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Abstract. A nonlinear functional is considered for segmentafion of
images containing structural textures. A structural texture patiern in
an image is characterized by a certain amplitude spectrum, and
segmentation of different patterns Is obtained by detecting different
regions with diffarent amplitude spectra. A gradient-tescent-based
algorithm is proposed by deriving aquations minimizing the func-
tional. This algorithm, implementing the solutions mirimizing the
functional, s based on the level set mefhod. An effective method
employed in this algarithm is shown to be robust in a noisy environ-
ment. Experirmertal resuits demonstrate that the proposed method
outparforms segmentation oblained by using the simulatad anneal-
ing algorithm based on Gaussian Markov random fietds. © 2006
SPIE and ISAT. [DOE 10.1117/1.2234370]

1 Introduction

Recently, variational methods in image and signal process-
ing have attracted considerable attention. Segmentation us-
ing variational methods was initially introduced by Kass
er al' and was further developed as the geodesic active
contours model and the level set method,” Texture segmen-
tation using geodesic active contours in Ref. 3 is achieved
by minimizing the length of the active contour in a Rie-
mannian space {feature space), which is generated by ap-
plying the Gabor filters to the original textured image. Geo-
desic active contours were further developed as geodesic
active regions by Paragios and Deriche” for supervised tex-
ture segmentation by considering the histograms of a set of
Gabor filters applied on known textures. This scheme was
further explored in Ref. 5 for unsugervised lexture segmen-
tation based on the frame theory.”” Vese and Osher” also
proposed a method based on the total variation suggested
by Rudin ef al.” for texture modeling. On the other hand,
Mumford and Shah® introduced a functional for segmenta-
tion and smoothing of images modeled as piecewise con-
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tinuous functions that are surrounded by discontinuities
represented by contours. This functional was further ap-
proximated for implementation using various methods
{e.2., see Refs. 2 and 9-15). A functional similar to the one
proposed in Ref. 8, based on second variation was also
investigated b){' Mahmoodi and Shardf for signal
sagmentation,m‘ ! image segmentation, and noise
reduction.'® However it is well known that the optimai so-
lution of nonlinear functionals considered in Ref. § is not
unique,lz which causes the implementing algorithms to {all
into local minima. In this paper, a modification to the func-
tional considered in Refs. 16-18 is proposed to enable the
algorithm to segment and reconstruct structural texture im-
ages leading to an unsupervised texture segmentation
method. Theoretically it is demonstrated in this paper that
discontinunities are minimizers of the proposed functional,
hence the second variation of the functional with respect to
contour variations should generally be considered to dis-
card contours that do not correspond to any discontinuity. It
is conjectured that the proposed functional in this paper and
also in Refs. 1618 has a unigue minimizer. The main con-
tributions of this paper are (1) to impose an implicit
smoothing in contrast with the explicit smoothing consid-
ered in the previous works in the literature (see, e.g., Refs,
8, 12, and 16-18) and (2} to detect discontinuities separat-
ing regions with different amplitude specira as minimizers
of the proposed functional. In comparison with texiure seg-
mentation algorithms with variational approaches, the
method proposed in this paper is an unsupervised texture
segmentation algorithm, while the texture segmentation
method proposed in Ref. 4 is a supervised algorithm requir-
ing a leamming procedure. Furthermore, it is interesting to
note that the proposed algorithm is also less expensive than
methods based on feature space produced by Gabor
filters.”™ This is so because the proposed variational aigo-
rit]arp i3 pot required to generate any feature data from the
original image prior to segmentation. On the other hand,
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e Jack of an wigotiine 10 choose ane croaie the best s2; oF
filiers used in the wexwre segmentadon for & given texiared
image, is the maln drawback of the methods discussed in
Refs. 3 and S, In compuarison with Markov random field
methods (e.g., Refs. 19-23), the algorithm proposed in this
study dernonstraies better results and has much less numeri-
cal complexity. Although structural textures are considered
in this papez, the generalization of the proposed lunctional,
in & statistical framework using level set method for seg-
mentation, to stochastic textures is an interesting subject for
future study.

