Contour evolution scheme for variational image
segmentation and smoothing

S. Mahmoodi and B.S. Sharif

Abstract: An algorithm, based on the Mumford—Shah (M—S) functional, for image contour
segmentation and object smoothing in the presence of noise is proposed. However, in the pro-
posed algorithm, contour length minimisation is not required and it is demonstrated that the
M-S functional without contour length minimisation becomes an edge detector.
Optimisation of this nonlinear functional is based on the method of calculus of variations,
which is implemented by using the level set method. Fourier and Legendre’s series are also
employed to improve the segmentation performance of the proposed algorithm. The segmenta-
tion results clearly demonstrate the effectiveness of the proposed approach for images with

low signal-to-noise ratios.

1 Introduction

The problem of image segmentation and smoothing using
variational methods has received considerable attention
recently [1-5]. The snake segmentation algorithm based
on methods of calculus of variations was first introduced
by Kass et al. [1]. In another study, the level set method
initially introduced in the area of fluid dynamics [6, 7]
was proposed in [8] for image segmentation (see [9] for
detailed discussions on the level set method). The snake
algorithm proposed in [1] was further developed as a geo-
desic active contour model, which was based on the level
set method with two different approaches in [10—12] and
[13—15] by finding the geodesics of a feature space
known to be a Riemannian manifold. In contrast,
Mumford and Shah [2] introduced a nonlinear model for
simultaneous segmentation and smoothing (also discussed
in [16—18]), which was further approximated and
implemented using various approaches ([3—5, 19-22]).
This paper investigates the M—S functional without the
contour length minimisation term for image segmentation
and smoothing, and its implementation is based on the
Chan—Vese (C-V) model [4, 19-22]. Fourier and
Legendre’s series are also employed to enhance the per-
formance of this region-based algorithm for different
applications such as unsupervised texture segmentation.
Initially, we briefly explain the M-S functional in this
section. For implementation purposes, the C—V model
[4, 19-22] is then introduced.

Image g(x, y) is considered as a piecewise continuous
function with contours I" representing discontinuities. f(x, )
is the smoothed continuous function of class C" n > 2 in
R —T'. The M-S functional of the smoothed image f and
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contour I is then defined as [2]
£ = || 060 - g vy

+uﬂ VP dedy + v (1)
R-T

where R is a region in which g(x, y) has no discontinuities,
surrounded by discontinuity represented by I" whose length
is |I'|, w and v are non-negative constants and V denotes the
gradient operator.

The Lagrange—Euler equations [23] with respect to the
smoothed image f and its derivatives for functional (1)
can be written as a Helmholtz type differential equation
[2] when contour I' is assumed fixed

uVif=f—g inR—-T )
with the Neumann boundary condition
9
¥ =0 onT 3)
on

where V? is the Laplacian operator and 8/dn is the deriva-
tive along the normal direction to the contour.

The minimisation of the M-S functional in a small
neighbourhood of an arbitrary point P on a discontinuity
with respect to contour variations leads to the following
nonlinear differential equation [2]

(xp) — g ) + mIVI P = (- (x0) — g, 0))°
- ,u,l%f_l2 +vCurv(l'p) =0
)

where I'p, Curv and /™ and f~ are the optimised curve in a
small neighbourhood of P, an operator representing curvature
and the variations of the smoothed function f because of
contour variation in two opposite directions, respectively. It
should be noted that in the M—S functional, f, which is a two-
dimensional manifold, belongs to an appropriate Banach
space, whereas I', which is a one-dimensional manifold, is
not associated with any known space.

