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Abstract—In this treatise, we propose a novel serial concatenated
RSC-coded Irregular Precoded Linear Dispersion Codes (IR-PLDC),
which is capable of operating near MIMO channel’s capacity. The
irregular structure combined with the employment of an Infinite Impulse
Response (IIR) precoder facilities the proposed system’s operation across
a wide range of SNRs, while maintaining an infinitesimally low BER.
Each coding block of the IR-PLDC scheme is designed with near-
capacity operation in mind with the aid of Extrinsic Information Transfer
(EXIT) charts. The proposed RSC-coded IR-PLDC scheme is capable of
operating as close as 2.5dB to the MIMO channel’s capacity, namely at
SNRs as low as ρ = −7dB.

I. INTRODUCTION

Wireless communication systems using multiple antennas at both
the transmitter and receiver, which are referred to as a Multiple
Input and Multiple Output (MIMO) systems in the literature, have
the potential of maintaining reliable wireless transmissions at high
data rates [1], [2]. The design of coding schemes for MIMO systems
operating at high Signal-to-Noise Ratios (SNRs) involves a tradeoff
between the achievable rate at which the system’s capacity increases
and the rate at which the error probability decays [3]. There is
considerable interest in developing schemes that provide different
trade-offs in terms of the achievable rate and error probability,
which are applicable for employment in a broad range of antenna
configurations.

The set of Linear Dispersion Codes (LDCs), first proposed by Has-
sibi and Hochwald [4], constitutes a wide-ranging class of space-time
codes exhibiting diverse characteristics. Hence this family encom-
passes numerous existing schemes, providing a natural framework in
which such design problems can be posed. The revolutionary concept
of LDCs [4] [5] invokes a matrix-based linear modulation framework,
where each space-time transmission matrix is generated by a linear
combination of so-called dispersion matrices and the weights of the
components are determined by the transmitted symbols. The disper-
sion matrices were originally designed for maximizing the ergodic
capacity [1] of the resultant equivalent MIMO system. However, the
LDCs proposed in [4] did not necessarily guarantee a low Bit Error
Ratio (BER) [5] [6].

Serial Concatenated Codes (SCC) are capable of attaining an
infinitesimally low BER, while maintaining a manageable decoding
complexity [7] [8]. Since LDCs have the ability to approach the po-
tential capacity of MIMO systems, it is natural to serially concatenate
for example a simple convolutional channel code as the outer code
and LDCs employed as the inner code in order to approach the MIMO
capacity, while maintaining a near error-free BER performance.

It has been demonstrated in [9] [10] that SCCs benefit from
having an open convergence tunnel at low SNRs, when IrRegular
Convolutional Codes (IRCCs) were adopted as the outer channel
code, since IRCCs exhibited flexible Extrinsic Information Transfer
(EXIT) chart characteristics [9] [10]. However, SCCs employing
irregular outer codes are unable to operate at low SNRs, where the
associated convergence tunnel is closed. Furthermore, near-capacity
IRCC schemes may require an excessive number of iterations at the
receiver to achieve an infinitesimally low BER, which may exceed
the affordable complexity budget of mobile handsets. The potentially

high decoding delay also constitutes a problem associated with IRCC
schemes, owing to the requirement of having a high interleaver length.

Motivated by the above-mentioned flexibility of the irregular outer
code design philosophy, in this treatise we circumvent the IRCC-
related outer code limitations by proposing IrRegular Precoded Linear
Dispersion Codes (IR-PLDCs) as inner rather than outer code and
serially concatenate the resultant IR-PLDCs with a low-complexity
regular outer channel code in order to achieve an infinitesimally low
BER, when employing iterative decoders. The rationale and novelty
of the proposed iterative detected IR-PLDCs are:

• We propose IR-PLDC schemes as the inner code of SCCs, which
are capable of achieving an infinitesimally low BER across a
wide range of SNRs;

• We investigate the maximum achievable rate of the IR-PLDCs
with the aid of EXIT charts [11] [12], when using Minimum
Mean Squared Error (MMSE) detectors;

• LDCs are optimized by maximizing the Discrete-input
Continuous-output Memoryless Channel’s (DCMC) capacity;

• IR-PLDCs may be reconfigured by activating different disper-
sion matrices for the different component codes at a modest
hardware cost;

• IR-PLDCs can be designed for an arbitrary number of transmit
as well as receive antennas and combined with arbitrary modu-
lation schemes.