2 Theory and Implementation lethods

An image z(x,y) is considered to compose of regions (pat-
terns} R; with different amplitude spectra, which are sepa-
rated by discontinuities that are represenied by a contour. if
we consider fi{x,¥) as the smoothed continuous function of
class C*,k=2, in R;~I",, then 2 functional of the smoothed
image f and contour [" is defined as

E(f.l“):%E L . f[ﬂ(x,y}—g(x,y)]sz(x,dexdy, (1}

where S;(x,y) is a windowed function represeniing an open
connected set R; contained within T'; in which g{x, ¥) has no
discontipuities. We can also define §(x,v) as

1 xyek

S,‘ V=
(xy) 0 x?yéR!.!

and '={I"}. In computer vision terms, S,{x,y) is the seg-
mented image, and f;(x,y} is the reconstructed image. In
Refs. 8 and 16-18, a smoothing term Is presented to guar-
antee that f;(x,y) is €? over R, However, in this paper we
impose implicit smoothing by assuming that f{x,v) can be
written as a finite series of the linear combination of the C*
eigenfunctions such as sine and cosine functions, i.e.,

Filxy) = 20 20 [A i coslmux + nvy)

+ B Sin{mux + nvy)]. (2)

Equation (2) guarantees that fi(x,¥) is smooth, since its
composing eigenfunctions are C*. This restriction implies
that fi(x.») is continuous and differentiable in R, In fact,
Eq. (2) represents the 2-D Fourier series of fi(x,y), and
Apns and B, are the Fourier coefficients. Qur objective is
to find fi(x,y) of C* class (k=2) and S,(x,y} that minimize
the functional of Eq. {1). Let us assume that £,(x,y) satisfies
the following equations:

fil=x~ v =[xy,

fibx= ) =fil= %),

The preceding assumptions decrease the number of re-
quired parameters by half, without any loss of generality,
thus increasing the numerical efficiency of the algorithm
and leading to half-range expansion of fi(x,v) where B,,,
=0 and A, 15 given as®
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.
A = ’.__;"_.-(_:-:_.y)-:.us;{rm.f.a' + nuyidedy,

[

Therzfore the functional of Ba, (1) is rewritten as

i [ 1 .
- J [ L2 2 Apn cOS(mast o+ nY)
2 i~ Hi—l"[ - I_ moon

—eley) st,-(x,y)dxdy, 3)

where A& can be considered as a matrix whose elements are
Al?i?l'

The problem is now reduced to obtain the coefficients
Ay, and Si(x,¥) that minimize the functional of Eq. {3). To
find an optimai sclution for Ay, Six,y) is initially as-
sumed fixed and the derivative of Eq. (3) with respect to

A!‘pq i$ set 10 Zero, i.e.,
dE -
= j f cos(pux + guy)| 2 > A COS{max
aAqu -1 m n

+nwy) - g(x,y)}&-(x,y}dxdy =0,

This then leads to the following Hnear system:

>y f f A COs(prx + quy)cos(mux
m Aa R-T;

+ ney)S{x, videdy =f fg(x,y)cos(pax
RT
+quy)Six,y)dxdy for p,g = 0. (4)

In this part, we aim to theoretically demonstrate that con-
touts representing the discontinuities in functions fi(x,y)
and hence coetficienis A, over different regions are indeed
minimizers of the functional of Eq. (3). Variations of the
functional (1) can be calculated in a small neighborhood of
an arbitrary point P on contour I'; between two regions §;
and S, If T is varied to T7 and T7 in the neighborhood 1
of point 7 on the contour, the variations of the functional
(1) are calculated as

er=33 [ o

=~ g (e ) P1S; (x, y)ddy,

E'U“,T‘):%Z fR_ - f{if,-“(x,y)
~ g(x, )37 (x,y)dxdy,
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Il"r ~
SEr=ft - F=— !‘ ATy
2 L g

LGNS, v)ddy

- VG
- ~
1 { f o ) )
- ;E ! P LGy = gl yi T8 e iy,
- =i i Rj_{'j. J
and

i+l

SE =E-E = 52 [ {{ritxy)

BT, ¥
— gl 3) TS, (x, v)dxdy

L i+l
l<= \ Vo
-= J‘ f {07 (30 = g3 PES; (x, y)eldy.
2 J=i Y RT-T J /
J J

The first variation with respect to coatour variation can
then be written as

6F = S6E" + 6FE
1 -
=3 f f {LFGay) = glaoy)P = [ Gy) - g0 y) Phdedy,
!
(53
where f* and f~ are defined as
[
g r
= 2 2 AT, coslmux + noy) (5,) € T& (x,y) & &,
=1 f?-;-[ = E 2 A‘l"‘i‘!-llnm COS(!?’IH.X + HU}"} (_\’,y) sl& {,\',)’) (3 AH-
L vrchanged ERONR
~
’ r
fi= 2 Z Ay COSLRITIE + 1UY) iy} e T& (x,y) € R,
=4 -
- fl_ﬁ = E E A(H-l)nm COS(RIIU( * nvy) ().',,V} el& (x,y) e R,-_H
unchanged {x3) &l

