Assessment Delivery Engine for QTIv2 Tests.

Gary Wills, Lester Gilbert, Jonathon Hare, Jiri Kajaba, David Argles and David Millard

Learning Societies Lab, University of Southampton, UK.

{gbw, Ig3, jsh, jk2, da, dem}@ecs.soton.ac.uk

Abstract

The IMS Question and Test Interoperability
(QTI) standard has not had a great take-up in
part due to the lack of tools. This paper
describes the ‘ASDEL’ test delivery engine,
focusing upon its architecture, its relation to
the item authoring and item banking services,
and the integration of the R2Q2 Web service.
The project first developed a java library to
implement the system. This will allow other
developers and researchers to build their own
system or take aspects of QTI they want to
implement.

1. Introduction

E-learning assessment covers a broad range
of activities involving the use of machines to
support assessment, either directly (such as
web-based assessment tools, or tutor systems)
or indirectly by supporting the processes of
assessment (such as quality assurance
processes for examinations). It is an important
and popular area within the e-learning
community [4, 1, 2]. From this broad view of
e-learning assessment, the domain appears
established but not mature, as traditionally
there has been little agreement on standards or
interoperability at the software level. Despite
significant efforts by the community, many of
the most popular software systems are
monolithic and tightly coupled, and standards
are still evolving. To address this there has
been a trend towards Service-Oriented
Architectures (SOA). SOAs are an attempt to
modularise large complex systems in such a
way that they are composed of independent
software components that offer services to one
another through well-defined interfaces. This
supports the notion that any of the components

could be ‘swapped’ for a better version when
it becomes available. A SOA framework is
being used as a strategy for developing
frameworks for e-learning [3, 5].

A leading standard is Question and Test
Interoperability (QTI) developed by the IMS
Consortium. The QT]I specification describes
a data model for representing questions and
tests and the reporting of results, thereby
allowing the exchange of data (item, test, and
results) between tools (such as authoring tools,
item banks, test constructional tools, learning
environments, and assessment delivery
systems) [8]. Wide take-up of QTI would
facilitate not only the sharing of questions and
tests across institutions, but would also enable
investment in the development of common
tools. QTI is now in its second version
(QTIv2), designed for compatibility with other
IMS specifications, but despite community
enthusiasm there have been only a few real
examples of QTIv2 being used, with no
definitive reference implementation [6,7].

Formative assessment aims to provide
appropriate feedback to learners, helping them
gauge more accurately their understanding of
the material set. It is also used as a learning
activity in its own right to form understanding
or knowledge. Formative assessment is
something lecturers/teachers would like to do
more of but do not have the time to develop,
set, and then mark as often as they would
wish. A formative e-assessment system allows
lecturers/teachers to develop and set the work
once, allows the learner to take the formative
test at a time and place of their convenience,
possibly as often as they like, obtain
meaningful feedback, and see how well they
are progressing in their understanding of the
material. McAlpine [9] also suggests that

formative assessment can be used by learners
to “highlight areas of further study and hence
improve future performance”. Draper [10]
distinguishes different types of feedback,
highlighting the issue that although a system
may provide feedback, its level and quality is
still down to the author.

2. QTI

The IMS QTI Specification is a standard
for representing questions and tests with a
binding to the eXtended Markup Langage
(XML, developed by the W3C) to allow
interchange. An example of a simple multiple
choice question illustrates the core elements:
ItemBody declares the content of the question
itself, ResponseDeclaration declares a variable
to store the student’s answer, and
OutcomeVariables declares other variables, in
this case a score variable to hold the value of
the result.

R2Q2 focuses on rendering and responding
to the 16 different types of interactions
described in version 2 of the QT]I specification
(QTIv2). These are:

1) Choice 2) Hotspot

3) Order 4) Select point

5) Associate 6) Graphic

7) Match 8) Graphic Order

9) Inline Choice 10) Graphic Associate

11) Text Entry 12) Graphic Gap
Match

13) Extended Text 14) Position object

15) Hot Text 16) Slider

These different types can be authored as
templated questions or adaptive questions,
providing an author with numerous
alternatives for writing questions appropriate
to the needs of the students. Templated
guestions include variables in their item bodies
that are instantiated when a question is
rendered (for example, inserting different
values into the text of maths problems).
Adaptive questions have a branching structure,
and the parts that a student sees depends on
their answer to previous parts of the branch.
In total these allow for sixty-four different
possible combinations of question types.

3. R2Q2

The R2Q2 service allows a student to view
a question, answer a question, and view the
feedback. The R2Q2 engine (see Figure 1) is
a loosely coupled architecture comprising of
three interoperable services. All the
interactions with and within the R2Q2 engine
are managed by an internal component called
the Router.