We commence our discourse by providing a detailed description of
the proposed IR-PLDC system’s structure in Section II. In Section III,
we demonstrate how the proposed irregular inner code system is
constructed from a capacity maximization perspective. Our simulation
results are discussed in Section IV. Finally, we conclude our discourse
in Section V.

II. SYSTEM DESCRIPTION

We consider a MIMO system employing M transmit as well as
N receive antennas and Figure 1 portrays the system model of the
proposed serially concatenated RSC-coded IR-PLDC scheme. At the
transmitter, a frame of information bits u1 is encoded by a simple
RSC encoder. Then the encoded bits c1 are interleaved by a random
interleaver, yielding the outer encoded bits u2. Then the “irregular
partitioner” of Figure 1 feeds the appropriately selected fraction of u2

into the various Precoded LDC (PLDC) component codes, according
to the predefined weighting coefficient vector λ = [λ1, · · · , λP ],
where P denotes the total number of PLDC components. Memory-1
unity-rate precoders were employed for all the PLDC components.
More explicitly, within each PLDC encoder, the resultant precoded
bits c2 are interleaved by a second interleaver, yielding the interleaved
bits u3, which are fed to the bit-to-symbol mapper inside the
LDC block of Figure 1. After modulation, the information bearing
vector K = [s1, · · · , sQ] containing Q L-PSK symbols is dispersed
according to the space-time block matrix S of Equation (1) by the
“ST mapper”, spanning M spatial- and T temporal-dimensions. More
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Figure 1. Schematic of the RSC-coded IR-PLDC with iterative decoding.

explicitly, S is given by:

S =

Q∑
q=1

Aqsq, q = 1, · · · , Q, (1)

where Aq represents the corresponding dispersion matrix. Hence
S is transmitted over the uncorrelated Rayleigh fading channel
contaminated by AWGN at each receive antenna. The rate of a LDC
is defined as:

RLDC =
Q

T
(sym/slot). (2)

At the receiver, the received signal matrix Y is related to S by:

Y =

√
ρ

M
HS + V, (3)

where the Channel Impulse Response (CIR) matrix H is modelled
as independent and identically distributed (i.i.d.) flat Rayleigh fading
and its envelope and phase are assumed to be constant during T
symbol periods, while changing independently from one space-time
matrix to the next. The CIR matrix H is assumed to be known to the
receiver, but not to the transmitter. The noise matrix V is assumed to
have independent samples of a zero-mean complex-valued Gaussian
random process with a common variance of N0 determined by the
SNR ρ.

It is desirable to rewrite the input-output matrix relationship of
Equation (3) in an equivalent vectorial form. Define the vec()
operation as the vertical stacking of the columns of an arbitrary
matrix. Subjecting both sides of Equation (3) to the vec() operation
gives the equivalent system matrix [5]:

Ȳ =

√
ρ

M
H̄χK + V̄, (4)

where Ȳ ∈ ζNT×1, H̄ ∈ ζNT×MT , χ ∈ ζMT×Q, K ∈ ζQ×1 and
V̄ ∈ ζNT×1. More explicitly, χ is referred to as the Dispersion
Character Matrix (DCM), which is defined as

χ = [vec(A1), vec(A2), · · · , vec(AQ)], (5)

while H̄ in Equation (4) is given by:

H̄ = IT ⊗ H, (6)

where ⊗ denotes the Kronecker product and IT is the identity matrix
having a size of (T × T ). Note that the DCM χ uniquely and
unambiguously determines a particular LDC(MNTQ).