\
By using Eq. {5), in the neighbourhood /, the optimal con-

tour corresponding to SE=0 (first minimization condition)
can therefore be approximated as

r . "7 v s - ~2
layi—gle - Sony) - gl =

By using 6&% and 657 as alresdy considered above, the
second vacation is caleulated as

) o ’ -~ 1 i « -
FE =8 -0E =7 !‘ TGy = g0 P = [Fxy)

s I
— gla, ) Idxdy + . I [\’[f“ () - glx,m P

= [fla,y) - gla,y) Pidxdy.

To demonstraie that the second variation is positive in dis-
coatinuities, let us consider a simpie case where an image
consisis of an object and background containing a single
constant spatial frequency whose amplitude in the object is
different from that in the background. This notion can then
be generalized to objects and background with different
spalial frequencies. Let us assume thal the image inside the
object (Rypieq) and the background (Ryuq ) can be described
as

glx,y) = by cos(mux + nvy)  for (x,3) € Ropjects

glx,y)=b, cos(mux + nvyy for (x,¥) € Rupacks

where by # b). If we also assume that the contour I sur-
rounds the region R, then the linear system of Eq. (4)
leads to A;=by and A, =b,. If T is varied 1o I'* so that Rjye.,
includes one part of the region where the amplimde of the
constant spatial frequency {mux-+nvy) is by, then AT and A}
are calculated as

f f g cos{mux + nvy)Sy . lx,y)dxdy
|+

A,

jj’ cos(mux + nvy)Sp . (x,¥)dxdy

b]ff cos*{(mutx + nuy)Spq (X, ¥)dxady

= b] s
f f cos?{rmux + nuy)Sy,a(x,v)dxdy

f f @ cos(mux + nuy)Sgye.(x,y) dxdy

>

JJ’ cosH{Mmux + nUY}S gy (v, ¥)dxdy

f J 8 cos(muwx + nuy)S syjeei(x, y)dxdy + f f g cos{mux + nu ) [Sopiect¥) = Sajeci(x, Y Ichxdy

A?‘:

i
j [ cosz(mux + ”U}’)Son)jcm(—‘f,)?]dxdy + J j COSE(mLLT + nu."’)[s;bjcf:a(x’.‘-") - Snb,ieut(xpyndxdy

or
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f
; 2 . s 2 N =y
by ( COS™ (#1205 = 20V IS et s RGN R B (. cos (e = ne )80, o L0 = Sopeencn vl siady

[Ppe

AT

Pl

;

; JEE

Let us assume:

fosz COSZ(’”“K'*”U.V)So‘:;jm{x,y)dxdy,

f)= J j cos*{mux + noy)[ St abjec: (6537 = Sobjeci(,¥) Jdxdy,

then
bolo+ b1 by — byl
+_ Pofo ll=b0+(1 ())l.
10".‘]} [0+1]
Therefore,

w3 [ [0

X cos?(fix + 1Y) S Gpseat, y)dxdy > 0.

Similarly, it can be shown that 8E~ < 0. Hence &E=8E*
~8E" >0, t.e., the second variation is positive for I'; (sec-
ond minimization condition). However, if T is away {rom
any discor:inuity, although the first minirnization condition
(i.e., 8£=0) is reached, the second condition is not salisfied
{i.e., 8°F is not positive, in fact, S2E=0 for such a contour).
This implies that the contours away from any discontinuity
are saddle points of functional (1) and hence are not the
solutions of our minimization problem. Intuitively, the pre-
ceding mathematical description indicates that images con-
taining structural textures can be approximated by a linear
combination of a set of continuous eigenfunctions (Fourier
basts functions) and discontinuities separating regions with
different eigenfunctions (amplitude spectra), are the mini-~
mizers of the functional {1). The minimization of the func-
tional {1) can lead to the segmentation of regions with cer-
tain amplitude spectra and hence the detection of
discontinuities.

