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Abstract

A nonlinear functional is considered in this short communication for time interval segmentation and noise reduction

of signals. An efficient algorithm that exploits the signal geometrical properties is proposed to optimise the nonlinear

functional for signal smoothing. Discontinuities separating consecutive time intervals of the original signal are initially

detected by measuring the curvature and arc length of the smoothed signal. The nonlinear functional is then optimised

for each time interval to achieve noise reduction of the original noisy signal. This algorithm exhibits robustness for

signals characterised by very low signal to noise ratios.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Energy optimisation for signal and image
processing applications has received considerable
attention in recent years. Image and signal
restoration known as the ‘inverse problem’ was
initially considered by using an energy optimisa-
tion approach in [1] and further developed by
Rudin et al. [2] to introduce the total variation
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method. The notion of bounded variation (BV)
was later employed in signal and image restoration
problems based on nonlinear optimisation (e.g. in
[3]). On the other hand, Kass et al. [4] initially
introduced the ‘snake algorithm’ for object seg-
mentation in images. This method was further
developed mathematically by Mumford et al. [5–7]
for image segmentation and smoothing and was
subsequently approximated and implemented by
using different approaches e.g. [8–15]. The solu-
tions to the Mumford–Shah functional which are
piecewise continuous functions from an appro-
priate Banach space and contours representing the
discontinuities, minimise the functional consisting
d.
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of three terms: (1) fidelity term indicating that the
smoothed image should be as close as possible to
the original image, (2) smoothing term requiring
that the smoothed image should be as smooth as
possible and (3) contour length removing the
unnecessary contours and smoothing the contour
representing discontinuities as much as required.
Mumford and Shah conjectured that there exists a
minimiser for their functional, although the proof
for this conjecture is still an open problem.
Existance of the solution is however proved for
the special case where the smoothing term is not
present in the functional and the solutions are
reduced to piecewise constant functions sur-
rounded by contours representing discontinuities
(see e.g. [16,6,7]). The study of this functional is
difficult because it involves two unknown variables
of different nature. One of them is a piecewise
continuous function on an N-dimensional space
and the other representing the contour is asso-
ciated with a (N � 1)-dimensional set. Further-
more, the reason that Euler–Lagrange equations
cannot be employed in this functional is the lack of
differentiability. Therefore different approxima-
tion methods have been suggested in the literature
(e.g. see [8–11,17]). However, the Mumford–Shah
functional is in principle inappropriate for signal
processing applications, since the notion of a
contour is not defined in a signal processing
context. Therefore, a functional based on the
Mumford–Shah model and appropriate for signal
processing applications is considered in this com-
munication. For implementation purposes, regu-
larisation is initially performed by smoothing the
original signal and a newmethod based on
geometrical properties of the smoothed signal, is
further employed for segmentation and denoising.
In comparison with signal restoration approaches
used in the inverse problem, three major differ-
ences between our method and a restoration
method such as BV regularisation in [3] can be
observed. (1) Energy optimisation in [3] leads to
restoration and therefore segmentation is impli-
citly achieved by using Lagrange multipliers
employed in the active set strategy, while in our
method, segmentation and denoising are explicitly
employed in the formulation of the functional. (2)
Original and denoised signals are considered
piecewise constant in [3], whereas in this commu-
nication, signals are considered piecewise contin-
uous whose samples are either acquired (for
original signal) or computed (for smoothed
signal). (3) Spline algorithm and tube method
based on taut-string algorithm minimising signal
length within a tube of radius a (e.g. see [18]), are
employed for implementation in [3], while we
consider geometrical properties of the smoothed
signal in our simulation. The proposed method in
this communication is computationally efficient
and exhibits robustness even with SNRs less than
1. In Section 2, the mathematical background is
discussed, whilst Section 3 deals with implementa-
tion issues. Results are presented in Section 4.
Finally conclusions are drawn in Section 5.
2. Mathematical background

A noisy signal, gðtÞ contaminated with a mean
order stationary Gaussian noise [19], can be
approximated by a piecewise continuous function
f ðtÞ containing class C2 functions f iðtÞ over time
intervals ðti�1; tiÞ so that f ðtÞ is as close as possible
to the original signal gðtÞ and is as smooth as
possible over each time interval. However, the
smoothing process is only applied over intervals
where the signal fluctuations are considered
comparable to noise fluctuations. We therefore
consider the following nonlinear functional whose
optimisation leads to the desired smooth functions
f iðtÞ over the time intervals ðti�1; tiÞ.

