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Abstract

In this paper, we describe a novel bidding strategy that autonomous trading agents
can use to participate in Continuous Double Auctions (CDAs). Our strategy is
based on both short and long-term learning that allows such agents to adapt their
bidding behaviour to be efficient in a wide variety of environments. For the short-
term learning, the agent updates the aggressiveness of its bidding behaviour (more
aggressive means it will trade off profit to improve its chance of transacting, less
aggressive that it targets more profitable transactions and is willing to trade off its
chance of transacting to achieve them) based on market information observed after
any bid or ask appears in the market. The long-term learning then determines how
this aggressiveness factor influences an agent’s choice of which bids or asks to submit
in the market, and is based on market information observed after every transaction
(successfully matched bid and ask). The principal motivation for the short-term
learning is to enable the agent to immediately respond to market fluctuations, while
for the long-term learning it is to adapt to broader trends in the way in which
the market demand and supply changes over time. We benchmark our strategy
against the current state of the art (ZIP and GDX) and show that it outperforms
these benchmarks in both static and dynamic environments. This is true both when
the population is homogeneous (where the increase in efficiency is up to 5.2%)
and heterogeneous (in which case there is a 0.85 probability of our strategy being
adopted in a two-population evolutionary game theoretic analysis).

Key words: Continuous Double Auction, Bidding Strategy, Evolutionary Game
theory.
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1 Introduction

The emergence of software agents that are capable of flexible, autonomous
actions and interactions is changing the online trading landscape [12]. In par-
ticular, one of the most significant applications of such agents is in the Con-
tinuous Double Auction (CDA) [9], where multiple buyers and sellers compete
with one another to buy and sell goods and services. Such CDAs are one of
the most common forms of marketplaces and have emerged as the dominant
financial institution for trading securities and financial instruments. Indeed,
today, the major exchanges like the NASDAQ and the New York Stock Ex-
change (NYSE) and the major foreign exchanges (FX) use variants of the
CDA institution (with the total value of trades on the NYSE standing at
around a yearly 12.4 trillion dollars 1 and foreign exchanges worth in excess
of 1.9 trillion dollars 2 of daily transactions). Other significant applications
are in market-based control [2], where CDAs provide a dynamic and efficient
approach to the decentralised allocation of scarce resources. Examples of such
market-oriented applications range from the allocation of air pollution permits
[15], to air-conditioning systems [3], to complex resource allocation problems
where suppliers have limited capacity and consumers have inelastic demand
[8]. In all of these cases, the CDA is used because it exploits the dynamics of
the free market to balance demand and supply efficiently in a highly respon-
sive and decentralised system. This is in contrast to most auctions that have a
single, centralised auctioneer responsible for the matching of participants and
resources in the market. In the CDA, on the other hand, the resource alloca-
tion is an emergent behaviour of the complex interactions of the individual
trading agents, with transactions corresponding to allocations. Thus, there is
no single agent responsible for the allocation. This decentralisation allows the
system to be very robust because its performance degrades gracefully if agents
fail, rather than having a single point of failure in the case of the centralised
auctioneer.

Given its prominence and importance, considerable research endeavour has
been invested into devising strategies for agents that participate in CDAs.
However, there is no known dominant strategy [9]. Thus, many strategies have
been developed as heuristic-based, decision-making algorithms that attempt to
best exploit the observable market information available to the agents in order
to maximise their profits (see Section 3). Indeed, several of these strategies
have been shown to outperform human traders in laboratory experiments [7].
However, we believe that more efficient strategies can still be developed and
in this paper we develop just such a strategy.

1 http://www.nyse.com/pdfs/movolume0505.pdf
2 http://www.bis.org/publ/rpfx05t.pdf
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In particular, to date, the extant CDA strategies have typically been developed
assuming that the market is static, meaning there is no change in demand and
supply at the beginning of each trading day. However, real markets such as
NASDAQ and the NYSE are typically very dynamic, with changes frequently
occurring (they are called market shocks). Thus, we believe the efficiency of
strategies in dynamic environments is central to their application in practice.
Now, although some of the designers have made initial attempts to show their
strategies will still do well in dynamic markets, these strategies were not de-
veloped explicitly for such environments. This is a shortcoming because we
believe that there are fundamental differences between static and dynamic
environments. Specifically, these are primarily to do with the sporadically
changing competitive market equilibrium price which is where demand meets
supply in the market (see Section 2 for more details). When we have a mar-
ket shock, the micro-economics of the free market dictates that the market
dynamics, through the interaction of the traders, will force the transaction
prices to a new competitive equilibrium price [16]. Given this, the efficiency
of a strategy depends on how effective it is at adapting its bidding behaviour
to the new market conditions, and thus to the new competitive equilibrium
price. From this, our intuition is that different behaviours are needed when the
market is relatively stable and when it is changing. In particular, in the static
case, the agent can be effective by assuming that the competitive equilibrium
does not change significantly, whereas in the dynamic case, it can make no
such assumption and must learn, assuming that this competitive equilibrium
may change. Furthermore, for maximum generality, we want to ensure that
our strategy performs well in homogeneous populations in which all the agents
use it (as would typically be the case in market-based control applications)
and in heterogeneous populations in which agents can adopt a range of al-
ternate strategies (as would be the case in financial institutions). Given this,
we simply assume that an agent is selfish and tries to maximise its individual
return and that it is unaware of whether it is trading in a homogeneous or a
heterogeneous environment.

Against this background, we have developed a novel bidding strategy for
CDAs. In particular, we employ a short-term and a long-term learning mech-
anism to update the agent’s bidding aggressiveness 3 to remain competitive in
the market. We focus on aggressiveness, in particular, as we believe it is the
key determinant of success in the market. It is central because it describes how
the agent manages the trade off between profit and probability of transaction.
Thus, an aggressive trading agent tries to increase its chance of transacting by
placing bids, that are not necessarily highly profitable. In contrast, its passive

3 In some work, the trader’s risk attitude has been used to describe broadly the
same behaviour [1]. However, we believe that such a property is intrinsic to the
trader, and thus, is not an appropriate term to describe our changing behaviour in
this case.
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counterpart tries to transact at more profitable prices, but has to trade off
its chance of actually transacting. When the agent is not able to transact, it
could choose to become more aggressive, such that it increases its chances of
being able to transact, and, conversely, when it can transact, it could choose
to become more passive in order to try to increase its profits. In other words,
the agent could react to the market information by being more or less aggres-
sive based on how it is performing in the market. Given this, we employ a
short-term learning mechanism to fine-tune the agent’s aggressiveness when-
ever it submits a bid or an ask, or a transaction occurs (if the bid and the ask
match) in the market. The actual way in which the degree of aggressiveness
translates to a bid or an ask to submit in the market can be fixed or can be
linear, in which case the aggressiveness would be similar to the agent’s profit
margin. However, we believe that this mapping should be updated depending
on the prevailing market conditions. Thus, we employ a long-term learning
strategy that adapts this mapping, in a non-linear fashion, to the changing
conditions and, in particular, to the volatility of transaction prices. We refer
to this learning as long-term because the occurrence of bids and asks is a
fraction of the number of transactions 4 that occur and because the benefit
of learning this mapping is only really observable over a number of trading
days. The purpose of the long-term learning is especially evident in dynamic
markets where market conditions can change drastically and a different map-
ping should then clearly be adopted. Hereafter, we refer to our strategy as the
Adaptive-Aggressiveness (or AA) strategy.

This work advances the state of the art in the following ways. First and most
importantly, we develop a novel bidding strategy, AA, with a short-term and
a long-term learning mechanism that adapts to market conditions by being
more or less aggressive. We then empirically show that our strategy outper-
forms (by up to 5.2% 5 ) the state of the art in homogeneous populations and

4 During a trading round, multiple bids and asks are submitted until a bid and an
ask match and a transaction occurs at the end of the round. There are typically
several trading rounds in a trading day.
5 While at first glance, the improvements may seem relatively small, there are a
number of contextual factors that should be taken into account. First, the CDA has
already been shown to be an efficient mechanism in many settings regardless of the
trading strategy [11], such that the scope for improvement is limited. Second, over
the past 15 years, several strategies have been designed and improved upon, to be
ever more efficient. The evaluation of these strategies in a common, but static, mar-
ket setting [22] shows how they have systematically improved starting with the ZI
strategy [11] (with a baseline market efficiency of 98.3%), through the ZIP strategy
[6] (with a market efficiency of 99.7%) and finally with the family of GD strate-
gies [10] (with a market efficiency of up to 99.7%). The work on the GDX strategy
[21] showed that GD [10] was outperformed by the improved GDX which extracted
1.0% more profit, though the paper fails to provide the market efficiency using the
GDX strategy. In our work, we were able to show that the AA strategy improves
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heterogeneous populations (by being dominant or with probabilities of over
85% of being adopted in all the different environments we consider). Second,
we advance the state of the art in the methodology for analysing the CDA
within both homogeneous and heterogeneous populations. For the former, we
look at the daily market efficiency and price volatility, rather than simply the
overall efficiency as is commonly done in the literature. This is an advance
because our methodology provides more insights into how the efficiency of a
strategy changes as the strategies learn over the different trading days and
because it identifies the drastic decrease in efficiency after a market shock.
For the latter, we develop a methodology with a novel two-population game
theoretic model that analyses the buyers’ and sellers’ strategic behaviours in
the CDA. Here, we advance the state of the art by analysing the evolution
of buyer and seller strategies in the market which contrasts with the current
state of the art that assumes an agent adopts the same strategy as both a
buyer and a seller. Finally, our work is the first to systematically compare
state of the art CDA strategies in a wide variety of (static and dynamic) mar-
ket settings, based on different types of demand and supply. It is also the first
work that considers a market setting whereby the equilibrium price changes
constantly over the trading days, which better reflects real markets, and, in-
deed, we considered data from a real financial market when designing such a
setting.

The remainder of this paper is structured as follows. We begin, in Section
2, with a detailed description of the CDA mechanism. We provide a detailed
discussion of previous strategies that have been developed for the CDA and
methodologies that have been used to analyse their effectiveness in Section 3.
Section 4 details the AA strategy. We provide an empirical evaluation of AA
in both static and dynamic environments for both homogeneous and hetero-
geneous populations in Section 5. Section 6 concludes.

2 The Continuous Double Auction Mechanism

Market trading is governed by a market mechanism; defined by a market pro-
tocol that determines the nature of bids and asks allowed in the market, the
clearing rule that indicates when a transaction occurs, the pricing rule that in-
dicates the price at which a transaction occurs and the information published
to the buyers and sellers in the market. The CDA is one such mechanism.
However, there exist many variants, based on different market protocols. For
example, in financial institutions like the NYSE, some traders have different

the market efficiency of the CDA significantly (with a considerably bigger leap than
moving from ZIP to GD or to GDX), demonstrating a genuine advancement of the
state of the art.
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levels of privilege with better access to other traders’ messages than is avail-
able to unprivileged traders (usually to improve the overall efficiency of the
system) or Dash et al. describe a variant of the CDA for market-based control
applications [8] (with modified clearing rules for inelastic demand).

These examples of the CDA are highly domain specific and difficult to gen-
eralise from. Thus, most research in this area (e.g. [22, 6, 11]) has generally
been structured around the market protocol initially proposed by Smith [20].
In this, multiple buyers and sellers are allowed to submit bids and asks in a
market for homogeneous, single-attribute goods, and the market clears (with a
single trade) whenever a bid and an ask match (hence, the continuous nature
of the CDA), and clears at the average of the bid and the ask. Furthermore,
the protocol includes the NYSE spread-improvement and the no-order queuing
rules. The former requires that a submitted bid or ask improves on the out-
standing bid (the highest unmatched bid) or the outstanding ask (the lowest
unmatched ask) respectively, while the latter specifies that offers are single-
unit, are not queued in the system, and are simply erased when a better offer
is submitted. The CDA lasts several trading days, with a trading day itself
lasting several trading rounds which is the period during which bids and asks
are submitted (with the bid-ask spread decreasing) until the market clears.

