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Abstract

A nonlinear functional is considered in this letter for segmentation and noise removal of piecewise continuous signals

containing binary information contaminated with Gaussian noise. A discontinuity is defined as points in time scale that

separates two signal segments with different amplitude spectra. Segmentation and noise removal of a piecewise continuous

signal are obtained by deriving equations minimising the nonlinear functional. An algorithm based on the level set method

is employed to implement the solutions minimising the functional. The proposed method is robust in noisy signals and can

avoid local minima.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Variational methods in image and signal proces-
sing have attracted considerable attention in recent
years. Segmentation using variational methods was
initially introduced by Kass et al. [1] and was further
developed as the Geodesic Active Contours Model
and the Level-Set Method [6]. On the other hand,
Mumford et al. [12] introduced a nonlinear functional
for segmentation and smoothing of images which was
modelled as piecewise continuous functions that are
surrounded by discontinuities represented by con-
tours. This functional was further approximated for
implementation using various approaches (e.g. see
e front matter r 2006 Elsevier B.V. All rights reserved
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[2–6,13–15]). However, it is well known that the
optimal solution of nonlinear functionals considered
in [12] is not unique [15] which results in the
algorithms falling into local minima. A nonlinear
functional similar to the one proposed in [12] was
also considered by Mahmoodi et al. [8–11] for signal
and image segmentation and noise reduction. In [9],
the optimal solution to this functional for continuous
and discrete signals is obtained and an algorithm
based on this solution is proposed. A geometrical
approach is employed in [8,10] to implement this
functional for signal and image segmentation which
leads to a robust algorithm in a noisy environment.
Two terms are introduced in the functional consid-
ered in [8–10] acting on the desired signal (or image):
(1) fidelity which causes the desired signal to be as
close as possible to the original noisy signal (2)
smoothing the desired signal in proportion to a
.
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coefficient embedded in the functional. The compet-
ing terms operate over a time segment where the
original signal is considered continuous. It is demon-
strated in [9] that points corresponding to disconti-
nuities are minimisers of the functional. Therefore,
the minimisation of such a functional leads to a
unique solution representing the segmented and the
smoothed signals. However, the smoothing term in
[8–10] introduces a low-pass filter whose bandwidth is
related to the coefficient of the smoothing term. In
this case, the desirable frequencies of a band pass
input signal may be filtered by the smoothing term
leading to the distortion of the smoothed signal. To
overcome this problem, a modification to the
functional considered in [8–10] is proposed in this
letter to enable the algorithm to segment and
reconstruct band pass signals containing high-
frequency fluctuations. It is demonstrated that this
method finds the global minimum by considering
only the first variation of the functional. The level
set method is employed to implement this func-
tional and the results show that the proposed method
is robust for signals with low SNRs. The basic
principles are investigated in Section 2 whilst
analysis and implementation based on the level set
framework are considered in Section 3. Results are
presented in Section 4 and finally conclusions are
drawn in Section 5.

2. Basic principles

Discontinuities in a signal gðtÞ are defined as
points in time scale separating segments over which
the corresponding signals have different amplitude
spectrums. If f iðtÞ is a smooth continuous function
of class Cn nX2 in the ith segment, a functional is
then considered as

Eðf ;SÞ ¼
X

i

Z xi

xi�1

½ðf iðxÞ � gðxÞÞ2�SiðxÞdx, (1)

where SiðxÞ is a windowed function representing the
ith segment in which gðxÞ has no discontinuities. In
order to find the points corresponding to disconti-
nuities, SiðxÞ has to be determined so that the ith
segment over which there is no discontinuity, is as
long as possible. In this letter, we assume that f iðxÞ

can be written as a linear combination of finite
numbers of eigenfunctions of class Cn such as sin
and cos functions, i.e.:

f iðxÞ ¼
X

m

ðAim cosðmoxÞ þ Bim sinðmoxÞÞ, (2)
where gðxÞ is considered periodic with a base
frequency o ¼ 2p=T and T is the entire time
segment over which the whole signal is defined.
Restriction imposed by (2) guarantees that f i is of
class Cn over time segment i. A similar functional
has been investigated in [4,8,9]; however, a major
difference in the functional considered in this letter
is that the continuity of f i for the ith time segment
in functional (1) is imposed by the restriction
presented in (2), whilst a smoothing term is
explicitly introduced in the functional investigated
in [4,8,9]. Let us now assume that gðxÞ is an even
periodic function over the entire time length of the
input signal, i.e., gðxÞ ¼ gð�xÞ. This assumption is
used to reduce the number of calculated parameters
by half without loss of generality. A half range
expansion for f iðxÞ can then be employed [7], i.e.,
Bim ¼ 0 and

Aim ¼

Z xi

xi�1

f iðxÞ cosðmoxÞdt. (3)

Our minimisation problem is now reduced to
determine the coefficients Aim and function SiðxÞ

minimising functional (1). In order to find the
most optimised Aim, functions SiðxÞ are initially
considered fixed. In the next section, equations
leading to these coefficients are obtained in the
level set framework. On the other hand, to find
the most optimised SiðxÞ, variations of functional
(1) should vanish by changing SiðxÞ.This requires
that we consider the appropriate changes in f iðxÞ

as well.
3. Analysis and implementation

The proposed model by Chan et al. [4] in the level
set formulation involves minimising functional (4):

Eðf i; f o;jÞ ¼
Z T

0

ðf iðxÞ � gðxÞÞ2 þ m
df i

dx

� �2
" #

HðjðxÞÞdx

þ

Z T

0

ðf oðxÞ � gðxÞÞ2 þ m
df o

dx

� �2
" #

�ð1�HðjðxÞÞÞdx

þ n
Z T

0

dHðjðxÞÞ
dx

����
����dx, ð4Þ

where j is a Lipschitz function whose zero level set
ðjðxÞ ¼ 0Þ known as front, represents discontinu-
ities. Hð:Þ in (4) represents the regularised form of
Heaviside function. The associated Euler–Lagrange
equations obtained by minimising functional (4)
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with respect to f i, f o and j are derived as:

m
d2f i

dx2
¼ f i � g for j40, (5)

m
d2f o

dx2
¼ f o � g for jo0, (6)

qj
qt
¼ dd ðjÞ n

q
qx

qj=qx

jqj=qxj

� �
� ðg� f iÞ

2

�

þðg� f oÞ
2
� m

df i

dx

� �2

þ m
df o

dx

� �2
#
, ð7Þ

where ddðjÞ is the regularised Dirac delta function.
Functional (4) is the one-dimensional Mumford–
Shah functional in the level set framework. The
Mumford–Shah functional and hence Chan–Vese
model is based on the calculation of the first
variation as discussed above. The solutions of
the above differential equations are the segmented,
and smoothed signals, i.e., discontinuities are the
solutions of differential equation (7). Let us now
assume a point at x ¼ xp corresponding to jðxpÞ ¼

0 which is not in a neighbourhood of any
discontinuity. In this point, f iðxpÞ ¼ f oðxpÞ and
df i=dxjx¼xp

¼ df o=dxjx¼xp
, since we assume that

gðxÞ is piecewise continuous of the class Cn, n42.
It should also be noted that at such a point in the

front qj
qx
=jqjqx
j ¼ 1 or �1 and hence qðqjqx

=jqjqx
jÞ=qx ¼ 0.

Therefore, at x ¼ xp Eq. (7) vanishes. This analysis

indicates that the point at x ¼ xp is a local minimum
of functional (4). In fact, the reason that the
Chan–Vese model is trapped in local minima in
piecewise continuous cases is due to an intrinsic
feature in their model. This feature is introduced by
treating Eq. (7) globally to detect discontinuities,
whereas this equation should be treated as an
equilibrium equation which is approximated in a
neighbourhood of discontinuities [9]. The model
proposed in [8,9] considers the second variation
of a functional similar to (4) with respect to the
fronts. It is proved in [9] that discontinuities are
the minimisers of the functional and points away
from any discontinuities that are saddle points of
the functional and therefore should be discarded.
In this short letter, however, we demonstrate
that it is also possible to avoid local minima by
considering only the first variation in the cases
where a signal is composed of a finite number of
frequency components so that each time segment
contains a number of complete cycles of each
frequency. The advantage of using only the first
variation is that less numerical complexity is
introduced, since the second variation calculations
are not required.