Eðf ;SÞ ¼
1

2

X
i

Z t

0

ðf iðtÞ � gðtÞÞ2 þ m
df i

dt

� �2
" #

�SiðtÞdt, ð1Þ

where Eðf ;SÞ is the energy term to be optimised, m
is a constant coefficient, and SiðtÞ is a rectangular
time-domain window function representing the
time interval:

SiðtÞ ¼
1 : ti�1ototi;

0 : otherwise:

�

Let us initially consider the optimisation of
functional (1) in the interval defined by SiðtÞ.
Further, let SiðtÞ be fixed and then vary f iðtÞ.
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Functional (1) is therefore rewritten as

Eiðf i;SiÞ ¼

Z ti

ti�1

ðf iðtÞ � gðtÞÞ2 þ m
df i

dt

� �2
" #

dt.

(2)

As can be seen from (2), with fixed time intervals,
the integrand of the functional is convex, hence
there exists a minimiser for the functional with a
set of fixed intervals. In what follows we calculate
this minimiser. Let df i represent a class C2

function, and then we calculate the variations of
Eiðf i;SiÞ by varying f iðtÞ with df i:

dEi ¼ Eiðf i þ mdf i;SiÞ � Eiðf i;SiÞ

¼
1

2

Z ti

ti�1

ðf i þ mdf i � gÞ2

" 

þm
dðf i þ mdf iÞ

dt

� �2
#

dt

�

Z ti

ti�1

ðf i � gÞ2 þ m
df i

dt

� �2
" #

dt

!
.

By simple mathematical manipulations, it is
concluded that:

dEi

df i

¼ lim
m!0

dEi

m

¼

Z ti

ti�1

ðf i � gÞdf i dt þ m
Z ti

ti�1

df i

dt

� �
ddf i

dt

� �
dt.

ð3Þ

Integrating by part and treating this problem as free
boundary condition [20,21], Eq. (3) is written as

dEi

df i

¼
df i

dt
df ijti

�
df i

dt
df ijti�1

þ

Z ti

ti�1

ðf i � gÞ � m
d2f i

dt2

� �
 �
df i dt ¼ 0. ð4Þ
ti ti ti

f1+i

fi fi
+

I 
'(a) (b)

Fig. 1. Variations of
Since df ia0 over the time interval ðti�1; tiÞ, and in
order to satisfy Eq. (4), we should have:

m
d2f iðtÞ

dt2
¼ f iðtÞ � gðtÞ; ti�1ototi (5)

with Neumann boundary conditions:

df i

dt
jti

¼ 0;
df i

dt
jti�1

¼ 0. (6)

The solution to differential equation (5) with
boundary conditions (6) is a minimiser of energy
functional (1) over time interval ðti�1; tiÞ. Let us
now find the time interval ðti�1; tiÞ minimising
energy functional (1). This can be specified by
varying the time interval and considering the
variations of f i. Let us therefore vary ti and
calculate f i’s variations in a neighborhood of ti.
Fig. 1 shows how f i and f iþ1 change if ti moves to
t0i where t0i ¼ ti 
 dti. If we assume that ti

corresponds to a discontinuity and then consider
the behavior of f by early and late movement of ti

by dti, i.e. variations of f are considered in a
neighborhood (say I ) of t0i. If we further define f þ

and f � corresponding to t0i ¼ ti þ dti and
t0i ¼ ti � dti, respectively, as can be seen in Fig. 1.

f þ
¼

f þ
i : t 2 I & toti þ dti;

f þ
iþ1 : t 2 I & t4ti þ dti;

unchanged : teI ;

8><
>:

f �
¼

f �
i : t 2 I & toti � dti;

f �
iþ1 : t 2 I & t4ti � dti;

unchanged : teI :

8><
>:

And if Sþ and S� are also defined in a similar
manner, then the variation in the energy functional
f1+i

I 

ti ti'

+ f1+i

fi
-

-

(c)

f by varying ti.



