: end if
25: Ψpre← Ψ
26: Ψ← REALISESTRATEGIES(Ψ) ⊲ Request offers and add toΨ
27: until Ψ = Ψpre ⊲ ...until no new offers are added toΨ
28: unew← PREDICTUTILITY (Ψ) +p̂
29: if long = true then ⊲ Store utility values for future
30: ulong← unew

31: ushort← unew

32: else ifshort= true then
33: ushort← unew

34: end if
35: PROVISIONSERVICES(Ψ) ⊲ Provision all new offers
36: end procedure
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6.2.9 Illustrative Example

To show how thedynamic flexiblestrategy works in practice, we again consider the bioinformat-

ics workflows from Section 3.5. In order to simulate a dynamic service marketin this scenario,

we keep a list of currently available offers associated with each time step, from the current step

t̂i to t̂i+60 (hence, the consumer may provision services up to 60 time steps in advance). Dur-

ing the simulation, at the beginning of each time step, we first generate new offers that become

available in the market by drawing the number of new offers and their parameters from random

distributions. These distributions are detailed in Table 6.6 and depend on the number of time

steps the offer is generated in advance. This time dependency allows us to include performance

differences in offers when they are provisioned with varying advancenotice periods. It is ex-

pressed here by including two rows of distributions for each service type— the first indicates the

performance of offers when provisioned at short notice (as given by theadvance timecolumn),

and the second gives the performance when offers are provisioned with a long advance notice

period.

Service Adv. Fail. Reserv. Exec. Time Birth/ Re-
Type Time Prob Cost Cost Death pay

(min.) ($) ($) (min.)

Base C. ≤ 0 Uc(0.2, 0.5) Uc(0.5, 1.0) Uc(0, 0) Uc(6, 10) 1/3 no
≥ 10 Uc(0.1, 0.2) Uc(0.5, 1.0) Uc(0, 0) Uc(1, 2) 0.1/0 no

Gene A. ≤ 5 Uc(0.1, 0.2) Uc(2, 5) Uc(2, 5) Uc(10, 30) 1/0.5 yes
≥ 10 Uc(0, 0.1) Uc(1, 2) Uc(0, 0) Uc(5, 10) 0.5/1 yes

Blast ≤ 5 Uc(0.5, 1) Uc(2, 3) Uc(1, 5) Uc(20, 40) 1/2 no
≥ 15 Uc(0, 0.1) Uc(1, 5) Uc(2, 3) Uc(5, 10) 0.5/0.5 no

LookUp ≤ 0 Uc(0.5, 0.7) Uc(0, 0) Uc(4, 10) Uc(2, 8) 0.5/0.25 yes
≥ 1 Uc(0.5, 0.7) Uc(0, 0) Uc(4, 10) Uc(2, 8) 0.5/0.25 yes

Render ≤ 15 Uc(0.2, 0.3) Uc(5, 10) Uc(10, 15) Uc(150, 240) 0.5/1 no
≥ 30 Uc(0, 0) Uc(5, 10) Uc(5, 10) Uc(80, 120) 1/1 no

Transl. ≤ 10 Uc(0.7, 1.0) Uc(2, 5) Uc(1, 2) Uc(10, 40) 0.5/1 no
≥ 30 Uc(0.3, 0.4) Uc(0.1, 0.5) Uc(0.25, 0.5) Uc(5, 10) 0.5/0.5 no

Fold ≤ 15 Uc(0.25, 0.75) Uc(5, 20) Uc(5, 20) Uc(80, 400) 3/5 yes
≥ 45 Uc(0, 0.05) Uc(10, 20) Uc(20, 30) Uc(20, 30) 1/1 yes

Print ≤ 0 Uc(0.4, 0.8) Uc(1, 2) Uc(0, 0) Uc(8, 12) 2/2 yes
≥ 1 Uc(0.4, 0.8) Uc(1, 2) Uc(0, 0) Uc(8, 12) 2/2 yes

TABLE 6.6: Distributions used to generate random offers for bioinformatics services.

In more detail, for each service type and for each possible time step fromt̂i to t̂i+60, we first

generate the number of new offers by drawing a sample from a Poisson distribution with a mean

given by the respectivebirth rate8. Then, for each such generated offer, we draw its failure

probability, reservation cost, execution cost and service duration fromthe relevant distributions

(depending on how far the offer is generated in advance). When the offer time lies between

the two extremes corresponding to the two rows for each service type, we interpolate linearly

between the distribution parameters. For example, when generating an offer for theBase Call

service type for time step̂ti+2, we draw its failure probability fromUc(0.18, 0.44). If the service

8We chose the Poisson distribution here because it is a common distribution for modelling random arrival events
(DeGroot and Shervish (2002))
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FIGURE 6.5: Example high-level strategies for theFold task.

type is marked as repaying in the table, we set the failure penalty to the combinedexecution and

reservation costs (this means that providers for these services alwaysrefund a consumer in case

of failures). Otherwise, it is set to 0. Finally, at the end of each time step, weremove offers in

a similar way as above by drawing a random sample from a Poisson distributionwith its mean

given by thedeathrate. This models the demand for such services and we randomly remove the

generated number of offers from that time step (or all offers if the numberexceeds the current

supply).

The service parameters in Table 6.6 are broadly similar to those used in previous chapters, but

we now include significant performance differences depending on the timeof provisioning. For

example, some services are now generally more reliable and faster when provisioned in advance

(Base CallandGene Assemble), some offer a far better service overall but are also significantly

more expensive and need a long advance notice period (Fold), and a few display no difference

in quality over time (Look UpandPrint).

As described in Section 6.2.3, we assume that the service consumer has already obtained a

library of atomic high-level strategies by observing the market over some time.To illustrate this,

Figure 6.5 shows a number of example strategies and their statistics for theFold service type.

In the centre, we use the notationω = 〈1, 20, 10, b〉 to represents a strategyω that provisions

a single offer (n(ω) = 1) 20 time steps before it is required (ta(ω) = 20), with the consumer

considering 10 consecutive time steps (tw(ω) = 10) and selecting the offer that best balances
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all performance characteristics (ϑ(ω) = balanced )9. We note that this strategy is relatively

cheap, has a success probability of only 78% and takes a long and highly uncertain time to

complete. The remaining strategies shown in Figure 6.5 demonstrate the impact ofslightly

altering this provisioning strategy — for example, when increasing the advance notice period

from 20 to 40 time steps, the cost rises, but the success probability also increases to 99%, while

the duration and its variance drop significantly (these trends all emerge from the distributions

given in Table 6.6).

Given these strategies, Figure 6.6 shows the initial high-level decisions that our agent takes for

the bioinformatics workflow (as in previous chapters, we first consider alow-value, non-urgent

workflow with maximum utilityumax = 150, deadlinetmax = 240 and penaltyδ = 1). Here, the

agent generally attempts to spend as little on services as possible, preferring to wait longer for

completion. Thus, the algorithm decides to provision only single offers for most tasks and relies

on cautious contingency plans, where more single offers are provisioned gradually (and repeat-

edly) in case of failure. The only parallel redundancy in the plan is used for taskst5 (Translate)

and t8 (Print), which are relatively cheap. Due to the longer deadline in this case, the con-

sumer also decides to include few task overlaps in the workflow and instead prefers to leave the

provisioning of each task until all predecessors are complete. The only exception to this ist5
(Translate), which the consumer chooses to provision while its predecessors are stillexecuting.

Using Algorithm 6.4, the strategy here determines that the task should be provisioned immedi-

ately when the workflow is started (for time step 30) and that this will result in a 5% probability

of a losing the provisioned offers later on and an additional delay of 9.02 timesteps. These

figures are based on the uncertain duration of its predecessors (BaseCallandGeneAssemble),

which are expected to complete byt̂ = 21.08. Overall, the consumer expects the workflow

to finish just before the deadline, after 224.75 time steps (but with considerable variance) and

expects to spend $66.60, thus achieving an expected utility ofũ = 81.73.

Next, Figure 6.7 shows the same workflow after the first offers have been provisioned (during

the inital time step). Here, the agent has consulted the market and followed its high-level strate-

gies in reserving offers for some of the workflow tasks. In particular, the consumer has now

provisioned three offers fort0 (BaseCall). In this case, it is different from the initial decision of

provisioning a single offer, as the agent immediately revises and improves its decisions as it ob-

serves the actual offers available on the market. Given these three offers, the task parameters are

updated to reflect their terms (hence, the task end time is now almost certain). As is evident in

the remainder of the workflow, the consumer has also now adapted its high-level strategies based

on the new information. In particular, knowing thatt0 is almost certain to complete by time step

t̂ = 11, it has decided to provision taskt1 (GeneAssemble) earlier than originally planned. On

the other hand, it also delayed the provisioning of taskt5 (Translate) to a later time. Finally, the

consumer has introduced a number of additional edges into the workflow. Some of these have

no impact on the estimated workflow utility, but the additional edge betweent3 (LookUp) andt7

9Here, and in the remainder of the section, we abbreviate each selection strategy in{cost , unreliability ,

end time , balanced } with its first letter.
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FIGURE 6.6: Workflow with initial high-level decisions.

FIGURE 6.7: Workflow after first provisioning.
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(Render) ensures that the former, slightly uncertain task completes before the expensiveRender

task is started.

In order to investigate how the agent’s provisioning decisions change as the workflow becomes

more urgent and valuable, we now consider a second scenario. For this, as in previous chapters,

we assume a maximum utilityumax = 1000, a deadlinetmax = 150 and penaltyδ = 20. Figure

6.8 illustrates the initial high-level provisioning decisions, clearly highlighting anincreasing re-

liance on redundant provisioning and also on advance provisioning, which here allows the agent

to obtain better services and decrease the overall execution time (as services are provisioned

before their predecessors are completed). In more detail, the agent here decides to provision

some tasks immediately (such asFold), but leaves the provisioning of others until later (such

as the lowerRendertask), according to the advance notice periods required and the expected

completion times of their predecessors.

Next, Figure 6.9 shows the workflow after the first offers have been provisioned. Here, the

strategy has mostly followed its initial decisions. However, based on the offers provisioned

for task t0 (BaseCall), it also immediately provisionedt5 (Translate), rather than waiting an

additional two time steps. As the offers were generally as expected, most remaining high-level

decisions are unchanged and the overall expected utility has risen slightly,due to an earlier

estimated completion time.

In the following section, we discuss a number of experiments we carried outto investigate some

more general trends of ourdynamic flexiblestrategy and to compare its performance to other

current strategies.

6.3 Empirical Evaluation

As in previous chapters, we have conducted a thorough empirical study of our algorithm in a

simulated environment and compared it to a number of current approaches. The primary focus

of this section is to investigate the feasibility of our approach in environments ofvarying uncer-

tainty (i.e., where services are more or less likely to fail) and also in environments where the

market favours certain provisioning approaches (e.g., where early provisioning is rewarded by

more reliable services). In the following, we first describe how we simulate the market (Section

6.3.1), then we detail the strategies we test (Section 6.3.2), draw up a numberof hypotheses

(Section 6.3.3) and finally describe our results in Sections 6.3.4–6.3.6.

6.3.1 Market Setup

In our experiments, we assume that there are five different types of services (T = {T1, T2, T3,

T4, T5}). We simulate the dynamic market as described in Section 6.2.9, but now increase the

advance provisioning time to 250 time steps. Furthermore, this time we generate offers using
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FIGURE 6.8: Urgent workflow with initial high-level decisions.

FIGURE 6.9: Urgent workflow after first provisioning.
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the distributions in each row of Table 6.7. First, we generate the number of offers by drawing

a sample from a Poisson distribution with a mean given by the birth rate in that row(we use

b = d = 0.005, unless noted otherwise). For each such offer, we then assign it the service type

given in the table and draw a value for the reservation cost, execution cost and service duration

from the specified distributions10. All other offer parameters, such as the failure probability and

penalties, are determined according to our experimental parameters detailedin later sections.

Type Reserv. Exec. Time Birth Death
Cost Cost Rate Rate

1 T1 Uh(25) Uh(25) Uh(5) b/2 d/2
2 T1 Uh(5) Uh(5) Uh(40) b/2 d/2
3 T2 Uh(1) Uh(5) Uh(50) b d
4 T3 Uh(10) Uh(10) Uh(35) b d
5 T4 Uh(50) Uh(1) Uh(25) b d
6 T5 Uh(1) Uh(50) Uh(25) b d

TABLE 6.7: Service type parameters.

In our simulations, a consumer is rewarded a maximum utility ofumax = 2000 for completing a

workflow, with penaltyδ = 40 and deadlinetd = 200. Each workflow consists of 8 tasks (with

types chosen randomly fromT ) and we generate them randomly as in previous chapters, with a

parallelism of 0.25.

We chose these parameters to represent a realistic and challenging scenario with a relatively

short deadline, but a sufficient maximum utility to allow the agent to afford a number of failed

service invocations in uncertain environments. The workflows we test here are small, because

related work that relies on integer programming techniques was unable to deal with larger cases.