Again, the “irregular partitioner” of Figure 1 determines the spe-
cific portion of the received signal as well as the a-priori information
IA(u2) to be detected by each PLDC component decoder of the
IR-PLDC scheme, according to the weighting coefficient vector λ.
Then, an iterative decoding structure is employed, where extrinsic
information is exchanged between the three Soft-In Soft-Out (SISO)
modules, namely the MMSE detector, the precoder and the outer
RSC decoder in a number of consecutive iterations. To be specific, in
Figure 1, IA() denotes the a-priori information represented in terms
of Log-Likelihood Ratios (LLRs), where IE() denotes the extrinsic
information also expressed in terms of LLRs. Note that the inter-
mediate rate-1 precoder processes two a-priori inputs, namely those
arriving from the MMSE detector as well as from the outer decoder
and generates two extrinsic outputs. More detailed discussions on the
iterative decoding process are provided in [7]. It is worth mentioning
that the activation of different PLDC components is implemented by
employing different dispersion matrices and the associated hardware
cost is modest, since it does not require the implementation of P
separate component codes at both the transmitter and receiver.

III. EXIT CHART BASED DESIGN OF IR-PLDCS

In our forthcoming EXIT chart analysis, the unity-rate precoder’s
decoder and the MMSE decoder are considered as a single ’inner’
decoding block, constituted by the IR-PLDC’s decoder seen in
Figure 1. The advantage of this representation is that the IR-PLDC
block’s extrinsic information output IE(u2) is only determined by
the received signal matrix Y and the a-priori input IA(u2), but
remains unaffected by the extrinsic information exchange between the
precoder’s decoder and the MMSE detector. Thus, we can project the
three-stage system into a two-stage system and hence the traditional
two-dimensional EXIT charts [12] [13] are applicable.

Following the approach of [14], we now carry out the EXIT chart
analysis of the proposed IR-PLDC system. Thus the corresponding
EXIT transfer functions are:

IE(u2) = Γin[IA(u2), ρ]. (7)

The employment of irregular codes was proposed by Tüchler and
Hagenauer [9] [10], where IRCCs were used as an outer channel
code. In [9], the authors have shown that the aggregate EXIT function
of an irregular code containing P component codes can be obtained
from the linear combination of that of its component codes, under the
assumption that the Probability Density Function (PDF) of the LLRs
is symmetric and continuous. More explicitly, the EXIT function of
the proposed inner IR-PLDC scheme is given by:

Γin =
P∑

i=1

λiΓi(Iin, ρ), (8)

where the weighting coefficient λi quantifies the particular fraction
of the input bit stream that is encoded by the i-th component code
and Γi denotes the EXIT function of the i-th PLDC component.

In the following sections, we will characterize each coding block
of the IR-PLDC scheme of Figure 1 using various parameters, which
are optimized from a capacity maximization perspective with the aid
of EXIT charts.

A. Generating LDC Component codes

In this section, we demonstrate how to generate an inner IR-
PLDC coding scheme containing P = 12 components for a MIMO
configuration having M = 2 transmit and N = 2 receive antennas,
when QPSK modulation was employed. It has been shown in [5] that
the maximum achievable spatial diversity order of a LDC(MNTQ)
is N · min(M, T ). We commence by setting T = M = 2 for the
first component. Hence, it has the potential of achieving the maximum
diversity order of D = 4. By setting Q = 1, we are able to search
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Table I
THE P = 12 COMPONENT CODES OF THE IR-PLDC SCHEME OF FIGURE 1

GENERATED FOR A MIMO SYSTEM HAVING M = 2 TRANSMIT AND

N = 2 RECEIVE ANTENNAS.

Index M N T Q Rate D j Complexity
0 2 2 2 1 0.5 4 0 1571

1
...

...
... 2 1 4 1 4086

2
...

...
... 3 1.5 4 1 5030

3
...

...
... 4 2 4 1 5974

4
...

... 3 1 0.33 4 0 3285

5
...

...
... 2 0.67 4 1 8562

6
...

...
... 4 1.33 4 1 12546

7
...

...
... 5 1.67 4 1 14538

8
...

... 4 1 0.25 4 0 5639

9
...

...
... 3 0.75 4 1 18126

10
...

...
... 5 1.25 4 1 24974

11
...