The C—V model proposed in [4, 19-22] to implement the
M-S functional is a level-set-based method that uses a
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Lipschitz function ¢(x, y), whose front represents an evol-
ving contour [8, 9], to separate the whole image region
into two inside and outside sub-regions. This function is
initialised as a signed distance function [4]. In the piecewise
constant approximation of the M—S functional, the C—V
functional is written as [4]

Fk, by, @) = ”R (¢(r.7) — k)*H,(¢) dx dy
4 ”R (g(x.3) — k(1 — H,(¢) dxdy
+v UR 5,(9)| Vel dx dy 5)

where H, and 6, are the regularised Heaviside (step) func-
tion and the Dirac delta function, respectively. H, is regular-
ised as

H.(z)= % (1 + %arctan(i))

where € = 1 in this paper, and k; and k, are the mean values
of the image inside and outside of the evolving contour,
respectively. Minimisation of functional (5) with respect
to k; and &, and leads to

k(¢) — JIR g(xa)’)Hg(SD(xa)’)) dx dy
1 I Hy((x,y)) dxdy

(6)

and

k() = e 8EDL— Hi(o(y))) dxdy
’ I (1 = Hy(e(x, ) dv dy

(7

According to [4], the minimisation of functional (5) with
respect to ¢(x, y) leads to the following Euler—Lagrange
equation

do_ asw)[vv (E> () — k) + (gry) — kof}
[Vl
®)

Functional (5), in piecewise continuous approximation of
(1), is modified to

F(fifor ) = ”R (gCry) ) + wIVAEH,(¢) dr dy
+ “R (&) — o + IV, 21 — H,(g) dxdy
+ J .0Vl dedy ©)

where f; and f, are the smoothed images inside and outside
the evolving contour and are calculated as [19]

uVfi=fi—g  for

2
uVifo=fo—g  for

@lx,y) >0 (10)
Plx,y) <0 (11)
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Minimisation of functional (9) with respect to ¢(x, y)
results in

dp _ Ve 2 2
i 5s(¢)[vV- (W) —(g(x,y) = )" — rIVA

+Hg(x,y) — o) + mIV I (12)

Piecewise constant and continuous approximations of the
M-S model proposed by Chan and Vese [4, 19-22] and
presented in (6) and (8) (for piecewise constant) and
(10)—(12) (for piecewise continuous) can be implemented
iteratively, where for each iteration, ¢(x,y) is calculated
using (8) or (12). In each iteration, either (6) and (7) or
(10) and (11) are then employed to calculate the mean
values or the smoothed functions inside and outside the
evolving contour.

In this paper, three modifications to the M—S and C-V
models are proposed: (i) contour length minimisation term
is dropped; (i1) Gaussian filter is applied to ¢(x, y) in every
iteration to improve the performance of the algorithm in
very noisy images and (iii) C—V models proposed in [4,
19, 22] are extended to piecewise polynomials and
Fourier series. The derivations and implementations of
these modifications are presented in Section 2. Results
are discussed in Section 3, and conclusions are drawn in
Section 4.

2 Modifications and implementation

In this work, to implement the modifications described in
the previous section, the framework employed in the C-V
model is used, and a Lipschitz function ¢ [8, 9] is used in
this framework. The zero level of this function known as
‘front’ represents the contours I’s of the objects in an
image. Function ¢ is therefore initialised as the signed dis-
tance function between every point of the domain and the
initial contour, such that ¢(x,y) =0, ¢(x,y) >0 and
¢(x,y) <0 correspond to the contour and the regions
inside and outside the contour, respectively [4, 8, 9, 19—
22]. Therefore as the contour evolves through the segmenta-
tion process, the algorithm always follows ¢(x,y) =0,
representing the evolving contour.

The first modification is proposed to remove the require-
ment of contour length minimisation. Our rationale is that
contours representing discontinuities are minimisers of
functional (1) when v =0. Such a functional can be
written as

E(f,T) = “R [(F(x.3) — gx, )] dr dy

4 u” 19/ (e )2 de dy (13)
R-T

The proposed modification is not trivial, because it
involves ensuring the second variation of functional (13)
to be positive with respect to contour variations in order
to discard unwanted contours. Functional (13) was initially
developed for one-dimensional signals [24, 25], and it was
demonstrated in [25] that its second variation with respect
to points representing discontinuities is positive. This indi-
cates that points representing discontinuities are minimisers
of such a functional. A method based on second variation is
also employed to detect discontinuity points in a signal rep-
resented by piecewise continuous functions. The same
notion is applicable to contours representing discontinuities
in images, and therefore in this paper, the contour length
minimisation term in functional (1) is dropped. To
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implement the functional, we employ the C—V framework
as described in the previous section to write the functional
in piecewise constant approximation as