To more formally analyse the CDA, we now explore some of these basic notions
in more detail:

Definition 1 A trading day is the period (with a deadline) during which
traders are allowed to submit bids and asks (resulting in transactions when-
ever these match), at the end of which the market closes. At the beginning
of a trading day, traders are endowed with a set of goods to buy or sell (that
determine the market demand and supply).

Definition 2 The outstanding bid, obid, is the current maximum (uncleared)
bid submitted in the market.

Definition 3 The outstanding ask, oask, is the current minimum (uncleared)
ask submitted in the market.

Definition 4 The bid-ask spread is the difference between obid and oask.

Definition 5 ∆ is the minimum bid or ask increment in the market.

Definition 6 MAX is the maximum bid or ask allowed in the market (to
prevent unreasonably high asks and speed up the trading process).

Definition 7 A trading round is the period during which bids and asks are
submitted until there is a match and a transaction occurs. There are typically
several trading rounds in a trading day. At the beginning of the trading round,
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obid = 0 and oask = MAX.

Furthermore, as defined by the model proposed by Smith and adopted in the
literature, at the beginning of each trading day, each agent is endowed with a
set of limit prices corresponding to the goods it would like to buy or sell:

Definition 8 The limit price is the maximum bid a buyer is currently will-
ing to offer, and the minimum ask a seller is willing to offer.

Definition 9 `i is the limit price of buyer i; that is the highest bid price it is
willing to submit.

Definition 10 cj is the limit price of seller j; that is the lowest ask price it
is willing to submit.

Finally, we define the following notions that we employ to analyse and evaluate
the CDA mechanism:

Definition 11 The competitive market equilibrium is when demand meets
supply in a free market populated by rational and selfish agents. According to
the classical micro-economic theory, the transaction prices in the CDA are
then expected to converge towards that competitive equilibrium price p∗. As p∗

can only be calculated if the demand and supply are available, which is not the
case here because of the decentralised nature of the CDA, p∗ cannot be known
a priori.

Definition 12 The market efficiency is the ratio of all agents’ surpluses
in the market to the maximum possible surplus that would be obtained in an
allocation where the profits of all buyers and sellers are maximised.

Definition 13 The efficiency of a bidding strategy is the ratio of the
profits of the agents adopting that strategy during a trading day to the maxi-
mum profit these agents could extract in an efficient, centralised allocation. In
the homogeneous scenario, this is identical to the market efficiency, while in
a heterogeneous scenario, the mean efficiency of all the strategies is equal to
the market efficiency.

In our work, we consider a discrete-time simulator of such a CDA model,
and at each time step, an agent is randomly triggered to submit a bid or an
ask in the market. In line with previous work, we impose a deadline on the
duration of a trading day with the auction closing after 1000 time steps. Now,
for controlled experiments, we specify single-unit or multi-unit allocations 6

6 A single-unit allocation is when a trader is given a single unit (with a corre-
sponding limit price) to buy or sell. A multi-unit allocation is when a trader is
given multiple units (with a corresponding set of limit prices) to buy or sell.
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endowed to buyers and sellers at the beginning of a trading day, to induce a
desired demand and supply for the market. In particular, limit prices are drawn
from uniform distributions Ub and Us for buyers and sellers respectively. We
chose a uniform distribution in order to obtain an expected linearly decreasing
demand curve and an expected linearly increasing supply curve, commonly
found in the micro-economics literature [16]. For the purposes of this paper, we
consider the following different uniform distributions to model representative
(symmetric 7 and asymmetric) markets similar to those considered in previous
studies [5, 6, 22] (see Figure 1), and we further describe how we use such
markets to induce market shocks.

• Market 1 (M1): Ub = U(1.5, 4.5) 8 and Us = U(1.5, 4.5). This is a symmetric
market that has an expected competitive equilibrium price, p∗, = 3.0.
• Market 2 (M2): Ub = U(1.5, 4.5) and Us = U(2.8, 3.2). An asymmetric

market with a flat supply curve. p∗ = 3.0.
• Market 3 (M3): Ub = U(2.8, 3.2) and Us = U(1.5, 4.5). An asymmetric

market with a flat demand curve. p∗ = 3.0.
• Market 4 (M4): Ub = U(2.5, 5.5) and Us = U(2.5, 5.5). A symmetric market

with p∗ = 4.0.

Definition 14 A market shock is a sudden change in agents’ preferences
(their limit prices) and, hence, in the market demand and supply, but not
necessarily in the competitive equilibrium price. In our case, the shock occurs
at the beginning of a trading day with the new set of endowment of limit
prices to the trading agents. There are different types of dynamic changes in
real markets that are not referred to as market shocks, e.g. rallies (sustained
upward movement of the competitive equilibrium price), sell-offs (sustained
downward movement of the competitive equilibrium price), movements/trends
(less sustained upward or downwards shifts). However, because it is not a
central aspect of this work, we generalise the meaning of market shocks to
cover all of these in this paper.

In more detail, M1 and M4 have symmetric demand and supply (they dif-
fer only in their competitive equilibrium price). By considering cases with a
flat demand (M3) or a flat supply (M2), we want to see how such extreme
asymmetry will affect the efficiency of buyer and seller strategies in the CDA.
Specifically, we did not want to constrain our study to symmetric demand
and supply, which others have done [22, 21], because we want to contrast the
efficiencies of strategies in markets with different demand and supply, and ob-
serve what effect this has on the strategic interactions of agents. Finally, the

7 In a symmetric market, the ratio of the gradient of the demand curve and that of
the supply curve is -1. M1 is an example of a symmetric market, while M2 is that
of an asymmetric market (see Figure 1).
8 U(u, v) is a uniform distribution between u and v.
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Fig. 1. Expected demand and supply of markets M1, M2, M3 and M4. The dashed
arrow points to the competitive equilibrium price, p∗.

purpose of M4 is to observe how the strategies perform when the competitive
equilibrium price changes during a market shock. This is important to see how
fast the strategies can adapt to the new equilibrium, given that the slower they
adapt, the longer they remain inefficient.

In a static environment, a CDA typically lasts several trading days, with
trading agents receiving the same set of limit prices at the beginning of each
trading day. However, because dynamic environments are commonplace (see
Section 1) we also need to investigate the efficiency of our strategy in such
situations. To this end, as per previous work including Smith’s, we induce a
market shock by changing the market demand and supply. This is effected by
changing the endowment of limit prices at the beginning of a trading day. For
example, for a CDA lasting 20 trading days, we could use M1 for the first 10
and M4 for the last 10 trading days, effectively inducing a shock on Day 11
(see Figure 2). Hereafter, we identify a market shock (MS) by the different
markets it involves, and in our example, such a shock would then be identified
as MS14 to signify the fact that it is moving from M1 to M4.

Furthermore, and in order to be more realistic, we consider a scenario based
on real market data from NASDAQ. In particular, we consider the history of
Google shares (NASDAQ:GOOG) to analyse the performance of CDA strate-
gies in a market where the demand and supply changes constantly every day
(which could potentially affect learning strategies). The purpose of using real
market data is to analyse how the changing demand and supply affects the
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Fig. 2. Example of a transaction history with scenario MS14.

efficiency over trading days, rather than during a trading day. Given this, such
an estimation of the equilibrium price is satisfactory for the CDA model where
we assume that the demand and supply does not change during a trading day.
Now, because in a real market, the market demand and supply changes during
the trading day (while it does not in the standard CDA model), we estimate
the equilibrium price (see Figure 3) as an average of the highest and the low-
est transaction prices during each trading day. Within this context, in our
experiments, we consider two specific sub-markets. The first one is based on
the segment A to B (see Figure 3), which we will refer as the GOOG market
hereafter. This is typical of the market fluctuations that are most common in
real markets. The other one is a more dynamic market, based on segment C
to D (see Figure 3), which we will refer to as GOOGshock, where the market
experiences a sharp and sustained drop in the transaction prices.

3 Related Work

Research on CDAs was significantly advanced by Smith’s seminal work [20]
on competitive market behaviour. He showed that in CDAs populated by a
relatively small number of selfish human traders, the market efficiency achieved
in such a decentralised environment, where no single agent has complete and
perfect information about the system, was close to one (the maximum possible
value — see Definition 12). This result was ground-breaking as it showed that
markets governed by a decentralised mechanism, such as the CDA, do not
have to be large to be efficient, as had previously been assumed [16]. As we
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Fig. 3. History of GOOG share prices (July 2007 to December 2007). Segment A
to B corresponds to the GOOG market while segment C to D correspond to the
GOOGshock market.

will see, many subsequent research endeavours in this area have been heavily
influenced by this work and we have also adopted the same broad methodology
for the market and agent setup. In this section, we review, in turn, the work
on strategies for the CDA and on analysing strategic interactions in such an
institution since both of these are necessary to understand the contributions
of this work.

3.1 Strategies for CDAs

In more detail, many strategies for the CDA have subsequently been devel-
oped, and over the last decade, there has been considerable emphasis on strate-
gies for software trading agents with the emergence of electronic markets. In
1992, for example, the Santa Fe Trading Agent Competition [9] was organised
to find the most efficient CDA strategy (see Definition 13) at the time. The
competition winner was Kaplan [9] which is categorised as a sniping strategy
that reacts to current market conditions and submits an offer to buy or sell
only when one of the following conditions is met:

(1) For the buyer (seller), the best ask (bid) is less (higher) than the minimum
transaction price in the previous trading day.

(2) For the buyer (seller), the best ask (bid) is less (higher) than the maxi-
mum transaction price in the previous trading day and the ratio of the
bid-ask spread and the best ask (bid) is less than some spread factor,
while the expected profit is more than some minimum profit factor.
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(3) The fraction of time remaining in the trading day is less than some time
factor (hence the reference to being a sniping strategy).

However, it was also shown in an evolutionary tournament 9 that the Kaplan
strategy does not perform well when a majority of the trading agent popula-
tion adopt it [9]. This is because Kaplan has a simple reactive behaviour and
does not learn to be more efficient in the market given the changing market
conditions. Indeed, it works primarily by exploiting the more complex (adap-
tive) behaviours of other strategies that are learning to be more efficient in
the market, and as it becomes a bigger proportion of the market, there are
fewer agents to exploit. Hence, its performance decreases.

Another important piece of work in the literature is the Zero-Intelligence (ZI)
strategy by Gode and Sunder [11]. A ZI agent makes an uninformed, but prof-
itable decision that is not based on observed market information. In particular,
a ZI buyer submits an offer drawn from a uniform distribution between 0 and
its limit price, and a ZI seller between its limit price and the maximum offer,
MAX, allowed in the market. Gode and Sunder showed that CDAs popu-
lated by these non-intelligent trading agents were still highly efficient. They
then conjectured that the high market efficiency was principally due to the
structure of the market mechanism (i.e. its protocol), rather than how intel-
ligent the agents were. Their work was subsequently critiqued by Cliff and
Bruten who argued that the high efficiency observed was in fact an artefact
of the symmetric demand and supply considered, and that at least a mini-
mal intelligence is necessary to achieve efficiency that is comparable to that
of CDAs with human traders [20]. They justified their critique by develop-
ing the Zero-Intelligence Plus (ZIP) strategy [6] which, indeed, was shown to
achieve market efficiency close to that of human traders, and to considerably
outperform the ZI strategy. The ZIP strategy’s minimal intelligence is that
it learns its best profit margin (to maximise its profits while attempting to
trade) given a set of six different rules that decide whether to increase or de-
crease the profit margin based on market information. In particular, the profit
margin is updated after every market event (a bid or an ask being submitted,
or a transaction occurring), and there are 8 parameters covering things such
as the learning mechanism (including the learning rate and the momentum
coefficient 10 ) that determines how this margin is updated, the initial profit
margin and the relative and absolute increase and decrease in profit margin.

