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Skeletal Growth Estimation Using Radiographic
Image Processing and Analysis
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Richard Lee

Abstract—An automated knowledge-based vision system for
skeletal growth estimation in children is reported in this paper.
Images were obtained from hand radiographs of 32 male and 25
female children of age 1–16 yr. Phalanx bones were automatically
localized and segmented using hierarchical inferences and active
shape models, respectively. A number of shape descriptors were
obtained from the segmented bone contour to quantify skeletal
growth. From these descriptors, a feature vector was selected
for a regression model and a Bayesian estimator. The estimation
accuracy was 84% for females and 82% for males. This level of
accuracy is comparable to that of expert pediatric radiologists,
which suggests that the proposed approach has a potential
application in pediatric medicine.

Index Terms—ASM segmentation, Bayesian estimation, feature
extraction, skeletal growth assessment.

I. INTRODUCTION

SKELETAL age assessment is often required in diagnosing
or monitoring growth disorders, or in some cases as an aid

to predicting ultimate height. The two main methods used in
pediatric radiology are attributed to Greulich and Pyle [1] and
Tanner and Whitehouse (TW2) [2]. Both methods are based
on assessment of bone morphology from hand radiographs.
However, such manual assessment procedures tend to be
laborious and prone to inter and intra observer inconsistency.
An automated assessment process, based on digital image
analysis, is thus highly desirable, and considerable effort has
been dedicated toward this aim. Conventional image analysis
methods have been applied for bone segmentations and classi-
fications [3]–[7]. Palet al. [8] proposed an algorithm based on
fuzzy logic to automate skeletal age assessment based on TW2
[2]. Levitt et al. suggested an artificial intelligence approach
based on Bayesian inference to localize and segment phalanges
[9]. However, these techniques attained limited success due to
faint bone edges and significant intensity variation throughout
the hand radiographic image. In our approach, we used knowl-
edge-based techniques, such as hierarchical inferences and
active shape models (ASM) to localize and segment bones,
respectively [10], [11]. A number of shape descriptors were
obtained from the segmented bone contour to quantify skeletal
growth. These descriptors were particularly selected to reflect
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growth-related shape variations in the metaphysis-epiphysis
junction. A Bayesian classifier was then applied to the de-
scriptors to estimate skeletal growth. The paper is organized
as follows. In Section II, bone localization and segmentation
methods are described. Bone shape descriptors are presented in
Section III. Section IV presents a Bayesian approach for age
estimation. Discussion and concluding remarks are provided in
Section V.

II. BONE LOCALIZATION AND SEGMENTATION

A. Hierarchical Bone Localization

Hand radiographs are characterized by a large optical density
range due to varying levels of X-ray absorption by bones and
soft tissue. For example, distal phalanges are thinner and appear
darker than proximal phalanges and carpal bones. Therefore,
global bone edge detection schemes often fail when applied
to digitized radiographic images, and alternative local schemes
must be used. In our approach, anatomical and intensity infer-
ences were used in order to localize bones prior to boundary de-
tection. A hierarchical approach was used to “locate and infer”
starting from the hand object in the radiographic image and ter-
minating with bone localization. Binary thresholding was used
to segment the hand to produce a hand silhouette, and a con-
cave–convex detection algorithm was then applied to localize
the finger tips and bases. Finally, anatomical knowledge of the
finger was used in addition to gray-level information to localize
bones [12].

B. Active Shape Models Training

Bone contour detection, using active shape models, is based
on active deformation of an approximate contour superimposed
on the localized bone. This deformation is constrained by prior
ASM training, and, for this purpose, we used a training set of 57
sample bones from 32 male and 25 female children, at various
stages of normal skeletal growth.

A bone is considered to be a class of shapes described by a
set of points known as a point distribution model (PDM). Fig. 1
shows an -point PDM of the middle phalanx of the middle
finger. In this study, was set to 38 and the PDM points were
manually assigned to salient locations of the phalanx to ensure
that variation of the PDM points over the training set corre-
sponded to growth-related development. Since we are only in-
terested in shape variations during growth, all sample PDMs
were aligned by scaling, rotation, and translation with respect
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Fig. 1. Phalanx PDM.