F(k,, ky. @) = ”R (g(x.7) — k) H, ((x.y)) dx dy

+ ”R (g(x,) — ko (e, ) (1 — H,(¢(x,y))) dx dy
(14)

The minimisation of functional (14) with respect to ¢ is
written as

d
a_f = 3,(Pl—(g — k) + (g — ko)’ (15)

where H, and 6, are the regularised Heaviside (step) and the
Dirac delta functions, respectively, and k; and %, are calcu-
lated using (6) and (7). Equation (15) converges when the
evolving contour corresponds to discontinuity. The positiv-
ity requirement for the second variation of functional (14)
can be simply met by examining k; and k,. If in conver-
gence, k; = k,, then the contour does not correspond to
any discontinuity and should be discarded. If there is only
one type of foreground and one type of background, then
there is no need to examine %; and k., and the contour auto-
matically converges to discontinuities.

It is well known that the piecewise continuous approxi-
mation of the C—V model (functional 9) falls into local
minima [19] particularly when the initial contour is not
close to any discontinuity. It is also numerically expensive
to calculate the smoothed images and the Lipschitz function
¢ by solving the three partial differential equations (10)—
(12) in each iteration. Therefore we propose our second
modification for the piecewise continuous approximation
to address the above two issues.

In order to find the global minimum in such cases, the
smoothed image f(x, y) is approximated by using a weighted
sum of a series of eigenfunctions such as Legendre and/or
Fourier series whose coefficients are calculated iteratively.
As the eigenfunctions are continuous functions, their
weighted sum is also a continuous function.

Legendre polynomials [26] can be used to parameterise
image fluctuations using a set of coefficients, where the
desired solution f(x, y) inside and outside the contour is
initially approximated as the weighted sum of Legendre
polynomials. This approximation up to the first order
(n = 1) was initially proposed in [22]. Here, we develop
this approximation method further. It is well known that
Legendre polynomials are orthogonal and hence can be con-
sidered as a set of eigenfunctions. Orthogonal property for a
Legendre polynomial P,(x) of degree n can be written as

+1 2
|| Puopoas =25, (16)

where 6,,, is the Kronecker delta.

Therefore any C” function with » > 1 can be described as
a series of Legendre polynomials, that is, f(x, y) can be
approximated as

f@) =Y kP, ()P,()

where k,,, are Legendre coefficients associated with f(x, y).
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In the level set framework used in this paper, an approxi-
mation of the image inside the contour can be represented as

&) = ki Pu(0)P, () (17)

where k;,,, are the coefficients that describe the image inside
the contours.

Similarly, for a region of the image outside the contour,
we have

L,669)= YD ko Pa)P, () (18)
Functional (13) can therefore be rewritten as

Fllk ko, 0 = || @000 = 30 S b, 0P 0

n m

x H(g(x,y))dx dy

8 | IECSTED 3 SRS,

n m

x (1 = H(eg(x,y))) dx dy
(19)
where k; and k, are the vector parameters defined as
ki = (kioo, kio1> Kirg, - - ) and k, = (kogo, koor> ko105 - - -)

Functional (19) should be minimised with respect to k;
and k,, and, which leads to a linear system with N equations
and N unknowns, where N is the number of terms used in the
Legendre series

“R PP, (7)g(x)H (g(x. 7)) dx dy

=35 ko ”R PP ()PP () H(g(x. ) e dy

(20)

where p, g > 0.

A similar linear system to (20) can be derived for k,. By
optimising functional (19) with respect to ¢(x, y) using the
Euler—Lagrange equation, differential equation (21) is
obtained

2
9
a—f = 8,(¢) —<g(x,y) - Xn: A k,-mnPn(x)Pm(y)>

2
+ (g(x,y> -3 km,,P,xx)Pm(y)) Q1)

Differential equation (21) coupled with linear system (20)
is the optimal solution of functional (19) and can be numeri-
cally implemented to find the global minimum. The shifted
Legendre polynomials are employed in the implementation,
as it is easier to consider the image domain as [0, 1] x [0, 1].