9 In an evolutionary tournament, at the beginning of each run of the CDA, the
proportion of strategies being adopted corresponds to their relative efficiencies [9].
Thus, the more efficient strategies will be more common in the market.
10 The momentum-based update of the ZIP strategy considers the movement of the
bids and asks submitted in the market to minimise the effect of high frequency
change in these bids and asks. The momentum coefficient is then the weight given
to previous bids and asks [6].
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An alternate approach is adopted by the GD strategy [10] and its subsequent
extension GDX [21]. GD is an expected profit-maximising and belief-based
strategy. Specifically, it calculates its belief that a bid or an ask will be ac-
cepted in the market based on a set of the most recent transactions and sub-
mitted, but unaccepted, bids and asks, and the expected profit associated with
such bids and asks. Then, the bid or ask that maximises the expected profit
is submitted in the market. GDX calculates the belief in a similar manner,
but uses dynamic programming (coupled with the expected profit maximisa-
tion process) to decide on the best price and when to submit a bid or an ask.
This improved version adds another dimension to the decision-making pro-
cess, namely time as the expected number of bidding opportunities before the
auction closes. This means the GDX agent has the opportunity to trade later
on during the trading day and can thus wait for more profitable transactions.
The GD family contrasts with ZIP particularly in how the latter learns its
profit margin. In fact, ZIP uses a scalar parameter, based on the latest bid or
ask or transaction price, while GD builds up its belief using a set of bids, asks
and transaction prices over a number of the most recent trading rounds. The
GD approach is significantly more computationally intensive than the ZIP ap-
proach, particularly when coupled with the dynamic programming, but has
been proven to be more effective in symmetric markets given homogeneous
and heterogeneous populations [21].

Other strategies have also been developed, including the FL strategy [13] which
uses fuzzy logic to form a bid or an ask to submit in the market and the mod-
ified Roth-Erev strategy based on a myopic reinforcement-learning algorithm
[17, 18]. However, in this paper, we will consider only ZIP and GDX when
benchmarking our AA strategy. We chose these because they are the two most
widely used benchmarking strategies in the literature (being used in [7, 28]).
Moreover, they have also been shown to be the most efficient [22, 21].

3.2 Evaluating Strategic Interactions in CDAs

Given the benchmarks, we now require a methodology for analysing the strate-
gic interactions of agents adopting our strategy or these benchmarks in both
homogeneous and heterogeneous populations. For the homogeneous case, the
emergent behaviour of the market is most interesting from a system designer’s
perspective. For the heterogeneous case, the emergent behaviour of the market
is also of interest, though, from an agent’s perspective, the efficiency of the
different strategies in the market is also important. Thus, these two types of
population require a different type of evaluation methodology and, so, we deal
with each in turn.

In homogeneous populations, previous work has typically looked at the aver-
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age efficiency of a strategy over several trading days, in static markets with
symmetric demand and supply (e.g. [22, 10]). However, we believe this has a
number of shortcomings.

First, analysing the daily efficiency of a strategy provides more insight into
how effective it is in learning from market interactions. This view is partly
supported by [6], though they focus on the daily price volatility. Specifically,
we believe that as the agent learns to be more competitive in a static market
and the transaction prices converge towards the competitive equilibrium price,
we expect its efficiency to improve. Thus, it is important to measure efficiency
on a daily basis because it gives us insights into how the behaviour of the
market is changing and, in particular, how it is improving. Moreover, such
observations would not be possible if we just focused on average efficiency
because we end up with a scalar value that does not say anything about the
trend of the daily efficiencies.

Second, we believe that daily price volatility, α, should also be looked at. To
date, however, only Cliff and Bruten consider such a metric:

α =
1

p∗

√∑N
i=1(pi − p∗)2

N
(1)

where pi is the price of transaction i, and N is the number of transactions over
which we are investigating the convergence. Because the competitive market
equilibrium is usually central in a strategy, the price volatility, calculated as
Smith’s parameter (see Equation 1), is important because it gives insights
into how the agents adjust their behaviours such that the transaction prices
converge to that equilibrium. The rate of convergence usually determines how
fast the market reaches a high efficiency and, thus, is useful in analysing the
effectiveness of a strategy in a homogeneous population.

Third, only Cliff and Bruten have looked at dynamic environments with differ-
ent market demand and supply. However, they only describe how transaction
prices change, and not how daily efficiency and price volatility change in such
environments. This is important because, as discussed in Section 1, we are
considering decentralised resource allocation in both static and dynamic en-
vironments. Thus, it is interesting to analyse how daily efficiency and price
volatility change in both types of environments. Furthermore, because demand
and supply cannot be known a priori, we must ensure that the strategies are
evaluated in markets with different types of representative demand and sup-
ply, and not simply the standard cases (with symmetric demand and supply)
to ensure the significance of our analysis.

In sum, given these shortcoming, we will use an analytical method that consid-
ers both market efficiency and price volatility, on a daily basis, to highlight this
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learning in both static and dynamic markets with different market demand
and supply (see Section 2 for more details).

When we consider methodologies for evaluating strategies in heterogeneous
populations, we come across two principal approaches. The first one (adopted
in [22, 21, 27]) consists of comparing the efficiency of strategies in balanced
populations (where strategies are adopted in equal proportions). However,
this approach fails to consider unbalanced populations where strategies are
present to different degrees. The second one, proposed by Walsh et al. (2002)
and adopted in [26, 18], does allow unbalanced populations. This approach
is important because a strategy might perform better or worse based on the
number of buyers and sellers that adopt it, an insight which would allow us to
better evaluate a strategy and, thus, we consider this approach in this work.

In particular, Walsh et al. propose an evolutionary game-theoretic (EGT)
approach based on computing the mixed-Nash equilibrium of heuristic strate-
gies and the dynamics analysis of equilibrium convergence [29]. Such an EGT
analysis is insightful because it has been shown to approximate the learning of
agents (using a standard learning technique such as reinforcement learning) in
a multi-agent system [23, 24], which, in our case, translates to traders learning
to adopt the better strategies in the market. Now, because an EGT analysis is
infeasible for all but the simplest games (such as the Prisoner’s Dilemma [29]),
Walsh et al. describe how complex games that involve repeated interactions
with more elaborate actions and payoffs, can be made amenable to such anal-
ysis. Specifically, their model considers the high-level, heuristic strategies of
the trading agents as simple actions, and the payoff to these strategies is the
average profit extracted in the market (by so doing, they essentially abstract
a complex iterated game to a simple normal-form one). To illustrate their ap-
proach, they apply it to two different games, namely the Automated Dynamic
Pricing (ADP) game and the CDA game. In the former, they analyse how sell-
ers endowed with a set of heuristic strategies interact in the market, and what
strategies these sellers are most likely to adopt. In the latter, they consider
the strategic interaction of agents that use the same strategy as a buyer and
a seller. Their methodology has now been widely adopted and, in particular,
[18] used it to compare two different auction mechanisms (the continuous and
the call double auction mechanism) where similar strategies were available for
both.

The EGT approach to evaluating strategies in heterogeneous populations (in
the more general case of unbalanced populations) is indeed more insightful
than simply comparing the efficiencies of strategies in balanced populations.
However, a key assumption of this approach is that an agent will adopt the
same heuristic strategy even when it has to perform different roles (such as
being a buyer and a seller). In games like the ADP, where agents have a
single role (as a competing seller), such an assumption does not constrain
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the analysis, and their methodology is appropriate. However, in double-sided
games, like the CDA, such an assumption is both unrealistic and unnecessar-
ily restrictive. In practice, buyers and sellers usually have different bidding
behaviours whose efficiency depends on a number of factors including what
strategies other buyers and sellers adopt, and the demand and supply of the
market then determines the complex interactions of these strategies which in
turn, determines their overall effectiveness. To maximise its profit, we believe
an agent should be allowed to select whatever is the best strategy for it when
acting as a buyer and whatever is the best for it as a seller. The present con-
straint of compromising on both and having to select the same strategy for
both roles can only have a negative effect on the agent’s economic efficiency.
We believe that such an assumption should not be made because this ap-
proach may well miss some important phenomena. Thus, an EGT approach
to analyse how the buyer and seller strategies separately evolve in the market
is needed. Now, just such an approach is developed in [25] and it is shown
to offer new insights into the strategic behaviour of agents in the CDA when
compared with Walsh et al.’s model. Given this, we also deploy this method
in this work (see Subsection 5.1.4 for more details).

4 The AA Bidding Strategy

In this section, we describe our AA strategy in detail. As argued in Section
1, given that an agent can make a more informed decision based on every
additional piece of information observed in the market, being adaptive to
new market conditions can allow it to be more profitable. Here, the market
conditions describe all observed information and how it leads to the history of
transaction prices and the current outstanding bid and ask. For this reason, in
the AA strategy, we adapt the degree of aggressiveness in the agent’s bidding
strategy to reflect its beliefs about the prevailing market situation. Specifically:

Definition 15 Aggressiveness is defined as the inclination to interact more
actively in the market. The aggressive trader submits better offers than what
it believes the competitive equilibrium price to be, to try and improve its chance
of transacting, and trades off profit for that purpose. The passive trader is less
inclined to transact and more inclined to try and win a profitable transaction
and thus submits offers that are worse than what it believes the competitive
equilibrium price to be. The active trader submits offers at what it believes is
the competitive equilibrium price, which is the expected transaction price.

Thus, the agent can adopt behaviours that have different levels of aggressive-
ness, r ∈ [−1, 1], ranging from aggressive (r < 0), through active at r = 0, to
passive (r > 0), coupled with a learning mechanism to decide upon this level.
Specifically, an agent that adopts a passive strategy waits for more profitable
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transactions than its estimate of p∗ (hereafter the estimate is denoted by p̂∗)
and is willing to trade off its chance of transacting for higher expected profit.
In contrast, an aggressive strategy trades off profit to improve its probabil-
ity of transacting in the market. The active agent attempts to transact at p̂∗

which is the expected transaction price. Now, because market conditions keep
changing, different levels of aggressiveness are likely to be best at different
times and so the agent needs a means for updating r. Thus, an AA agent has
two principal decision-making components: (i) a bidding one that specifies
what bid or ask should be submitted based on its current degree of aggres-
siveness, and (ii) a learning mechanism to update its behaviour according to
the prevailing market conditions. In more detail, these two components can
be represented by two distinct layers, the bidding layer and the adaptive layer
(see Figure 4).

Fig. 4. The AA bidding strategy.

The first layer determines which bids or asks to submit given a set of bidding
rules (see Subsection 4.4). These rules specify how to react to the current
market conditions given the target price τ which represents the agent’s most
competitive price in the market. A bid (or ask) is competitive if it is the agent’s
most profitable bid (or ask) that it believes would be accepted in the market.
Note that a bid is always less than or equal to, and the ask always more than
or equal to, its limit price. This is similar to the price given by the ZIP agent’s
profit margin and the price that maximises the GDX agent’s expected profit.
Now, the aggressiveness model, as described in detail in Subsection 4.2, gives
a mapping function to τ of the agent’s current degree of aggressiveness, its
limit price, p̂∗ (which is provided by the equilibrium estimator described in
Subsection 4.1), and an intrinsic parameter θ. In particular, θ determines the
shape of that mapping function (see Subsection 4.2 for more details).
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The second layer represents the adaptive part of the strategy where the agent
updates its bidding behaviour, when triggered by a market event (when a
transaction occurs or a new bid or ask is submitted). This update causes the
agent to adopt a more passive behaviour if it believes it can transact at a higher
profit or a more aggressive one if it believes it is targeting too high a profit to
transact. In particular, we have short-term and long-term learning mechanisms
that update the agent’s bidding behaviour. The former updates the degree of
aggressiveness, r, whenever a bid or ask is submitted and is described in more
detail in Subsection 4.3.1. The latter updates θ in the aggressiveness model
after every transaction and is described in more detail in Subsection 4.3.2.