6.3.2 Strategies

In our experiments, we evaluate the performance of four strategies. Thefirst three are based

closely on the work presented in Zeng et al. (2004), and are broadly similar to those described

in the previous chapter (Section 5.2). The fourth is thedynamic flexibleprovisioning strategy

proposed in this chapter. We briefly describe each below.

6.3.2.1 Local Strategy

This strategy is similar to theadaptive localstrategies described in Section 5.2.1. Again, it

selects an offer to maximise a weighted sum of performance parameters. However, as services

are not always immediately available, we include a lookahead parameterl, which determines

a window of future time steps that the strategy will consider when selecting the best available

10We useUh(m) to refer to a uniform distribution with meanm that varies aroundm by a proportion of at most
h, i.e., Uh(m) is a uniform distribution on the interval[(1 − h) · m, (1 + h) · m]. We useh = 0.2 in all our
experiments, indicating a fairly high heterogeneity of offers.
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offer (we setl = 20 in our experiments as this produces good results for the environments we

consider). Also, in line with the modified system model, we now useq1(o) = ce(o)+ cr(o) (the

combined total cost),q2(o) = 1− Ps(o) (the success probability) andq3(o) = t(o) + d(o) (the

end time of the offer) as the performance parameters to consider.

As the completion time is an explicit part of each service contract, we do not need to include

time-out values. Instead, the strategy re-provisions offers immediately when they are still un-

successful after the promised duration. Furthermore, we do not currently consider parallel re-

dundancy for this strategy, as the existing approaches we base this upondo not employ this

technique (and unlike our work in the previous chapter, there is no immediatelyobvious tech-

nique for including parallel redundancy, as different offers may notstart at the same time step

or even overlap at all).

6.3.2.2 Global Weighted Optimisation

This is mostly identical to the non-adaptive global strategy described in Section 5.2.2 (using the

updated performance parameters).

6.3.2.3 Adaptive Global Weighted Optimisation

This strategy behaves as the above strategy, but also re-provisions offers once they have failed.

In so doing, it takes into account the money spent on offers to that point and the time that has

passed, and it decides whether to keep any already provisioned offers or re-provision those too

(taking into account the additional reservation cost required).

6.3.2.4 Flexible Provisioning

This is thedynamic flexibleprovisioning approach as presented in this chapter. For this strategy,

we build a task strategy library by taking 2000 independent observations of the market over time

and recording the predicted outcomes of each of a set of possible strategies, which we generate

by considering the combinations of the advance timesta(ω) ∈ {0, 10, 20, 30, . . . , 250}, the

provisioning intervalstw ∈ {1, 10, 20, 30, . . . , 100}, the number of parallel providersn(ω) ∈
{1, 2, 3, . . . , 10} and all selection strategies. Considering that each strategy may be repeated,

this means there are 22880 possible high-level strategies for each service type. Due to the time

required to build the library, we do this once for every environment in this section and then re-use

the same library when repeating our experiments (we have verified that there is no significant

difference in our results when using different libraries).
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6.3.3 Hypotheses

In this chapter, we are interested in four hypotheses. The first two consider environments

where providers fail maliciously without paying compensation, the next oneconsiders cases

where providers offer full refunds for failures, and the final hypothesis looks at environments

where providers offer better services when provisioned with varying advance notice periods

(e.g., where there are discounts for either early or late provisioning).

Hypothesis12. In environments where the performance of services does not depend on the time

of provisioning and where they fail maliciously (i.e., do not pay any penalties), the flexible

strategy results in a higher profit than any of the other examined strategies,averaged over all

cases.

Hypothesis13. In the above environments, theflexiblestrategy successfully completes a higher

proportion of workflows than any of the other examined strategies, averaged over all cases.

Hypothesis14. Hypotheses 12 and 13 also hold when services offer full refunds forfailures.

Hypothesis15. Hypotheses 12 and 13 also hold in environments where the performance of

services is dependent on the time of provisioning.

In the following, we discuss the results of our experiments. More specifically, we examine

Hypotheses 12 and 13 in Section 6.3.4, then we discuss Hypothesis 14 in Section 6.3.5, and

finally look at Hypothesis 15 in Section 6.3.6. Where appropriate, we have carried out ANOVA,

followed by pairwise t-tests to ascertain the statistical significance of the results (at thep =

0.005 level) and we give 95% confidence intervals for all data.

6.3.4 Malicious Providers (Hypotheses 12 and 13)

During our first set of experiments, we evaluated the performance of thefour strategies in envi-

ronments where service providers are increasingly unreliable. To this end, we varied an overall

average defection probabilitȳd across several experiments and used this to generate the de-

fection probability of offers11. We also assume that services either succeed or defect (and so

any penalties are irrelevant). This case is challenging for consumers, because they do not get

compensation for failures, but it is realistic in highly dynamic distributed systems, where some

providers may act maliciously and never perform the service they were paid to do. Examples

of such systems include peer-to-peer systems, where providers may frequently leave the system

and where it is difficult to enforce contracts.

The results of our experiments are shown in Figure 6.10, which plots the average failure prob-

ability of an environment against the average profit (as a proportion ofumax) that each strategy

gains12. To complement this, Figure 6.11 shows the associated proportion of workflows that the

11Again, we draw from a distributionUh(d̄), whereh = min(0.2, h′) andh′ is the largest real number with
(1 − h′) · d̄ ≥ 0 ∧ (1 + h′) · d̄ ≤ 1.

12We average the profit over 750 runs for the flexible and the local approaches, while we average it over 250 runs
for the global optimisation approaches due to their more time-intensive nature.
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FIGURE 6.10: Performance of strategies in environments where providers increasingly defect.
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FIGURE 6.11: Proportion of successful workflows in environments where providers increas-
ingly defect.

strategy managed to complete with a positive payoff. When providers neverdefect (̄d = 0),

all strategies perform well, achieving between 70–90% of the maximum reward, and there is

no significant difference between either of the global optimisation approaches and the flexible

strategy. Intuitively, both global strategies are equivalent here, because there is no need to re-

provision failed tasks, and they both perform well due to the certain information they have about

the cost and duration of the complete workflow. The flexible strategy similarly performs well —

although it does not provision the complete workflow in advance, it makes accurate predictions

at the start (with little uncertainty) and provisions services as it proceeds through the workflow.

The local optimisation approach performs worse than the other strategies, as it takes myopic

decisions and therefore occasionally exceedstmax or eventzero.

As d̄ increases, all strategies generally perform worse, because they increasingly have to pay
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for services that do not perform as promised. The non-adaptive global optimisation strategy

is most affected as̄d begins to rise, due to it only attempting one execution of the workflow

before giving up. If it succeeds, it gains a relatively high reward, but if it fails, it loses its initial

investment. Hence, the performance trend follows closely the average success probability of

a single execution, i.e., the probability that all eight workflow tasks succeed: (1 − d̄)8. For

example, when̄d = 0.1, we expect the average success probability to be around0.98 = 0.43,

while at d̄ = 0.2, it drops to0.88 = 0.17, and this is reflected closely by the shape of the graph.

At d̄ = 0.3 and beyond, the strategy no longer makes a profit, as it begins to fail most workflows

and consistently lose its investments.

In contrast to this, the adaptive optimisation strategy performs considerablybetter than the non-

adaptive one as the defection probability begins to rise, up tod̄ = 0.4. On this interval, failures

occur occasionally and the adaptive consumer is generally able to re-provision the workflow

to meet its deadline. However, atd̄ = 0.5, failures become too numerous (the consumer now

fails to complete 69.0% of its workflows beforetzero) and the consumer begins to make an

overall loss. As the defection probability rises further, this loss increases, eventually levelling

off towardsd̄ = 1.0. This considerable loss occurs because the consumer lacks the capability

of predicting the overall cost it will incur by re-provisioning and whetherthis investment is

rational, given the defection probabilities of services. Rather, it will persist in retrying more

services and making further investments, despite a high probability of failure(at d̄ = 0.8 and

beyond, the consumer completes no workflows successfully).

Next, the average profit of the local strategy initially drops less quickly thanthe global strate-

gies. This occurs because it is less affected by a small a number of failures than the global

approach, which may need to re-provision its workflow completely upon a single failure. In

some environments, when the defection probability isd̄ = 0.2 andd̄ = 0.3, it even outperforms

the adaptive global approach for that reason. Beyond that, it drops more quickly and follows a

broadly similar trend to the adaptive global strategy, as it also invests heavilyin services without

ever completing the workflow.

It is interesting to note here that none of the non-flexible approaches consistently outperforms the

others. When service outcomes are certain, the global approaches outperform the local strategy,

but as the defection probability exceeds 0.2, the local approach begins todominate. Beyond

d̄ = 0.5, the non-adaptive global approach dominates, but only because it makes the smallest

loss. Also, none of the non-flexible strategies are able to deal effectively with environments

where the defection probability is 0.5 or higher. Specifically, atd̄ = 0.5, they all make a loss

and complete less than 40% of their workflows beforetzero. At d̄ = 0.6, this drops to 20%.

Finally, we consider the performance of the flexible strategy. At low defection probabilities,

it achieves a similar performance as the global approaches. However, at d̄ = 0.2, it begins

to clearly dominate all other strategies. Unlike the other strategies, it reasonsexplicitly about

failures and their impact on the workflow cost and execution time, and so at these higher fail-

ure probabilities, the flexible strategy is able to deal proactively with failures, for example by
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provisioning them redundantly or by favouring more reliable providers. In more detail, this

means that the flexible approach is able to achieve an almost 200% improvementover the best-

performing non-flexible strategy at̄d = 0.4 and it still makes a positive profit at̄d = 0.5, d̄ = 0.6

and d̄ = 0.7, when all other strategies make a loss (in fact, the flexible strategy successfully

completes over 98%, 93%, 88% and 66% of its workflows beforetzero in these environments,

respectively).

At d̄ = 0.8, we notice that the flexible strategy makes a small net loss of−9.97 ± 18.25.

However, this is clearly not a significant loss in this case. Averaged overall values ford̄ we

tested, the flexible approach achieves a profit of735.83 ± 15.86, while the non-adaptive and

adaptive global approaches achieve only173.80± 26.85 and183.60± 37.83, respectively. The

local strategy achieves an average profit of212.30 ± 20.58. Similarly, the flexible strategy

successfully completes68.55 ± 0.51% of workflows, while the remaining strategies complete

only 16.87 ± 1.39%, 40.21 ± 1.85% and43.93 ± 1.07%, respectively. These results support13

Hypotheses 12 and 13.

6.3.5 Failures with Refunds (Hypothesis 14)

In our next experiments, we are interested in environments where providers are not malicious,

but offer full refunds to the consumer in case of failure. Hence, the setup is similar to the

previous sub-section, but we now assume that when providers fail, theyimmediately refund

both the reservation and the execution cost of the service. This is a more realistic scenario when

services are offered by reputable companies, when some central entity monitors the system or

when contracts are easily enforceable. Examples of such systems may include Web services or

scientific Grids.

The results are shown in Figures 6.12 (average profit) and 6.13 (proportion of successful work-

flows) and clearly highlight mostly the same trends as in the previous experiments for the non-

flexible strategies (all achieve slightly higher profits and tolerate higher failure probabilities).

The local strategy now performs better than before as it will pay at most once for each task in

the workflow, and it even achieves a small positive average profit whenthe failure probability is

f̄ = 0.6.

The flexible strategy performs significantly better in this environment, achieving a high positive

profit even at failure probabilities of up tōf = 0.9. More specifically, at̄f = 0.6, our strategy

achieves an average profit of1071.22, with 96.5% of workflows executed successfully before

tzero, compared to the best non-flexible profit of only34.34 with 19.1% of workflows successful

(an approximately 35-fold improvement in average utility). Atf̄ = 0.8, the flexible approach

still completes86.1% of workflows successfully, while the most successful non-flexible strategy

13An ANOVA of the profits, averaged over all environments, rejectsH0 that they are equal (F = 400.16 and
p < 0.001). Pairwise t-tests confirm that the flexible strategy is significantly better than any of the others (all with
p < 0.001). To test Hypothesis 13, we compared each proportion of successful workflows using Fisher’s exact test,
confirming that the flexible strategy is significantly more successful than any others (all withp < 0.001).
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FIGURE 6.12: Performance of strategies in environments where providers give refunds.
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FIGURE 6.13: Proportion of successful workflows in environments where providers give re-
funds.

completes1.6%. This good performance is due to the considerably lower cost of invokingser-

vices redundantly, as now the consumer effectively pays for only thoseservices that succeeded

rather than all invoked services. Even atf̄ = 0.9, the flexible approach still achieves a positive

profit of 114.35 and completes31.2% of workflows successfully.

For all values forf̄ tested, the flexible approach achieves an average profit of1026.53± 14.23,

the global approaches achieve200.60 ± 26.07 (non-adaptive) and335.80 ± 34.30 (adaptive),

while the local approach achieves473.68 ± 17.13. The respective proportions of successful

workflows are81.96 ± 0.42%, 16.74 ± 1.38%, 41.57 ± 1.86% and 43.30 ± 1.07%, which

supports14 Hypothesis 14.