To find the mosl optimised comou;gs,, the level set ap
proach proposed by Chan and Vese, Vese and Chan,
Chan ef al,”” and Vese iy applied, which aims to mini-
mise the following functional:

F(Aimn’Aomm ‘.‘D) = j j {g(x,y) - 2 2 Aimn COS{.”’WX
R it n

+noy) PHLolx,y)Jdxdy + f J. [2(x,7)
R
= 2 2 A gma cOS(mit + noyi P

— Hl@lx, ¥ 3dxdy, (6)
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{ 2, - e
; Ecos s v oy IS gy (5, 306y + [ ( cos (e -+ nuy ,LS‘O,CL 6 = S opeedon v Jdody
1 i H

where o is a Lipschitz function whose zero level [olx,v)
=0] represents the contour. In Eq. {6) H{-) represents the
Heaviside function and, therefore, for o{x,y}>0,
Hid{x,v)] represents the region inside the contour, and
hence, 1-H[ &(x,y)} corresponds to the region cutside of
the contour. The functional (6) is equivalent to the func-
tional (3) in the level set framework. By using the same
scheme as the one used to optimize the functional {3), the
following linear system is obtained to find the most optj-
mized coefﬁcﬁcnts A for the region inside the contour

j j cos{pux + guyigle, NH o(x,y)idxdy
R

= 2% 2 A f’ J' cos{pux + quyjcos(misx
[ ] v R
+ nuy)H olx,y)]dxdy  pg =0, )

The linear system of Eq. (7) is equivalent to Eg. (4) in the
tevel set framework. A similar linear system can be ob-
tained for coefficients A, for the region outside of the
contour. The functional (6} is also minimized with respect
to the signed distance function o(x,¥}, which then leads w0
the following Euler-Lagrange equation:10

2 bde) { E

+ [g — 2 2 Ay COS{mU rw,v)Jz], (8)

™ "

E 2 A COs(mux + nvy}]

"

where §,(©) is the derivative of Heaviside function, known
as the Dirac function. The differensial Ey. (8) coupied with
a limgar syslem such as Eq. (7} for the regions inside and
outside of contour should be solved iteratively. The contour
is iteratively evolved to converge o the desired solution,
and on convergence, the contour corresponding to the zero
level of ¢ [@{x,y)=0] then represents the optimized con-
tour. Fourier coefficients A, and A, for the regions in-
side and outside the contour, are used to reconstruct the
image. Regularization of the Direc delta and Heavside
functions used in differential Eq. (8) are performed as pro-
posed in Ref. 10. An image may contain an indefinite num-
ber of frcquency compongnts whose coefficients are A,
In practice. it is intractable to calculate indefinite coeffi-
cients in a linear system such as Eq. (7). In fact, if the
numnber of components involved in Bq. (7} increases, the
algorithm becomes numerically expensive. To avoid this
problem, in practice we search for frequency coefficients
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Fig. 1 Two synthetic textured noisy images with SNR=8.8 (a) and
with SNR=3.3 (b), segmented (¢) and (d) and reconstructed (e} and
{f) images using the method propesed in this paper.

that have significant powers and ignore the remaining co-
efficients. The amplitude spectrum of the image is used to
find the most important frequency coefficients by examin-
ing the Fourter transform for inside and ountside regions in
each iteration. An adaptive thresholding scheme is em-
ployed in this algorithm as described in the pseudo-code at
the end of this section. Differential Eq. (8) is then solved to
update @{x,y) and hence the contour. Note that, in each
iteration, & 2-D Gaussian filier is appiied 1o o(x,y) to regu-
larize partial differential Eq. (8}, which improves the ro-
bustness of the proposed algorithm for textures character-
ized with sharp edges and also in noisy eavironments. The
second variation of the functional with tespect to zero level
of @ does not need to be examined in the preceding level
set framework. This is due to two reasons: (1) the number
of regions (textures} to be segmented is known a priori and
hence the necessary number of conlours corresponding to
the number of regions employed for segmeniation is
known; and (2} the first variation of the functional with
respect to the contour variation, given in Eq. (8), therefore
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Fig. 2 Textured wall image (2) the detacted contour representing
the segmented textured objects using the method proposed in this
paper {filter bandwidth==/7} (b) the segmentation result based on
the GMRF model using the AS-EM algorithm with second-order
neighborhood  with single resclution (¢} and muiti-resolution
schemes ().