Each component of our strategy is now described in turn, in the following
subsections, before the efficiency of the strategy is empirically benchmarked
(in Section 5).

4.1 The Equilibrium Estimator

Because p∗ cannot be known a priori, we use the moving average method for
calculating it, based on the history of transaction prices (see Equation 2).
We make this choice because the moving average is an objective analytical
tool that gives the average value over a time frame spanning from the last
transaction. Moreover, it is sensitive to price changes over a short time frame,
but over a longer time span, is less sensitive and filters out the high-frequency
components of the signal within the frame. Moving average thus allows us to
emphasise the direction of a trend and smooth out large price fluctuations
and, thus, we believe this is a reasonable choice. Based on our assumption
that the transaction prices converge to the competitive equilibrium price, we
introduce the notion of recency in the moving average by giving more weight
to the more recent transaction prices. Specifically, Equation 2 describes how
we calculate the estimate of the competitive equilibrium price, denoted by p̂∗,
given a set of the N most recent transaction prices:

p̂∗ =

∑T
i=T−N(wi × pi)

N
where

T∑
i=T−N+1

wi = 1, wi−1 = ρwi (2)

where (wT−N+1, . . . , wT ) is the weight given to the N most recent transaction
prices, (pT−N+1, . . . , pT ), and T is the latest transaction. Based on simulations,
we set ρ to a value of 0.9 to emphasise any converging pattern in the history
(see Figure 9 for an example).
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4.2 The Aggressiveness Model

The role of the aggressiveness model is to generate the current target price,
τ , given the agent’s current degree of aggressiveness r. In this context, an
agent can be of two types; namely, intra-marginal and extra-marginal. A buyer
(seller) is intra-marginal if its limit price is higher (lower) than the competi-
tive equilibrium price. In contrast, the extra-marginal buyer’s (seller’s) limit
price is lower (higher) than the competitive equilibrium price. Now, in a cen-
tralised mechanism with an efficient allocation (market efficiency is 1), only
intra-marginal agents transact, while extra-marginal ones do not. However, in
a decentralised mechanism, while intra-marginal agents are expected to trans-
act, and extra-marginal counterparts are not, the latter do sometimes succeed
in transacting. This is because transaction prices are never exactly at p∗, and
thus, extra-marginal buyers can exploit asks below p∗, and extra-marginal sell-
ers bids above p∗. In such cases, when the extra-marginal traders do transact,
the allocation is no longer efficient and the market efficiency dips below 1.

Our aggressiveness model differs for these two type of traders fundamentally
because of their limit prices and whether they are expected to transact given
p∗. Given this, we consider them each in turn.

First, we consider the intra-marginal trader. In its aggressiveness model, a
target price equal to p̂∗ implies that the trader is active. When an intra-
marginal agent adopts a passive behaviour, it considers a target price that is
below (for the buyer) or an ask that is above (for the seller) p∗, in order to
obtain a higher (than expected at p̂∗) profit margin. Conversely, an aggressive
attitude implies that the intra-marginal trader targets bids above (asks below)
the competitive equilibrium price, which improves the probability of its bids
(asks) being accepted (but decreases its profit margin).

For the intra-marginal aggressiveness model, we identified the following con-
straints that it should satisfy over the different degrees of aggressiveness. In
particular, when the buyer is completely aggressive (r = −1), it targets a bid
at its limit price and when it is completely passive (r = 1), it targets a bid
at 0 (for maximum profit but no chance of actually transacting). The active
buyer (r = 0) targets a bid at p̂∗. Therefore, the aggressiveness function is
defined at these three specific aggressiveness levels. Similar intuitions apply
for the seller’s aggressiveness function. However, when (r = −1), the seller
submits the maximum ask, MAX (see Definition 6), allowed in the market.
Given these constraints, there is an infinite solution space for such a function
and so we choose a parameterised function 11 (see Figure 5) within the solu-

11 While a range of functions could have been used, our choice was a basic function
family where fθ(x) = (eθx − 1)/(eθ − 1), which, for x ∈ [0, 1], takes values between
0 and 1, with fθ(0) = 0; fθ(1) = 1, and second derivative proportional to 1/(eθ−1),
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Fig. 5. Aggressiveness for the intra-marginal trader for different θ. Solid lines rep-
resent the buyer’s function, and the dashed lines the seller’s function.

tion space with θ determining the behaviour of the function (that is its rate
of change with respect to the degree of aggressiveness r).

Specifically, equations 3 and 4 detail the intra-marginal buyer’s and seller’s
aggressiveness model (and its relationship between r and τ). We adopt these
particular functions because they are continuous (and thus, we do not have
sudden jumps of τ as r changes) and θ allows the agent to explicitly specify
the properties of the function. When θ is high, the magnitude of the gradient
tends to 0 at r = 0 and increases as θ tends to -1. Conversely, when θ is low,
the magnitude of the gradient is high at r = 0 and thus allows faster update of
the target price as r changes. A slow update is required when the transaction
prices are converging to p̂∗, while a fast update is required at the beginning
of the auction or after a market shock, when market conditions are changing
considerably. Indeed, experimental results described in [27] suggest that the
effectiveness of our bidding strategy depends on the value θ. In particular, we
observed from market simulations that a high θ is more beneficial when the
prices are converging towards p̂∗ and it is not profitable to deviate too much
from p̂∗. When faced with a high price volatility (with all agents still exploring
the market), an agent is then better off with a low θ to also explore the market
by allowing a faster update of its degree of aggressiveness. In Subsection 4.3.2,
we describe how updating θ, and thus the aggressiveness model, after every

so that fθ is concave when θ is negative, convex when θ is positive.
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transaction can be beneficial in the long term.

For an intra-marginal buyer,

τ =

 p̂
∗(1− e−rθ−1

eθ−1
) if r ∈ (−1, 0)

p̂∗ + (`i − p̂∗)( e
rθ−1
eθ−1

) if r ∈ (0, 1)
(3)

where θ is calculated such that the function is continuous as r = 0, that is
there is no jump in the first derivative of τ .

For an intra-marginal seller,

τ =

 p̂
∗ + (MAX − p̂∗)( e−rθ−1

eθ−1
) if r ∈ (−1, 0)

cj + (p̂∗ − cj)(1− ( e
rθ−1
eθ−1

)) if r ∈ (0, 1)
(4)

where θ is calculated such that the function is continuous as r = 0, that is
there is no jump in the first derivative of τ .

Now, for the above equations, the marginal trader is a limiting case, where
`i = p̂∗ and cj = p̂∗. However, these equations are not valid in the extra-
marginal case where the seller cannot ask below p̂∗ and the buyer cannot bid
above p̂∗. In such situations, the extra-marginal buyer and seller modify their
aggressiveness functions to that of Figure 6. This reflects the fact that the
extra-marginal trader cannot be aggressive and its degree of aggressiveness, r,
is clipped at 0 such that it will submit its limit price to maximise its chance
of transacting. For this case, Equations 5 and 6 describe that aggressiveness
function precisely:

For an extra-marginal buyer,

τ =

 `i(1−
e−rθ−1
eθ−1

) if r ∈ (−1, 0)

`i if r ∈ (0, 1)
(5)

For an extra-marginal seller,

τ =

 cj + (MAX − cj)( e
−rθ−1
eθ−1

) if r ∈ (−1, 0)

cj if r ∈ (0, 1)
(6)
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Fig. 6. Aggressiveness for the extra-marginal traders for different θ. Solid lines rep-
resent the buyer’s function, and the dashed lines the seller’s function.

We next look at the adaptive layer of the AA strategy, where the agent learns
its degree of aggressiveness and its aggressiveness model.

4.3 The Adaptive Layer

The adaptive layer consists of the short and long-term learning mechanisms
that update r and θ respectively. In the following subsections, we describe
each of these in more detail.

4.3.1 Short-Term Learning

In the short-term mechanism, the agent uses a set of learning rules (sum-
marised in Figure 7) to update its aggressiveness, every time a bid or an ask
is submitted or a transaction occurs in the market. It performs this in order
to better fit the prevailing market conditions. Specifically, a simple continuous
learning algorithm, the Widrow-Hoff algorithm [30] (initially adopted in the
ZIP strategy), is used to increase or decrease the aggressiveness, r(t), at time
step t (see Equation 7).

In more detail, the aim here is to adapt the agent’s aggressiveness to the cur-
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rent desired aggressiveness, δ(t), which represents the degree of aggressiveness
that would allow the buyer to bid the minimum of its limit price and a price
slightly higher than the outstanding bid or the seller to ask the maximum of
its limit price and a price slightly lower than the outstanding ask. Here, δ(t)
is a factor of rshout, the degree of aggressiveness that would form a price equal
to the bid b, if the agent is a buyer and the last event was a bid, or to the ask,
a, if the agent is a seller and the last event was an ask, or to the transaction q,
whether the agent is a buyer or a seller and if the last event was a transaction
(see bidding rules in Figure 7). When the agent is decreasing its degree of
aggressiveness (to be more profitable), it sets δ(t) to slightly lower than rshout
(negative λr and λa) so that the target price is higher than the outstanding bid
or lower than the outstanding ask. When it is increasing its degree of aggres-
siveness (to improve its chance of transacting), it sets δ(t) to slightly higher
than rshout (positive λr and λa). The algorithm then enacts a continuous-space
learning process that backprojects a fraction of the error between the desired
degree of aggressiveness, δ(t), and the degree of aggressiveness, r(t), onto the
same degree of aggressiveness r(t). As r(t) updates, it gradually follows the
changing δ(t) at a rate dependent on the learning parameter β1. A reasonable
value of β1 is chosen 12 . Specifically,

r(t+ 1) = r(t) + β1(δ(t)− r(t))
δ(t) = (1± λr)rshout ± λa (7)

where β1 ∈ (0, 1) is the learning rate of the algorithm which influences the
rate of change of r(t) and, hence, of the target price, τ . λr and λa are the
relative and absolute increase or decrease in rshout respectively.

The learning rules employed here are broadly similar to those of the ZIP strat-
egy. We employ its learning mechanism because it has been shown to effectively
exploit market information. However, rather than updating a profit margin,
we employ the mechanism to update the agent’s degree of aggressiveness. We
also simplify the adaptive mechanism by not considering a momentum-based
update, since the manner in which the aggressiveness is updated with respect
to the competitive equilibrium price minimises any high-frequency change in
the bid or ask prices. In more detail, when the buyer’s target price is greater
than the transaction price, this implies that the buyer can transact and so it
should try to be more profitable in the next round by being less aggressive. If
its target price is less than the transaction price, this suggests that the buyer
cannot transact at its target price, and thus should increase it by being more
aggressive. Similar intuitions apply for the seller’s learning rules. An exam-
ple of how the level of aggressiveness changes in a specific scenario is given
in Figure 9. Here, we observe how the AA trader is generally passive (and r

12 As we will see in Subsection 5.1.6, λ and β1 are not sensitive to the performance
of the strategy and, thus, to the results we report here.
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Learning Rules for Buyer i:

if (transaction occurs at price q)

if (τ ≥ q) buyer must be less aggressive

else buyer must be more aggressive

else if (bid, b, submitted)

if (τ ≤ b) buyer must be more aggressive

Learning Rules for Seller j:

if (transaction occurs at price q)

if (τ ≤ q) seller must be less aggressive

else seller must be more aggressive

else if (ask, a, submitted)

if (τ ≥ a) seller must be more aggressive

Fig. 7. Short-Term Learning Rules.

is negative), waiting for a profitable transaction (just below the equilibrium
price for the buyer and just above for the seller). Sometimes, the AA traders
becomes aggressive (and r is positive) when it is not transacting, which is
typically at the beginning of a trading day or following a market shock.