14An ANOVA of the profits, averaged over all environments, rejectsH0 that they are equal (F = 873.93 and
p < 0.001). Pairwise t-tests confirm that the flexible strategy is significantly better than any of the others (all with
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FIGURE 6.14: Performance of strategies when advance provisioningis preferred (negative
adjustment) and when on demand is preferred (positive adjustment).

6.3.6 Different Market Conditions (Hypothesis 15)

Next, we tested the performance of the strategies in environments where either advance or on

demand provisioning is preferred and given a discount in execution cost and a higher reliability.

Such conditions might occur, respectively, when providers prefer to be given early notice by

consumers, so that they can plan their resource availability in advance, orwhen they find their

resources under-utilised and therefore offer discounted services at the last minute. To express

this preference, we vary a discount factor,d, from -1 to 1. When negative, this indicates a pref-

erence for early (advance) provisioning and when positive, on demand provisioning is preferred.

In more detail, we use it during offer generation to adjust the distribution means for the execu-

tion cost and failure probability by a proportion given by|d|. We consider all offers generated

for the current time step,̂ti, as provisioned on demand, and any offers generated fort̂i+40 and

beyond as provisioned in advance. Between these two, we vary the discount factor linearly. For

example, whend = −0.6, f̄ = 0.5 and we generate an offer forti+30, then the corresponding

mean failure probability is(1−3/4·0.6)·0.5 = 0.275. We use all other experimental parameters

as in our first experimental setup, but keepf̄ at 0.5, and now setb = 0.5 andd = 5, to ensure

that discounted offers are available only at their respective time steps.

Figure 6.14 shows the average profit of the strategies in these environments, while Figure 6.15

shows the proportion of successfully completed workflows. Here, we note that the non-flexible

strategies perform well only in extreme conditions — the global approachesexcel when advance

provisioning is preferred, while the local strategy performs well asd tends to 1. When neither

advance nor on demand provisioning is strongly preferred, none of thenon-flexible strategies

p < 0.001). Next, we compared each proportion of successful workflows using Fisher’s exact test, confirming that
the flexible strategy is significantly more successful than any others (all with p < 0.001).
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FIGURE 6.15: Proportion of successful workflows when advance provisioning is preferred
(negative adjustment) and when on demand is preferred (positive adjustment).

does well, because most services in the market are unreliable. In fact, atd = −0.1, these strate-

gies all make a net loss. In contrast to this, the flexible strategy manages to achieve a high

profit over all environments, and, in most cases, significantly outperforms all other strategies.

This is because the flexible strategy adjusts its provisioning strategies to the environment — at

d = −1, it provisions services, on average,43.05 ± 0.72 time steps in advance, atd = 0, this

drops to14.71 ± 0.36 and atd = 1, it provisions only3.57 ± 0.12 time steps ahead. How-

ever, we also note that the flexible strategy is now outperformed atd = −1 (at d = −0.9,

there is no significant difference). In this cases, it suffers from notprovisioning all offers in

advance (and thereby producing a tight-fitting but reliable schedule). Instead, the strategy con-

tinues to provision only parts of the workflow (although now provisioning further ahead) and

hence sometimes exceedstmax. Nevertheless, when averaging over all values ford considered

here, the flexible strategy achieves an average utility of1143.61 ± 12.12, while the global ap-

proaches achieve only109.69 ± 17.78 (non-adaptive) and428.40 ± 24.70 (adaptive), and the

local approach achieves516.37 ± 15.17. The corresponding proportions of successfully com-

pleted workflows are95.83±0.22%, 13.11±0.90%, 53.20±1.36% and59.78±0.77%, which

supports15 Hypothesis 15.

To summarise our empirical evaluation, Table 6.8 shows the average utility eachstrategy gained

in the various environments discussed in this chapter. It is clear that the flexible strategy out-

performs all other strategies we tested here. In the following section, we briefly show that these

trends also hold for larger, more complex workflows.

15Again, an ANOVA rejectsH0 that all mean profits are equal (F = 1825.08 andp < 0.001). Pairwise t-tests
confirm that the flexible strategy outperforms all others (all withp < 0.001), and Fisher’s exact test confirms that
the flexible strategy is more successful than the others (all withp < 0.001).
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Strategy Environment Utility Success %
flexible malicious 725.83± 15.86 68.55± 0.51
global malicious 173.80± 26.85 16.87± 1.39
adaptive global malicious 183.60± 37.83 40.21± 1.85
local malicious 212.30± 20.58 43.93± 1.07

flexible refunds 1026.53± 14.23 81.96± 0.42
global refunds 200.60± 26.07 16.74± 1.38
adaptive global refunds 335.80± 34.30 41.57± 1.86
local refunds 473.68± 17.13 43.30± 1.07

flexible discounts 1143.61± 12.12 95.83± 0.22
global discounts 109.69± 17.78 13.11± 0.90
adaptive global discounts 428.40± 24.70 53.20± 1.36
local discounts 516.37± 15.17 59.78± 0.77

TABLE 6.8: Summary of empirical results.

6.4 Performance in Complex Environments

In this section, we consider large workflows with 50 tasks, a parallelism of 0.25,umax = 6000,

deadlinetmax = 500 and penaltyδ = 50. We assume that tasks belong to one of ten types,

and we generate offers randomly in a similar manner as described in Section 6.2.9, but now use

the characteristics given in Table 6.10 and the corresponding distributions16 in Table 6.9. Table

6.10 now includes two rows for each service type, in order to generate more varied offers (e.g.,

early offers generated by the first row are generally cheaper but also take longer and are less

reliable than those generated by the second row). Furthermore, these service populations have

been chosen to represent a setting where some services are better whenprovisioned in advance

(such as the first row for service type 2), others are better when provisioned on demand (the

second row for service type 5), but most offer various trade-offs between the different qualities

when provisioned earlier or later. For all types, we assume that they can be provisioned up to

300 time steps in advance.

Costs Duration Reliability Availability
(Birth/Death Rates)

low Uc(1, 3) Uc(1, 5) Uc(f, 1.5f) 0.05 / 1
medium Uc(3, 10) Uc(5, 20) Uc(0.8f, 1.2f) 0.5 / 0.5

high Uc(10, 25) Uc(20, 60) Uc(0.5f, f) 2 / 2
v.high Uc(25, 100) Uc(60, 240) Uc(0, 0) —

TABLE 6.9: Distributions used in Table 6.10.

Figure 6.16 shows the performance of thedynamic flexibleand thelocal strategies (it was impos-

sible to provide results for either of the twoglobalstrategies, as they were unable to deal with the

larger number of offers and tasks in these settings17). The figure shows that theflexiblestrategy

16The variablef used to define the reliability distributions is the average failure probability in a given setting.
Where necessary, we assume that upper bounds are adjusted to be atmost 1.

17We attempted to solve the associated integer programming problem, but CPLEX ran out of its allocated memory
(1.5 GB) after two hours.
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Type Time Reserv. Cost Exec. Cost Duration Availability Reliability Refunds
early late early late early late early late early late early late

1 ≥ 20 ≤ 5 low low low medium medium high high low high medium no
1 ≥ 30 ≤ 10 high medium medium medium low high medium medium v.high medium yes
2 ≥ 5 ≤ 0 low medium low medium low medium high low high low yes
2 ≥ 40 ≤ 10 high medium high low medium medium high low medium medium no
3 ≥ 100 ≤ 0 low v.high low high low high low low v.high low no
3 ≥ 1 ≤ 0 high high high high medium medium medium medium medium medium no
4 ≥ 150 ≤ 0 high low low v.high low medium medium medium v.high low yes
4 ≥ 150 ≤ 0 low high v.high low medium low medium medium low medium yes
5 ≥ 60 ≤ 0 medium low medium low low medium medium low medium medium no
5 ≥ 40 ≤ 10 high medium high medium low low low low high high no
6 ≥ 50 ≤ 5 high low low high low v.high low medium medium low no
6 ≥ 1 ≤ 0 low low high high high high medium medium high high yes
7 ≥ 70 ≤ 30 medium low low low low high medium medium high low no
7 ≥ 30 ≤ 10 medium medium low high high low high low medium high yes
8 ≥ 30 ≤ 0 high low medium low high medium medium high high low yes
8 ≥ 100 ≤ 50 low high low high low low medium low v.high low no
9 ≥ 50 ≤ 10 medium high medium low medium high medium high medium high no
9 ≥ 30 ≤ 0 high medium low low medium low high low medium medium no
10 ≥ 200 ≤ 50 low medium low high medium low high medium high medium yes
10 ≥ 200 ≤ 50 medium medium low v.high low medium medium medium medium high yes

TABLE 6.10: Service types used to evaluate complex environments.
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FIGURE 6.16: Performance of strategies in more complex environments.
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FIGURE 6.17: Proportion of successful workflows in more complex environments.

again achieves a high average profit over most environments, even when the failure probabil-

ity is high. It also performs significantly better than thelocal strategy over all environments

considered here.

However, we also note that theflexiblestrategy makes a small loss when the failure probability

is 1. Here, it still attempts some workflows (as there are usually some offers with a non-zero

success probability when provisioned at a specific time), but then often takes slightly longer to

complete than anticipated. We believe that this due to our heuristic workflow duration estimation

technique, which is inherently optimistic. Furthermore, in contrast to the strategies presented

in previous chapters, we also use this heuristic to predict the probability thattasks will conflict

with each other. As discussed in Section 6.2.4, this introduces further inaccuracies, which we

believe contributes to the overall loss incurred in this particular environment.Despite this, the

general trends of the strategy are promising and it still completes most workflows successfully

even when the failure probability is high (as shown in Figure 6.17).
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Having discussed the experimental results of thedynamic flexiblestrategy, we now summarise

the work presented in this chapter.

6.5 Summary

In this chapter, we considered environments with dynamic service markets, where the prices,

availability and other parameters of services change over time, and where the consumer enters

explicit contracts with providers. To deal with such environments, we use high-level provision-

ing strategies that are based on statistical market observations, and only gradually provision

workflows, in order to retain flexibility and deal with failures. By addressing this type of system

model, we covered the remaining model requirements: M.2.b, M.3.b and M.5. Furthermore, as

the strategy iteratively provisions the workflow over time, using new information about failures

and service availability as it is observed, the extended flexible strategy of this chapter refines its

decisions adaptively, thus addressing Requirement A.4.

By carrying out an experimental study, we have shown that our strategyperforms significantly

better than the current state of the art, and over a range of environments.Furthermore, we

demonstrated that the strategy adapts well to prevailing market conditions, provisioning services

earlier when providers offer discounts for advance provisioning andleaving provisioning to the

last moment, when this is favoured by the providers.



Chapter 7

Conclusions and Future Work

This final chapter concludes the thesis by reviewing its contributions to the fieldof service

provisioning and by outlining opportunities for future work. To this end, in Section 7.1, we look

back at the research problem that has motivated this thesis and provide a high-level overview of

the techniques we have proposed to address it. Then, in Section 7.2, we discuss in more detail

our research contributions and relate these back to our original requirements from Section 1.4.

In Section 7.3, we compare and contrast the flexible strategies developed throughout this thesis.

Finally, in Section 7.4, we propose several ways in which our work can beextended in the future.

7.1 Research Summary

Today’s computer systems are increasingly distributed and inter-connected in nature, thus allow-

ing organisations to share expensive computational resources and to sell a wide range of services

online — from running complex data processing tasks, providing credit checks and travel reser-

vations, to selling physical goods. In this context, service-oriented computing is emerging as

a powerful methodology for allowing heterogeneous and distributed software applications to

discover and interact with each other automatically. Clearly, employing such aflexible systems

engineering approach promises tremendous benefits, as users can automate their business pro-

cesses and workflows, dynamically outsourcing complex services to thoseproviders that best

suit their needs.

However, as we have argued in this thesis, it is necessary to view participants in open service-

oriented systems as autonomous agents that have their own goals and objectives. Thus, they

cannot be assumed to follow service requests blindly, adhere to their advertised functionality,

or even honour pre-negotiated contracts. This uncertainty poses considerable challenges to con-

sumers that rely on external service providers to meet their own objectives, and it is a particularly

pressing concern in scenarios where consumers execute large workflows, have strict deadlines,

and where providers demand remuneration for their services.

195
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Reviewing the current literature on service provisioning, we found that existing approaches do

not address this uncertainty in a satisfactory manner. Most view service failures or contract

violations as exceptional and rare events that are handled purely reactively either by manually

specified error handling procedures, or by re-provisioning the failedtask. Other approaches

impose strict constraints to ensure that only highly reliable services are provisioned, but this is

infeasible when all providers are unreliable or when workflows consistof hundreds of tasks.

Some existing work employs redundancy to deal proactively with highly unreliable providers,

but this is typically done in an ad hoc manner and does not explicitly balance thecost of intro-

ducing this redundancy with its benefit.