ARTICLE IN PRESS

S. Mahmoodi, B.S. Sharif / Signal Processing 85 (2005) 1845–18511848
is given as

dE ¼ Eðf þ; ti þ dtiÞ � Eðf �; ti � dtiÞ

¼

Z 1

0

ðf þ
� gÞ2 þ m

df þ

dt

� �2
" #

SþðtÞdt

 

�

Z 1

0

ðf �
� gÞ2 þ m

df �

dt

� �2
" #

S�ðtÞdt

!
,

dE ¼

Z
I

ðf þ
� gÞ2 þ m

df þ

dt

� �2
" #

dt

�

Z
I

ðf �
� gÞ2 þ m

df �

dt

� �2
" #

dt. ð7Þ

By dti ! 0, Eq. (7) can be approximated as

dE

dti

¼ ðf þ
� gÞ2 þ m

df þ

dt

� �2
" #

� ðf �
� gÞ2 þ m

df �

dt

� �2
" #

. ð8Þ

Minimisation of energy functional (1) with
respect to ti requires that Eq. (8) is set equal to
zero, i.e.:

ðf þ
� gÞ2 þ m

df þ

dt

� �2
" #

� ðf �
� gÞ2 þ m

df �

dt

� �2
" #

¼ 0. ð9Þ

In a neighborhood of the discontinuity, ti satisfying
Eq. (9), corresponds to the discontinuity point.
Geometrical interpretation of Eq. (9) is that ti is the
intersection of the two functions ðf þ

� gÞ2 þ

mðdf þ=dtÞ2 and ðf �
� gÞ2 þ mðdf �=dtÞ2 in the

neighborhood of ti. To clarify Eq. (9), let us
consider variations of functional (1) with respect
to ti in two different cases: (1) when ti corresponds
to a discontinuity such as the case shown in Fig. 1
and 2 when ti is far from any discontinuity. If ti is
varied to ti þ dti and ti � dti, corresponding varia-
tions of functional (1) can be calculated
respectively as

dEþ ¼

Z
I

ðf þ
� gÞ2 þ m

df þ

dt

� �2
" #

dt

�

Z
I

ðf � gÞ2 þ m
df

dt

� �2
" #

dt ð10Þ

and

dE� ¼

Z
I

ðf � gÞ2 þ m
df

dt

� �2
" #

dt

�

Z
I

ðf �
� gÞ2 þ m

df �

dt

� �2
" #

dt. ð11Þ

if ti is a discontinuity point then it can be verified
that dEþ40 and dE�o0. This implies that
between ti � dti to ti þ dti, there exist a point
where E is minimised. By dti approaching zero, the
point minimising E approaches a discontinuity.
However, if ti is far from any discontinuity,
then it is obvious that f þ

¼ f �
¼ f . Hence

dEþ ¼ dE� ¼ 0, thus implying that E remains
constant and hence ti is not a minimiser of the
functional. It should be noted that although
points far from any discontinuity satisfy Eq. (9),
they are not minimisers of functional (1) and hence
are not considered as solutions to our minimisation
problem.

At this stage, it is interesting to examine the
behavior of functional (1) and Eq. (5) by varying
coefficient m. If m ! 0, then the first term in
functional (1) becomes dominant implying that f i

follows gðtÞ and its fluctuations. However, if
m ! 1, the first term in functional (1) can be
ignored and according to Eq. (5), f i is heavily
smoothed and can therefore be approximated as a
line. Eqs. (5), (6) and (9) are the optimised
solutions to the optimisation problem of func-
tional (1). However, implementation of a non-
linear equation such as Eq. (9) along with a
differential equation such as (5) especially in the
presence of noise could be highly complicated and
computationally expensive. An efficient algorithm
is therefore proposed in this short communication
to find the optimal solutions to functional (1) in
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the presence of noise. We initially consider the
linear functional:

Eðf ;SÞ ¼
1

2

Z t

0

ðf ðtÞ � gðtÞÞ2 þ m
df

dt

� �2
" #

dt. (12)

Using Euler–Lagrange equations [20,21], the
optimal solution for the entire time interval is
given by

m
d2f ðtÞ

dt2
¼ f ðtÞ � gðtÞ. (13)