4.3.2 Long-Term Learning

As described in Subsection 4.2, θ influences the bidding behaviour. Given this,
we now describe how we can learn such a parameter on a long-term basis, after
every transaction, to improve the efficiency of AA. The underlying intuition
here is that different values of θ are best within different market conditions
and, in particular, the best values of θ depend on the price volatility. Given
this, we update θ (after every transaction) through a learning process based
on the price volatility, which we measure as an approximation of Smith’s α-
parameter (see Section 3), given that the agent only has an estimate of the
competitive equilibrium price. Equation 8 describes the learning mechanism:

θ(t+ 1) = θ(t) + β2(θ
∗(α)− θt)
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α=

√
1
N

∑T
i=T−N+1(pi − p̂∗)2

p̂∗
(8)

where β2 ∈ (0, 1) is the learning rate of the algorithm that determines how θ
adapts. In particular, θ∗(α) is a function (see Figure 8) that determines the
desired θ parameter given the current price volatility calculated as Smith’s
coefficient of convergence α over a window of the N latest prices. pi is the
price of transaction i, and T is the most recent transaction. θ∗(α) is given by
Equation 9 and shown in Figure 8. Based on simulation results for different
environments, we chose this particular function as an approximation to the
optimal θ parameter that maximises performance given the price volatility.
Our function is only an approximation since it is averaged over the optimal θ
for a number of different market environments. The exact environment and,
thus, the exact optimal θ, are unknown a priori. Specifically, :

Fig. 8. Function θ∗(α) gives the desired θ∗.

θ∗(α) = (θmax − θmin)(1− (α− αmin)/(αmax − αmin)

eγ((α−αmin)/(αmax−αmin)−1) + θmin (9)

where [θmin, θmax] is the range over which we update θ, αmax is the maximum
α that occurs in the market, and αmin is the minimum α. γ determines the
shape of the function. We will show that the choice of γ is not central to this
work through a sensitivity analysis (see Subsection 5.1.6).
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Given the mechanism, we now consider an example of how θ changes in a
specific scenario in Figure 9. In particular, θ updates after every transaction,
as specified by Equation 8, it is fixed at a reasonable value of -4 for the
first few transaction prices (until a reasonable estimate of the competitive
equilibrium price is obtained) and then updated to settle at θmax (around
2) as the transaction prices converge to the competitive equilibrium price
(2.65). When a market shock is identified by the sudden increase in α (at
Day 11), θ gradually decreases towards θmin (until α starts decreasing) to
give a faster update of the target price τ (see Subsection 4.2). As the agents’
behaviours gradually adapt to the new market demand and supply and the
transaction prices converge towards the new competitive equilibrium price
(3.82), θ gradually increases back to a high value (around 2) that is more
suitable for a low price volatility.

Furthermore, in Subsection 5.4, and more specifically in Figure 25, we report
on the efficiency of our strategy without the learning mechanism to demon-
strate the importance of adapting the aggressiveness. In detail, we fixed the
aggressiveness level at 0 (that is the AA trader is always active). We ob-
served that the AA strategy performed considerably worse, with the larger
drop in performance when there were large market shocks (see Days 8, 19
and 27 in Figure 25). With the aggressiveness fixed at 0, the AA strategy can
only adapt through its running estimate of the equilibrium price, which is sig-
nificantly slower (especially when the equilibrium price changes considerably
during large market shocks) than with the learning mechanism. By so doing,
we show that adapting the aggressiveness is central to the AA strategy.

Having looked at the aggressiveness model (that outputs τ given r and θ),
and the adaptive layer (that updates r and θ), we now need to describe the
bidding layer where the agent forms a bid or an ask to submit in the market,
based on the current market conditions, its limit price and τ .

4.4 The Bidding Layer

In the bidding layer, the agent employs a set of bidding rules to decide whether
or not to submit a bid or an ask, and at what price if it decides to do so. If
the buyer’s (seller’s) limit price is lower (higher) than the current obid (oask),
it cannot submit any bid (ask), and waits for the beginning of the next round.
On the other hand, if the agent can submit a bid or ask in the market, it
considers its set of bidding rules to form a price. In this, we identify two cases
when an agent bids: during the first trading round, where it cannot estimate
the competitive equilibrium price, and the subsequent rounds where it can. In
particular, Figure 10 gives the bidding rules, and equations 10 and 11 detail
the price formation process in the two cases:
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Fig. 9. The history of transaction prices and p̂∗ (top plot), the short-term learning
of r (middle plot) and the long-term learning of θ (bottom plot). Note that we have
a market shock on Day 11, with θ updated to match the change in price volatility.

bidi =

 obid + (min{`i, o+
ask} − obid)/η if first round

obid + (τ − obid)/η otherwise
(10)

askj =

 oask − (oask −max{cj, o−bid})/η if first round

oask − (oask − τ)/η otherwise
(11)

where o+
ask = (1 + λr)oask + λa, o

−
bid = (1 − λr)obid − λa and η ∈ [1,∞) is a
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Bidding Rules for Buyer i:

if (`i ≤ obid) submit no bid

else

if (first trading round) submit bid given by Equation 10

else

if (oask ≤ τ) accept oask

else submit bid given by Equation 10

Bidding Rules for Seller j:

if (cj ≥ oask) submit no ask

else

if (first trading round) submit ask given by Equation 11

else

if (obid ≥ τ) accept obid

else submit ask given by Equation 11

Fig. 10. Bidding Rules.

constant that determines the rate of increase (decrease) of the bids (asks).

At the beginning of the first trading round, the agent has no information other
than its limit price. Now, because if the buyer submits too high a bid, it can
transact at a not very profitable price (with respect to p∗), it starts with low
bids that progressively approach the minimum of its limit price, `i, and the
outstanding ask, oask, (see Equation 11) to explore the market. Similarly, the
seller, j, submits an ask towards the maximum of its cost price, cj, and the
outstanding bid obid (see Equation 10). Thus, the agent effectively reduces the
bid-ask spread with an exponentially decreasing trend (since the bid increase
should be decreasing to reflect the decreasing bid-ask spread) determined by
η and its limit price. Here, a low η implies a faster rate of convergence of bids
or asks until they are matched at a transaction price and, conversely, a high η
implies a more conservative bidding approach and a slower convergence. With
the latter, while being more profitable if it transacts, the agent risks missing
out on a transaction if other agents adopt a more conservative strategy (similar
to that of an AA agent with a lower η). However, with a lower η, the agent
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might be too hasty, and adopting a more conservative approach might be more
profitable. In our simulations, we choose a value of 3 for η, which was observed
to be a good compromise over a multitude of environments. Furthermore, the
buyer can only submit a bid if its limit price is higher than obid, or otherwise,
it remains idle until the beginning of the next round. We use similar intuitions
to design the behaviour of the seller.

After the first trading round, the agent has an initial estimate of the compet-
itive equilibrium price, which it subsequently updates after each transaction.
Initially, we set the agent’s aggressiveness factor, r, to 0 (meaning it adopts
an active attitude) because of the lack of market information. Based on the
target price, τ , and the set of bidding rules that dictate how the agent should
react to the current market conditions, the trader then forms a bid or ask to
submit in the market. In more detail, if the target price is higher than the
outstanding ask at any time during the bidding process, the buyer accepts the
outstanding ask (which is a better offer than it was targeting). Otherwise, it
submits a bid, given by Equation 10, that approaches the (changing) target
price in a similar manner as in the first trading round. We use similar intu-
itions to design the seller’s bidding rules. Here, if the target price is lower than
the outstanding bid, the seller accepts the outstanding bid. Otherwise, it sub-
mits an ask given by Equation 11. Furthermore, as in the first trading round,
η affects the bidding process in a similar manner and is set to 3 throughout
the trading day.

Having described all the components of the AA strategy in detail, we now
evaluate it in a number of different environments in the following section.

5 Empirical Evaluation

In this section, we first detail the methodology for analysing the strategic in-
teraction of the AA agent in two different types of populations; homogeneous
in which all the agents adopt the same strategy and heterogeneous in which
they adopt different strategies. We then proceed to the actual empirical study
of the strategies in these two cases. Finally, we apply our strategy in a market
based on real market data, where the demand and supply constantly changes.
The purpose of this final exercise is to evaluate our strategy within a system-
atically dynamic environment, rather than with a single market shock as per
the first part of this evaluation.
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5.1 The Methodology

There are two main parts to the methodology for benchmarking a strategy for
the CDA: the market setup and the empirical evaluation of the strategy or
strategies adopted in the market. First, we describe the market setup, invariant
of the strategies adopted. Second, we describe how we analyse the strategic
interactions of these agents (given the adopted strategies in the market) and
give the metrics we use to analyse the performance of a strategy in the market,
in both homogeneous and heterogeneous populations. Next, we discuss how we
ensure statistical significance in our empirical study. Finally, we analyse the
sensitivity of the parameters used in AA strategy using a standard sensitivity
analysis.

5.1.1 The Market Setup

In all of our simulations, the market is populated by a set of 10 buyers and
10 sellers. In particular, we look at different experiments with markets M1,
M2, and M3, and market shocks MS14, MS21, MS31 and MS23 (see Section 2
for terminology) and, finally, the real dynamic GOOG market (see Section 2).
In the static environment, we only look at these three markets as we would
have the same behaviour in M4 as we would in M1 since there is only an
upward shift in the demand and supply and the absolute differences between
the agents’ preferences remain the same. In the dynamic environment, on the
other hand, we are mostly interested in how the strategies adapt from their
best behaviour in one market to their best behaviour in the new market. Now,
if we have more than one market shock, as in scenario MS214, we would observe
how the strategy adapts from M2 to M1 and finally to M4. Now, we would
identify the same behaviour in MS21 and MS14 as the agent’s behaviour at
the end of MS21 would be the same as just before the shock in MS14. While
we have a transitive property, we do not have a reflective one. Thus, the
observations from MS21 and MS12 would be different. Indeed, in the former,
we would observe how the agent adapts from the flat supply of M2 to the
normal supply of M1, while in the latter, we would observe how it adapts
from a normal to a flat supply. However, due to space limitations, we only
analyse in detail a subset of the single market shocks, and generally look at
how the agent adapts from an extreme to a normal demand or supply, or to a
change in the competitive equilibrium price. A brief analysis of the remaining
cases is given in Appendix A. Finally, for the reasons outlined earlier, we also
consider real market data. Specifically, we look at the real market (GOOG)
where the equilibrium price changes every trading day (see Page 14).

In most of our experiments, each buyer and seller is endowed with a single
unit to buy or sell to induce the market demand and supply found in M1, M2,
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M3, M4 or the GOOG market. Now, given markets with multi-unit allocation
are already intrinsically very efficient, because of the size of the market 13 ,
the challenge in this area is to improve the efficiency of the smaller, less ef-
ficient single-unit allocation market. Thus, we focus on single-unit allocation
experiments in this paper (as do almost all the previous work on the design of
CDA strategies). Nevertheless, we do provide a multi-unit allocation experi-
ment in our GOOG market to ensure that AA still performs efficiently in such
a dynamic setting.