Against this background, we examined work in the field of multi-agent systems and identified a

number of techniques that we believe are vital for addressing the above shortcomings. In par-

ticular, we built on work on trust and reputation to model the uncertain behaviour of service

providers using probability theory, and we placed the interactions of consumers and providers

within the context of a service market, where providers are financially remunerated for their

services (and possibly allow consumers to reserve resources in advance). Based on this, we

developed a decision-theoretic approach that enables a consumer agent to take appropriate deci-

sions on behalf of its user with minimal human intervention. In particular, this approach reasons

explicitly about the uncertain behaviour of service providers to decide how many services to

provision for each task in a workflow, which ones to choose from a set of heterogeneous ser-

vices, how to deal with services that do not return explicit failure messages and also when to

start negotiating service contracts in advance.

In the following section, we provide a more detailed summary of our approach, highlighting

the novel contributions we have made to the state of the art and relating our work back to our

original requirements from Section 1.4.

7.2 Research Contributions

In this thesis, we set out to design a set of methods for building a computational agent that is

capable of executing complex workflows in highly dynamic and uncertain service-oriented envi-

ronments. We achieved this by adopting decision theory as a principled framework that not only

allows the service consumer agent to make decisions autonomously on a user’s behalf, but that

also builds naturally on top of work in the area of trust and reputation that models the behaviour

of service-providing agents probabilistically. Employing this framework, wemade a number of

significant contributions that allow a software agent to execute its workflows effectively even

in environments where service providers are highly unreliable. In the following sections, we

outline each of the main contributions of this thesis (Sections 7.2.1–7.2.5) before summarising

how we have addressed our original requirements (Section 7.2.6).



Chapter 7 Conclusions and Future Work 197

7.2.1 Redundant Provisioning

In this thesis, we proposed the use of redundant services as a fundamental tool for addressing

uncertainty. This approach is based on similar techniques in the area of reliability engineering

and offers two key advantages: provisioning redundant services in parallel for a particular task

allows the consumer to both increase the overall probability of success as well as decrease the

expected task duration. However, introducing such redundancy clearly also leads to a higher

overall cost, as the consumer may need to pay for all provisioned services.

Previous work has employed redundancy using a static approach, usually by provisioning a fixed

number of parallel services for each task. However, our approach isthe first that reasons explic-

itly and fully automatically about the level of redundancy that is appropriate for each workflow

task, using a principled decision-theoretic framework. In doing so, we take into consideration

several important factors. First, we use the performance characteristics of services, e.g., to use

greater redundancy when provisioning particularly unreliable services. Second, we explicitly

balance the cost of redundancy with its benefit (e.g., when they are expensive, we rely on fewer

services, but when they are cheap, we provision more in parallel). Third, we consider the impor-

tance and time-constraints of workflows to decide how much to spend on services and whether

redundancy is justified (e.g., when a workflow is of high importance to the consumer, it may be

appropriate to use redundancy even when services are reliable). Finally, our approach also takes

into account the structure of workflows, e.g., to rely on higher levels of redundancy towards the

end of the workflow, in order to ensure that the high investment in earlier services is not lost.

7.2.2 Flexible Re-Provisioning

Current approaches for handling failures in service-oriented systemstypically assume that ser-

vices return timely and truthful error messages to inform consumers when they are unable to

provide a requested service. Clearly, such an assumption is unrealistic in open systems, where

providers may crash randomly without notice or even defect maliciously after receiving the

payment for their services. To address suchcrashfailures, previous approaches have relied on

manually specified time-out periods after which it is assumed that a service has failed. However,

this requires significant human intervention and it is an inflexible approach that does not exploit

knowledge about heterogeneous services (some of which may be fasterthan others) or that can

easily be adapted to the structure or time-constraints of a workflow.

To address these shortcomings, we are the first to propose a flexible provisioning mechanism

that determines automatically when to stop waiting for apparently failed servicesand start re-

provisioning new services for the task. This mechanism uses probabilistic information about

the duration and reliability of services and thereby explicity balances the need to give services

sufficient time to complete their task with the possibility that they have already silentlyfailed

and will never return a result. Furthermore, it again takes into account a range of factors, similar

to those described in the section above. For example, when workflows have strict deadlines, the
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consumer may start to wait shorter amounts of time. Similarly, it may allocate longer waiting

times to tasks that are less likely to have a significant impact on the duration of theworkflow

(i.e., those that are not on the critical path).

7.2.3 Limited Information Availability

Related work that has considered unreliable service providers typically assumes that the service

consumer has access to detailed performance information about each available service. In con-

trast to this, we are the first to explicitly consider a spectrum of cases where different amounts

of information about services may be available:

• Full Information: Complete performance information about each service in the system

is available to the consumer. This may be the case where consumers share information

about providers using an effective reputation system, or where there issome centralised

observer. We believe that such a case is actually rare in open multi-agent systems, as new

providers may enter at any time, about whom no specific information is available.

• Moderate Information: Specific information about some individual services may be

known, but other information is often generalised to larger groups of providers. As an

example, this may include open systems, where consumers will have interactedfrequently

with some providers and so collected accurate information about their services, but where

there are also groups of providers with whom few interactions have takenplace (e.g.,

new entrants to the system). In the latter case, the consumer can only use generalised

information, perhaps inferred from previous experience with members ofsuch a group.

• Highly Limited Information: There is no specific information to distinguish one service

provider from another. This may be the case in service-oriented systems that do not offer

any form of reliable reputation mechanism and where the consumer’s experience with

providers is severely limited. Similarly, it is applicable in systems, where the service

population changes rapidly and where it is not feasible to track and verifythe identities

of the providers (such as in a peer-to-peer system). In these systems, the consumer has to

rely on information only about the whole population of service providers, possibly based

on knowledge about the complexity of the task itself or previous experiencewith such

providers.

In this context, we developed several techniques that exploit the characteristics of these different

cases. Specifically, in Chapter 4, we considered the latter case where only limited information

about the whole service population is known. Here, we showed that evenwhen all services

are highly unreliable, the consumer can use redundancy to proactively influence the expected

performance of the workflow to suit its value, structure and time constraints.This is a novel

contribution, as existing work on service provisioning relies on differences in the performance
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of individual services, in order to select a single service that best meetsthe given constraints.

Furthermore, our approach allows us to efficiently calculate a number of performance parame-

ters, regardless of how many service providers there are.

In Chapter 5, we then considered the first two cases, where more (possibly complete) informa-

tion about individual heterogeneous services is known. For such cases, we suggested a model

that groups the services for a given task into heterogeneous populations, which allowed us to

significantly speed up our proposed algorithm.

7.2.4 Gradual Provisioning with Reservations

Existing work on service provisioning has usually made the assumption that services are invoked

purely on demand, i.e., that service consumers contact providers only atthe time a given service

is required. This model is commonly supported by current Web services, and it is an approach

we adopted in Chapters 4 and 5. However, there is a growing trend towards advance agreements,

in order to provide consumers with higher reliability and some assurance thatservices will be

available when they are needed. While some work on service provisioning uses such advance

agreements, their strategies rely on provisioning entire workflows in advance. Clearly, this

produces brittle workflow when there is uncertainty, as a single failed service may mean that the

consumer misses all subsequent reservations, and this is particularly critical when the consumer

has had to make an advance payment for these.

To address these shortcomings, we are the first to propose a more flexibleapproach to handling

advance agreements. Rather than provision an entire workflow at once,our strategy provisions

only some tasks in advance and delays the provisioning of other tasks until alater time. This

allows the consumer to reduce the risk of missing reserved services, as it can wait until it is more

certain about the time the service will actually be needed. Furthermore, our approach naturally

allows a mixed system model, where services may be provisioned either on demand or in ad-

vance, but with potentially significantly different characteristics (e.g., services provisioned on

demand may take much longer and may be more failure-prone than reserved ones, but may also

be far cheaper). We believe that such a model may become common in large and open service-

oriented systems, but this aspect has not been considered by work on service provisioning so

far.

7.2.5 Adaptive Provisioning

While some work on service provisioning has proposed adaptive approaches that monitor the

execution of a workflow, these react only to breaches of service agreements or of the overall

workflow constraints (and at this time, it might be too late or very costly to recover the work-

flow). In this thesis, we proposed a novel, more proactive approach to the monitoring and

run-time adaptation of workflows. Specifically, by using probabilistic service models, we can
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predict when services are likely to cause problems even if no constraints have been breached yet

(e.g., we might find that a task is completed slightly later than predicted, resulting ina higher

probability that already provisioned services later in the workflow will not be executable). This

allows us to react earlier and in a more appropriate manner to potential problems.

In such cases, we then take corrective actions to minimise the disruption to the workflow. These

might include re-provisioning tasks of the workflow, but also adding additional redundant ser-

vices to already provisioned tasks or preparing contingent plans that are only activated when

problems occur. Furthermore, our approach will detect infeasible workflows early during exe-

cution, as it makes probabilistic predictions and so anticipates failures or deadline violations. In

these cases, the consumer may abandon the workflow to avoid wasting resources, while existing

work will typically continue to re-provision the workflow until it eventually breaches one of its

constraints (e.g., budget or time constraints). Finally, unlike other work, our adaptive mecha-

nism also provides for the case when services perform better than expected. Specifically, our

approach may provision less services than originally planned when the workflow is ahead of

schedule or when it discovers particularly promising offers at run-time.

Now, having briefly summarised the five principal contributions of this thesis,we return to the

research requirements we originally set out to address in Section 1.4, andwe discuss how they

have been covered by the work presented in this thesis.

7.2.6 Review of Requirements

In the following discussion, we summarise how we have addressed our original model require-

ments (Section 7.2.6.1), workflow requirements (Section 7.2.6.2) and agent requirements (Sec-

tion 7.2.6.3).

7.2.6.1 Model Requirements

We begin by discussing how the model we have adopted in this thesis meets our original re-

quirements.

M.1. Uncertain Service Behaviour

Building on work in the area of trust and reputation, we decided to model uncertain be-

haviour using a probabilistic framework. We described this in detail in Chapter 3 and used

it as the foundation for our decision-theoretic techniques in all subsequent chapters. More

specifically, this has allowed us to express uncertainty along the following dimensions:

a. Service Success

Throughout the thesis, we have assumed that providers may fail to provide their

services and represented this using a failure probabilityf(si). In Chapter 6, we
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extended this model to include cases where the provider fails, but offersa compen-

sation to the consumer.

b. Service Duration

Similarly, we modelled uncertain service duration using a probability distribution

over possible service completion times (d(si, x)). In particular, in Chapters 4 and 5,

we assumed that the actual duration was not known to the consumer until the service

was completed. In Chapter 6, we used a slightly different model and assumed that

the duration was an explicit part of the contract (as this is a common term in such

contracts).

M.2. Remuneration for Service Provision

Services generally require financial remuneration in our model, and this expense has been

a central consideration in our decision-making algorithms. In particular, weused both of

the following two models:

a. Fixed Pricing

In Chapters 4 and 5, we used a fixed pricing model, which applies to systems where

providers publish their prices in advance to all customers.

b. Flexible Pricing

In Chapter 6, we considered a more flexible approach, where a new quote was pro-

duced for each service request, thus resulting in a more uncertain environment.

M.3. Service Interaction Models

While most current service-oriented technologies support on demand invocation as the

prevalent interaction model, the need for advance agreements is emerging ina number of

application areas. For this reason, we decided to cover both in our research:

a. On Demand Invocation

In Chapters 4 and 5, we developed techniques for a model that relies solelyon on

demand invocation.

b. Advance Provisioning

In Chapter 6, we considered an extended model, where services may be provisioned

in advance, possibly resulting in different performance characteristics. As a special

case, this model includes on demand provisioning, when the consumer attemptsto

reserve a service for immediate use.

M.4. Provider Heterogeneity

In Chapters 5 and 6, we explicitly model providers that differ in the quality oftheir ser-

vices.

M.5. Dynamism

In Chapter 6, we model availability of service offers using a stochastic process, where

offers are created and removed from the market according to a fixed birth and death rate,
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and where the terms of these contracts are drawn from probability distributions. This

leads to a market with considerable dynamism, where the availability of a type of service

changes over time and where the qualities are similarly uncertain. However, we currently

do not consider systems where the underlying parameters of these processes also change

over time.

7.2.6.2 Workflow Requirements

In this section, we summarise how our workflow model meets our original requirements.

W.1. Workflow Expressivity

As described in Chapter 3, we model workflows using directed acyclic graphs. This is

consistent with much related work in the area and allows us to represent the following:

a. Parallel Task Ordering

Two tasks may be executed in parallel when there is no path from one task to the

other.

b. Sequential Task Ordering

Otherwise, the structure of the graph dictates dependencies between tasks and the

sequence they must be executed in.

W.2. Use of Appropriate Reward Model

We use a simple utility functionu to represent the value of completing a workflow. Im-

portantly, this depends on the time of completion, such that a workflow completedearlier

may be more valuable than one that is completed later.

7.2.6.3 Agent Requirements

In this section, we review how we have addressed our original agent requirements.

A.1. Principled Decision Framework

We adopted decision theory as a principled framework for building a service consum-

ing agent. As this builds on probability theory, it was a natural choice for dealing with

provider uncertainty.