becomes zero in discontinuities and nonzero elsewhere,
since the algorithm searches for contours separating regions
different amplitude spectra. This prior knowledge enables
the algorithm to rely on the first variation for segmentation.
if two preceding assumptions are not made, then the second
variation of the functional with respect to zero level set of
@ must be examined to discard contours that do not corre-
spond to any discontinuity. In summary, the implementa-
tion starts by choosing‘o the signed distance fanction as an
initial function for ¢, and the zero level of @ {¢(x,y)=0]is
the evolving curve. In each iteration, the Fourier transforms
inside and ouvtside of the contour are calculated and fre-
quencies whose amplitudes are greater than the threshold
are selected. The linear systemn of Eq. (7) for inside and
outside of the contour is then solved to obtain the coeffi-
cients of frequency components. Finally, differential Eq. (8)
is solved to update ¢ and hence to evolve the contour. Note
that finite difference is used to solve differential Eq. (8).
The algorithm converges when there is no significance
change in the updated . In Eq. (8), we set Az (steps in
iteration} to unity. The initial value for the threshoid should
be set according to amplitudes of the most dominant fre-
quency components of the textures, For instance, if the
dominant frequency components are characterized with a
low amplitude spectrum, & low initial value for the thresh-
old must be set. This enables the algorithm to select the
necessary frequency components, However, a higher value
for the thresheld is preferable for textures with strong
domninant frequency components to avoid high numerical
costs, The proposed algorithm written in pseudo-code is
shown next.
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{c)

Fig. 3 Textured image consisting of the textures ot Brodatz aibum
(@) the detected contour separating two textures using the method
proposed in this paper (filter bandwidth=#/7) {b) the segmentation
result using the GMRF mode! based on the SA-EM aigorithm with
single resolution (¢) and muitiresolution schemes (d).

1. Initielize ©° and set an initial threshold T° for n=0

Loop:

2. Cualculate the fust Fourier transform (FET) of in-
side and outside regions of the contour and select frequen-
cies whose amplitudes are greater than 7

3. Compute A,,, and A, using the linear system {7)

4. Solve differential equation {8) for ¢ to obtain ¢!

5. Apply Gaussiar low pass filter to ™!

6. Discard the frequencies whose coefficients calcu-
lated in step 2, are not significant (i.e., they are less than
0% of the maximum coefficient)

If there are some discarded frequency componenis,
Then update T*' by increasing its value; Otherwise de-
crease it

If convergence is not reached, Then n=n+1 and
go to step 2; Otherwise end the Loop and go 10 step 7

7. Reconstruct the image using A, and A,

The threshold used in the preceding algorithm deter-
mines the number of frequency components that the algo-
rithm detects for segmentation, i.e., the algorithim considers
the frequency components whose amplitude is more than
the threshold. An adaptive thresholding scheme is therefore
considered in the proposed algorithm to iteratively change
the threshold value to ensure that the number of detected
frequency components is within a user-defined range gov-
erned by detection performance and computational costs.

3 Resulis

Two synthetic noisy images with SNR=8.8 and 3.3 are
shown in Figs. 1(a) and 1{b). The algorithm described in
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Fig. 4 Gaussian noise is added to the texture image of Fig. 3(z) to
produce the noisy image of Fig, 4(a) with SNR=1.7 {a) the detected
coniour using the proposed algorithm in this paper (filler
bandwidth=x/10) {b} the segmenied image using the GMRF-based
algorithm under single {¢) and multiresolution schemes {(d).

Sec. 2 is applied to the noisy images of Fig. 1. The seg-
mented and reconstructed images are shown in Figs.
He)-1(f).

To assess the performance of the proposed algorithm for
real-world texture images, the examples shown in Figs.
2(a}, 3(a}, and 4(a} are considered. The segmented image
achieved by applying the proposed algorithm to Fig. 2(a) is
depicted in Fig. 2(b), and for the Gaussian Markov random
field {(GMRF) model in Fig. 2{cj and 2{d). In this case, the
GMRYF model with a second-order neighborhood for tex-
tures known as the awonormal model (e.g., see Refs.
(922, 24, 25, and 27-29) is used. Simulated annealing
(SA) is implemented based om the Gibbs sampler” with
single and muitiresolution schemes (for multiresolution
schemes, e.g., see Refs. 22, 23, and 29). The parameter
estimation for the GMRF model is obtained by using the
expectation maximization (EM) proceduref] The image of
Fig. 3{a) consists of two textures selected from the Brodatz
album. Figure 3{b} shows the detected contour separating
the two textures by applying the proposed method in Sec. 2.
in Figs. 3(c) and 3(d), the segmented images are obtained
by applying GMRE model to the image of Fig. 3(a). Tt is
clear from Figs. 2 and 3 that the method proposed in this
paper demonstrates a better performance. A quantitative
comparison is provided in Table 1 at the end of this section
for this example. The image of Fig. 3(a) is further contami-
nated with Gaussian noise to produce the ncisy image of
Fig. 4(z) with SNR=1.7.

