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Abstract: An optimisation method based on a nonlinear functional is considered for segmentation and
smoothing of vector-valued images. An edge-based approach is proposed to initially segment the
image using geometrical properties such as metric tensor of the linearly smoothed image. The non-
linear functional is then minimised for each segmented region to yield the smoothed image. The func-
tional is characterised with a unique solution in contrast with the Mumford–Shah functional for
vector-valued images. An operator for edge detection is introduced as a result of this unique solution.
This operator is analytically calculated and its detection performance and localisation are then com-
pared with those of theDroG operator. The implementations are applied on colour images as examples
of vector-valued images, and the results demonstrate robust performance in noisy environments.
1 Introduction

Vector-valued images such as colour, multi-spectral and
multi-modal images can provide more valuable information
than scalar images in applications ranging from satellite
remote sensing to medical imaging. Vector-valued images
can also be generated by extracting feature vectors from a
single image as a part of image segmentation. In this
paper, a variational method is considered for segmentation
and smoothing of vector-valued images. Variational
methods in image processing and computer vision are
well established. The restoration known as ‘inverse’
problem was initially considered by Tikhonov and
Arsenin [1] as an energy optimisation problem based on
L2 norm. The advantage of Tikhonov and Arsenin’s
method was that it was linear and easy to implement.
Owing to its linearity, the smoothing was performed
across discontinuities as well as every where else. Such a
method therefore leads to blurred edges in restoration.
This method was further modified by Rudin et al. [2] to
introduce the notion of total variation based on L1 norm
in order to preserve edges when removing the noise. The
minimisation of the functional proposed in the total vari-
ation method leads to a nonlinear differential equation
whose solution was demonstrated in [2] to preserve discon-
tinuities when it approaches to a low-pass image in regions
where there are no discontinuities, hence removing the
noise. This method was further generalised for vector-
valued images in [3] and applied to RGB images as an
example. The generalisation of the total variation method
for noise removal in textures is still a challenge. In
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another development, Kass et al. [4] initially introduced a
contour evolution method known as the ‘snake’ algorithm
for image segmentation based on the optimisation of a
linear functional in which three terms were minimised.
The first and second terms were proportional to the first
and second derivatives of an affinely parametrised
contour. The third term was associated with the gradient
of a given input image. One of the major drawbacks of
the method proposed in [4] was that its implementation
was not able automatically to adjust the topology of the
evolving contour according to the topology of the objects
in a given image. Another disadvantage of the method pro-
posed in [4] was that it fell into local minima. Active
balloons were then proposed in [5] to avoid local minima.
The level set method proposed by the pioneering work of
Sethian et al. (e.g. see [6–8]) introduced a mathematical
solution to the problem of adjusting the evolving contour
automatically according to objects’ topologies by adding
one dimension to the contour representation. Caselles
et al. (e.g. see [6, 9–13]) employed the level set method
to propose a variational contour evolution scheme for the
image segmentation known as ‘geodesic active contour’
model for single- and vector-valued images. The proposed
functional in geodesic active contour seeks the contours
(solutions) whose length is minimised in a feature space
produced by the gradient of a given input image. In such
a feature space, considered as a Riemannian manifold, the
contours with minimised length are the geodesics of the
manifold. On the other hand, Mumford and Shah [14] pro-
posed a nonlinear variational model for image segmentation
and smoothing based on first variation calculations. Three
terms are considered in the Mumford–Shah framework:
(1) smoothing term causing the solution image to be as
smooth as possible, (2) fidelity term causing the smoothed
image to be as close as possible to the original image and
(3) contour length minimisation term smoothing the con-
tours which represent discontinuities and removing any
unwanted contours. In this framework, the derivative
operations are not performed across discontinuities result-
ing in nonlinearity. The implementation of this functional
is difficult because of (i) the nonlinearity of this variational
IET Image Process., 2007, 1, (2), pp. 112–122



framework, (ii) the fact that one of the solutions (smoothed
image) of the functional is associated with the Banach space
[15], whereas the other one (contour) is not associated with
any known space and (iii) the fact that the solutions are rep-
resented with different dimensions, that is, the smoothed
image is a two-dimensional manifold, whereas the contour
is a one-dimensional manifold; both are in a three-
dimensional Euclidean manifold. Different methods were
therefore proposed to approximate and implement the
Mumford–Shah functional (e.g. see [6, 9, 16–25]). These
methods can be grouped into three major categories:

(a) Grayson–Gage–Hamilton-based approaches in which a
contour is evolved under Mumford–Shah gradient flow
[14]. The main advantage of this method is that if the evol-
ving contour is far from any discontinuity, it evolves under
its own curvature. Hence the algorithm does not fall into
local minima. It is demonstrated (e.g. see [7]) that a curve
moving under its own curvature shrinks to a point and
also that it has smoothing effects on the contour in a neigh-
bourhood of discontinuities. These important features are
employed in this approach to implement the functional
(e.g. [16]). One of the disadvantages of this approach is
that small time steps are required to avoid any numerical
instability [8]; hence the algorithm is slow to reach the
convergence.
(b) Chan–Vese approach [17, 19–22] in which the mini-
misation is performed with respect to the signed distance
function as well as to the variables in Mumford–Shah func-
tional. One of the advantages of this approach is that it is
numerically more stable and hence faster than algorithms
in the first category. The main disadvantage is that it falls
into local minima when the evolving contour is far from
any discontinuity in the case of the piecewise continuous
approximation of the functional.
(c) Ambrosio–Tortorelli-based approaches [23–25] in
which a better behaved functional approaching the
Mumford–Shah functional is proposed by using the
G-convergence. The implementation methods in this
approach do not employ any contour evolution scheme.