Let us now consider functional (1) in the level set
framework:

EðAi;Ao;jÞ

¼ a
Z T

0

X
m

Aim cosðmoxÞ � gðxÞ

 !2
2
4

3
5HðjðxÞÞdx

þ b
Z T

0

X
m

Aom cosðmoxÞ � gðxÞ

 !2
2
4

3
5

�ð1�HðjðxÞÞÞdx, ð8Þ

where j is a Lipschitz function whose front
(jðxÞ ¼ 0) represents discontinuities. Hð:Þ in (8)
represents the regularised Heaviside function and
therefore HðjÞ and 1�HðjÞ for jðxÞ40 represent
intervals over which signals are characterised with
different amplitude spectrums. Functional (8) in the
level set formulation is equivalent to functional (1)
with the restriction indicated in (2). Optimal values
for the coefficients in (2) are obtained by vanishing
the derivative of E with respect to Aip for pX0 (i.e.,
qE=qAip ¼ 0Þ.Z T

0

cosðpoxÞgðxÞHðjðxÞÞdx

¼

Z T

0

X
m

Aim cosðpoxÞ cosðmoxÞHðjðxÞÞdx. ð9Þ

A similar linear system to (9) can be derived for Aom.
Functional (8) is also minimised with respect to the
signed distance function j. This therefore leads to
the following Euler–Lagrange equation:

qj
qt
¼ dd ðjÞ �a g�

X
m

Aim cosðmoxÞ

 !2
2
4

þb g�
X

m

Aom cosðmoxÞ

 !2
3
5, ð10Þ

where ddðjÞ is the regularised Dirac delta function.
Differential equation (10) coupled with a linear
system such as (9) for different time intervals should
be solved iteratively. j and hence discontinuities are
iteratively evolved to converge to the desired
solution. Upon convergence, the discontinuities
corresponding to jðxÞ ¼ 0 represent the segmented
signal (segmentation) and Fourier coefficients Aim

and Aom are used to reconstruct the signal (noise
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reduction). For the simplicity of the analysis in this
short letter, we assume that signal gðxÞ consists of
only one frequency component with two different
amplitudes. As demonstrated in the next section, the
numerical simulations indicate that the proposed
algorithm in this letter can be applied to signals with
(a) (b)

Fig. 1. Original signal (first row) front evolution in iterations 1 (second

show the segmented signal, the level set function j and the reconstructe

pass filter is set to p=3.
any number of frequency components. However, a
mathematical argument for signals containing
multiple frequencies is not presented here. It is
noted that the proposed method in this letter is only
applicable to signals with time segments containing
a number of complete cycles of a frequency or a set
(c)

row) 2 (third row) 8 (fourth row) 12 (fifth row). Columns (a)–(c)

d signal in each iteration, respectively. The bandwidth of the low-
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(a)

(b)

(c)

Fig. 2. Original noiseless signal (a) segmented and reconstructed signal using the proposed method in this letter (b) segmented and

reconstructed signals using the methods of differential equations considered previously in literature with m ¼ 10 and n ¼ 10 (e.g., [4]) (c).