Fig. 2. Cumulative contour variations for the 76 modes in the feature space.

to an arbitrary reference PDM. The mean PDM and the covari-
ance matrix were then calculated, and variation modes were ob-
tained from the eigenvectors and eigenvalues of the covariance
matrix. The most significant variation modes were generated by
the eigenvectors corresponding to the larger eigenvalues. There-
fore, a small number of modes were sufficient to describe most
variations, and new shapes could then be approximated by ap-
plying the most significant modes to the Hotelling transform
[11] as follows:

(1)

where is the approximated shape which defines the contour
space, is the mean shape, is a matrix whose columns are
the eigenvectors responsible for the most significant variation
modes, and is a vector of weights which defines the feature
space. Fig. 2 shows the cumulative contour variations for all 76
( ) modes. The cumulative variations revealed that the first 35
modes corresponded to 99% of contour variations. Therefore,
these modes were chosen and higher modes that corresponded
to very small variations were discarded to improve computa-
tional efficiency. New shapes could therefore be reconstructed
by varying vector . To ensure shape plausibility, each element

of the weight vector was limited to the Mahalonobis dis-
tance based on the 97% confidence interval [11], i.e.,

(2)

Fig. 3. Contour shape deformations due to the variations of the second mode.

where and are the th element of vector and the th eigen-
value of the covariance matrix, respectively. Each element of
vector is responsible for one mode of shape variations. Fig. 3
shows the shape variations caused by varying be-
tween 60 and 60.

C. Bone Contour Detection

The mean bone contour shape is obtained from the ASM
training set and is used as the initial contourin an iterative
algorithm to detect the test bone contour. Also, from hierar-
chical localization, we havea priori knowledge of the scaling
( ), rotation ( ), and translation () necessary to superimpose
the initial contour on the test bone. The iterative algorithm
is summarized in the Appendix. At each iteration, an image
contour displacement is generated using the maximum image
derivative along lines normal to the previous contour PDM.
The derivative can be approximated using methods such as the
Sobel, derivative of Gaussian, or the multiscale derivative of
Gaussian [13]–[15]. In this study, the derivative of Gaussian
was used to estimate the image derivative. The image contour
displacement produces a change in scaling (), rotation ( ),
and translation ( ). A scaling and rotation transformation
is then applied on the tentative image contour to produce a
displacement in the local frame contour. A new feature vector

is then obtained which is tested for plausibility using the
criterion in step 7). Finally, the new local frame and image con-
tours are updated in steps 8) and 9), respectively. The iterative
algorithm stops when consecutive contour differences reach a
set threshold. Fig. 4 shows three iterations of the ASM contour
detection algorithm, namely the 1st, 4th, and the final 12th
iteration. The residual errors were small (1 pixel) and were
considered to be acceptable by expert pediatric radiologists,
based on qualitative assessment.

III. B ONE SHAPE DESCRIPTIONS

An important growth feature of the phalanx bone is the junc-
tion between the epiphysis and metaphysis joints whose shape
characteristics change at different stages of growth. To quan-
tify these changes, a number of shape descriptors were devel-
oped in order to produce a feature vector for age estimation. The
most effective descriptors were selected by using the finite in-
terception test at a 5% level of significance [16]. These descrip-
tors were the principal component coefficient (PCC), moment of
the proximal end of a phalanx (MOM), and epiphysis width to
metaphysis width ratio (EMR). They exhibited strong correla-
tion with growth as given in Table I and as further demonstrated
in the scatter diagrams of Fig. 5. The remainder of this section
describes the methods used to obtain these descriptors.
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(a)

(b)

(c)

Fig. 4. ASM contour fitting. (a) Iteration 1. (b) Iteration 4. (c) Iteration 12.

TABLE I
CORRELATION COEFFICIENTS OF THE

SHAPE DESCRIPTORS WITHRESPECT TOGROWTH AGE

Fig. 5. Scatter diagrams of shape descriptors with respect to growth age.