The solution to differential equation (13) is a
function f ðtÞ that smooths fluctuations as well as
discontinuities of the original noisy signal gðtÞ. The
objective in this communication is to detect
discontinuities related to the original noisy signal
using the geometrical properties of the smoothed
function f ðtÞ. There are two geometrical features
related to the smoothed parts of f ðtÞ correspond-
ing to discontinuities:

(1) Arc length variations that are maximised
with respect to t i.e. [22,23],

ds

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dt2 þ dy2

p
dt

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

dy

dt

� �2
s

or

ds

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðf 0

Þ
2

q
(14)

is maximised.
(2) Value of the curvature of the smoothed

function defined as [22,23]:

Curvðf Þ ¼
f 00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 þ ðf 0
Þ
2
Þ
3

q (15)

varies from a local maximum/minimum to another
local minimum/maximum, crossing zero.

The second property might be true for the
intervals of f ðtÞ corresponding to noise as well.
However, the intervals that correspond to this
change of curvature value for discontinuities are
significantly greater than those for noise. This is
due to the fact that the local mean of the original
noisy signal changes in discontinuities, whereas it
remains unchanged or slightly changed in intervals
characterised by noise only. Based on the mathe-
matical background discussed in this section, an
algorithm is proposed in Section 3 to detect
discontinuities. Eq. (5) with boundary conditions
(6) is then applied to each separate interval to
obtain the smoothed function f ðtÞ corresponding
to the chosen m. Finally, an adaptive algorithm is
proposed to choose the most optimal m for a given
noise level.
3. Implementation

Eq. (13) is initially solved to obtain f ðtÞ which
smooths noise as well as discontinuities for an
initial m. The intervals of zero curvature are then
detected and only one point corresponding to
maximum arc length for each interval of zero
curvature is chosen as a discontinuity point. Once
discontinuity points along the signal are detected
(segmentation step), Eq. (5) is solved for each
interval using the boundary condition (6) to obtain
the smoothed signal (noise reduction step). To
obtain the most optimal m for a given noise, E ¼

ð1=tÞ
R t

0 ½ðf ðtÞ � gðtÞÞ2�dt is calculated for different
values of m. This process continues by changing m
and hence f ðtÞ until E approaches the noise
variance. In this scheme, with an initial m, if E is
less than noise variance, m increases, otherwise it
decreases.
4. Results

The algorithm proposed in Sections 2 and 3 is
applied for the purpose of time interval segmenta-
tion and signal smoothing in each interval.
Fig. 2(top row) shows an original noiseless signal.
Gaussian noise is added to this signal to obtain
noisy signals with SNR ¼ 2:1, 1:0 and 0:42 as
shown in Fig. 2(middle row). The smoothed
signals using the proposed algorithm are obtained
with m ¼ 100 as depicted in Fig. 2(bottom row).

The adaptive algorithm to find the most
optimised m, proposed in Section 3, is applied to
some noisy signals contaminated with Gaussian
noise. The results are depicted in Fig. 3. Gaussian
noise is added to three different original noiseless
signals, shown in Fig. 3, to obtain noisy signals
with SNR ¼ 0:9. The smoothed signals are
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Fig. 3. Original noiseless signals (left column), noisy signals

contaminated with Gaussian noise with SNR ¼ 0:9 (middle

column) and smoothed signals (right column) with optimised

m ¼ 225 (top), m ¼ 280 (middle) and m ¼ 265 (bottom).

Fig. 2. Original noiseless signal (top row), noisy signals

contaminated with Gaussian noise with SNR ¼ 2:1, 1.0 and

0.42 (middle row) and their corresponding smoothed signals

with m ¼ 100 (bottom row).
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obtained by applying the adaptive algorithm as
depicted in the same figure, resulting in optimised
values for m (see Fig. 3).
5. Conclusion

An efficient method is presented in this short
communication for signal segmentation and noise
reduction based on an energy optimisation meth-
od. Geometrical properties such as curvature and
maximum arc length of the smoothed signal are
employed to detect discontinuity points. Once
discontinuities are detected, signal is smoothed
for each time interval by solving the appropriate
differential equations. This method can be general-
ised to 2D images by employing geometrical
features of surfaces to detect discontinuities as
object edges. However, contour length minimisa-
tion should also be taken into consideration to
satisfy the Mumford–Shah functional require-
ments.
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