A.2. Failure Handling

Our proposed algorithms deal with failures in the following ways:

a. Reactive Failure Handling

Throughout this thesis, we consider the appropriate re-provisioning ofservices when
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failures occur. This allows the consumer to recover quickly from failuresand rea-

soning about this explicitly before execution enables the agent to predict the overall

utility and feasibility of the workflow. In Chapter 6, we additionally introduce con-

tingent re-provisioning plans for various types of failures that might occur during

execution.

b. Proactive Failure Avoidance

Another important technique we employ in our work is the redundant provisioning

of multiple services in parallel. This proactively addresses failures, as it decreases

the probability that a task will not be completed by at least one service.

A.3. Scalability

As we rely on heuristic techniques to estimate some probabilities and to find good pro-

visioning allocations, our approach is scalable to large workflows and service-oriented

systems, as we have shown in our empirical evaluations. In particular, throughout the

thesis, we have verified that our strategies work both on small workflows and on larger

instances with 50–100 tasks and thousands of providers (furthermore,in Appendix B, we

show that our approach can deal with workflows that consist of thousands of tasks).

A.4. Adaptivity

In Chapter 6, we proposed a novel adaptive provisioning approach that deals quickly with

unexpected failures, but also exploits new opportunities when services perform better than

expected.

Having reviewed our original research requirements, we now discuss how the various flexible

provisioning strategies proposed throughout this thesis relate to each other.

7.3 Comparison of Flexible Strategies

In Chapters 4, 5 and 6, we have introduced three flexible provisioning strategies, theflexible,

fast flexibleanddynamic flexiblestrategies (we do not discuss thefull flexiblestrategy here, as

it is broadly similar to thefast flexible). As we described in those chapters in detail, they each

make different assumptions about the information available about service instances and about

how services are provisioned, and so we envisage that each will be applicable to different sets of

scenarios. For example, theflexiblestrategy is suitable for environments where no specific infor-

mation about service providers is available and thefast flexibledeals with cases where previous

observations or a trust model are used to differentiate between heterogeneous providers. Finally,

thedynamic flexiblestrategy addresses more dynamic systems, where provisioning agreements

are made in advance.

Generally, our approach for devising these three strategies has been similar. Most importantly,

they each aim to maximise the service consumer’s expected utility and they use thesame global
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utility estimation technique. However, to best suit the respective system models, the three strate-

gies differ in their local task calculations, the decision spaces they consider and the search al-

gorithms they employ. In the following, we briefly highlight the main distinguishing features of

each strategy.

First, theflexiblestrategy outlined in Chapter 4 exploits the limited information available and

uses efficient, closed-form equations to calculate local task characteristics. These can be quickly

evaluated, even when there are many service providers. Due to these fast calculations and the

limited decision space ofni andwi for each taskti, the local search mechanism of theflexible

strategy is simple — it carries out a steepest-ascent hill-climb until no more improvements can

be made (considering neighbours of every workflow task during each iteration).

Next, thefast flexiblestrategy discussed in Chapter 5 considers a more complex problem. In this

case, heterogeneous providers may be provisioned in parallel or in sequence, resulting in less

efficient local task calculations. Furthermore, the decision space is larger than considered previ-

ously, and these factors have prompted us to adopt a faster, greedy hill-climb. This modifies the

first task that offers any improvement to the current allocation, terminates after a fixed number

of iterations and also carries out random restarts.

Both theflexibleand thefast flexiblecover similar system models, and, as explained in Sec-

tion 5.1, systems with homogeneous providers are subsumed by the model used in Chapter 5.

Nevertheless, we believe that theflexiblestrategy is more suitable for such scenarios, because it

employs more efficient techniques.

Finally, thedynamic flexiblestrategy addresses a very different system model and also differs

significantly in its provisioning approach. Most importantly, the strategy relieson initial high-

level provisioning decisions that do not consider concrete service providers, but rather use sta-

tistical information about service offers available in the past. This approach was necessitated

by the dynamic setting, where the availability of offers changes constantly and where it may be

undesirable to provision an entire workflow in advance.

However, such an approach also means that initial provisioning decisionsinclude more uncer-

tainty that is only reduced during execution, when concrete service offers become known. For

this reason, thedynamic flexiblecontains an adaptive component that revises the initial provi-

sioning decisions as offers are provisioned at run-time. Finally, the decision space considered

by thedynamic flexiblestrategy contains more allocations that result in infeasible workflows

(which often lead to a local maximum). Hence, we have had to adopt a stochastic local search

algorithm and a modified utility function to specifically avoid such maxima.

In conclusion, none of our proposed strategies is intended to represent a definite solution for all

types of service-oriented systems. Rather, they constitute a set of approaches, each of which

is best suited for a particular type of environment. Taken together, they cover a wide range of

scenarios that are emerging in current service-oriented architectures.

In the following section, we examine a number of promising directions for future research.
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7.4 Future Work

The work in this thesis can be extended in a variety of ways. First, some potential application

areas may require certain assumptions of our current model to be relaxed. We discuss how this

might be done in Section 7.4.1. Second, there are a number of extensions that can be added to

our work to make it more applicable to a wider range of scenarios and we detail these in Section

7.4.2.

7.4.1 Addressing Model Assumptions

Throughout this thesis, we have built on a simple, abstract model of a service-oriented system,

as outlined in Chapter 3. This allowed us to develop generic techniques that we believe are

applicable in a wide range of real world scenarios. However, in devisingsuch a general model,

we have had to make a number of potentially limiting assumptions that may not hold inall

application areas and which we listed in Section 3.6. Here, we return to these assumptions and

briefly describe how they may be relaxed in future work.

• Failure Model: While we concentrated on silent crash failures in our work (particularly

in Chapters 4 and 5), it is easy to extend our model to include explicit failure messages,

e.g., by including a new mode of failure, where the provider notifies the consumer of its

failure some time after invocation. This would generally reduce the expected duration

of tasks as the consumer does not necessarily need to wait for the specified time-out or

pre-negotiated service duration, but would not alter our overall strategy.

Considering Byzantine failures is more challenging, but our approach forms a solid basis

for tackling this problem. As we already rely on redundancy, it is possible toinclude

voting schemes that select the majority of several different service outcomes (Lamport

et al. (1982); Barborak et al. (1993)). Dealing with correlated failures also poses new

challenges, but there are a number of existing techniques for modelling and learning such

correlations and for avoiding services that are prone to correlated failures (Nicola and

Goyal (1990); Weatherspoon et al. (2002); Townend et al. (2005)). These could be adopted

in our work to calculate more accurate, correlated failure probabilities.

• Performance Information: The problem of obtaining accurate performance information

about unreliable service providers will most likely be addressed by parallel efforts in the

areas of trust and reputation. However, in systems where the service consumer relies

solely on its own experience rather than a reputation mechanism, it may be interesting

to consider the process of gathering such experiences as part of service provisioning. As

such, the consumer might explicitly balance the higher certainty in provisioninga known

and trusted provider with the potential benefit of provisioning an unknown(but possibly

far cheaper) provider. Dealing with such trade-offs between exploration and exploitation

are common in many areas of decision-making and could be incorporated into our model.
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Furthermore, our model could be extended by considering more complex joint probabil-

ity distributions that depend on the current time or on other variables. As we described

earlier, taking these into consideration might be critical for applications where the quality

of services fluctuates over time or with changing levels of network traffic. This would

require appropriate modifications of our task calculations, but we believe that our overall

framework would apply similarly.

• Payment Model: It is straight-forward to modify our model to include additional charges

for the disposal of redundant service invocations (e.g., when dealing with the procure-

ment of physical goods). However, adopting subscription schemes forallowing multiple

service invocations at a fixed price would require some revisions of our calculations and

optimisation algorithms. We believe that this is an interesting future extension for our

work.

• Reward Model: As we use generic local search algorithms in our work, we believe that

it is possible to consider more complex utility functions, including those that depend on

multiple criteria (such as the timeliness and the quality of the overall workflow output).

This would make our work more applicable for scenarios such as video rendering, stream-

ing or compression tasks, where the output quality might have a significant impact on the

user’s satisfaction.

• Model Scope: In future work, we will cover more extensive workflow models that may

occur in practice, and which will require small modifications to the way we aggregate

performance parameters over the workflow. We envisage that a large number of other

domain-specific requirements can be easily incorporated into our approach by placing ap-

propriate constraints on the hill-climbing algorithm. For example, when it is impossible

to provision multiple services in parallel for a particular task, the corresponding param-

etern can be held constant at1. Similarly, as mentioned in Section 3.1, when there are

close dependencies between several services offered by a single provider, these can be

aggregated and viewed at a higher level of abstraction as a single unit (e.g., a book ven-

dor’s submitOrderandpayOrderservices might be aggregated, as they only produce the

desired result of ordering a book when used in conjunction).

7.4.2 Future Extensions

To conclude our discussion of future work, we now turn our attention towards other improve-

ments and extensions to our work that we believe are interesting to pursue in the future.

One immediate area of further research is the development of improved heuristics and estimation

techniques for aggregating the global performance parameters of workflows. In particular, our

approach currently estimates the duration of a workflow using a normal distribution along the

critical path of the workflow. However, such an approach generally results in an optimistic
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estimate, as it uses the mean task durations to find this critical path, without considering the

possibility that other tasks outside this path may in fact take longer at run-time.

To improve this, it may be possible to find an analytical solution to the overall probability dis-

tribution when certain assumptions about the workflow structure are made (e.g., that the graph

is a tree or that it is reducible). When these assumptions do not hold, there are a number of

existing techniques that can improve the accuracy of the critical path technique. For example,

these include techniques that also take into consideration the variance of tasks to calculate the

most critical path (Soroush (1994)), that identify a number of candidate critical paths (Dodin

(1984)) or that use simulation to obtain distribution estimates (Cook and Jennings (1979)). Any

of these techniques would require few modifications to our proposed model.

Next, it will be interesting to adapt our approach to a range of negotiation mechanisms. Cur-

rently, we use the contract net protocol in Chapter 6, which is a common andsimple mechanism

for multi-agent systems. However, there are many others that have been proposed in the litera-

ture and which we summarised briefly in Chapter 2. We believe that our current model can be

adapted for these strategies with only few modifications — for example, the high-level strategies

we use in our work can be adapted to refer to the use of different negotiation protocols and pos-

sibly for bidding strategies on these protocols (e.g., how fast to concede inbilateral negotiation

or what service requests to post in a reverse auction).

Moreover, our work can be extended to consider systems that display a higher level of dynamism

than considered thus far. As described above, in Section 7.2.6.3, we currently consider that

the availability of offers and their performance characteristics vary according to probability

distributions and a stochastic birth-death process. However, we do not currently assume that

the underlying parameters of these distributions change over time. Clearly, this shortcoming

should be addressed in future work, to enable us to model systems where significant changes

may take place (e.g., where demand for particular services suddenly risesdramatically, or where

new providers with significantly higher reliability enter the system).

Generally, such dynamism will most likely be addressed by work on trust and reputation, which

has already considered how to track changes in the performance of agents (see Chapter 2). In

this case, the updated values could simply be used in our existing algorithms andprovisioning

could be adapted at run-time in a similar manner as described in Chapter 6. However, even

when dynamic trust and reputation information is available, our work on high-level strategies

may need to be revised, as it depends on derived performance information that the consumer

has accumulated itself. This might be addressed by constantly observing themarket during

execution and updating the strategy library accordingly, possibly by considering only offers

over a limited time-frame.

Finally, the work in this thesis has been concerned with proposing a genericdecision-making

procedure for flexible service provisioning in distributed systems. As such, we have con-

centrated on abstract, high-level concepts when referring to servicesand workflows, without

grounding our techniques in specific technologies and applications. While this has allowed us
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to take a general approach, more work will be required to apply our workdirectly to a particular

application and we intend to consider this in future work.

In more detail, we believe that our techniques will fit naturally on top of existingworkflow ex-

ecution engines (discussed in Section 2.4.1). As an additional decision-making layer in these

applications, our algorithm can automate the provisioning of services, given an abstract work-

flow and a suitable service index (which could range from simple manually specified lists of

services to sophisticated semantic matchmaking mechanisms based on OWL-S or SAWSDL).

Furthermore, we believe we can build on and extend work that has alreadyproposed dynamic

provisioning techniques for established technologies, such as Web services and WS-BPEL (see

Chapter 2). This might include work by Friese et al. (2005) on self-healing WS-BPEL work-

flows or work by Mandell and McIlraith (2003) on using semantically annotated services to

provision abstract WS-BPEL workflows.

This concludes the summary of our research contributions and future work. To give further

background information, the following appendices provide some supplementary material that

extends the main work presented in this thesis. Specifically, Appendix A shows that our work

is robust to inaccurate service information, Appendix B investigates the scalability of our ap-

proach, Appendix C provides results regarding the hardness of the provisioning problem, Ap-

pendix D discusses in more detail some of the equations presented in our work and Appendix E

lists the acronyms used throughout the thesis.



Appendix A

Sensitivity Analysis

Throughout this thesis, we have assumed the service consumer to have access to accurate per-

formance information about the services offered by provider agents. However, obtaining such

information is clearly a challenging task, as we saw in Chapter 2, and often theconsumer will

have to rely on estimated and slightly inaccurate performance information. Thisis particularly

the case in open and dynamic systems, where new providers may enter the system at any time

and where little prior information may be available about their behaviour.