...
... 7 1.75 4 1 31822

for the specific DCM χ, which maximizes the DCMC capacity of
LDC(2221) using [15]:

CML
LDC =

1

T
max

p(K1),··· ,p(KF )

F∑
f=1

∫ ∞

−∞
· · ·

∫ ∞

−∞
p(Y|Kf ) ·

p(Kf )log2

(
p(Y|Kf )∑F

g=1 p(Y|Kg)p(Kg)

)
, (bits/sym/Hz) (9)

where Kf denotes all the possible transmitted vectors, each consti-
tuted by the Q transmitted symbols of K, where we have a total
F = LQ number of possibilities.

Consequently, we can obtain more components by gradually in-
creasing the value of Q in order to increase the rate. We impose the
limit of Q ≤ MT for the sake of maintaining a low complexity,
although employing a higher value of Q is feasible. Hence, by
increasing the value of T and maximizing the corresponding DCMC
capacity of each LDC(MNTQ), we can generate a set of meritorious
LDCs. Naturally, low Q and T values are desirable for the sake of
maintaining a low complexity. The resultant P = 12 component
codes designed for our IR-PLDC scheme are listed in Table I.

The complexity of each PLDC component code is jointly deter-
mined by the precoder’s memory, the MMSE detector’s complexity
and the number of inner iterations j. In order to quantify the
complexity in a unified manner, we count the number of addition
and multiplication operations required to calculate a single LLR
value in the logarithmic domain. Since the number of addition and
multiplication operations can be quantified in terms of the so-called
Add-Compare-Select (ACS) arithmetic operations, the complexity of
each PLDC component is quantified by the ACS operations per
LLR computation. Observe in Table I that when the value of T
is fixed, the complexity is increased by increasing the value of
Q. Furthermore, increasing the value of T typically resulted in a
substantially increased complexity.

B. The number of inner iterations

The number of ’inner’ iterations between the MMSE detector and
the precoder required for each PLDC component of Table I is also
optimized for the sake of achieving the maximum capacity.
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Figure 2. Comparison of the maximum achievable rates for the various
PLDC schemes of Table I having j = 0, 1, 2 inner iterations, when using
QPSK modulation in conjunction with an MMSE detector.

The so-called area property [13] [16] of EXIT charts may be
formulated by stating that the area under the ’outer’ RSC curve is
approximately equal to its code rate Rout. Thus, if we assume that
the area under the EXIT curve of an outer code can be perfectly
matched to the area under the inner code’s EXIT curve at any SNR,
then it is possible to approximate the maximum achievable rate of
a serial concatenated scheme by evaluating the area under the EXIT
curves, given the rate of the ’inner’ IR-PLDC code Rin, which is
expressed as:

C(ρ) = log2(L) · Rin · Rout, (bits/sym/Hz) (10)

when L-PSK modulation is used.
Figure 2 quantifies the maximum achievable rates for the different

PLDC components of Table I using different number of inner
iterations j. For each set of comparisons, the DCMC capacity of
the LDC using Equation (9) is plotted as a benchmarker. For the rate
R3,2224 = 2 PLDC(2224) scheme, we observe a clear gap between
the DCMC capacity and the corresponding maximum rate, when the
number of inner iterations is j = 0. However, when we have j = 1,
the aforementioned rate loss is eliminated and a further increase
of the number of inner iterations j has only a modest additional
rate improvement. In fact, the maximum achievable rate loss is less
than 1%, when we have j = 1. For the PLDC(2222) scheme of
Table I having a rate of R1,2222 = 1, we observe in Figure 2 that
although the aforementioned maximum achievable rate loss compared
to the DCMC capacity is still present, when employing j = 0 inner
iterations, the associated discrepancy is narrower than that seen for
the PLDC(2224) scheme. Observe in Figure 2 for the PLDC(2241)
scheme having a rate of R8,2241 = 0.25 that there is no maximum
achievable rate loss even in the absence of inner iterations.

The above observations are related to the EXIT characteristics
of the LDC MMSE decoding block. When a single symbol is
transmitted, the resultant EXIT curve is a horizontal line, which is
a property of the Gray labelling employed [8]. Therefore, regardless
of the number of inner iterations employed, the MMSE detector of
Figure 1 always outputs the same extrinsic information. When Q is
increased, the resultant EXIT curve become more steep, therefore
higher extrinsic information can be obtained upon increasing the
a-priori information by using a higher number of inner iterations.
Therefore, the resultant maximum achievable rate observed in Fig-
ure 2 has an increasing discrepancy with respect to the DCMC
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capacity, when a higher number of symbols Q is transmitted by each
LDC block. We observe that for the component PLDCs of Table I,
where we have Q > 1, employing j = 1 inner iteration will enable
the system to attain 99% of the DCMC capacity.