Mahmoodi et al. proposed a generic approach for signal
and image segmentation and smoothing applicable to
signals with any dimension, based on the second variation
with respect to points and contours that represent discontinu-
ities [26–29]. It was demonstrated that points or contours that
represent discontinuities were minimisers of the functional
proposed in [26–29]. A variational-based solution to the
functional for piecewise continuous low-pass signals was
proposed in [27]. An operator-based geometrical approach
being faster and more robust in the presence of excessive
noise was proposed in [28] to implement the functional
introduced in [27]. This operator-based approach was
generalised for grey-scale images based on the geometrical
properties of surfaces (smoothed images) [26]. Implicit
smoothing was employed to modify the functional introduced
in [27] to segment and reconstruct piecewise continuous
band-pass signals [29]. Differences between this proposed
functional and the Mumford–Shah functional are as follows:

1. There is no unique solution for Mumford–Shah func-
tional (e.g. see [19]), whereas the functional investigated
in this study is characterised with a unique solution.
Intuitively, the solutions for grey-scale and vector-valued
images correspond to the edges (discontinuities) in an
image. This is not the case in the Mumford–Shah functional
because contours do not normally correspond to the edges
(discontinuities) because of the smoothing property of the
IET Image Process., Vol. 1, No. 2, June 2007
contour length minimisation term. Two numerical examples
are presented in Section 4 to show this difference between
the two functionals. The uniqueness of the solution means
that the functional can be implemented using an operator
as demonstrated in [26] for grey-scale images and is gener-
alised in this paper for vector-valued images. However, it is
possible to implement this functional using contour evol-
ution schemes. In fact, this generic functional models the
edge (discontinuity) detection process, hence the result of
any edge detection algorithm can be considered as a sol-
ution of this functional.
2. The implementation of the functional considered in this
paper is characterised with less mathematical and numerical
complexity than that of the Mumford–Shah functional,
mainly because the contour length minimisation is not
performed in the investigated functional. The contour
length minimisation term in the Mumford–Shah functional
introduces

(i) mathematical complexity so that the generalisation to
3D is a well-known challenge,
(ii) numerical complexity and instability so that in a
contour evolution scheme, one needs to employ a semi-
implicit finite difference method to increase numerical
stability [19] at the cost of increased numerical complex-
ity. However, a perfect numerical stability is not yet
achieved.

3. Unlike the investigated functional which is generic and
can simply be modified for 1D signals as demonstrated in
[27–29], the Mumford–Shah functional fails to model 1D
signal segmentation and smoothing as the notion of con-
tours is meaningless in a signal processing context [27, 29].

The importance of the investigated functional can be
summarised as follows.

1. In contrast to Mumford–Shah functional, the investigated
functional here unifies the processing of signals with any
dimension, that is, a unique framework used in 1D signals
can be applied to 2D, vector-valued and 3D volumetric
images.
2. As inherited from Mumford–Shah functional, the seg-
mentation and restoration are integrated by the investigated
functional in this paper.
3. An operator-based method can be deduced from this vari-
ational framework.

One of the novelties of this paper is that the geometrical
approach proposed in [28] for signals and in [26] for grey-
scale images is generalised for vector-valued images. The
generalisation of the variational framework presented in
[26–29] for the vector-valued images demonstrates that
this variational framework is generic and applicable to
signals with any dimension. The uniqueness of the solution
associated with the investigated functional enables us to
propose an operator to find the solutions (edges) corre-
sponding to discontinuities. It is important to understand
the underlying operator employed for discontinuity detec-
tion for signals in [28], for grey-scale images in [26] and
for vector-valued images in this paper. The derivation of
this operator helps us to

1. compare the performance indices of this operator with
those of other known operators,
2. understand how to improve the algorithms employing this
operator and
3. understand how to derive new operators for the segmenta-
tion of more complicated images such as textures.
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A mathematical analysis is therefore presented here to
calculate the operator associated with this functional and
its detection performance and localisation indices in com-
parison with a well-known operator such as DroG, which
is the other original contribution of this work compared
with previous ones.

The geometrical properties such as the discriminant of
the metric tensor of the linearly smoothed images compos-
ing a hyper-surface are employed to detect discontinuities.
Having segmented the image, the functional considered in
this paper is then minimised to smooth the image. In this
variational framework, the solution to the nonlinear optim-
isation problem is a set of smoothed functions (images)
associated with an appropriate Banach space [15] and con-
tours representing discontinuities.

Improvements over Mumfurd–Shah-based functional are
as follows:

(i) In contrast to the Mumford–Shah framework, the inves-
tigated functional is able to detect non-closed contours
(edges).
(ii) In contrast to Chan–Vese approach, the proposed
algorithm here does not fall into local minima in piecewise
continuous approximation.
(iii) In contrast to Grayson–Gage–Hamilton-based
approaches, the operator-based algorithm proposed here
does not suffer from any numerical instability.
(iv) In contrast to Ambrosio–Tortorelli-based approaches,
the algorithm proposed here enjoys a robust performance
in the presence of excessive noise.