S. Mahmoodi, B.S. Sharif / Signal Processing 86 (2006) 3496–35043500
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(a)

(b)

(c)

Fig. 3. Original noiseless signal (a) noisy signal with SNR ¼ 1 (b) and segmented and reconstructed signals with the bandwidth of the low-

pass filter ¼ p=8 (c).
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of frequencies. A signal with a single carrier
frequency is usually considered in communications.
In this case, Eq. (10) is written as

qj
qt
¼ ddðjÞ½�aðg� Ai cosðo0xÞÞ

2

2

þ bðg� Ao cosðo0xÞÞ �. ð11Þ
Coefficients Ai and Ao are then calculated as

Ai ¼

R T

0
cosðo0xÞgðxÞHðjÞdxR T

0
cos2ðo0xÞHðjÞdx

, (12)

Ao ¼

R T

0 cosðo0xÞgðxÞð1�HðjÞÞdxR T

0 cos2ðo0xÞð1�HðjÞÞdx
. (13)
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In a signal with only one discontinuity, we assume
a point P at x ¼ xp which is not in a neighbourhood
of a discontinuity at x ¼ xd so that xd4xp. It is also
assumed that point P is in the time domain over
which the sinusoidal signal has amplitude Gi.
The other part of signal is characterised with a
sinusoidal signal with amplitude GoaGi. From the
above equations, Ai and Ao are calculated as

Ai ¼

R xp

0 cosðo0xÞðGi cosðo0xÞÞdxR xp

0 cos2ðo0xÞdx
¼ Gi (14)
Ao ¼

R xd

xp
cosðo0xÞðGi cosðo0xÞÞdxþ

R T

xd
cosðo0xÞðGo cosðo0xÞÞdxR T

xp
cos2ðo0xÞdx

¼
GiI0 þ GoI1

I0 þ I1
ð15Þ
or

Ao ¼ Go þ ðGi � GoÞ
I0

I0 þ I1
, (16)

where I0 ¼
R xd

xp
cos2ðo0xÞdx and

I1 ¼
R T

xd
cos2ðo0xÞdx. Therefore, Eq. (11) can be

written as

qj
qt
¼ dd ðjÞ b

ðGi � GoÞ
2I20

ðI0 þ I1Þ
2

cos2ðo0xÞ

� �� �
. (17)

The right-hand side of Eq. (17) corresponds to a force
driving the front (j ¼ 0) towards the discontinuity.
This driving force exists as long as the front does not
correspond to the discontinuity. However, in a
discontinuity xp ¼ xd hence I0 ¼ 0 implying Ai ¼

Gi and Ao ¼ Go. Therefore, Eq. (11) representing the
first variation vanishes only in a discontinuity. In the
presence of noise, Eq. (11), still vanishes, although
the front might be slightly shifted with respect to the
discontinuity in the original signal. This analysis
demonstrates that a point corresponding to disconti-
nuity is a minimiser of functional (8). This property
prevents the algorithm from falling into a local
minimum. The above analysis applies to a signal
with any number of discontinuities, i.e., if a segment
of the input signal is in the ‘wrong’ part of j (j40),
it produces a negative term in Eq. (10) and hence
creates two new discontinuity points (or zero cross-
ings in j). This argument is also true for the case
where the ‘wrong’ part of j corresponds to jo0.
This fact is due to the well-known property of
the level set formulation based on which the
algorithm can be adjusted to the topology of the
input data. It is also noted that the minimisation of
functional (8) leads to the segmentation and recon-
struction of signals with binary information where
the original signal consists of a time sequence
of two types of signals with different amplitude
spectra. The described evolution procedure occurs
only if the signed distance function is correctly
initialised. This is because the right side in iterative
equation (10) should be comparable to the initial
signed distance function to be able to change
the level set function for the evolution of the
algorithm. Throughout this letter, the signed distance
function jðxÞ is initialised as

jðxÞ ¼
1

4
�

2

T
x�

T

2

����
����, (18)

where T is the total length of the input signal. The
above signed distance function initially corresponds to
only two discontinuities. However during the evolu-
tion of the algorithm, the number of discontinuities
changes to match the number of discontinuities in the
input signal gðxÞ. In this letter a and b in Eq. (10) are
set to 1. These coefficients can, however, be set to a
value corresponding to the maximum absolute ampli-
tude of the input signal. For signals with low absolute
amplitude, higher values for these coefficients should
be chosen to allow Eq. (10) to evolve. The algorithm
proposed in this letter, is summarised in pseudo-code
below. The signed distance function j is firstly
initialised by using Eq. (18). Differential equation
(10) is then solved to update jðxÞ and hence evolve the
fronts representing discontinuities. In each iteration, a
one-dimensional Gaussian filter is applied to jðxÞ to
regularise the differential equation (10), which im-
proves the robustness of our algorithm.
1. Initialise j0 for n ¼ 0
Loop :
2. Compute Aim and Aom