Now, in all our experiments, each agent is endowed with a limit price corre-
sponding to a unit of good to buy or sell. For the static scenario, the CDA lasts
10 days. For the dynamic scenario, it lasts 20 days with the market demand
and supply kept constant during the first 10 days and changed thereafter, ef-
fectively inducing a market shock on Day 11 (see Figure 2 for an example).
For the homogeneous scenario, we can avoid redundancy in our experiments
when evaluating the strategies within a static environment for markets M1,
M2 and M3, by looking at the performance of the strategies before the market
shocks for the dynamic cases. Given the market setup, we consider a statis-
tically significant number of runs of the CDA (see Subsection 5.1.5 for more
details), each lasting 10 or 20 trading days.

5.1.2 The Agent Setup

We now look at the agent setup. For the setup of the AA agents, based on
simulations for a wide range of demand and supply, we set the size of window
of transactions (N) over which we calculate p̂∗ to 5 (see Equation 2), the
parameter η in the bidding layer (see equations 10 and 11) to 3, and λa and
λr (see Equation 7) to 0.01 and 0.02 respectively. The learning rates β1 and
β2 (see equations 7 and 8) are drawn from a uniform distribution U(0.2, 0.6)
while γ is set to 2. Thus, by considering the performance of AA for many
different demand and supply situations, the fixing of these parameters means
they are not fine-tuned for any single market. Thus, in any given situation,
superior performance could be obtained by optimising these parameter choices
to the prevailing situation. To emphasise this point still further, Subsection
5.1.6 investigates the sensitivity of the performance to the choice of these
parameters.

For GDX agents, the discount factor is set to 0.9 based on Tesauro and Bredin’s
simulations (see [21] for more details) and, finally, the ZIP agents are initialised
with the set of parameters evolved in [4].

13 The efficiency of the CDA using ZI agents is only attributed to the efficiency of
the market structure, rather than its behaviour. Given ZI agents, we evaluated the
efficiency of a ten-unit allocation at 99.3%, while that of a single-unit allocation
market was 95.7%.
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Given the market and agent setup, we now study how the choice of strategy
determines an agent’s efficiency in different environments. We do so for both
homogeneous and heterogeneous populations.

5.1.3 Analysing Efficiency in Homogeneous Populations

As discussed in Section 3, we believe that analysing the daily efficiency of
the strategy provides more insights into how effective a strategy is in learning
from market interactions (as we can observe how the efficiency of the strategy
is changing as it is learning its best behaviour). This means our evaluation
methodology does not favour the AA strategy, which was designed to perform
differently and better in the ‘first round’ than the benchmarks (because we do
not aggregate this advantage in a single average efficiency measure). Now, as
the agent learns to be more competitive in a static market and the transac-
tion prices converge towards the competitive equilibrium price, we expect its
efficiency to improve. Thus, we calculate the efficiency of a strategy at the end
of each trading day, as well as the market volatility, α, calculated as Smith’s
α-parameter over all the transactions during each day (see Equation 1), which
describes how the transaction prices converge at the competitive equilibrium
price.

5.1.4 Analysing Efficiency in Heterogeneous Populations

Next, we describe our methodology for benchmarking strategies in heteroge-
neous environments. As in the homogeneous case, we still need to determine
performance of a strategy by its efficiency. However, unlike the homogeneous
case, agents do not all adopt the same strategy, and different numbers of
buyers and sellers can adopt different strategies. Therefore, for the reasons
outlined in Subsection 3.2, the one-population EGT model is insufficient and,
thus, we adopt the two-population EGT model we have previously developed
to analyse buyers’ and sellers’ strategic interactions [25]. In more detail, this
model assumes that buyers and sellers will adopt the buyer and seller strate-
gies that are the most efficient for them in the market. Thus, we calculate how
the proportions of buyers and sellers adopting the different strategies change.
In our two-population EGT analysis, the first step is to calculate the payoff
table 14 with the payoffs to each buyer and seller strategy given the exhaus-
tive set 15 (of size 121) of the 10 buyers and 10 sellers adopting the different

14 A more detailed description on computing the heuristic payoff table is given in
[25] (see Chapter 6), with an example of the heuristic payoff table (see Appendix
A).
15 The size of the payoff table is given by

(
Ab+Sb−1
Ab

)
×
(
As+Ss−1
As

)
where Sb is the

number of buyer strategies, Ss is the number of seller strategies, Ab is the number
of buyers and As is the number of sellers (see [25] for more details).
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buyer and seller strategies. Given the payoff table, we can then calculate the
replicator dynamics that describe how the population mix of agents adopting
the different buyer and seller strategies (if these strategies are more efficient)
changes, and the mixed-Nash equilibrium of the CDA game that describes
the particular proportion mix where it does not pay for any agent to adopt
another strategy. Together, the replicator dynamics and the mixed-Nash equi-
librium allow us to analyse the performance of the different strategies over
all population mixes (and not only in a balanced population) and they also
indicate how the population mixes will change as buyers and sellers adopt the
more efficient of the strategies at the different mixes. Specifically, the following
equations describe how we calculate the buyer’s dynamics ṗh, and the seller’s
dynamics q̇k:

ṗh =
[
ub(e

h, p, q)− ub(p, p, q)
]
ph

q̇k =
[
us(e

k, q, p)− us(q, q, p)
]
qk (12)

where p denotes the buyer’s mixed strategy and ph is the probability that
the buyer adopts pure buyer strategy h. q denotes the seller’s mixed strategy
and qk is the probability that the buyer adopts pure buyer strategy k. ṗ =
{ṗ1, ṗ2, . . .} is the replicator dynamics along the buyer axis and q̇ = {q̇1, q̇2, . . .}
the dynamics along the seller axis.

Furthermore, the mixed-Nash equilibrium of the analysis is given as the (p, q)
that minimises Equation 13:

v(p, q) =
Sb∑
h=1

(max
[
ub(e

h, p, q)− ub(p, p, q), 0
]
ph)

2 +

Ss∑
k=1

(max
[
us(e

k, q, p)− us(q, q, p), 0
]
qk)

2 (13)

Other definitions that are relevant to the EGT analysis include:

Definition 16 A trajectory is the change in mixed strategy, starting from a
particular mixed strategy, and following the replicator dynamics.

Definition 17 An attractor is a mixed-Nash equilibrium towards which the
replicator dynamics (trajectories) converge.

Definition 18 A saddle point is a mixed-Nash equilibrium from which repli-
cator dynamics (trajectories) diverge.

Definition 19 A basin of attraction of a mixed-Nash equilibrium is the

38



space of mixed strategies from which trajectories will converge to that equilib-
rium.

Now, while the two-population EGT model can be used to analyse the inter-
action of any number of buyer and seller strategies, a visual representation of
the analysis is possible for up to two different buyer and two different seller
strategies since an analysis of three buyer and three seller strategies would be
in four dimensions. Though Walsh et al.’s model would allow a visual analysis
with up to three strategies (assuming that these strategies can be used for
both buying and selling), it is inaccurate as outlined in Subsection 3.2. For
these reason and, as is common practice in related work on the bidding strate-
gies for the CDA [22, 21, 27], we compare the performance of two strategies
at a time.

5.1.5 Statistical Significance

In all cases, we consider a statistically significant number of runs, 2500, of
the CDA. We validate our results at the 95%-confidence-interval by running
the non-parametric Wilcoxon rank sum test [14] on the daily efficiency of the
strategies and on the difference between the actual and the expected payoff
(
[
ub(e

h, p, q)− ub(p, p, q)
]
) in heterogeneous populations. We chose such a test

because we cannot ensure the normality of our data set and because we want
to ensure statistical significance of our dynamic analysis particularly around
mixed-Nash equilibria where that difference is significantly smaller. Finally,
we provide error bars at the 95%-confidence interval in the daily efficiency of
strategies within homogeneous populations (as shown in Figure 12).

5.1.6 Sensitivity Analysis

We also investigate how sensitive our parameters are using a standard one-at-
a-time sensitivity analysis [19] (where we separately vary the different param-
eters). In particular, we do a sensitivity analysis in two different markets (see
Figure 11), namely the dynamic GOOG market (with a changing equilibrium
price) and the static M1 market (with a static expected equilibrium price). In
the former case, we observe that N and η are the only sensitive parameters,
while in the latter case only η is sensitive. Thus, depending on the type of
market we are considering, η and N have to be carefully chosen to maximise
the efficiency. Having said that, we also observed that suitable values for η
and N in both static and dynamic markets can be identified (which we set to
3.0 and 4 respectively here).
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Fig. 11. Sensitivity analysis of parameters in the static M1 market on the left and
in the dynamic GOOG market on the right.

5.2 Performance in Homogeneous Environments

First, we consider the homogeneous scenario. In Figures 12 to 15, we look at
the performance of the AA strategy and the benchmarks GDX and ZIP in the
different markets highlighted earlier, and Table 1 details the efficiency of the
buyers and the sellers, and the efficiency of all the agents in these markets.
Note that apart from the symmetric Market M1, buyers do not expect the
same profit as sellers due to the asymmetric nature of the demand and supply,
and, thus, the efficiency of the strategy is not the average of the buyers’ and
sellers’ efficiency. By dissecting the efficiency of the buyers and the sellers
separately, we can observe whether the buyers or the sellers are performing
better given the particular demand and supply.

5.2.1 The Static Scenario

We first analyse the efficiency of the strategies within a static environment,
with markets M1, M2 and M3. In M1 (see Day 1 to 10 in Figure 12), we
can see that our strategy outperforms both benchmarks on every trading day,
with an average efficiency of 0.997. We also note that with AA agents, the
transaction prices converge faster (with a lower α) and, on average, remain
closer to p∗ than with GDX or ZIP agents (AA has the smallest α on Day
10). On the first day, we observe that AA has the highest efficiency because
the AA agents assume that there is no information on the first round and
adopt a conservative approach (submit bid and ask with a slowing increasing
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Fig. 12. Scenario MS14. The market efficiency of AA is 0.992, of ZIP, 0.979 and of
GDX, 0.988. If we consider the static scenario for Market M1, the market efficiency
of AA is 0.997, of ZIP 0.982, and of GDX 0.990.

Fig. 13. Scenario MS21. The market efficiency of AA is 0.993, of ZIP 0.974, and of
GDX 0.987. If we consider the static scenario for Market M2, the market efficiency
of AA is 0.992, of ZIP 0.971, and of GDX, 0.981.

trend) and they have a faster update of their target price. ZIP makes no such
assumption and starts with a random profit margin, while GDX suffers from
the lack of information (bids, asks and transaction prices). After a few days,
the efficiency of all three strategies converges to some value, which is highest
with AA agents, and lowest with ZIP. This validates our market setup of 10
days for each market, since we can observe that even if we would consider a
larger number of days, the efficiency of the subsequent days would not change.
Furthermore, it also validates our analytical method to look at daily efficiency,
since we can observe that the efficiency is different on different days for differ-
ent strategies. Moreover, the daily efficiency converges to different maxima for
each strategy, suggesting that the AA strategy is best at learning to be more
efficient in the market. With the traditional analytical method (as detailed
in Subsection 3), we would only calculate the average efficiency over all the
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Fig. 14. Scenario MS31. The market efficiency of AA is 0.996, of ZIP 0.968, and of
GDX 0.987. If we consider the static scenario for Market M3, the market efficiency
of AA is 0.996, of ZIP 0.960, and of GDX 0.981.

Fig. 15. Scenario MS23. The market efficiency of AA is 0.994, of ZIP 0.968, and of
GDX 0.980. As in MS21, when we consider the static scenario in the first 10 days,
the market efficiency of AA is 0.992, of ZIP 0.971, and of GDX, 0.981.

trading days and would not observe the fact that efficiency is capped after a
few trading days to a maximum, while strategies like AA and GDX learn to
be efficient at a much faster rate than ZIP.