In comparison to DroG algorithm, it is demonstrated here
that the localisation of the detected edges is improved, with
a unique value of the detection performance index for
both algorithms. The improvements associated with the
geometrical approach over the various segmentation
methods mentioned above are indications of the necessity
of generalising the work presented in [26]. In comparison
to the geometrical method presented in [26] for grey-scale
images, two improvements are observed in this paper.
First, the algorithm is generalised to the vector-valued
images and secondly the underlying operator is derived,
and the associated analysis is also presented. In Section 2,
the theory is briefly discussed. The implementation
method is proposed in Section 3. Numerical results are pre-
sented in Section 4, and finally the paper concludes in
Section 5. The associated operator with the functional
investigated here is analytically derived and compared
with the DroG operator in the Appendix.

2 Theory

Let us initially consider the scalar-valued image I(x, y) as a
piecewise continuous function in which discontinuities are
represented as contours. The variational problem, con-
sidered for signals [27–29] and images [26], is to find piece-
wise continuous function f (x, y) whose first and second
derivatives are continuous (class C2) over regions Ri sur-
rounded by a set of contours Gi representing discontinuities.
This is achieved by minimising

E( f ,G ) ¼
1

2

X
i

ð ð
Ri�Gi

[( f (x, y)� I(x, y))2
þm(rf )2] dxdy

(1)

In the above functional, the whole image is divided into
regions Ri containing objects described by class C2
114
functions. Objects are surrounded by contours Gi represent-
ing discontinuity separating them from their background.

This notion is generalised for vector-valued images
I(x, y) with N number of channels corresponding to a
location (x, y). For instance, in the case of colour images,
N ¼ 3 and the channels of the vector image I(x, y) corre-
sponds to RGB values. For vector-valued images, functional
(1) is written as

E( f , G ) ¼
1

2

XN
j¼1

X
i

ð ð
Rij�Gij

[( fj(x, y) � Ij(x, y))2

þ mj(rfj)
2] dx dy (2)

where Rij is a region in R2 in which fj(x, y) representing an
object in channel j is a continuous function. Similar to
functional (1) associated with the grey-scale images, an
object in the jth channel is surrounded by discontinuity rep-
resented by Gij. For the jth channel in region Rij, the mini-
misation of functional (2) with respect to fj(x, y), and
assuming that contour Gij is fixed, leads to the following
partial differential equations [26, 27]

mjr
2fj ¼ fj � Ij in Rij � Gij (3)

with the boundary condition

@fj
@n

¼ 0 on Gij (4)

where mj is the smoothing coefficient for channel j.
If Gij is varied in a neighbourhood M of a point P on dis-

continuity as shown in Fig. 1, minimisation of functional (2)
is achieved by vanishing the first variation of the functional
leading to the following approximation representing the
contour equation (see, e.g. [26] for the derivation)

( f þj (x, y) � Ij(x, y))2
þ mj(rf

þ
j )2

� ( f �j (x, y) � Ij(x, y))2
� mj(rf

�
j )2

¼ 0 (5)

where f þj and f �j are the variations of fj(x, y) by varying Gij

in two different directions to G þ
ij and G �

ij in a neighbour-
hood of an arbitrary point. It can be demonstrated that a
contour representing discontinuity and therefore satisfying
(5) is a minimiser of functional (2) for piecewise continuous
low-pass images. It is therefore important to study the
second variation of functional (2) with respect to Gij the
ith contour in channel j. The second variation of functional

Fig. 1 Variations of contour Gij in a small neighbourhood M (the
dashed circle) of a point

a Contour Gij representing discontinuity (edge) separating two regions
Rij and R(iþ1)j

b Gij varied to Gþ
ij separating two regions Rþ

ij and Rþ
(iþ1)j

c Gij varied to G�
ij separating two regions R�

ij and R�
(iþ1)j
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(2) with respect to contour Gij can be calculated as

d2E ¼
1

2

ð ð
M

[( f þj � Ij)
2
þ mj(rf

þ
j )2] dx dy

þ
1

2

ð ð
M

[( f �j � Ij)
2
þ mj(rf

�
j )2] dx dy

�

ð ð
M

[( fj � Ij)
2
þ mj(rfj)

2] dx dy (6)

where M is the neighbourhood covering the variations of Gij

and consequently those of fj(x, y). Using approximation
methods, it can be demonstrated that the second variation
in (6) is positive for contours representing discontinuities.

If, however, a contour is in a neighbourhood away from
any discontinuities where Ij(x, y) is at least of class C2,
we can then write

f þj (x, y) ¼ f �j (x, y) ¼ fj(x, y)

rf þj ¼ rf �j ¼ rfj

This implies that the second variation for channel j also
vanishes. Therefore such contours are saddle points of func-
tional (2). It is hence concluded that contours representing
discontinuities are minimisers of functional (2). It should
be noted that if such a contour exists only in one of the chan-
nels, it would be a minimiser of functional (2) taking care of
all channels, although it would be a saddle point in the
energy terms associated with other channels.