Although the design of appropriate trust and reputation mechanisms has notbeen the focus of

this thesis, we briefly show empirically in this appendix that our flexible approach is robust

to moderate inaccuracies in the performance information of services. This isnot a surprising

result as our work already relies on heuristic methods to estimate some of the global workflow

parameters. For the sake of this discussion, we focus on theflexiblestrategy presented in Chapter

4, as we believe this strategy to be the most vulnerable to inaccurate information. In particular,

this strategy assumes all providers to be homogeneous and so small inaccuracies may result in

significantly biased overall estimates.

In order to evaluate the performance of this strategy in the presence of inaccurate information,

we follow the same experimental setup as in Section 4.5.1, but now systematically introduce

errors into the information that is available to a service consumer following theflexiblestrategy.

To this end, we first evaluate the effect of relying on inaccurate failure probabilities, and then

examine the impact of inaccurate service duration information. In both cases, we expect the

performance of our strategy to decrease as the information becomes less accurate.

In our first set of experiments, we consider the case where the consumer underestimatesthe

failure probability of service providers. Hence, we multiply the actual values for the failure

probabilitiesf(si) by a scalarǫf < 1 to provide an inaccurate input to theflexiblestrategy. The

results for various values ofǫf are shown in Figure A.1. In most cases, the average net profit

gained by the strategy degrades gracefully as the performance information becomes more inac-

curate. In fact, when the (true) failure probability is low in the environment (up to around 0.3),

209
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FIGURE A.1: Effect of underestimating the failure probability of providers (ǫf < 1).

the strategy does well even if the information is up to 90% inaccurate (i.e.,ǫf = 0.1). How-

ever, when the failure probability rises to 0.7 and beyond, the impact of inaccurate information

becomes more detrimental to the performance of the strategy. This is particularly evident when

ǫf = 0.8, which results in a large net loss at high failure probabilities. This is because the

strategy provisions a large number of providers in parallel without detecting that the workflow

is infeasible (and thus, it loses its high investment). Perhaps surprisingly, when information be-

comes even more inaccurate at high failure probabilities, the consumer begins to make smaller

losses again. This is due to the strategy provisioning less providers in parallel and therefore

losing less of its investment when the workflow eventually fails. Despite the special case when

ǫf = 0.8, the results are promising and show that small inaccuracies in the information (up to

10%) have little or no effect on our strategy. In most other cases, performance simply degrades

gracefully as the information becomes more inaccurate.

Next, we are interested in the trends resulting fromoverestimatingthe failure probability of

service providers. Hence, we now multiply the failure probabilities by a scalar ǫf > 1 to provide

an inaccurate input to our strategy (using a failure probability of 1 wheneverf(si) ·ǫf > 1). The

results of this are shown in Figure A.2. Not surprisingly, the performanceof the strategy simply

degrades as the perceived failure probability rises. Because its behaviour is more conservative

when it overestimates the failure probability of providers (it will provision unnecessarily many

providers), it never makes a long-term loss. These results show that our strategy performs well,

even when it significantly overestimates failure probabilities. In fact, the overall performance
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FIGURE A.2: Effect of overestimating the failure probability of providers (ǫf > 1).

degrades only slightly when the failure probability is overestimated by 10% (ǫf = 1.1). Even

at 20% (ǫf = 1.2), the performance is extremely good, and at 50% the strategy still performs

reasonably well compared to the case with accurate information.

Apart from the failure probabilities, theflexiblestrategy also relies on probability density func-

tions for the duration of a service execution. Because these will most likely bebased on past

observations and can be subject to noise, we now examine the effect of inaccurate information

about these functions. Here, we multiply the scale parameterθ of the underlying gamma distri-

bution by a scalarǫd to yield an inaccurate duration distribution. By varying the scale parameter,

we ensure that the mean of the distribution is varied proportionally withǫd (e.g., whenǫd = 0.5,

the consumer estimates the mean service execution time to be half of the true value), while the

overall shape of the distribution stays the same.

As before, we first consider the case ofunderestimatingthe duration of service providers (ǫd <

1). The results are shown in Figure A.3. Here, the strategy handles an error of up to 20%

(ǫd = 0.8) very well with only a marginal performance decrease. Even when the error rises to

30% (ǫd = 0.7), the performance comes close to the case with accurate information. However,

as the information becomes even more inaccurate, the strategy performs increasingly badly.

Also, it is evident that the strategy behaves more erratically at the same time — occasionally,

the average net profit at a given level of inaccuracy increases as the failure probability rises (this

is because the strategy constantly varies the balance between parallel andserial invocations, the

latter of which is more susceptible to wrong duration estimates).

Finally, Figure A.4 shows the corresponding results when the consumeroverestimatesthe ser-

vice duration. Here, the performance again degrades slowly as the errorrises. This is because the

agent allocates unnecessarily long waiting times to the providers or provisions parallel providers
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when this is not needed. However, the loss in performance is clearly verysmall. This is because

the consumer will occasionally wait longer than required or incur extra expenditures by provi-

sioning parallel providers, but in many cases, the providers will simply complete their services

earlier than anticipated and the consumer will be able to continue the workflow immediately and

without penalty.

To conclude the sensitivity analysis, the results presented in this section show that our strategy

is robust to small and moderate inaccuracies. In all cases, it performs well when the information

provided is within 10% of the true value, and often errors up to 20% and 30%lead to only



Appendix A Sensitivity Analysis 213

marginal decreases in performance, especially when the consumer is overly pessimistic (i.e.,

when it overestimates the failure probability or duration of services). Overall, performance

generally degrades gracefully as larger errors are introduced into theinformation that is known

about providers (until they are too large to be of any value to the consumer— e.g., asǫd reaches

0.5).

We also identified one case where underestimating the failure probability of providers can lead

to poor performance. However, this only occurs in very specific scenarios when providers are

highly unreliable and when the error in information is a significant 20%. Hence, our strategy

may benefit from identifying these conditions in advance (e.g., by observing that the expected

utility of a provisioned workflow is very low compared to the expected cost). Nevertheless,

the overall results presented here are promising, showing that our strategy is applicable even

in environments where completely accurate performance information is unavailable (as will be

typical in any large dynamic multi-agent system).



Appendix B

Scalability of Flexible Provisioning

In order to address our Requirement A.3 for scalable techniques, we have concentrated in this

thesis on designing heuristics that are suitable for complex environments with large workflows

and many service providers. In particular, our proposed algorithms useutility estimates that

can be computed in polynomial time, and we employ local search techniques with anytime

properties, i.e., that can be interrupted after any amount of time to yield a candidate provisioning

solution (the quality of which depends on the time of interruption). Hence, ourtechniques can

be applied in scenarios where provisioning allocations for complex problemsmust be calculated

within a reasonable amount of time.

Now, to convey a better understanding of the scalability of our techniques, we investigate in more

detail the time it takes them to find a good solution when confronted with complex workflows.

As all our strategies proposed in Chapters 4–6 are based on a similar technique for estimating the

overall workflow utility ũ, we concentrate here on thefast flexiblestrategy outlined in Chapter

5, and examine how well it copes with workflows of varying sizes1. As discussed in Section

4.4.3.2, we have already seen that the time complexity of our estimation technique,with respect

to the workflow size, is inO(|T |2) when run initially andO(|T | + |E|) for each subsequent

iteration. Furthermore, we carry out up to10 · |T | iterations of the the main local search routine,

each of which may examine every single task inT (see Algorithm 5.10). Hence, the complexity

of the fast flexiblestrategy is polynomial (inO(|T |2 · (|T | + |E|))). Furthermore, we expect it

to perform better in practice, as it will usually complete each iteration after onlyconsidering a

small number of tasks.

To measure the provisioning time of thefast flexiblestrategy in practice, we adopt the same

experimental parameters as in the second half of Section 5.4.9 that considers a highly heteroge-

neous environment (in particular those shown in Table 5.7). We then considerΦ = 0.5 and vary

the number of workflow tasksnT . Furthermore, we scale both the maximum workflow utility

umax and the deadlinetmax by a factornT

50 . This is done to adjust the problem to the workflow

1This particular strategy is chosen here simply as a representative strategy. Due to the similar estimation tech-
niques, all strategies display the same general trends.
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FIGURE B.2: An example workflow withnT = 100.

size, as larger workflows will incur higher costs and take longer to complete. All experiments

reported in this appendix were conducted on a PC with an Intel Core 2 Duo 2.2Ghz CPU, 4

GB RAM and running Windows Vista. To obtain 95% confidence intervals forall results, the

experiments were repeated 30 times for each workflow size.

Figure B.1 shows the time required by thefast flexiblestrategy to provision workflows as we

increase the workflow sizenT from nT = 10 to nT = 100. Here, the strategy initially takes

about9.48± 0.98 seconds to complete a workflow with 10 tasks. This time then rises gradually

as the workflow size is increased — bynT = 100, it has risen to about 2 minutes (119.72±3.50

seconds). We believe that this is reasonable, considering that such workflows are highly complex
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and that there are typically hundreds of service providers for each workflow task (in fact, up to

2000, given the distributions in Table 5.7). To illustrate this complexity, Figure B.2 shows an

example workflow withnT = 100, as used in these experiments.

Next, Figure B.3 plots the trends of thefast flexiblestrategy over a different range of workflow

sizes. Here, we consider the provisioning times ofnT = 2k tasks, wherek = 0, 1, . . . , 10. These

experiments demonstrate how the algorithm copes with larger workflows asnT is successively

doubled in size (for this reason, both axes are shown in logarithmic scale withbase 2). The

overall trend in the graph is promising, highlighting a running time that grows only slightly

more quickly thannT (for reference, the graph also displays a function that grows linearly with

nT and one that grows quadratically). Although the algorithm begins to take a considerable time

to find a solution asnT becomes larger (requiring1478.56 ± 175.72 seconds whennT = 512,

3081.37± 173.96 seconds whennT = 1024 and9621.48± 433.22 seconds whennT = 2048),

the problem still remains tractable when considering such complex environments (again, for

illustration of this, Figures B.4 and B.5 show workflows withnT = 512 and nT = 1024,

respectively).

Furthermore, we believe that there is ample scope for refining and speeding up thefast flexible

strategy in practice, as we have not so far concentrated on optimising the implementations of our

algorithms. Such optimisation could be achieved, for example, by consideringfaster, approxi-

mate methods of calculating local task characteristics or by using faster programming languages

(we have used Java for all our simulations). Not least, significant parts of the algorithm can be

distributed to several parallel processors, including the utility calculations of neighbour alloca-

tions and the restarts of the local search.
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FIGURE B.4: An example workflow withnT = 512.
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FIGURE B.5: An example workflow withnT = 1024.



Appendix C

NP-Hardness of Provisioning Problem

In this thesis, we have concentrated on providing fast heuristics for a problem that is inherently

difficult to solve optimally. To justify this, we have so far referred to results on the complexity

of computing duration distributions of workflows, which is known to be a #P-complete problem

and therefore also NP-hard (Hagstrom (1988)). In this appendix, weshow more formally that

the provisioning problem considered in our work is also NP-hard. To do this, we demonstrate

how instances of two well-known NP-hard problems can be reduced, in polynomial time, to

instances of the provisioning problem. We decided to show two such reductions, because they

highlight two different sources of complexity inherent in our problem — first, the uncertainty of

service durations we consider in Chapters 4 and 5 and, secondly, the combinatorial problem of

dealing with highly heterogeneous service providers, as considered in Chapters 5 and 6.

Throughout this appendix, we consider the following, formal definition ofthe service provision-

ing problem:

Definition 17. (PROVISIONING): Given a workflowW , a set of service instancesS, match-

ing functionµ and quality functionsf , D andc, find a (possibly empty) detailed provisioning

allocationα∗ that maximises the expected net profit of a consumer following it1.

Now, we want to show the following:

Theorem C.1. PROVISIONING is NP-hard.

More specifically, we recall that a problemX is NP-hard if we can solve every problem in

NP in polynomial time by solving instances ofX in unit time (Garey and Johnson (1979)).

Furthermore, as mentioned above, the following problem2 is NP-hard (Hagstrom (1988)):

1All input parameters (W , S, µ, f , D andc) are defined in more detail in Chapter 3. The detailed provisioning
allocationα is defined in Section 5.3.1.

2For simplicity, the representation of this problem has been adapted for ourproblem. In its original form, edges
represent tasks and nodes represent states that enable further tasks, but this can be quickly converted to our notation.
Furthermore, the author considers task durations of length 0 and 1, butour model specifically excludes instantaneous
services. However, their hardness result holds when considering non-zero durations.
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Definition 18. (PERT CDF): Given a directed acyclic graphG = (N, E) (whose nodes and

edges represent tasks and dependencies, respectively), a rational probabilitypi for eachni ∈ N ,

such that nodeni will have a duration 1 with probabilitypi and duration 2 with probability

1 − pi, and an input timet, compute the probability that the overall duration of the graph will

not be more thant.

The above problem is NP-hard even when approximating the probability to a given error bound

ǫ. Now, to prove Theorem C.1, we show that we could solve an instance of PERT CDF in

polynomial time by solving instances of PROVISIONING in unit time.