Another approach to parameterise an M x N image using
eigenfunctions is to use Fourier series to approximate the
desired function f(x, y)(M x N) using half-range expansion
[26], that is

fx,y) = Z Z k,,, cos(mux + nvy)

where u = 27/M, v = 2x/N, and k,,, are spatial frequen-
cies and Fourier coefficients, respectively. Functional (13)
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can therefore be rewritten as

F(k, k,, ¢) = “ (g(x,y) — Z Z mn COS(mux + nvy))2

x H(glx,)) dxdy + ”R (¢(r.)
- Z Z Ky COS(Mux 4 nvy))*

x (1 = H(g(x,y))) dx dy (22)

Functional (22) should be minimised with respect to k;,,
and k,,,. The following linear system is obtained by opti-
mising functional (22) with respect to k;,,

“R cos(pux + qvy)g(x, ) H(g(x,)) dr dy

= Z Z mn JJ cos(pux + qvy) cos(mux + nvy)

x H(g(x,y)) dxdy, p,q4=>0 (23)

A similar linear system can be derived for £, coeflicients.
The following differential equation can be further derived by
applying the Euler—Lagrange equation on functional (22) to
optimise the functional with respect to ¢(x, y)

2
a¢ (@) ( - Z Z kimn Cos(mux + I’lVy))
2
+ (g - Z Z komn COS(mux + nvy)) (24)

c d

Fig. 1 Image containing a cluster of objects and its segmented
images with different values for v

a Original image containing a cluster of objects

b Segmented image using piecewise constant approximation without
contour length minimisation

¢ Segmented image using piecewise constant approximation with
contour length minimisation v = 50

d Segmented image using piecewise constant approximation with
contour length minimisation v = 70
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Differential equation (24) coupled with linear system (23)
can then be implemented to iteratively solve the optimis-
ation problem in functional (22). This leads to a set of coef-
ficients £;,,, and k,,,, that describe f(x, y) and fo(x, y) and a
function ¢(x, y) whose zero level describes the contour. It is
noted that (21) and (24) converge in discontinuities. The
positivity requirement of the second variation of functionals
(19) and (22) can be met by examining vectors k;, and k. If
under convergence k; = k,, then the contour should be dis-
carded. However, for images with only one type of fore-
ground and one type of background, the algorithm
automatically converges to discontinuities without examin-
ing vectors k; and k.

With excessive amount of noise, the problem of segmenta-
tion discussed in this section becomes ill-posed. To regularise
the problem, we propose another modification to apply a two-
dimensional Gaussian low-pass filter to the function ¢(x, y)
at every iteration. As will be observed, this causes the
snake algorithm to operate successfully with images charac-
terised with signals-to-noise ratios (SNRs) as low as 0.1.
Upon convergence, reconstruction can be performed using
parameters calculated during the segmentation process. The
reconstructed image, which can be viewed as the smoothed
image, is therefore viewed as a by-product of the proposed
segmentation process. To summarise, the proposed algorithm
consists of the following steps.

Initialise ¢° for n = 0.

Compute k; and k,.

Solve differential equation for ¢ to obtain ¢
Apply Gaussian low- -pass filter to ¢"*".

. Check if convergence is reached. If not, » =n + 1 and
go to step 2; otherwise go to step 6.

6. Reconstruct the image using k; and k.

bW~

Fig. 2 Synthetic star image and its segmented images with differ-
ent values for v

a Original star image

b Segmented image using piecewise constant approximation without
contour length minimisation

¢ Segmented image using piecewise constant approximation with
contour length minimisation v = 300

d Segmented image using piecewise constant approximation with
contour length minimisation v = 600

IET Image Process., Vol. 1, No. 3, September 2007



h i
Fig. 3 Noise sensitivity of the proposed algorithm

a Original noiseless image

b Image contaminated with Gaussian noise with SNR = 1.088
¢ Segmentation results for SNR = 1.088

d Smoothed image with u = 100 for SNR = 1.088

e Image contaminated with Gaussian noise with SNR = 0.372
f Segmentation results for SNR = 0.372

g Smoothed image with w = 100 for SNR = 0.372

h Image contaminated with Gaussian noise with SNR = 0.051
i Segmentation results for SNR = 0.051

J Smoothed image with u = 100 for SNR = 0.051

In the next section, the results achieved by the above
algorithms are presented.