3. Solve differential equation for j to obtain jnþ1

4. Apply Gaussian low pass filter to jnþ1
If convergence is not reached,
Then n ¼ nþ 1 and go to step 2;
Otherwise end the Loop and go to step 5
5. Reconstruct the signal using Aim and Aom
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4. Results
A synthetic signal with eight discontinuities is
shown in Fig. 1 (first row). The level set function j,
segmented and reconstructed signals in four different
iterations of the algorithm are depicted in the second
to the fifth row of Fig. 1. The dashed curves in all
figures show the different segments of the signals. In
this example, the bandwidth of the Gaussian low-
(a)

(b)

(c)

(d)

(e)

Fig. 4. Original signal (a) segmented and reconstructed signals with on

low-pass filter is set to p=7.
pass filter is set to p=3. Fig. 2 compares the proposed
method for segmentation and reconstruction of
signals with a method in which the optimised
functional contains an explicit smoothing term (see
e.g. [4]). The original signal is shown in Fig. 2a. The
proposed method in this letter is applied to the
original signal and the segmented and reconstructed
signals are presented in Fig. 2b. The segmented and
reconstructed signals using the traditional methods in
e (b) three (c) five (d) and 30 (e) harmonics, the bandwidth of the
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the literature (e.g. [4]) are depicted in Fig. 2c. As can
be seen from this figure, the Chan–Vese algorithm
converges to a local minimum, i.e., segmented and
reconstructed signals do not correspond to the
original signal. In this example, m ¼ 10 and n ¼ 10.
If m increases, the reconstructed signal becomes
smoother and hence more distorted, whereas if the
value of m is reduced, the algorithm over-segments
the signal. This problem becomes more severe when
noise is added to the original signal. In the third
example, a synthetic noiseless signal depicted in
Fig. 3a is contaminated with a Gaussian noise to
produce the noisy signal shown in Fig. 3b with
SNR ¼ 1. The segmented and reconstructed signals
are demonstrated in Fig. 3c. A signal containing
several discontinuities with two different frequencies
is shown in Fig. 4. In this example, we aim to show
that the proposed method can segment and recon-
struct the signal based on discontinuities in frequency
rather than those in the signal itself. Fig. 4a shows
the original signal. As shown in this figure, the signal
is composed of two square waves with different
frequencies. The segmentation is achieved based on
the first harmonic. Having segmented the signal,
more harmonics can be employed for reconstruction.
The segmented and reconstructed signals using only
the first frequency harmonic is shown in Fig. 4b, and
using three, five and 30 harmonics in Figs. 4c–e,
respectively. It is interesting to note that in this
example discontinuous signals are reconstructed
by using a set of continuous eigenfunctions. The
fluctuations and oscillations in the reconstructed
signals in Fig. 4e are due to Gibbs phenomenon.
Segmentation and reconstruction of signals of the
type shown in Fig. 4a are not possible by minimising
any functional containing an explicit smoothing term
of the desired reconstructed signal, since the desired
signal contains discontinuities.

5. Conclusion

A new method is proposed in this letter to find the
global minimum in a minimisation problem leading
to signal segmentation and noise reduction of a
given noisy signal. A functional is considered for
this purpose and continuity of each segment of the
signal is implicitly imposed in comparison with
the previous functionals in which continuity was
explicitly presented. Numerical comparison has
been made between the proposed method and the
traditional method. The level set method is em-
ployed to implement this functional. The algorithm
presented in this letter converges very easily, is
robust in the presence of noise and can reconstruct
desired signals containing discontinuities.
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