Proof. First, construct a set of workflow tasks,T , and a set of edges,E′, directly from G.

Then constructµ andτ , so that each taskti is mapped to exactly one service instancesi, with

f(si) = 0, c(si) = 0 and defineD(si, t), so thatD(si, t) = 0 for t < 1, D(si, t) = pi for

1 ≤ t < 2 andD(si, t) = 1 for t ≥ 2.

Next, create a utility functionu with tmax = t + 1, umax = 1 andδ = umax. Furthermore,

add an additional tasktstart to T , which precedes all other tasks and is mapped to a single

service instancesstart with f(sstart) = 0 andD(sstart, t) = 0 for t < 1 andD(sstart, t) = 1

otherwise. Now, settingc(sstart) = p− ǫ′, where0 < ǫ′ < ǫ, we perform a binary search for the

largest possible valuep ∈ [0, 1] (dividing this interval in steps ofǫ), such that the corresponding

PROVISIONING instance returns a non-empty provisioning allocation. As the expected reward

of the workflow is equal to the probability that the duration of the original graph ist or less, and

an empty provisioning allocation will be returned ifc(sstart) is greater than this reward, the final

value forp is now the required probability (within the error boundǫ).

As this transformation and the binary search can be performed in polynomialtime (as the number

of values to consider forp is restricted byǫ), we can thus solve instances of PERT CDF in

polynomial time if we can solve PROVISIONING in unit time. This proves that PROVISIONING

is NP-hard.

As the proof uses only single providers for each workflow task, it applies equally to the prob-

lem discussed in Chapters 4 and 5. However, in Chapter 5, we also introduce the possibility of

choosing between multiple heterogeneous service providers. This givesrise to another source

of complexity, which applies similarly to the problem described in Chapter 6. Hence, we show

in the following that the provisioning problem is still NP-hard, even when services always com-

plete within a certain amount of time.

Theorem C.2. PROVISIONING is NP-hard even when service durations are deterministic.

Here, we recall a well-known NP-complete problem (Garey and Johnson(1979)):

Definition 19. (KNAPSACK): Given a finite set of itemsI = {1, 2, 3, . . . , N}, a weightw(i) ∈
Z

+ and a valuev(i) ∈ Z
+ for each itemi ∈ I, an overall capacityC ∈ Z

+ and a valueV ∈ Z
+,

decide whether there is a subsetI ′ ⊆ I, so that
∑

i∈I′ w(i) ≤ C and
∑

i∈I′ v(i) ≥ V .
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To prove Theorem C.2, we show how an instanceK of KNAPSACK can be reduced in polynomial

time to an instanceP of PROVISIONING.

Proof. Let vmax be the highest value of any item inI. Then, for every itemi ∈ I, create a service

instancesi with f(si) = 0, c(si) = vmax−v(i)+1 and defineD(si, t) so that the service duration

is always exactlyw(i) + 1 time units (i.e.,D(si, t) = 0 if t < w(i) + 1 andD(si, t) = 1 if

t ≥ w(i) + 1). Also, create a service providers0 with f(s0) = 0, c(s0) = vmax + 1 and define

D(si, t), so that the service duration is always exactly1. Create workflowW = (T, E, τ, u)

with T = {t1, t2, . . . tN} and letE be any total order onT . Furthermore, defineτ andµ, so

thatµ(τ(ti)) = {si, s0}. Also, create utility functionu with deadlinetmax = N + C, maximum

utility umax = N(vmax+ 1)−V + 1
2 and penaltyδ = umax. This transformation is performed in

O(N).

Next, we show that the solutionα∗ to this new PROVISIONING instanceP is sufficient to answer

the original KNAPSACK instanceK. More specifically, we show thatα∗ is empty (no services

are provisioned) if and only if the answer toK is “no”. We prove this by contradiction in two

steps:

1. Assume thatα∗ is empty and the answer toK is “yes”. Then we can use the solution to

K to find a provisioning allocation which is guaranteed to complete the workflow in time

t ≤ N +C, and whose cost isc ≤ Nvmax−V +N . Since this would result in a net profit

of at least12 , α∗ cannot be empty, and this is a contradiction.

2. Assume thatα∗ is non-empty and the answer toK is “no”. Now, each task inα∗ has

exactly one provisioned service provider, as any other choice would benon-optimal3. Let

T ′ be the set of tasksti for which servicesi has been provisioned4. The time for the

workflow cannot be more than the deadline:
∑

ti∈T ′(w(i) + 1) +
∑

ti∈T/T ′ 1 ≤ N + C.

This implies
∑

ti∈T ′ w(i) ≤ C (the first constraint ofK). Furthermore, the total cost

incurred must not be more thanumax:
∑

ti∈T ′(vmax− v(i) + 1) +
∑

ti∈T/T ′(vmax+ 1) ≤
N(vmax + 1)− V − 1

2 . This implies
∑

ti∈T ′ v(i) ≥ V . As both constraints ofK are now

shown to be satisfied, the answer toK cannot be “no”, and this is a contradiction.

We conclude that there is a polynomial time decision procedure for KNAPSACK if instances of

PROVISIONING can be solved in unit time. As KNAPSACK is NP-hard, so is PROVISIONING.

Although the model used in Chapter 6 is different from the PROVISIONING problem described

above, the proof of Theorem C.2 can be adapted for that chapter. In more detail, we can consider

3An optimal solution may contain unnecessary service providers that arenever invoked. We ignore these here as
they have no effect on the net profit or the following discussion.

4T ′ =
{
ti ∈ T | ∃t ∈ Z

+
0 · α∗(ti) = {(si, t)}

}
.



Appendix C NP-Hardness of Provisioning Problem 222

a static market, where the returned offers for any call for proposal always correspond to the ser-

vice instances outlined above, regardless of the time step that is requested.An agent following

an optimal strategy will then start to buy offers from the market if and only if the KNAPSACK

instance on which it is based is satisfiable.

In conclusion, the results in this appendix demonstrate that the provisioning problem is inher-

ently hard and that there is no polynomial time algorithm to solve it optimally, unless P=NP.



Appendix D

Derivations of Equations

This appendix contains detailed derivations of some of the equations presented in Chapter 4.

To this end, each of the following sections outlines and references relevant equations from that

chapter.

D.1 Expected Task Cost (Equation 4.9)

Based on Figure 4.2, we first write the expected cost as a sum:

c̄i = nici + f̂i ·
(

nici + f̂i ·
(

nici + f̂i ·
(

. . . + f̂i · (nici) . . .
)))

︸ ︷︷ ︸

m instances ofnici

= nici + f̂i · nici + f̂2
i · nici + f̂3

i · nici + . . . + f̂m−1
i · nici

= nici ·
(

1 + f̂i + f̂2
i + . . . + f̂m−1

i

)

= nici

m−1∑

k=0

f̂k
i (D.1)

Unfortunately, this sum grows with the number of available providers,vi. To make it more

tractable, we note that it is a geometric series and multiply Equation D.1 byf̂i:

f̂i · c̄i = nici ·
(

f̂i + f̂2
i + . . . + f̂m−1

i + f̂m
i

)

(D.2)

Then, we deduct Equation D.2 from D.1:

(

1− f̂i

)

· c̄i = nici

((

1 + f̂i + f̂2
i + . . . + f̂m−1

i

)

−
(

f̂i + f̂2
i + . . . + f̂m−1

i + f̂m
i

))

= nici ·
(

1− f̂m
i

)

(D.3)
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Rewriting this, and assuming that̂fi < 1, we have:

c̄i = nici ·
1− f̂m

i

1− f̂i

(D.4)

D.2 Expected Task Duration (Equation 4.14)

As before, we write the expected task duration as a weighted sum of all possible outcomes:

t̄i =
1

pi
·

m∑

k=1

d̄kf̂
k−1
i

(

1− f̂i

)

=
1

pi
·

m∑

k=1

((k − 1) · wi + µi) · f̂k−1
i

(

1− f̂i

)

=
1

pi
·

m−1∑

k=0

(k · wi + µi) · f̂k
i

(

1− f̂i

)

(D.5)

Again, it is possible to rearrange this and rewrite it in closed form. In particular, we assume that

f̂i < 1 and note that
∑∞

k=1 f̂k
i k = f̂i/(f̂i − 1)2.

t̄ipi =
m−1∑

k=0

(k · wi + µi) · f̂k
i

(

1− f̂i

)

= (1− f̂i)
m−1∑

k=0

f̂k
i (µi + kwi)

= (1− f̂i)

(
m−1∑

k=0

f̂k
i µi +

m−1∑

k=1

f̂k
i kwi

)

= (1− f̂i)

(

µi

(
∞∑

k=0

f̂k
i − f̂m

i

∞∑

k=0

f̂k
i

)

+ wi

(
∞∑

k=1

f̂k
i k − f̂m−1

i

∞∑

k=1

f̂k
i k − (m− 1)f̂m

i

∞∑

k=0

f̂k
i

))

= (1− f̂i)

(

µi
1− f̂m

i

1− f̂i

+ wi

(

f̂i − f̂m
i

(1− f̂i)2
− (m− 1)f̂m

i

1− f̂i

))

= µi(1− f̂m
i ) + wi

f̂i −mf̂m
i + (m− 1)f̂m+1

i

1− f̂i

(D.6)
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D.3 Expected Squared Waiting Time (Equation 4.20)

First, we express the expected squared waiting time by considering all possible outcomes:

E(A2
Wi) =

(1− f̂i)w
2
i

1− f̂m
i

m−1∑

k=0

k2f̂k
i (D.7)

In order to express this in closed form, we consider only the summation and re-use an interme-

diate result from Equation D.6 (as before assumingf̂i < 1):

m−1∑

k=0

f̂k
i =

1− f̂m
i

1− f̂i

(D.8)

Differentiating this with respect tôfi yields:

m−1∑

k=0

kf̂k−1
i =

1− f̂m
i

(1− f̂i)2
− mf̂m−1

i

1− f̂i

(D.9)

This can be multiplied bŷfi to obtain:

m−1∑

k=0

kf̂k
i =

f̂i − f̂m+1
i

(1− f̂i)2
− mf̂m

i

1− f̂i

(D.10)

Differentiating and multiplying again finally yields the following:

m−1∑

k=0

k2f̂k
i =

1

(1− f̂i)3
(f̂i+f̂2

i −m2f̂m
i −(2m+1−2m2)f̂m+1

i +(2m−1−m2)f̂m+2
i ) (D.11)

Combining this with Equation D.7, we obtain:

E(A2
Wi) =

w2
i

(1− f̂m
i )(1− f̂i)2

(f̂i + f̂2
i −m2f̂m

i −

(2m + 1− 2m2)f̂m+1
i + (2m− 1−m2)f̂m+2

i ) (D.12)



Appendix E

Acronyms

ADEPT Advanced Decision Environment for Process Tasks

HTTP Hypertext Transfer Protocol

MAGNET Multi Agent Negotiation Testbed

OGSA Open Grid Services Architecture

OWL Web Ontology Language

P2P Peer-to-Peer

PDDL Planning Domain Definition Language

QoS Quality-of-Service

SAWSDL Semantic Annotations for WSDL and XML Schema

SLA Service Level Agreement

SOAP Simple Object Access Protocol

SOC Service-Oriented Computing

UDDI Universal Description, Discovery and Integration

VO Virtual Organisation

WSAF Web Services Agent Framework

WS-BPEL Web Services Business Process Execution Language

WSDL Web Service Description Language

WSLA Web Service Level Agreement

WSMO Web Service Modeling Ontology

XML Extensible Markup Language
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Nürnberg, Erlangen.

Baker, M. A., Buyya, R., and Laforenza, D. 2002. The grid: International efforts in global

computing.International Journal of Software Practice and Experience, 32(15).

Barborak, M., Dahbura, A., and Malek, M. 1993. The consensus problem in fault-tolerant

computing.ACM Computing Surveys, 25(2):171–220.

Belecheanu, R. A., Munroe, S., Luck, M., Payne, T. R., Miller, T., McBurney, P., and Pe-

choucek, M. 2006. Commercial applications of agents: Lessons, experiences and challenges.

In Proceedings of the Fifth International Conference on Autonomous Agentsand Multiagent

Systems.

Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F., and Secret, A. 1994. The world-wide

web. Communications of the ACM, 37(8):76 – 82.

Berners-Lee, T., Hendler, J., and Lassila, O. 2001. The Semantic Web.Scientific American,

284(5):34–43.

Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M., Chervenak, A., Cinquini, L.,

Drach, B., Foster, I., Fox, P., Garcia, J., Kesselman, C., Markel, R., Middleton, D., Nefedova,

V., Pouchard, L., Shoshani, A., Sim, A., Strand, G., and Williams, D. 2005. The earth system

grid: supporting the next generation of climate modeling research.Proceedings of the IEEE,

93(3):485–495.

Boddy, M. and Dean, T. L. 1994. Deliberation scheduling for problem solving in time-

constrained environments.Artificial Intelligence, 67(2):245–285.