Although multiresclution GMRF shows some improve-
ment with respect to single-resoiution GMRE, as demon-
strated in Fig. 4(d), a beiter performance is observed by the
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Tanie 5 A quantialive compadison in the segmantelion ervor of e
irmage o Fig. 3{a) for differerd aigorithms considerad in this paper.

Proposed GMRF-BA-EM GMRF-8A-EM
Algarithms Vietned Single Resotution  Multresoluion
Error par pixel (%) 2.92 518 .47

algorithm proposed in this paper. The delecled contour
achieved by applying the proposed level set method is
shown in Fig. 4(b), whereas the GMRF-based model using
the single-resolution scheme fails to segment the image in
this noisy environment as depicted in Fig. 4(c). In structural
textures such as those shown in Figs. 2 and 3, which are
characterized with sharp edges, the number of frequency
components composing the texture is numerically intrac-
table for the texture reconstruction, however, segmentation
is performed based on the frequency components with sig-
nificant amplitudes. For instance, 11 frequency componenis
are used by the algorithm for the segmentation of the tmage
shown in Fig. 3. The algorithm proposed in this paper is
also numerically more efficient than the GMRF-based seg-
mentation algorithm, On a PC workstation with a2 2.5 GHz
CPU clock, tor the segmentation of the image shown in
Fig. 3, it takes 312 CPU seconds (22 iterations) for the
level-set-based algorithm to converge, while the conver-
gence of the SA-GMRF model requires 3000 iterations
{each iteration around 45 s). It is well known that simutated
annealing i3 a very expensive algorithm with iogarithraic
scheduling.™ Note also that the GMRF-based aigorithm
can account for properties considered in a small neighbor-
hood of each site due to Markovian properties. Therefore,
ihe observed properties in neighborhoods with larger scales
such as the images shown in Figs. 2 and 3 cannot be de-
iected in such a framework. However, this problem is aot
present in the proposed algorithm. It is aiso straightforward
to generalize the level-set-method-based algorithm dis-
cussed in this paper for images with more than two textures
{regions) using & multiphase level set framework proposed
in Ref. 12 The segmentation resulls using GMRF-based
algorithms and the proposed algorithm for the image of Fig.
3 are shown in a binary format in Fig. 5. For a quantitative
comparisen, the absolute differences between the segmen-
tation target shown in Fig. 5(a) and the segmenied images
using different algorithms are calculated. This absolute dif-
ference representing an error term in segmentation is then
normalised by the number of pixels in the original image to

@ e (d

Fig. 5 Segmentation target for the image of Fig. 3 (a) the seg-
menied image using the proposed aigorithm in this paper in a binary
format (b) the segmented images based on the GMRF model using
the SA-EM algorithm under (¢} single and (d) rmultiresolution
schemes.
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cemonstrate die error per pixel. Tagle 1 saows the error per
pixei in pereent for (he algoriuns appiled to the image of

g, .1)[_(:{"!.

& Conclusion

Afunctional based on implicit smocthing was considered in
this paper for segmentation of stucrural textures, snd egua-
tions minimizing this functional were aiso derived. It was
demonstraied that the contours representing discontinuities
in amplitude spectrum between two different putlerns (re-
gions) are the minimizers of the functicnal, The coefficients
of the frequency components composing the texture can
therefore be determined by rainimizing the functional with
respect to the coefficients. A reconstructed image can fi-
nally be generated using these coefficients. The level set
method was used for implementation purposes. A compari-
son with a GMRI-based algorithin demonstrates 2 better
performance for the algorithm proposed in this paper. The
proposed level-set-based algorithm is also robust in the
presence of noise, The generalization of the proposed func-
tional in a statistical framework for segmentation of statis-
tical textures is an interesting subject for future research.
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