TABLE II
CORRELATION OF THEFIRST FOUR PRINCIPAL COMPONENTCOEFFICIENTS

WITH GROWTH

A. Principal Component Coefficients (PCC)

The ASM algorithm outlined in the Appendix generates a
weight vector , which is used in the Hotelling transform of
(1) to compose the detected contour. A feature space is con-
sidered for feature extraction purposes. Its origin corresponds
to the mean shape and the axes are represented by eigenvectors
of the covariance matrix of the contour variations. Therefore,
a point in the -dimensional ( ) contour space repre-
sents any PDM contour withpoints. In the feature space, vari-
ations along each eigenvector with respect to the mean contour,
represented by the weight vector, correspond to displacement
of a -dimensional point representing the contour in the con-
tour space. However, since the first 35 modes are responsible for
most contour variations, a 35-dimensional feature space is used
to reconstruct a -point contour using the Hotelling transform.
Therefore, the feature space weight vector, also known as prin-
cipal component coefficients (PCCs), can represent a contour
detected by the ASM algorithm. The first four principal compo-
nents were computed and their correlation with growth is shown
in Table II. The second coefficient () exhibited the highest cor-
relation (0.77 and 0.83 for males and females, respectively) and
was selected by the finite interception test for inclusion in the
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(a) (b)

Fig. 6. (a) Phalanx PDM and (b) signature of the proximal end.

growth estimation feature vector. This result is further demon-
strated in Fig. 3, where variations ofcorrespond to significant
shape variations in the epiphysis.

B. Shape Moments (MOM)

The PCC is a global contour shape parameter that describes
phalanx development including the epiphysis region. To obtain
a finer scale representation of the epiphysis, its shape moment
was measured as a local parameter to describe epiphysis devel-
opment. To generate the shape moment, three reference PDM
points are chosen, as shown in Fig. 6: two at the epiphysis–meta-
physis joint (A & B) and one midway between them (C). The
contour between A and B is then traversed clockwise, and the
Euclidean distance to reference point C is measured to gen-
erate a 1-D signature representation of epiphysis contour varia-
tions [13]. Different order moments of this signature were cal-
culated; however, only the fourth-order moment was selected by
the finite interception test for inclusion in the estimation feature
vector.

C. Epiphysis-to-Metaphysis Ratio (EMR)

The metamorphosis of the epiphysis is used by expert pedi-
atric radiologists as an important indicator of growth. Its genesis
occurs at the early stages of skeletal growth (around 1 year).
The epiphysis then grows in size relative to normal skeletal
growth and eventually, at the latest growth stages, fuses with
the phalanx metaphysis [2]. This development of the epiph-
ysis–metaphysis junction is illustrated in Fig. 7. To quantify this
growth-related development, we defined a descriptor to measure
the ratio of epiphysis width to metaphysis width in the phalanx
PDM. This is obtained, as indicated in Fig. 1, from the Euclidean
distance between PDM points (16, 23) for the epiphysis and (13,
26) for the metaphysis.

IV. A GE ESTIMATION

The feature vector [PCC MOM EMR], selected by the finite
interception test was used to model growth by calculating linear
regression equations from the training set (32 males and 25 fe-
males) [17]. Table III shows the slopes of the regression lines

(a)

(b)

(c)

Fig. 7. Proximal part of the proximal phalanx for: (a) 4-, (b) 8-, and (c) 16-yr-
old growth stages.

TABLE III
REGRESSIONLINE SLOPES FOR THESHAPE DESCRIPTORS WITHRESPECT TO

GROWTH AT A 95% CONFIDENCEINTERVAL

computed by using student-distribution, for the descriptors dis-
cussed in Section IV with a 95% confidence interval.

Using the Bayes principle in decision-making theory [18], an
age value “ ” is estimated to minimize the risk function

(3)

where is the true age, and is the prior probability func-
tion which is assumed uniform, since all age groups occur with
equal probability. , and are the loss and Gaussian
sample distribution functions, respectively, given as

(4)

(5)
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TABLE IV
VARIANCE INFERENCE FOR THESHAPE DESCRIPTORSUSING THECHI-SQUARE

DISTRIBUTION AT A 95% CONFIDENCEINTERVAL

where is the estimation resolution (0.5 yr),is the descriptor
parameter vector, is its mean vector determined from the re-
gression curve for a given age, and is the covariance matrix
of the descriptors over the training set. Since the prior proba-
bility is uniform, the sample distribution function plays a signif-
icant role in estimating growth age using the Bayesian approach.
This is more accurate than a simple regression algorithm or a
canonical-correlation-based approach where a sample distribu-
tion function is not considered.

Without loss of generality, we assume the same variance for
all age groups. An interval estimation of variance for different
descriptors is inferred by using the Chi-square distribution with
95% confidence interval. This is shown in Table IV.

By minimizing the risk function of (3), we then have

(6)

The estimated age “” was computed using the trapezoidal nu-
merical integration method.