C. Optimizing the weighing coefficient vector

Apart from the specific shape of the component EXIT curves, the
aggregate IR-PLDC scheme’s EXIT curve characterized in Equa-
tion (8) is also affected by the weighting coefficients, where λi,
i = (1, 2, · · · , P ) represents the specific fraction of the information
bits fed into the IR-PLDC encoder/decoder of Figure 1. Therefore,
the weighting coefficients λ= [λ1, · · · , λP ] have to satisfy:

1 =
P∑

i=1

λi λi ∈ [0, 1], (11)

and the resultant rate Rin of the inner IR-PLDC is given by:

1

Rin
=

P∑
i=1

λi
1

R(i,LDC)

, (12)

where unity-rate precoders were employed.
In order to achieve an infinitesimally low BER at a specific SNR

ρ, an open EXIT tunnel has to be maintained in the EXIT chart.
Assuming that each component code’s EXIT curve is represented by
l points, the weighted irregular EXIT function Γin of the IR-PLDC
at SNR ρ should be optimized by maximizing the inner rate Rin as
well as by maximizing the open EXIT tunnel area, since this allows
the decoder to minimize the number of decoding iterations required,
as explained further in the last paragraph of this section. The open
EXIT-chart area is given by the square of the EXIT chart matching
error function, which is expressed as:

J(λ1, · · · , λP ) =

∫ 1

0

e(ρ)2di, (13)

where the error function is given by: e(ρ) =


Γ1(IA,1), · · · ΓP (IA,1)
Γ1(IA,2), · · · ΓP (IA,2)

...,
. . .

...
Γ1(IA,l), · · · ΓP (IA,l)







λ1

λ2

...
λP




︸ ︷︷ ︸
Γin

−




Γ−1
rsc(IA,1)

Γ−1
rsc(IA,2)

...
Γ−1

rsc(IA,l)




︸ ︷︷ ︸
Γrsc

(14)

subject to the constraints imposed by Equation (11), where IA,l

denotes the l-th a-priori information input of the PLDC components.
The gradient search method of maximizing J(λ1, · · · , λP ) of

Equation (13) is similar to the algorithm proposed in [9]. More
explicitly, the algorithm starts by setting the inner code rate Rin

to the minimum value. If the set of weighting coefficients hosted
by the vector λ is generated using the gradient search method of
[9] for maximizing the area expression of Equation (13) and an
open EXIT tunnel exists, Rin is increased by a small amount. The
algorithm terminates at the highest possible Rin value, where an open
convergence tunnel may no longer be found.

The reason that our proposed inner IR-PLDC scheme is seeking
the solutions maximizing the area expression of J(λ1, · · · , λP ) is
justified as follows. The benefit of employing irregular inner or outer
codes for an iteratively-detected scheme is to maximize the achievable
rate. When using IRCCs as an outer code, minimizing the EXIT
tunnel area corresponds to maximizing the achievable rate, owing
to the “area property” [13]. In other words, IRCCs aim for finding
an outer EXIT curve that “matches” a given inner EXIT curve as
close as possible by maximizing the area under the EXIT curve. By
contrast, there is no one-to-one relationship between Rin of IR-PLDC
and the area under the EXIT curves. Consequently, the IR-PLDC
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Figure 3. EXIT chart and the decoding trajectory of the RSC(213)-coded
IR-PLDC scheme of Figure 1 recorded at ρ = 0dB using QPSK modulation,
when an MMSE detector was employed.

scheme offers multiple area values under its EXIT curves for any
given rate Rin. Having a larger EXIT tunnel area potentially requires
less iterations to achieve an infinitesimally low BER. Therefore, given
an outer code, the design criterion for the inner IR-PLDC code is to
maximize the inner code rate Rin and simultaneously maximize
the open EXIT tunnel area according to Equation (13).