In markets M2 and M3 (see days 1 to 10 in Figures 13 and 14), we also ob-
serve that AA is the most efficient (99.7% in M1, 99.1% in M2 and 99.6% in
M3). In particular, it does much better than the other strategies in asymmet-
ric markets than it does in the symmetric Market M1 (around 2.1% better
in asymmetric cases, compared to 1.1% better in the symmetric case – see
Table 1). This is because the competitive equilibrium price does not change
significantly and, thus, the target price remains close to p∗ on Day 11. The
competitive equilibrium price still changes, as we are dealing with uniformly
distributed limit prices, and the non-deterministic demand and supply is ex-

42



Table 1
Efficiency of strategies in homogeneous environments (over all trading days).

AA GDX ZIP

Scenario buyer seller all buyer seller all buyer seller all

M1 0.969 1.025 0.997 0.981 0.998 0.990 1.010 0.960 0.982

M2 1.212 0.459 0.992 1.145 0.708 0.981 1.143 0.660 0.971

M3 0.389 1.247 0.996 0.595 1.161 0.981 0.896 1.069 0.960

MS14 1.044 0.981 0.992 1.022 0.989 0.988 1.033 0.980 0.979

MS21 1.088 0.754 0.993 1.054 0.876 0.987 1.085 0.817 0.974

MS31 0.667 1.159 0.996 0.778 1.103 0.987 0.932 1.049 0.968

MS23 0.968 1.250 0.994 0.894 1.228 0.980 1.015 0.863 0.968

pected to be as in M1 to M4. However, in these asymmetric markets, the
α-parameter of AA is the highest, while being lowest in the symmetric mar-
ket. We explain this difference by separately considering the buyers’ and the
sellers’ efficiencies (see Table 1). In Market M2 (with a flat supply curve),
the fact that the buyers’ efficiency is higher than the sellers’ means that the
transaction prices are, on average, less than p∗, with the buyers having more
profitable transactions. This, in turn, indicates that the buyers are more suc-
cessful at driving the market price (i.e. forcing transaction prices to be lower
and be more profitable from their perspective) when the supply is flat. We
make similar observations with Market M3 which has a flat demand curve.
While α is still highest for AA, the AA sellers’ efficiency is higher than the
AA buyers’, indicating that sellers are driving the market price to be higher
than p∗, and are being more profitable from their perspective. As with M1,
the daily efficiency converges with all three strategies, with AA still having
the highest efficiency on Day 10.

5.2.2 The Dynamic Scenario

We now analyse the daily efficiency of strategies when faced with market
shocks. At the beginning of Day 11, the strategies are all tailored to perform
best in Day 10. Now, with a market shock, the conditions to which those
strategies have adapted are different, forcing those agents to relearn the best
strategic behaviour in the market. Essentially, a robust strategy should be
able to rapidly adapt to the new market conditions, since the longer it takes
to do this, the more inefficient it is.

In scenario MS14 (see Figure 12), the market demand and supply structure
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remains the same, with an increase in the competitive equilibrium price p∗. In
this case, on average, AA still outperforms the benchmarks with an efficiency
of 0.992. Because there is a significant shift of p∗, we observe a significant
decrease in the efficiency of the AA strategy, as p∗ has to be re-estimated
gradually (as transaction prices diverge from the old equilibrium and converge
to the new one). However, with the higher α, and thus a lower θ, the AA target
price changes at a faster rate than it would with a fixed θ (see Subsection 4.2),
forcing transaction prices to converge at a faster rate to the new p∗. Here, we
also observe that the efficiency of the benchmarks, GDX and ZIP on Day 11,
is only slightly better than AA, though the latter’s efficiency improves after
a few trading days to be better than the benchmarks. This can be explained
by the fact that p̂∗ is a fundamental parameter of the AA strategy, such that
a significant change in p∗ affects its performance. Furthermore, AA and GDX
have the highest α because p∗ is central to the AA’s aggressiveness model,
and because GDX’s belief function approximates a step function at p∗. On the
other hand, ZIP does not consider p∗ explicitly when it forms a bid or an ask.
In fact, it only considers its latest profit margin on Day 10 when starting to
bid (with a new limit price given the market shock) on Day 11.

In scenario MS21 (see Figure 13) where p∗ does not change significantly, we
initially have a flat supply followed by a symmetric demand and supply. Again,
AA performs best with the highest average efficiency and it is the most effi-
cient strategy with the fastest adaptivity to the new market conditions (with
the lowest α). Indeed, GDX and AA have the lowest α, which is considerably
smaller than in scenario MS14 where p∗ changes significantly. ZIP suffers the
most from a market shock, with a significant drop in efficiency and slow adapt-
ability. This is because ZIP reuses the same profit margin at the beginning of
the following day, and given the significant change in preferences (limit prices)
after a market shock, its profit margin is no longer tailored for the new market,
and the decrease in efficiency then depends on how different the preferences in
the two consecutive markets are. Thus, the decrease is considerable as we are
looking at an extreme change for the sellers’ preferences. We observe similar
behaviour for the three strategies in scenario MS31, with AA outperforming
the other strategies.

Furthermore, AA outperformed the benchmarks with the best margin in sce-
nario MS23 (see Figure 15), where the market goes from a flat supply to a flat
demand. ZIP suffers considerably here as the profit margin, which had been
tailored to Market M2, is now used in Market M3 at the beginning of Day 11.
With the supply curve now ranging from 1.5 to 4.5 (rather than between 2.8
and 3.2), the same set of sellers’ profit margins gives a wider range of asks
that are no longer profitable in the market. On the other hand, GDX and
AA do not suffer such a drastic change in α as ZIP does. Indeed, we observe
that the magnitude of the peak in α on Day 11 for GDX and AA in MS14
is about twice that in MS21 and MS31 where we change either the demand
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or the supply curve, while there is no peak when we change both the demand
and supply curves in MS23. We explain this by considering the limit prices
of buyers and sellers. Indeed, in MS14, even though the market demand and
supply remain the same, the buyers’ and sellers’ individual preferences change
drastically, with the extreme case where extra-marginal traders become intra-
marginal and intra-marginal traders become extra-marginal. In MS21 with a
flat supply (MS31 with a flat demand) the change in sellers’ (buyers’) pref-
erences is not as significant as buyers’ (sellers’). Since market behaviour is
affected by both buyers’ and sellers’ behaviours, the change in preferences is
then reflected in the change of market efficiency and α. Thus, in MS23 with
no extreme changes in demand and supply observed in MS14, in demand in
MS21 and in supply in MS31, the drop in efficiency for GDX and AA is even
smaller, with no peak in α on Day 11.

5.3 Performance in Heterogeneous Environments

Here, we look at the EGT plots for different scenarios in static and dynam-
ics environments, given the methodology outlined in Subsection 5.1.4. Now,
because we consider only pairwise comparisons, a visual representation of the
above equations is possible, and an example is given in Figure 16, where we
have two sub-plots. The left sub-plot gives the replicator dynamics of the
analysis, with the vertices corresponding to different pure strategies, and its
shading denotes the magnitude of the dynamics given the mixed strategies
of the buyers and sellers. As the magnitude of the dynamics decreases (and
the shading is darker), there is less and less incentive to deviate to another
strategy, until the magnitude is 0 at a mixed-Nash equilibrium and then, it
does not pay off to deviate to another buyer or seller strategy. Note that tra-
jectories (see Definition 16) can converge towards or diverge from a darker
region, depending on whether that region contains an attractor or a saddle
point. Finally, the right sub-plot gives the magnitude of the buyer’s and seller’s
dynamics, with a mixed-Nash equilibrium occurring when the magnitude of
both dynamics is 0. In particular, we consider these magnitudes to compare
the buyer’s and seller’s payoffs when deviating to the more efficient strategy,
which is particularly insightful when we have an asymmetric demand and
supply, as we will now see.

5.3.1 The Static Scenario

First, we evaluate the strategies in a static scenario with no market shock, and
in turn consider populations with AA against ZIP, and AA against GDX. In
Market M1 with AA and ZIP agents, we have a single mixed-Nash equilibrium
at AA (see Figure 16), implying that all buyers and sellers adopt the dominant
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AA strategy. We also observe that the dynamics have comparable magnitudes
and that the magnitude of buyer’s dynamics is higher when AA sellers are in
the majority, and that the seller’s dynamics are higher when AA buyers are
in the majority (with higher magnitude here implying faster convergence to
AA). Thus, here, AA agents are most efficient when they are in the majority.
Similarly, with AA and GDX agents in M1, we have a single attractor (mixed-
Nash equilibrium towards which trajectories converge) at A and saddle points
(mixed-Nash equilibrium that trajectories diverge away from) as can be seen
in Figure 17, with the majority of buyers and sellers eventually adopting the
AA strategy (and only 4% of buyers and 21% of sellers adopting GDX). Here,
the magnitude of convergence to A is highest when there are a majority of
GDX buyers and sellers, implying that AA buyers and sellers are most efficient
when they are in the minority. We also observe that buyers and sellers do not
necessarily select the same buyer and seller strategy respectively (e.g. when
AA buyers and ZIP sellers are in the majority, buyers tend to deviate to ZIP,
and sellers to AA), which would not have been identified with the traditional
one-population model.

Fig. 16. Scenario M1 with AA and ZIP agents. Here, we have a single dominant
strategy at (0,0). The magnitudes of the buyer’s and seller’s dynamics are of com-
parable magnitude.

Next, we look at Market M2 with a flat supply. With a population of AA and
ZIP (see Figure 18), we have a single dominant strategy, A, with all buyers
and sellers adopting AA. The obvious observation here is that the magnitude
of the seller’s dynamics is considerably smaller than that of the buyer’s. This
suggests that there is more economic incentive for buyers to adopt AA than
for sellers to do so. This happens because of the market’s flat supply, meaning
the sellers’ have considerably lower expected profits than buyers, and, thus,
gain less in profit when deviating to another seller strategy (in contrast with
the buyer case). Furthermore, we observe that when the majority of buyers
adopt ZIP, the sellers tend to adopt ZIP, and when the majority of buyers
adopt AA, the sellers tend to adopt AA.

Now, with a population of AA and GDX in M2 (see Figure 19), we have two
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Fig. 17. Scenario M1 with AA and GDX agents. The replicators converge towards
the single mixed-Nash equilibrium A at (0.96,0.79). Thus, buyers and sellers are
more likely to adopt the AA strategy, with a relatively small proportion adopting the
GDX strategy. The magnitudes of the buyer’s and seller’s dynamics are comparable.

Fig. 18. Scenario M2 with AA and ZIP agents. Here, we have a dominant strategy
at (0,0). All buyers and sellers eventually adopt the AA strategy. The magnitude of
the seller’s dynamics is considerable smaller than that of the buyer’s.

equilibria, A at (0.92, 0) and B at (1, 1). Because the basin of attraction of
A is considerably larger than that of B, there is an equally larger probability
(0.884 compared to 0.116) that the mixed-Nash strategy A will be adopted
(and all agents will eventually select AA). Thus, there is still a small proba-
bility of 0.116 that 8.0% of buyers will adopt GDX and all sellers will adopt
GDX, such that AA is not dominant. When we consider the magnitude of the
dynamics, we observe that the sellers’ magnitude is considerably smaller than
the buyers’, and we explain this with the same intuition as with AA and ZIP
in M2. Furthermore, when GDX buyers are in the majority, the sellers are
more inclined to adopt GDX, and when AA buyers are in the majority, sellers
tend to adopt AA, though if GDX sellers are in the majority, then sellers are
likely to adopt GDX.

Now, because of the reflective nature of M2 and M3, we only report on our
analysis of the strategic performance in M2. However, we observe reflective be-
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Fig. 19. Scenario M2 with AA and GDX agents. Here, we have two attractors: A at
(1,1) and B at (0.92,0), and a saddle point C at (0.93,0.10). The area of the basin of
attraction for A is 0.884, and for B is 0.116. The magnitude of the seller’s dynamics
is higher when GDX buyers are in majority, and considerably lower as AA buyers
are represented more.

haviours in M3 (see Appendix A), with the magnitude of the buyers’ dynamics
being considerably smaller than the sellers’ in this case.