3 Results

In this section, the algorithms outlined in the previous sec-
tions are applied to different synthetic and real world
images. In Figs. 1 and 2, we specifically address the
impact of removing the contour length minimisation term
in the M—S functional. Equations (6)—(8) (piecewise con-
stant approximation with contour length minimisation
term) are applied to the image shown in Fig. la with
v =50 and v = 70. The detected contours are shown in
Figs. 1c¢ and 1d. Equations (6), (7) and (15) (piecewise con-
stant approximation without contour length minimisation
term) are also applied to the image of Fig. la. The segmen-
ted image is depicted in Fig. 1b. It is clear from Fig. 1 that
when the contour length minimisation term is included in
the M-S functional, the contours detected do not corre-
spond with the edges of the object in a given image. This
is expected in the M—S functional, as the contour minimis-
ation term smoothes the detected contour. The extent of the
difference between the contours and the objects’ actual
edges in a given image depends on the value chosen for v
and the image contents, i.e. k; and k, in equation (8).

IET Image Process., Vol. 1, No. 3, September 2007
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Fig. 4 Approximation of the functional using Legendre series

a Original noiseless image with a patch characterised by smooth vari-
ation in brightness

b Noisy image with Gaussian noise (SNR =1.026)

¢ Segmentation result using proposed algorithm based on Legendre
series with the first six Legendre components

d Reconstructed image using the coefficients of the first six Legendre
components

Fig. 2 shows another example that demonstrates the fact
that in the M-S functional, the detected contours do not
always correspond with objects’ edges. Equations (6)—(8)
(piecewise constant approximation with contour length
minimisation term) with v = 300 and v = 500 are applied

-r‘
-{:’,

c

Fig.5 Noiseless synthetic image

a Original noiseless image with two different textures

b Noisy image with Gaussian noise (SNR = 7.347)

¢ Segmented image using our Fourier-based algorithm using 45
Fourier components

d Reconstructed image using the coefficients of Fourier series
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Fig. 6 Contour evolutions of the proposed Fourier-series-based method with two different initial contours (conditions)

to Fig. 2a and the detected contours are depicted in Figs. 2¢
and 2d. Fig. 2b also shows the detected contour without the
contour length minimisation term using piecewise constant
approximation. For illustration and comparison purposes,
the detected contours are superimposed on the original
image in this figure. Figs. 1 and 2 therefore demonstrate
that the M—S functional without the contour minimisation
term reduces to an edge detection scheme.

Noise sensitivity of the proposed algorithm is investi-
gated in Fig. 3.

A noiseless image is considered in Fig. 3a, and Gaussian
noise is added (SNR = 1.088) to obtain the image of
Fig. 3b. The segmented image is shown in Fig. 3¢ with a
Gaussian filter bandwidth of /3, and the smoothed image
depicted in Fig. 3d is obtained with w = 100. Similar
results are shown in Fig. 3 for the same image with
SNR = 0.372 and 0.051 with bandwidths being /4 and
7r/5 for the Gaussian filter, respectively. As observed from
Figs. 3h—j, the algorithm operates at SNR as low as 0.051.