IV. SIMULATION RESULTS

In this section, we present the EXIT charts of the proposed RSC-
coded IR-PLDC scheme designed for maximizing the throughput at
a certain SNR value, as well as maintaining an infinitesimally low
BER. Later, we will generalize the design process to a wide range
of SNRs. Note that an interleaver length of 106 bits is employed for
the first interleaver of Figure 1.

Figure 3 presents the EXIT chart and the corresponding decod-
ing trajectory of our IR-PLDC scheme designed for operating at
ρ = 0dB, when a half-rate RSC(213) code was employed as
the outer code. The dotted lines represent the EXIT curves of the
P = 12 component codes of Table I. Observe that the area under
the component EXIT curve is increased when the rate is decreased,
which corresponds to different component PLDCs having different
maximum achievable rates. The shape of all the dotted curves is
similar, since they are all combined with the IIR memory-1 precoders.
The solid lines represents the EXIT curves of the outer RSC(213)
code and of the IR-PLDC system having a weighting coefficient
vector of:

λ = [0, 0, 0, 0, 0.82, 0.146, 0, 0, 0, 0.034, 0, 0].

The resultant total rate of the system is Ctotal = Rin · Rout ·
(bits/sym) = 0.5·1.1392·2 = 1.1392 (bits/sym/Hz). By simultane-
ously maximizing Rin and the EXIT tunnel area using Equation (13),
the optimized EXIT curve of the IR-PLDC of Figure 3 exhibits a
significant open tunnel area, where the decoding trajectory of Figure 3
shows that k = 28 outer iterations were required.

The corresponding BER of the IR-PLDC system designed for
achieving an infinitesimally low BER at ρ = 0dB in conjunction
with the RSC(213) code using QPSK modulation is shown in
Figure 4. There is a turbo cliff at ρ = 0dB, when k = 28 outer
iterations were carried out between the RSC(215) code and IR-PLDC
decoders. Given the number of outer iterations and the complexity
of each PLDC component of Table I combined with the RSC(213)
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code required a total of 217 ACS operations. The total decoding
complexity per LLR value at ρ = 0dB was evaluated by considering
the number of iterations as well as each component’s complexity,
which is given by: �213(0dB) = 28 ·(0.146 ·8562+0.034 ·18126+
0.82 · 12546 + 217) = 3.4639 × 105 (ACS).

Naturally, the same design process can be extended to other SNR
values. Figure 5 plots the maximum rates achieved by the proposed
IR-PLDC scheme of Figure 1, when the half-rate RSC(213) code
was combined with QPSK modulation. Each point in Figure 5 was
designed to achieve the maximum rate with the aid of the specific
weighting coefficient vector λ, which is not included here owing to
the lack of space. The dotted lines in Figure 5 represent the DCMC
capacity of the PLDC component codes of Table I plotted using
Equation (9), which approach the MIMO channel’s capacity, when
we have larger Q values. The proposed RSC(213)-coded IR-PLDC
scheme is capable of operating at a low BER for SNRs in excess
of ρ = −7dB and operating as close as about 2.5dB to the MIMO
channel’s capacity, again maintaining an infinitesimally low BER.

However, the achievable rate increase is limited to 2 (bits/sym/Hz)
for SNRs in excess of ρ = 4dB, because the inner IR-PLDC scheme
only supports a rate as high as Rin = 2, which was combined with a
conventional half-rate RSC(213) code. Clearly, a further rate increase
can be achieved, when higher-rate PLDC components are employed.

V. CONCLUSION

In this paper, we proposed a novel IR-PLDC scheme and demon-
strated that it is capable of operating at about 2.5dB from the MIMO
channel’s capacity at a manageable complexity, when it was serially
concatenated with a simple RSC(213) code. Furthermore, we have
shown that the proposed irregular inner scheme becomes capable of
reliably operating for SNRs in excess of −7dB, while maintaining
an infinitesimally low BER. We also proposed a novel method of
optimizing the component LDCs according to their DCMC capacity.
The other coding blocks of Figure 1 and the choice of all the
iterative decoding parameters were also optimized from a capacity
maximization perspective with the aid of EXIT charts.
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