3 Implementation method

In this section, the geometrical algorithm proposed in [26] is
generalised to segment and smooth vector-valued images.
Initially, all channels of the original image I(x, y) are line-
arly smoothed by minimising the linear functional

E( f ) ¼
1

2

XN
j¼1

X
i

ð ð
R

[( fj(x, y) � Ij(x, y))2

þ mj(rfj)
2] dx dy (7)

By employing Euler–Lagrange equations [30], N partial
differential equations are obtained

mjr
2
fj ¼ fj � Ij, j ¼ 1, 2, . . . , N (8)

A hyper-surface is defined in an Nþ 2-dimensional
Euclidean manifold [32] as

S(x1, x2) ¼ x
1
e1 þ x

2
e2 þ

XNþ2

j¼3

fj�2(x1, x2)ej

where (x1, x2) are coordinates corresponding to (x, y) [ R2,
e1, e2, . . . , eNþ2 are unit vectors in a Euclidean manifold of
2 þ N dimensions and f1, f2, . . . , fN are the solutions of (8).

The metric tensors of this hyper-surface are calculated by
generalising the definition of metric tensors for surfaces [31,
32]. As an example, let us consider a colour image in RGB
format. The hyper-surface S defined above can therefore be
rewritten as

S(x, y) ¼ xi þ yj þ R(x, y)r þ G(x, y)g þ B(x, y)b (9)

where i, j, r, g and b are unit vectors in a five-dimensional
Euclidean manifold and R(x, y), G(x, y) and B(x, y) are
the smoothed functions for the three channels R, G and B
achieved by numerically solving (8) for all three channels.
IET Image Process., Vol. 1, No. 2, June 2007
According to the definition of metric tensors [31, 32]

g11 ¼
@S

@x
�
@S

@x

g12 ¼ g21 ¼
@S

@x
�
@S

@y

g22 ¼
@S

@y
�
@S

@y

where

@S

@x
¼ i þ

@R

@x
r þ

@G

@x
g þ

@B

@x
b

and

@S

@y
¼ j þ

@R

@y
r þ

@G

@y
g þ

@B

@y
b

After some mathematical calculations and noting that the
unit vectors i, j, r, g and b are orthogonal to one another, we
can write

g11 ¼ 1 þ
@R

@x

� �2

þ
@G

@x

� �2

þ
@B

@x

� �2

g12 ¼
@R

@x

� �
@R

@y

� �
þ

@G

@x

� �
@G

@y

� �

þ
@B

@x

� �
@B

@y

� �

g22 ¼ 1 þ
@R

@y

� �2

þ
@G

@y

� �2

þ
@B

@y

� �2

The discriminant of the metric tensor can therefore be
calculated as

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11g22 � g2

12

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 þ R

2
x þ G

2
x þ B

2
x)(1 þ R

2
y þ G

2
y þ B

2
y)

�(RxRy þ GxGy þ BxBy)
2

vuut

or

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ R2

x þ G2
x þ B2

x þ R2
y þ G2

y

þB2
y þ (RxGy � GxRy)

2
þ (RxBy � BxRy)

2

þ(GxBy � BxGy)
2

vuuuuut (10)

where fx ¼ @f/@x and fy ¼ @f/@y in which f ¼ R, G or B.
It should be noted that in (10), a discontinuity at a point in

an image in either of the channels corresponds to a
maximum in g which represents an edge candidate. It is
also interesting to note that this is a similar notion to that
defined by RMS method proposed in [33], although Sobel
and Prewitt operators which are more sensitive in a noisy
environment are considered in [33]. In the segmentation
step, a zero-crossing in the curvature of the smoothed hyper-
surface narrows down the number points for edge point
selection among all candidate points in order to choose
those points representing discontinuities. The curvature cal-
culation requires computing a normal vector on each point
in the hyper-surface. A vector (outer) multiplication
should be used to calculate a normal vector at each point
[31]. However, vector multiplication is not mathematically
defined in Euclidean spaces with more than three dimen-
sions and hence it is not possible to calculate the curvature
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of a hyper-surface defined in (9). The numerical exper-
iments in Section 4 will however show that the
zero-crossing of the following term occurs in edges in
RGB hyper-surfaces.

< ¼ (Rxy þ Gxy þ Bxy)
2

� (Rxx þ Gxx þ Bxx)(Ryy þ Gyy þ Byy) (11)

where fxy ¼ @2f/@x@y, fxx ¼ @2f/@x2 and fyy ¼ @2f/@y2 in
which f ¼ R, G or B.

We therefore search for zero-crossing of R in (11) to
select a pixel as an edge candidate.

It is easy to verify that for a single-channel image, the
zero-crossing of (11) is reduced to the zero-crossing of
the Riemannian curvature [26, 31].

Having calculated the metric tensor and R using (10) and
(11), the segmentation of vector-valued images is achieved
by finding points characterised with maxima in the discrimi-
nant of metric tensor computed in (10) and a zero-crossing
of R defined in (11). The points of the hyper-surface corre-
sponding to points with zero-crossing of R associated with
the hyper-surface are considered as candidates for edge. The
discriminant of the metric tensor calculated in (10) is also
examined. If at any point where g is maximised, the value
of g is greater than a threshold set by the user to narrow
down the candidate points, and the candidate point is
characterised with zero-crossing in R, then it is selected
as an edge point. This method is applicable to vector-valued
images with more than three channels. It can also be applied
to the feature vectors extracted from a texture image by
employing a series of filters. This therefore leads to a
texture segmentation algorithm.