Approximation of the desired function f(x,y) using
Legendre series is demonstrated in Fig. 4a, which shows a
patch characterised by a smooth variation in brightness
against a background with a mean grey scale equal to that
of the patch. This image is further contaminated with
Gaussian noise (SNR = 1.026) to obtain Fig. 4b. Coupled
equations (20) and (21) are applied to the image of
Fig. 4b to achieve the segmented image shown in Fig. 4¢
using the first six components in the Legendre series. The
bandwidth of the Gaussian filter was chosen as /6. It
should be noted that the both the piecewise constant
(equations (6)—(8)) and continuous (equations (10)—(12))
solutions presented in [4, 19, 21] fail to segment the
patch. In the case of the piecewise constant solution, this
is because the mean grey level of the central object in
Fig. 4 is equal to the mean grey level of the rest of the
image. Hence, there is no force to drive the evolving
contour in (8). However, for piecewise continuous approxi-
mation, if the initial contour is not close enough to the
object to be segmented, the C—V method falls into local
minima [19]. The reconstructed image formed by using
the calculated coefficients of Legendre series at the conver-
gence of the algorithm is depicted in Fig. 4d.

A noiseless synthetic image with two different textures is
depicted in Fig. 5a. This image is contaminated with
Gaussian noise (SNR = 7.347) and shown in Fig. 5b. The

292

segmentation result using the algorithm expressed in (23)
and (24) is shown in Fig. 5c. The reconstructed image
using the calculated coefficients of the Fourier series is
depicted in Fig. 5d.

Fig. 6 depicts a few iterations of the contour evolutions of
the proposed Fourier-based method in this paper, with two
different initial contours applied to a synthetic image with
two rectangular patches with the same texture against a
different background texture.

The same image shown in Fig. 6 is also used in Fig. 7.
Zero-mean Gaussian noise is added (SNR = 1.061) to the

Fig. 7 Synthetic noisy textured image and its segmentation and
reconstruction results

a Original noiseless image with two separate regions with same
texture against a background texture different from those regions

b Noisy image with additive zero-mean Gaussian noise
(SNR = 1.061)

¢ Segmented image using proposed Fourier-based algorithm using 55
Fourier components

d Reconstructed image using the coefficients of Fourier series
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Fig. 8 Removal of distortion

a Disorted MRI image

b Segmentation using the algorithm based on the proposed Legendre
series using the first six Legendre components

¢ Distorting image estimated using the coefficients of Legendre series
calculated in the process of segmentation

d Corrected image after removing the distorting image

noiseless image of Fig. 7a to obtain the noisy image shown
in Fig. 7b. The algorithm described by (23) and (24) is
applied to the noisy image, and the result is shown in
Fig. 7c. Fig. 7d shows the reconstructed image using the
coefficients of the Fourier series. Careful inspection of the
noisy image in Fig. 7b demonstrates the challenge presented
to human perception to recognise the presence of the objects
in the image.

An important feature of the segmentation algorithm based
on the Legendre series is the removal of distortion, which is
demonstrated in Fig. 8. A magnetic resonance image dis-
torted in the process of formation and digitisation is con-
sidered, as shown in Fig. 8a. The proposed algorithm based
on the Legendre series is applied to the image, and the seg-
mentation result is depicted in Fig. 8. The distorting com-
ponent in the image is estimated using the coefficients of
the Legendre series calculated in the process of segmentation

Fig.9 Image with different wall patterns and segmentation
result

a Image with two different wall patterns
b Segmentation result using 55 Fourier components superimposed on
the original image

IET Image Process., Vol. 1, No. 3, September 2007

and is shown in Fig. 8c. Fig. 84 shows the corrected image
after distortion removal from the original image.

Finally, the Fourier-based algorithm proposed in this
paper is applied to an image with two different wall pat-
terns, as shown in Fig. 9a. The segmentation result using
55 Fourier components is depicted in Fig. 95.

4 Conclusion

An image segmentation and smoothing method based on the
M-S functional has been investigated in this paper. In this
method, there is no requirement for contour length minimis-
ation. Therefore the detected contours correspond to edges
(discontinuities) in a given image. A two-dimensional
low-pass filter is also added to improve the performance
of the algorithm in a noisy environment. New methods
based on Legendre and Fourier’s series are proposed to
find the global minimum where the piecewise constant
and continuous solutions of the problem fall in a local
minimum and hence fail to perform the segmentation.
Therefore this leads to an unsupervised texture segmenta-
tion algorithm based on a Fourier series scheme.
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