5.3.2 The Dynamic Scenario

We now turn to the performance of the strategies in dynamic environments
with market shocks. In particular, we look at scenarios MS14 and MS21, and
provide further results for MS31 and MS23 in the appendix (which further
validate our claim that AA is better than both ZIP and GDX).

In scenario MS14 with AA and ZIP strategies (see Figure 20), we have two
attractors at A and B, and a saddle point at C. The basin of attraction of
A is considerably larger than that of B, with the higher probability of 0.978
that all the buyers and sellers will eventually adopt the AA strategy. As in
M1, the magnitude of the buyer’s and seller’s dynamics is highest when AA
agents are in the majority, which again suggests that AA is most efficient when
it is in the majority. Furthermore, as in M1, we observe that the magnitude
of the buyer’s and the seller’s dynamics are comparable, and this is because
we are still dealing with symmetric markets where buyers and sellers expect
similar payoffs. However, unlike in M1, AA is no longer dominant, and there
is now a small probability of 0.022 that ZIP will be eventually adopted in the
market. Similarly, with AA against GDX in MS14 (see Figure 21), we have two
attractors at A and B, and a saddle point at C, and the basin of attraction is
much larger for attractor A. As with AA against ZIP, the market shock causes
AA to no longer be dominant, and there is now a small probability of 0.065
that GDX will be eventually adopted in the market.

In scenario MS21 (see figures 22 and 23), where the supply changes, we observe
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Fig. 20. Scenario MS14 with AA and ZIP agents. Here, we have two attractors:
A at (0,0), B at (1,1) and a saddle point, C at (1,0.78). The area of the basin of
attraction of A is 0.978, and that of B is 0.022.

Fig. 21. Scenario MS14 with AA and GDX agents. Here, we have two attractors:
A at (1,1), B at (0,0) and a saddle point, C at (0.0.34). The area of the basin of
attraction for A is 0.935 and that of B is 0.065.

a similar set of attractors as in MS14 (but with a probability of 0.961 that AA
will be adopted against ZIP, and a probability of 0.869 that it will be adopted
against GDX). However, the dynamics of how these equilibria are reached
differ, with sellers having a slight tendency to adopt more ZIP or GDX than
in MS14 when AA buyers are in the minority. In that case, the magnitude
of the seller’s replicator dynamics is higher than that of the buyer’s (because
of the asymmetric demand and supply, and sellers expect higher profits than
buyers) and thus influence more the dynamics of the CDA. As the AA buyer
strategy becomes increasingly popular, the buyer’s dynamics have increasingly
more weight and increasingly influence the dynamics of the market. In some
cases (in the basin of attraction of equilibrium B), the change in dynamic is
not sufficiently in favour of AA buyers, and the GDX and ZIP buyers then
take over.
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Fig. 22. Scenario MS21 with AA and ZIP agents. Here, we have two attractors:
A at (0,0), B at (1,1) and a saddle point, C at (0.68,1). The area of the basin of
attraction of A is 0.961, and that of B is 0.039.

Fig. 23. Scenario MS21 with AA and GDX agents. Here, we have two attractors: A
at (1,1) and B (0,0), and two saddle points: C at (0.55,0) and D at (0.33,0.11). The
area of the basin of attraction of A is 0.869, and that of B is 0.136.

5.4 Performance in Real Markets

For the reasons outlined at the end of Section 2, we now analyse the strategies
in the GOOG and the GOOGshock market. The aim of this exercise is to ob-
serve how the efficiency of the different strategies changes given a demand and
supply that changes on a daily basis for single-allocation and multi-allocation
scenarios.

As can be seen in Figure 24, AA outperforms ZIP and GDX in both single-
allocation and multi-allocation scenarios. In a market populated solely with
AA traders, the efficiency is typically higher than 99.9% even in the presence
of market shocks in both scenarios (with the efficiency of the multi-allocation
scenario being, as expected, considerably higher). Futhermore, when we con-
sider the more dynamic GOOGshock market with considerably larger changes
in the equilibrium price (as a result of a market shock lasting several trad-
ing days) and asymmetric demand and supply (see Figure 25), AA performs
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Fig. 24. Market efficiency with single-unit allocation on the left and with multi-unit
allocation on the right, in a GOOG market. Note that the market shocks are given
as the change in equilibrium prices.

considerably better than GDX and ZIP (by a margin of 5.2% and 3.3% re-
spectively), demonstrating its superiority even in highly dynamic markets.
Furthermore, we also notice that ZIP now outperforms GDX, suggesting that
it performs better given more variable environments. It further suggests that
adaptive strategies, such as AA and ZIP, are more efficient in very changing
markets than belief-based strategies, such as GDX, which have to build a be-
lief of a market that is constantly changing and, therefore, can possibly never
catch up with the actual situation.

Fig. 25. Efficiency in the GOOGshock market (we ignore the first few days when
agents are still very inefficient). Note that the changes in equilibrium price are
considerably higher than in the GOOG market (see Figure 24). The thin dotted line
represents the efficiency of the AA strategy when it is always active (aggressiveness
level fixed at 0).
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In summary, we observe that AA is the most efficient strategy and, therefore,
the one most likely to be eventually adopted by the population of buyers and
sellers in the market. This is true for all the market environments we have
tested and not just the examples shown here.

6 Conclusions

In this paper, we presented a novel adaptive-aggressiveness strategy, AA, that
software agents can use to bid in Continuous Double Auctions. The AA strat-
egy is principally based on a short-term and a long-term learning of the agent’s
bidding behaviour. For the short-term learning, the motivation was to immedi-
ately respond to fluctuations in the market conditions, and the agent updates
the aggressiveness of its bidding behaviour based on market information ob-
served after every bid or ask appears in the market. The motivation for the
long-term learning mechanism, on the other hand, was to respond to more sys-
tematic changes in the market conditions and, in particular, to market shocks.
To achieve this, our strategy updates an aggressiveness model that determines
how the agent’s degree of aggressiveness influences its choice of bids or asks
to submit in the market, based on market information observed after every
successful transaction.

We then went on to describe a novel methodology for benchmarking the effi-
ciency of strategies in homogeneous populations by considering daily efficiency
and price volatility, rather than simply the overall efficiency as in previous
work. Our approach provided more insights into how the learning mechanisms
of the strategies affect their efficiencies in the market. In particular, we showed
how the efficiencies of strategies change as they learn to be more efficient in
the market or when there is a market shock. These would not have been ob-
servable using the standard approach because it calculates only the average
market efficiency over all trading days and compares the (scalar) efficiencies of
different strategies. We also provided a novel methodology for heterogeneous
populations where we adopt a two-population evolutionary game theoretic
model for a comprehensive analysis of buyer’s and seller’s choices of strategy
in the market. In particular, we looked at the separate evolution of buyer’s
and seller’s strategies in the market. Again this would not be observable in the
traditional one-population approach because it assumes that buyers and sell-
ers adopt the same strategy in the market and, thus, the evolution of buyers’
and sellers’ strategies is the same. Furthermore, this work also represents the
first attempt to analyse the strategic interactions of agents in dynamic envi-
ronments with different symmetric and asymmetric demand and supply. This
is an advance over the analysis that is typically performed in heterogeneous
populations with a static setting (i.e. no market shock) and only a symmetric
demand and supply.
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Using these methods, we benchmarked our AA strategy against the state of
the art ZIP and GDX strategies. In so doing, we empirically demonstrated
how it outperforms these benchmarks in different static and dynamic envi-
ronments, in both homogeneous and heterogeneous populations. Specifically,
within homogeneous populations, the AA strategy outperformed the bench-
marks, in terms of market efficiency, by up to 3.6% in the static case and
2.8% in the dynamic case. Furthermore, we empirically showed the AA out-
performs the state of the art GDX by 5.2% and ZIP by 3.3% in a market based
on real market data. It is interesting to point out that learning strategies such
as AA and ZIP are relatively more efficient in the dynamic situations such
as the GOOGshock market than the belief-based GDX strategy. This is so
because GDX has to update its whole (non-scalar) belief of the market every
trading day and therefore it is slower in adapting to these variable market con-
ditions than AA or ZIP which simply learn their (scalar) aggressiveness and
profit margin respectively and are better able to adapt to drastically changing
market conditions. Finally, within heterogeneous populations, based on our
evolutionary game theoretic analysis, we showed out that there was a proba-
bility above 85% that the AA strategy will eventually be adopted by buyers
and sellers in the market.

For future work, we first will study the use of other selection mechanisms
than the Replicator Dynamics, including mutation and cross-over. Second,
and more importantly, we intend to consider the use of the AA strategy in
more complex variants of the CDA, and in particular financial exchanges such
as the NYSE or NASDAQ. This would entail considering the additional (or
lack of) information in these variants and modifying AA accordingly. The
particular complication we foresee with the real financial markets would be
in terms of being robust to market shocks, which rather than occurring over
trading days as in our model of the CDA, occur over trading hours, such that
we would require a more complex equilibrium estimator with some form of
trend analysis. Thereon, we intend to show how parameters including λa, λr,
γ, β1 and β2, η and N can be fine-tuned for particular markets by adopting a
similar evolutionary approach as Cliff’s [5] using a GA-search. In real markets,
such fine-tuning is today’s norm in a very competitive environment where
improvements of the order of 0.01% are highly desirable (and translate into
profits of hundreds of thousands of pounds in the investment banking industry
with annual trading profits worth billions of dollars).
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version of our ECAI paper [27]; we have revised the terminology used, provided
the novel long-term learning mechanism to update the θ-parameter based on
price volatility, and devised the methodology for evaluating CDA strategies
within both homogeneous and heterogeneous populations.

A Empirical Study within a Heterogeneous Population

In Section 5, we benchmarked the AA strategy against the state of the art ZIP
and GDX strategies for different scenarios. Here, we provide an analysis of AA
against ZIP and GDX in the remaining cases that have not been considered
in the main body of the paper. For each case, we give the different attractors
and saddle points and the probability that each of these attractors will be
adopted. We observe that AA always outperforms ZIP and GDX in line with
our observations in the main body of the paper.

Fig. A.1. Scenario M3 with AA and ZIP agents. Here, we have one attractor: A at
(0,0). AA is a dominant strategy that will eventually be adopted in the market.

Fig. A.2. Scenario M3 with AA and GDX agents. Here, we have one attractor: A
at (1,1) and one saddle point: B at (0,0.81). AA is a dominant strategy that will
eventually be adopted in the market.
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Fig. A.3. Scenario MS31 with AA and ZIP agents. Here, we have two attractors: A
at (0,0) and B at (1,1) and a saddle point: C at (1,0.80). The probability that A
will be adopted is 0.952 and that B will be adopted is 0.048.

Fig. A.4. Scenario MS31 with AA and GDX agents. Here, we have three attractors:
A at (1,1), B at (0,0) and C at (0,1) and two saddle points: D at (0.19,1) and E at
(0,0.40). The probability that A will be adopted is 0.776, that B will be adopted is
0.125 and that C will be adopted is 0.099.

Fig. A.5. Scenario MS23 with AA and ZIP agents. Here, we have two attractors: A
at (0,0) and B at (1,1) and a saddle point: C at (0.80, 0.95). The probability that
A will be adopted is 0.965 and that B will be adopted is 0.035.
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Fig. A.6. Scenario MS23 with AA and GDX agents. Here, we have three attractors:
A at (0,0), B at (1,1) and C at (0.32.0) and two saddle points: D at (0.37,0.04)
and E at (0.03,0). The probability that A will be adopted is 0.010, that B will be
adopted is 0.902 and that C will be adopted is 0.088.
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