A hold-one-out approach was used, where one sample was
excluded and and were obtained from the remaining data
set in order to estimate the age of the excluded sample. Using
the feature vector [PCC MOM EMR], the Bayesian algorithm
produced 82% 3% and 84% 3% accuracy for males and fe-
males, respectively. The mean error was estimated with a 95%
confidence interval. The estimation error was higher for very
young children, which could be attributed to the assumption of
equal variance for all age groups. We suggest that a more sophis-
ticated model for variance, which requires far more samples for
both sexes, would lead to a lower relative error.

V. DISCUSSION ANDCONCLUSIONS

In the past, skeletal age assessment has been tedious and unre-
liable due to human interaction in pediatric age assessment. This
process could be facilitatedby the automatedsystempresented in
this paper. The main processing blocks of the system such as seg-
mentation, description, and estimation are typical constituents
of most computer vision solutions for healthcare systems. How-
ever, a number of unique characteristics pertaining to hand ra-
diographshavenecessitatedaknowledge-basedapproach toboth
bone segmentation and localization. A number of inferences was
made from anatomical and optical density knowledge of hand ra-
diographs. The large optical density range has meant that a global
segmentation approach, such as conventional edge detection or
thresholding could not be used. A local knowledge-based seg-
mentation approach based on active shape models proved to be a

robust alternative; however, for this approach, hierarchical bone
localization was a prerequisite. Quantitative assessment of the
segmentation accuracy is extremely difficult in medical images
due to the fuzzy nature of object edges, and qualitative assess-
ment becomes a viable alternative. This is particularly the case
for skeletal assessment when the manual detection of such fuzzy
edges is in itself coarse and subjective.

At the next level of the analysis hierarchy, a set of three pa-
rameters describing bone shape was extracted to quantify the
appearance variations of bones with respect to growth age. A
shape descriptor (PCC) was obtained from ASM segmentation
by using the Hotelling transformation from the data to the fea-
ture space. The other two descriptors were the shape moment
of the proximal part of the phalanx (MOM), and the ratio of
epiphysis width to metaphysis width (EMR). These descriptors
exhibited large correlation with growth and were selected by the
finite interception test (at a 5% level of significance) for the age
estimation feature vector. Other descriptors that also correlated
to growth were discarded by the test. This could be explained
by a colinear relationship with correlation.

Age estimation based on the Bayesian principle was ap-
plied to the significant growth-related parameters, and this
has yielded a level of accuracy (82%) comparable to that
of pediatric radiologists. Other authors have reported lower
accuracy (75% and 63%) based on computer image analysis of
the phalanx and carpal regions, respectively [6]. It should be
noted that skeletal age estimation could be further improved,
using the proposed system in this paper, by using more samples
to accurately model the shape descriptors’ variance.

At different stages of maturity, it is possible for various bones
to be more advanced or retarded due to growth abnormality.
Therefore, a more precise estimation may be achieved by
segmenting more bones in a hand radiograph. However, carpal
bones appear in the later stages of growth and are continuously
deformed throughout the growth process. In these cases, more
general-purpose localization and contour detection methods
such as genetic algorithms and active contour models are
suggested to initially approximate the bone shape. This shape
approximation would then be improved by continuing the
segmentation process using the ASM algorithm.

The proposed automated assessment system, in this paper,
is robust and reliable and free from inter–intra inconsistencies,
which can result from different radiologists’ assessment or even
from the same radiologist at different times. Experience shows
that these inconsistencies can be up to 15%. Furthermore, age
assessments based on methods proposed by medical atlases such
as the TW2 method relate only to the populations considered in
the atlases, whereas the proposed approach can be adapted to
other populations with different growth rates. The only require-
ment is that growth estimation is obtained from the training set
of the target population.

APPENDIX

SUMMARY OF THE ASM CONTOURDETECTIONALGORITHM

is the detected contour in theth iteration, the edge
point candidates. , , and are contour direction, scale,
and center parameters, respectively.is a local frame where
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model training is achieved. is a transformation operator
used to scale and rotate PDM points.is a principal component
coefficient vector corresponding to the contour.is a matrix
whose columns are the eigenvectors of the contour covariance
matrix. is the th eigenvalue of the contour covariance matrix.

For iteration until :

1)
2)
3) Compute
4) , ,

5)
6)
7) for each element in if then

8)
9) .
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