Having segmented the image, the smoothing process is
performed by applying the partial differential equation (3)
with the boundary condition (4) on each channel. It
should be noted that (3) across edges is not preformed to
preserve discontinuities in the smoothed image; instead
boundary condition (4) is performed for the optimised
solution on edges. In terms of implementation, to find
the smoothed image in channel j, the discrete version of
(3) is employed to calculate the value of smoothed
image at the point (p, q). If the point (p, q) is not selected
as an edge point, the smoothed image in channel j is
calculated as

fj(p,q)¼

�
m( fj(p�1,q)M(p�1,q)þ fj(pþ1,q)M(pþ1,q)

þfj(p,q�1)M(p,q�1)þ fj(p,qþ1)M(p,qþ1))þ Ij(p,q)

�

(M(p�1,q)þM(pþ1,q)þM(p,q�1)þM(p,qþ1)þ1)

(12)

where M is a binary mask (matrix) whose elements are zero
if a pixel is an edge point, otherwise the elements of M are 1.
If however the point (p, q) is on an edge, the correspond-
ing value for the smoothed image at this point is calculated
using the boundary condition (4). Equation (4) is a direc-
tional derivative along the direction normal to the edge at
point (p, q). Therefore it is important to estimate the
slope of the tangent to an edge point to be able then to find
an estimate for the normal direction. This tangent slope
can be estimated in different ways: Either it can be estimated
by calculating the partial derivatives of the linearly
smoothed image obtained in the segmentation step at the
point in question; or in a 3 � 3 neighbourhood of an edge
point, it can be approximately calculated as the slope of
116
the best-fitted line to the detected pixels (in segmentation
step) in the neighbourhood. We realise that the latter
method to estimate the tangent direction is more robust in
the presence of noise. Having calculated the slope of the
normal direction to the edge, out of four available directions
in this 3 � 3 neighbourhood, we choose the one which is the
closest to the calculated slope. It is then straightforward to
find the pixel value of the smoothed image using (4) and
the normal direction obtained in the above procedure. For
example, if the direction of the contour passing through
pixel (p, q) is vertical (parallel to y-axis or the axis
representing row p), then the normal direction to the edge
is horizontal. Therefore (4) is reduced to @f/@x ¼ 0 at that
particular edge point. In discrete domains, this equation
can hence be written as either f(p, q) 2 f(p, q2 1) ¼ 0 or
f(p, q) 2 f (p, qþ 1) ¼ 0 (q corresponds to x-axis). This is
to say that either f (p, q2 1) or f (p, qþ 1) should be
chosen to update f(p, q), depending whichever is closer to
the pixel value of the original image at (p, q).

It should be noted that the described method to calculate
the smoothed image is iterative, so that in each iteration,
new pixel values for the smoothed image are calculated
until the difference between two smoothed images in two
consecutive iterations are less than an error term. It is also
noted that in our implementation, we assume m ¼ mj for
j ¼ 1, 2, . . . , N; however, if different channels are contami-
nated with different noise levels, different values for mj can
be set. The proposed algorithm for multi-channel images is
presented in Fig. 2.

4 Results

Numerical results of the proposed algorithm are presented
in this section; however, it is important to first consider a
comparison between the Mumford–Shah functional and
functionals (1) and (2). As pointed out in Section 1, a
unique solution is not associated with Mumford–Shah

Fig. 2 Flowchart of the geometrical algorithm
IET Image Process., Vol. 1, No. 2, June 2007



functional, whereas functionals (1) and (2) are characterised
with a unique minimiser. This point is demonstrated in
Fig. 3. A contour evolution scheme, based on piecewise
constant implementation of Mumford–Shah functional
[17], is applied to the star image of Fig. 3a with different
initial conditions (contours). The initial contours are
shown in the figure as circles whose centres are in different
locations with respect to the original image. The coefficient
of contour minimisation term is set to 100. As shown in
the figure, the algorithm implementing Mumford–Shah
functional [17] converges to a solution depending on the
original location of the initial contour (Fig. 3c–h). As the
coefficient of the contour minimisation terms approaches
zero, all these different solutions converge to a unique sol-
ution as expected. On the other hand, the solution of func-
tional (1) is also implemented using the contour evolution
framework proposed in [17] with different initial conditions.
The algorithm always converges to a unique solution
depending on the original image and regardless of the
initial contour (Fig. 3b). In vector-valued images, it is
more obvious that the Mumford–Shah functional is attribu-
ted to non-unique solutions. A numerical comparison is also
demonstrated in Fig. 3. The contour evolution method for
vector-valued images proposed in [20] is applied to the
image of Fig. 3i with different initial conditions and with
the coefficient of contour length minimisation term as low

Fig. 3 Numerical comparison between the functional proposed
here and the Mumford–Shah functional

a An image of a grey-scale star
b Final solution of the functional investigated here
c e and g Original image with various initial contours in the implemen-
tation of Mumford–Shah functional
d f and h Final solutions for Mumford–Shah functional with corre-
sponding initial contours when the coefficient of contour length mini-
misation term is 100
i An image of coloured star
j Segmented image using the investigated functional
k and m Various initial conditions used in Mumford–Shah functional
(the coefficient of length minimisation term is set to 10)
l and n Final solutions of Mumford–Shah functional with correspond-
ing initial conditions
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as 10 as shown in Fig. 3k–n. The contour evolution algor-
ithm proposed in [20] converges to different solutions
depending on the initial condition. Functional (2) is
implemented using the contour evolution framework dis-
cussed in [20] and applied to the image of Fig. 3i. As
shown in Fig. 3j, functional (2) is always minimised to a
unique solution regardless of the initial conditions. This
uniqueness of solution of functionals (1) and (2) is essential
to formulate an edge (discontinuity) detection operator, and
in fact any edge detection algorithm can be regarded as an
implementation of functionals (1) and (2) as the aim of
any edge detection algorithm is to detect discontinuities.
As there is no unique solution to the Mumford–Shah func-
tional, it is not therefore possible to implement it using an
operator such as the one proposed in this paper.