Botelho, S. and Alami, R. 1999. M+: a scheme for multi-robot cooperation through negotiated

task allocation and achievement. InProceedings of the 1999 IEEE International Conference

on Robotics and Automation, volume 2, pages 1234–1239.

Brassard, G. and Bratley, P. 1996.Fundamentals of Algorithmics. Prentice-Hall.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F. 2004. Extensible

Markup Language (XML) 1.0 (Third Edition). Technical report, W3C.



BIBLIOGRAPHY 229

Brooks, R. 1986. A robust layered control system for a mobile robot.IEEE Journal of Robotics

and Automation, 2(1):14–23.

Burstein, M., Bussler, C., Finin, T., Huhns, M., Paolucci, M., Sheth, A., Williams, S., and

Zaremba, M. 2005. A semantic web services architecture.Internet Computing, IEEE, 9(5):72

– 81.

Butler, D. 1999. Computing 2010: from black holes to biology.Nature, 402:C67–C70.

Buyya, R., Abramson, D., and Giddy, J. 2001. A case for economy grid architecture for service

oriented grid computing. In10th Heterogeneous Computing Workshop HCW 2001.

Buyya, R., Abramson, D., Giddy, J., and Stockinger, H. 2002. Economic models for resource

management and scheduling in grid computing.Concurrency and Computation: Practice

and Experience, 14(13–15):1507–1542.

Byde, A. 2006. A comparison between mechanisms for sequential compute resource auctions.

In Proceedings of the Fifth International Conference on Autonomous Agentsand Multiagent

Systems.

Bylander, T. 1994. The computational complexity of propositional STRIPSplanning.Artificial

Intelligence, 69(1-2):165–204.

Canfora, G., Penta, M. D., Esposito, R., and Villani, M. L. 2005. QoS-aware replanning of com-

posite web services. InProceedings of the IEEE International Conference on Web Services

(ICWS’05), Orlando, USA, pages 121–129. IEEE Computer Society.

Cardoso, J., Sheth, A., Millerb, J., Arnoldc, J., and Kochutb, K. 2004. Quality of service for

workflows and web service processes.Journal of Web Semantics: Science, Services and

Agents on the World Wide Web, 1(3):281–308.

Casati, F., Ceri, S., Paraboschi, S., and Pozzi, G. 1999. Specification and implementation

of exceptions in workflow management systems.ACM Transactions on Database Systems,

24(3):405–451.

Casati, F., Dayal, U., and Shan, M.-C. 2001. E-business applications forsupply chain manage-

ment: challenges and solutions. InProceedings of the 17th International Conference on Data

Engineering, pages 71 – 78.

Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., and Shenker, S. 2003. Making gnutella-

like P2P systems scalable. InSIGCOMM ’03: Proceedings of the 2003 Conference on Ap-

plications, Technologies, Architectures, and Protocols for Computer Communications, pages

407–418, New York, NY, USA. ACM Press.

Chern, M.-S. 1992. On the computational complexity of reliability redundancyallocation in a

series system.Operations Research Letters, 11(5):309–315.



BIBLIOGRAPHY 230

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. 2001. Web Services Description

Language (WSDL) 1.1. Technical report, W3C.

Cohen, P. R. 1995.Empirical methods for artificial intelligence. MIT Press, USA.

Coles, S., Frey, J. G., Hursthouse, M. B., Light, M. E., Meacham, K. E., Marvin, D. J., and

Surridge, M. 2005. ECSES - examining crystal structures using ‘e-science’: a demonstrator

employing web and grid services to enhance user participation in crystallographic experi-

ments.Journal of Applied Crystallography, 38(5):819–826.

Collins, J., Bilot, C., Gini, M., and Mobasher, B. 2001. Decision Processesin Agent-Based

Automated Contracting.IEEE Internet Computing, 5(2):61–72.

Collins, J., Ketter, W., Gini, M., and Mobasher, B. 2002. A multi-agent negotiation testbed for

contracting tasks with temporal and precedence constraints.International Journal of Elec-

tronic Commerce, 7(1):35–57.

Collins, J., Tsvetovas, M., Sundareswara, R., van Tonder, J., Gini, M., and Mobasher, B. 1999.

Evaluating risk: flexibility and feasibility in multi-agent contracting. In Etzioni, O.,Müller,

J. P., and Bradshaw, J. M., editors,Proceedings of the Third International Conference on

Autonomous Agents (Agents’99), pages 350–351, Seattle, WA, USA. ACM Press.

Cook, T. M. and Jennings, R. H. 1979. Estimating a project’s completion time distribution

using intelligent simulation methods.The Journal of the Operational Research Society,

30(12):1103–1108.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and Polk, W. 2008. Internet

X.509 public key infrastructure certificate and certificate revocation list (CRL) profile. RFC

5280, IETF.

Corson, M. S., Macker, J., and Cirincione, G. 1999. Internet-based mobile ad hoc networking.

IEEE Internet Computing, 3(4):63–70.

Coyle, F. 2001. Breathing life into legacy.IT Professional, 3(5):17 – 24.

Cristian, F. 1991. Understanding fault-tolerant distributed systems.Communications of the

ACM, 34(2):56–78.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and Weerawarana, S. 2002. Unrav-

eling the Web services web: an introduction to SOAP, WSDL, and UDDI.IEEE Internet

Computing, 6(2):86–93.

Curbera, F., Khalaf, R., Mukhi, N., Tai, S., and Weerawarana, S. 2003. The next step in Web

services.Communications of the ACM, 46(10):29–34.

Czajkowski, K., Foster, I., and Kesselman, C. 2005. Agreement-based resource management.

Proceedings of the IEEE, 93(3):631–643.



BIBLIOGRAPHY 231

D’Ambrogio, A. 2006. A model-driven WSDL extension for describing theQoS of web ser-

vices. International Conference on Web Services 2006 (ICWS ’06), pages 789–796.

Dan, A., Davis, D., Kearney, R., King, R., Keller, A., Kuebler, D., Ludwig,H., Polan, M.,

Spreitzer, M., and Youssef, A. 2004. Web services on demand: WSLA-driven automated

management.IBM Systems Journal, 43(1):136–158.

Dash, R. K., Parkes, D., and Jennings, N. R. 2003. Computational mechanism design : A call to

arms.IEEE Intelligent Systems, 18(6):40–47.

De Roure, D., Baker, M., Jennings, N., and Shadbolt, N. 2003. The Evolution of the Grid. In

Berman, F., Fox, G., and Hey, A., editors,Grid Computing: Making The Global Infrastructure

a Reality, pages 65–100. John Wiley & Sons.

Dean, T. and Boddy, M. 1988. An analysis of time-dependent planning problems. InProceed-

ings of the Seventh National Conference on Artificial Intelligence, pages 49–54.

Dearden, R., Friedman, N., and Andre, D. 1999. Model based bayesian exploration. InPro-

ceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI’99), pages

150–159.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Koranda, S., Lazzarini, A., Mehta, G., Papa,

M. A., and Vahi, K. 2003a. Pegasus and the Pulsar Search: From Metadata to Execution on

the Grid. InParallel Processing and Applied Mathematics: 5th International Conference,

PPAM 2003, Czestochowa, Poland, September 7-10, 2003, volume 3019 / 2004.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn,K., Lazzarini,

A., Arbree, A., Cavanaugh, R., and Koranda, S. 2003b. Mapping Abstract Complex Work-

flows onto Grid Environments.Journal of Grid Computing, 1(1):25–39.

DeGroot, M. H. and Shervish, M. J. 2002.Probability and Statistics. Addison-Wesley, third

edition edition.

Dodin, B. 1984. Determining the k most critical paths in pert networks.Operations Research,

32(4):859–877.

Dodin, B. 1985. Bounding the project completion time distribution in PERT networks. Opera-

tions Research, 33(4):862–881.

Edelkamp, S. and Hoffmann, J. 2003. PDDL2.2: The Language for the Classical Part of the 4th

International Planning Competition. Technical Report 195, Institut für Informatik, Freiburg,

Germany.

Eder, J. and Liebhart, W. 1995. The workflow activity model WAMO. InProceedings of the 3rd

International Conference on Cooperative Information Systems, Vienna,Austria, pages 87–98.

Erol, K., Nau, D. S., and Subrahmanian, V. S. 1995. Complexity, decidabilityand undecidability

results for domain-independent planning.Artificial Intelligence, 76(1–2):75–88.



BIBLIOGRAPHY 232

Erradi, A., Maheshwari, P., and Tosic, V. 2006. Recovery policies forenhancing web services

reliability. In Proceedings of the IEEE International Conference on Web Services (ICWS’06),

Chicago, USA, pages 189–196. IEEE Computer Society.

Ewing, B., Hillier, L., Wendl, M. C., and Green, P. 1998. Base-calling of automated sequencer

traces using phred. i. accuracy assessment.Genome Research, 8(3):175–185.

Faratin, P., Sierra, C., and Jennings, N. R. 1998. Negotiation decision functions for autonomous

agents.Int. Journal of Robotics and Autonomous Systems, 24(3-4):159–182.

Foster, I. 2005. Globus toolkit version 4: Software for service-oriented systems. In Jin, H.,

Reed, D. A., and Jiang, W., editors,IFIP International Conference on Network and Parallel

Computing, volume 3779 ofLecture Notes in Computer Science, pages 2–13. Springer.

Foster, I. and Iamnitchi, A. 2003. On death, taxes, and the convergence of peer-to-peer and

grid computing. InPeer-to-Peer Systems II: Second International Workshop, IPTPS 2003

Berkeley, CA, USA, February 21-22, 2003 Revised Papers, volume 2735 ofLecture Notes in

Computer Science, pages 118 – 128. Springer.

Foster, I., Jennings, N. R., and Kesselman, C. 2004. Brain meets brawn:Why Grid and agents

need each other. InProceedings of the 3rd International Conference on Autonomous Agents

and Multi-Agent Systems, pages 8–15.

Foster, I. and Kesselman, C., editors 1999.The grid: blueprint for a new computing infrastruc-

ture. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Foster, I., Kesselman, C., Nick, J., and Tuecke, S. 2002. The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Integration. Technicalreport, Open Grid

Service Infrastructure WG.

Foster, I., Kesselman, C., and Tuecke, S. 2001. The anatomy of the grid:Enabling scalable

virtual organizations.International Journal of High Performance Computing Applications,

15(3):200–222.

Frey, J., Tannenbaum, T., Livny, M., Foster, I., and Tuecke, S. 2001.Condor-G: A computa-

tion management agent for multi-institutional grids. InHPDC ’01: Proceedings of the 10th

IEEE International Symposium on High Performance Distributed Computing(HPDC-10’01),

page 55, Washington, DC, USA. IEEE Computer Society.

Friese, T., M̈uller, J. P., and Freisleben, B. 2005. Self-healing execution of business processes

based on a peer-to-peer service architecture. InProceedings of the 18th International Con-

ference on Architecture of Computing Systems (ARCS ’05), System Aspects in Organic and

Pervasive Computing, Innsbruck, Austria, volume 3432 ofLecture Notes in Computer Sci-

ence, pages 108–123. Springer-Verlag.

Garcia-Molina, H. and Salem, K. 1987. Sagas. InProceedings of the 1987 ACM SIGMOD

International Conference on Management of Data (SIGMOD ’87), SanFrancisco, USA, pages

249–259. ACM Press.



BIBLIOGRAPHY 233

Garey, M. R. and Johnson, D. S. 1979.Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

Geddes, N. 2006. The national grid service of the uk. InSecond IEEE International Conference

on e-Science and Grid Computing (e-Science’06), pages 94–100.

Gentzsch, W. 2006. D-grid, an e-science framework for german scientists. InThe Fifth Interna-

tional Symposium on Parallel and Distributed Computing (ISPDC’06), pages 12–13.

Georgakopoulos, D., Hornick, M. F., and Sheth, A. P. 1995. An Overview of Workflow Man-

agement: From Process Modeling to Workflow Automation Infrastructure.Distributed and

Parallel Databases, 3(2):119–153.

Georgeff, M., Pell, B., Pollack, M., Tambe, M., and Wooldridge, M. 1999. The belief-desire-

intention model of agency. In M̈uller, J., Singh, M. P., and Rao, A. S., editors,Proceedings of

the 5th International Workshop on Intelligent Agents V : Agent Theories, Architectures, and

Languages (ATAL-98), volume 1555, pages 1–10. Springer-Verlag: Heidelberg, Germany.

Ghallab, M., Nau, D., and Traverso, P. 2004.Automated Planning: Theory and Practice. Mor-

gan Kaufmann.

Ghare, P. M. and Taylor, R. E. 1969. Optimal redundancy for reliability inseries systems.

Operations Research, 17(5):838–847.

Gibbins, N., Harris, S., and Shadbolt, N. 2003. Agent-based semantic webservices. InWWW

’03: Proceedings of the Twelfth International Conference on World Wide Web, pages 710–

717, New York, NY, USA. ACM Press.

Golden, B., Bodin, L., Doyle, T., and Jr., W. S. 1980. Approximate travelingsalesman algo-

rithms. Operations Research, 28(3):694–711.

Golle, P., Leyton-Brown, K., Mironov, I., and Lillibridge, M. 2001. Incentives for sharing in
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