In the Appendix, the impulse response of the 1D
geometrical operator is analytically calculated and it is
shown in Fig. 4 along with the impulse response of the
DroG operator with the same detection performance (S)
for comparison. As can be seen from Fig. 4, there is a
sharp transition in the geometrical operator at the centre.
This sharp transition produces a delta Dirac function in
the localisation term in (22d), and is therefore responsible
for a better localisation than that of DroG operator.

Fig. 4 Geometrical operator (solid line) calculated in the
Appendix with m ¼ 31.83 (21a) is compared with a DroG operator
(21b) with s ¼ 5 resulting in the same detection performance
(S ¼ 5.64 for both operators, see (23))

Fig. 5 Numerical comparison between the geometrical algor-
ithm and the Ambrosio–Torterolli method

a Noisy image with SNR ¼ 3
b and c Segmented and smoothed images using the geometrical algor-
ithm with m ¼ 10
d Segmented image using the geometrical algorithm with m ¼ 0.01
e and f Segmented and smoothed images of noisy image of a using
Ambrosio–Torterolli functional with the most empirically optimised
parameters
g and h Segmented and smoothed images using the G3 approach with
the most empirically optimised parameters
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Fig. 6 Numerical comparison between the proposed algorithm and DroG edge detection algorithm

a Scanned image
b Segmented image using DroG
c Segmented image using geometrical operator
d Noisy image with SNR ¼ 0.04
e Segmented image obtained from DroG operator
f Segmental image obtained from the geometrical operator
g Real image of the moon
h Segmented image using DroG
i Segmented image using the geometrical operator
s ¼ 50 and m ¼ 3183 are chosen for DroG and the geometrical operator, respectively, to result in the equal detection performances in the two
operators
The algorithm proposed in Section 3 is applied to the noisy
image with SNR ¼ 3 in Fig. 5a. The segmented and smoothed
images with m ¼ 10 are shown in Figs. 5b and c. In the seg-
mentation step, if m is set to a very small value (e.g.
m ¼ 0.01), then as shown in the figure, some of noise is also
segmented. This is because smoothing is not performed prop-
erly with a low value for m. High values of m result in
smoothed images with less fluctuation, therefore leading to
improved segmentation. It is noted that the geometrical algor-
ithm with m � 1 results in good smoothing and segmentation
effects. In fact,m values less than 1 lead to operators as wide as
almost one pixel. Such operators are sensitive to edges as well
as noise resulting in segmented noise being included in edge-
detected image. An operator with m ¼ 1 is as wide as three
pixels which is where the smoothing effect begins. The
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detection performance index or SNR of the operator improves
by increasing m (see 22c), although the algorithm conver-
gence becomes slower.

For comparison, the minimisation of Ambrosio–Torterolli
functional that is an asymptotic approximation of the
Mumford–Shah functional, using G-convergence for vector-
valued images [23–25], is applied to the noisy image of
Fig. 5a. The Ambrosio–Torterolli functional is better
behaved than that of Mumford–Shah, but its optimised sol-
ution does not lead to an algorithm with a good performance
in segmentation and smoothing in the presence of noise. The
segmented and restored images are depicted in Fig. 5e and f
with empirically optimised parameters. The G3 approach pro-
posed by Brook et al. [23] is also applied to the same noisy
image of Fig. 5a. The results, based on empirically optimised
IET Image Process., Vol. 1, No. 2, June 2007



Fig. 7 Application of geometrical algorithm to colour images for segmentation

Left column: Various colour images
Middle column: Their segmented images using the geometrical algorithm with m ¼ 31
Right column: Segmented images using DroG operator with s ¼ 5

Fig. 8 Smoothing property of the geometrical algorithm

a Image of Mona Lisa with some degradation due to its age
b Smoothed image using geometrical approach with m ¼ 10
c Smoothed image using the Wiener filter
d Noisy Lena image with SNR ¼ 20
e Smoothed image using the geometrical approach with m ¼ 10
f Smoothed image using the Wiener filter
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parameters, are shown in Fig. 5g and h. As can be seen from
Fig. 5e–h, the methods proposed in [23–25] are very sensitive
to noise, that is, they segment the objects as well as some
noise. A comparison with Fig. 5b and c also demonstrates
that, in the presence of noise, our restoration method is
more robust than that of the methods proposed in [23–25].

The mathematical analysis presented in the Appendix
demonstrates that with the equal detection performance
for both operators as a criterion, the localisation of the geo-
metrical operator is more accurate than that of the DroG. To
demonstrate this numerically, two synthetic images and one
real image are used as shown in Fig. 6. Fig. 6a is obtained
by scanning a printed synthetic image (a grey circle in the
middle of a dark background) using a scanner with
200 � 200 dpi to simulate an image with real edges. This
image is further contaminated with noise as shown in
figure 6d with SNR ¼ 0.04. The DroG and the geometrical
operator with the same detection performance according to
(23), (i.e. s ¼ 50 with 3s � 3s window size and m ¼ 3183)
are applied on the images of Figs. 6a, 6d and 6g. The results
are shown in the middle and the right columns of fig. 6 as
segmented images superimposed on the original images. It
can be verified that the considered parameters in both algor-
ithms result in the same detection performance evaluated
from equations (22a) and (22c). Since the localisation of
the geometrical operator is better than DroG with equal
Ss (see equations (22a) to (22d)), the edges detected
using the geometrical operator is expected to be closer to
the real edges of the original images than those detected
by DroG. This better performance in localisation is observed
by comparing the segmentation results obtained by the both
algorithms in the middle and right columns of Fig. 6.

The geometrical algorithm is also applied to various
coloured images for segmentation as shown in Fig. 7. In
this figure, we choose m ¼ 31 for all channels. DroG with
s ¼ 5, resulting in the same detection performance index
as that of the geometrical algorithm, is also applied to the
colour images of Fig. 7, as depicted in the right column of
Fig. 7. It is interesting to note that although some parts of
images with finer details are segmented by the geometrical
approach, DroG algorithm either fails to detect or distorts
the edges associated with some of these fine details. This
is particularly observed in the hat furs of Lena (the first
row), the rocks in Golden Gate (the second row), the
Duck feathers (the third row) and bushes in the house
image (the fourth row). These effects in DroG approach
worsened by increasing the standard deviation of the
Gaussian operator s, are attributed to two factors: (i) the
shifting away phenomenon of edges in DroG discussed in
Fig. 6, and (ii) the average distance between the
zero-crossings of the convolved image, which is initially
contaminated with random noise, is proportional to s, the
standard deviation of DroG, as demonstrated in [34–36].
Some of the finer details in the above images are therefore
removed in the same way as is the random noise.

The smoothing property of the proposed algorithm in this
paper is employed to reconstruct the Mona Lisa image
(Fig. 8b) without compromising the edges of the original
image (i.e. prior to degradation through time as evident in
Fig. 8a). This smoothing property of the geometrical algor-
ithm is absent in a standard edge detection algorithm such as
DroG. For comparison, the Wiener filter is also applied to
the Mona Lisa image to remove the effects of degradation
as shown in Fig. 8c. It is obvious from Fig. 8b and c that
the smoothing method proposed here preserves the disconti-
nuities; whereas the Wiener filter smoothes both degra-
dations and discontinuities to result in the image of
Fig. 8c with blurred edges. The image of Lena is also
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contaminated with zero mean Gaussian noise to result in
the noisy image of Fig. 8d with SNR ¼ 20. The geometrical
algorithm with m ¼ 10 and the Wiener filter are applied to
the image of Fig. 8d, the results being depicted in Fig. 8e
and f, respectively. It is again observed that the geometrical
approach proposed here smoothes the image while preser-
ving the edges, whereas the smoothed image obtained by
applying the Wiener filter has blurred edges. It is noted
that smoothing of the geometrical algorithm deteriorates
as SNRs becomes low. This is because of the fact that
with higher levels of noise, higher values for m are required.
As the value of m increases, the smoothed image approaches
the piecewise constant approximation suppressing both
noise and low-frequency contents of the image. If lower
values for m is chosen to keep the low-frequency contents
of the image, then some noise is also allowed to remain
on the smoothed image. As a matter for future study, the
smoothing process for low SNR images therefore requires
three fundamental improvements. First, smoothing should
be performed locally rather than globally on regions
where there is no discontinuity. Secondly, in a local neigh-
bourhood, the best-fit surface (for images) and function (for
signals) should be calculated for the available pixels in that
neighbourhood. Thirdly, nurbs and splines can then be used
for more smoothing effects.

The proposed method in this paper is, however, more
expensive than DroG edge detector. For example, for an
image with the resolution 100 � 100, the CPU time of a
PC workstation with 2.5 GHz CPU clock for the geometri-
cal algorithm and the DroG edge detector are 2.84 and
0.11 s, respectively.

5 Conclusion

A variational method is considered in this paper for segmenta-
tion and smoothing of vector-valued images to mathematically
model edge detection in colour images. It is demonstrated in
this paper that the investigated functional has a unique solution
in contrast with Mumford–Shah functional.

As a result of this unique solution, an edge-based algor-
ithm using geometrical properties such as metric tensor of
a hyper-surface containing smoothed surfaces is proposed
for implementation by introducing a linear operator. This
operator is characterised with a better localisation property
than that of the DroG operator, although the geometrical
algorithm proposed here is numerically more expensive. It
is demonstrated in this paper that the improved localisation
of the geometrical operator is attributed to a sharp transition
at the centre of the operator. For the future work, this notion
therefore introduces a new possibility of investigating a set
of operators whose centre is characterised with a sharp tran-
sition and are as fast as the DroG operator. A comparison
between the geometrical method and other traditional
methods in the literature presented here shows that the pro-
posed method is robust in a noisy environment. In addition
to 2D vector-valued images, the geometrical algorithm can
also be generically used in the segmentation and restoration
of 1D signals. As a future project, the smoothing for low
SNR images can also be improved by minimising the func-
tional locally to find the best-fit surfaces based on nurbs and
splines. The other interesting future work is to modify the
functional for volumetric 3D images which is a well-known
challenge in the Mumford–Shah framework.
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8 Appendix

In this section, the proposed geometrical algorithm is theor-
etically evaluated using the mathematical criteria such as
detection performance and localisation indices considered
by Canny [34, 36]. Before evaluating these criteria, we
need to calculate the impulse response of the edge detector
operator described in the text. We follow the tradition
employed in [34, 36] to use one-dimensional signals
for analytical comparisons. For 1D signals, the
Helmholtz-type differential equation [37] minimising the
1D functional [27, 28] is reduced to

m
d2
f

dx2
¼ f � g (13)

where f is the smoothed signal and g the original signal. Let
us first calculate the step response of the system defined by
(13). The impulse response of the edge detector can then be
calculated using this step response. Let us therefore assume
that g(x) is defined as

g(x) ¼ H(x) ¼
1, x . 0

0, x , 0

�
(14)

where H(x) is the Heaviside (step) function [37]. As f is of
class C2, we expect f and its first derivative to be continuous
at x ¼ 0 and that the following boundary conditions for the
step response are met

Lim
x!þ1

f (x) ¼ 1 (15a)

Lim
x!�1

f (x) ¼ 0 (15b)

It is straightforward to see that the general solution to the
differential equation (13) with input (14) is

f (x) ¼
A e�x=

ffiffiffi
m

p

þ B ex=
ffiffiffi
m

p

þ 1, x . 0

C ex=
ffiffiffi
m

p

þ D e�x=
ffiffiffi
m

p

, x , 0

�
(16)

The boundary conditions (15a) and (15b) require that

B ¼ 0

D ¼ 0

Since f and its first derivative are continuous at x ¼ 0, then

f (0�) ¼ f (0þ) (17a)

df

dx
(0�) ¼

df

dx
(0þ) (17b)
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By applying conditions (17a) and (17b) to function f in (16),
the following linear system for A and C, are obtained

C ¼ Aþ 1

C ¼ �A

Therefore

A ¼ �
1

2

C ¼
1

2

The step response f of the system characterised by (13) can
therefore be written as

f (x) ¼
1 �

1

2
e�x=

ffiffiffi
m

p

, x . 0

1

2
ex=

ffiffiffi
m

p

, x , 0

8><
>: (18)

If the impulse response of the system with (13) is rep-
resented by J(x), then f (x) can be written as

f (x) ¼ J (x) � H(x)

where H(x) is Heaviside (step) function and * represents
convolution operation. To find the edge location, the first
derivative of the function in (18) is examined, that is, f0(x)
in the following equation is examined

f 0(x) ¼ J 0(x) � H(x) (19)

The function f 0(x) and J 0(x) are therefore step response and
impulse response of the edge detector operator, respect-
ively. To calculate the impulse response of the edge detector
operator J 0(x) analytically, we take one more derivative on
both sides of (19)

f 00(x) ¼ J 0(x) � H 0(x) ¼ J 0(x) � d(x) ¼ J 0(x) (20)

Therefore the impulse response of the edge detector oper-
ator is the second derivate of function f. Using (18) and
(20), the impulse response of the edge detector h(x) can
be calculated as

J
0(x) ¼ f

00(x) ¼ h(x) ¼

�1

2m
e�x=

ffiffiffi
m

p

, x . 0

1

2m
ex=

ffiffiffi
m

p

, x , 0

8>><
>>:

(21a)

The impulse response for a derivative of Gaussian filter
(DroG) is [36]

h(x) ¼ �
x

s2
e�x2=2s2

(21b)

For illustration and comparison purposes, the impulse
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responses (operators) of the geometrical approach (21a)
and DroG (21b) are depicted in Fig. 4.

Let us now evaluate localisation and detection perform-
ance terms considered by Canny in [34, 36] for both
impulse responses given in (21a) and (21b). For the DroG
filter, the detection performance and localisation terms are
calculated as [36]

Detection performance ¼ S(h) ¼

Ð 0

�1
h(x) dx

��� ���2Ðþ1

�1
h2(x) dx

¼
2sffiffiffiffi
p

p (22a)

Localisation ¼ L(h0) ¼
jh0(0)j2Ðþ1

�1
h02(x) dx

¼ (1=s2)2=3
ffiffiffiffi
p

p
=4s3

¼ 4=ð3s
ffiffiffiffi
p

p
Þ

(22b)

For the geometrical operator calculated in (21a), the
above two terms are computed as

S ¼
ffiffiffiffi
m

p
(22c)

L ¼
(1=m2)(d(0))2

1=8m2 ffiffiffiffi
m

p
þ 1=2m2d(0)

’ 2d(0) (22d)

where d(x) is the Dirac delta function. It is noted that in the
calculations involved in the estimation of the localisation,
Dirac function is approximated as

d(x) ¼ Lim
1!0

1

p(x2 þ 12)

It is interesting to note that for a given detection perform-
ance (S) for both operators, the localisation of the geometri-
cal operator is higher (see (22a)–(22d)). If (22a) and (22c)
are set equal, then m and s for the given detection perform-
ance become related as

s ¼

ffiffiffiffiffiffiffi
pm

p

2
(23)

Therefore parameter s can be calculated for a given m
and vice versa. Given the parameters m and s related
with (23), the localisation of geometrical operator is
better, as it is equal to the Dirac function. It is noted
that in digital signals and images, the Dirac function is
limited to the resolution of digitisation. This higher
localisation property associated with the geometrical
operator is numerically demonstrated in the text with
some examples in Fig. 6.
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