The Router is responsible for parsing and
passing the various components of the item
(QTIv2) to the responsible web services. It
also manages the interactions of external
software with the system, and it is therefore
the only component that handles state. This
enables the other services to be much simpler,
maintaining a loosely coupled interface but
without the need to exchange large amounts of
XML.

The Processor service processes the user
responses and generates feedback. The
Processor compares the user’s answer with a
set of rules and generates response variables
based on those rules. The Renderer service
then renders the item (and any feedback) to the

user given these response variables.
R2Q2 QTl v2 Rendering and response engine

|::> Router
<:| Splitter
Interaction controller
GUID
generator

Initialiser Renderer Processor

Figure 1 The R2Q2 Architecture

4, ASDEL

The ASDEL project integrates with the two
other assessment projects in the JISC Capital
Programme call, item banking (Cambridge:
Minibix) and item authoring (Kingston:
AQuRate). The three projects were conceived
as providing an end-to-end assessment service:
AQuRate allows item authoring, which are
stored in the MiniBix item bank. A test
incorporates these items and is played through
the ASDEL delivery engine.

Most VLEs provide tools for assessment
construction and delivery, and there is no
intention to replace them. Instead, the projects
seek to provide a light weight suite of tools
that early adopters may use to construct QTI-
compliant tests and to manage delivery in a
formative setting.

The QTI specification details how a test is
to be presented to candidates, the order of the
guestions, the time allowed, etc. The ASDEL
project built an assessment delivery engine to
the IMS QTI 2.1 specifications that can be
deployed as a stand-alone web application or
as part of a Service Oriented Architecture
enabled Virtual Learning Environment or
portal framework.

The core components of the ASDEL
system were built around a Java project
library, called JQTI. The JQTI library services

The library also provided auxiliary services
like the handling of QTI content packages and
the provision of valid QTI conformance
profiles and reports.

The Playr component of ASDEL is
responsible for the assembly and rendering of
output (i.e. questions and associated rubric).
Initially, only an XHTML renderer was
developed; however, the design of the engine
enables different renderers to be plugged in.

The Validatr component provides
validation of the test and also gives indications
any errors. Like an Integrated Design
Environment for writing program code, the
Validatr also allows experienced users to
correct the XML of the test. The Validatr has
a visual front end, shown in Figure 3, that
allows users to visualise the structure of the
test and the different paths students can take

enabled valid QTI assessment XML through the tests.
documents to be interpreted and executed.
P i e e
A ! :
/|'‘constructr| | ‘validatr
minibix est Authoring Test Validation
Toal Tool
S

1
[z /

Item
Authoring Tool

A(?u Rete

ar

Test Player Tool

Test Delivery
Tool

Test
Store

dSSessr

playr

AP
A U’ y

0TITools

Figure 2. Integration of ASDEL assessment delivery, AQuRate item authoring
(Kingston), and MiniBix item banking (Cambridge).

Eﬁ;‘_/iew Help

QT 2.1 Vahdanmrloo\;.‘Lse\is;’)mg-‘geslimrp-"DFLS}-‘DFLS xml

Name Value

! JW_DFES_SAMPLEL |
s ———— @ target

AS3

& assessmentitemRef-Q21

) assessmentitemRef:022
¥) assessmentSection:AS4

v 6 branchRule:EXIT_TEST

& basevalue:true

) assessmentitemRef:023

© assessmentitemRef-024

@ assessmentitemRef-Q25

& assessmentitemRef-026

Requirel

) assessmentitemRef:Q27
¥ /L assessmentSection:ASS
¥ @ branchRule:As3
v e
@ variable
© basevalue:3.0
¥ @ branchRule:As9
v e
@ variable

<branchRule target="AS3">
<le>
<variable identifier="AS5_SCORE"/>

</[Ite>
< /branchRule>

© basevalue:4.0
) assessmentitemRef-Q28
& assessmentitemRef-Q29
§) assessmentitemRef:Q30
@ assessmentitemRef-Q31
&) assessmentitemRef-Q32
¥) assessmentsection:Ase
¥) branchRule:EXIT_TEST
& basevalue:true
@ assessmentitemRef-Q33
@ assessmentitemRef-Q34
&) assessmentitemRef-Q35
fj assessmentitemRef: Q36
¥ { assessmentSection:AS7
¥) branchRule:As12

<baseValue baseType="float">3.0</baseValue>

=

-

2
=

=}
2

Severit Description Source Path
@ cannot jump back to: AS3
@ Cannot jump back to: ASS

@ Cannot jump back to: AS8

branchRule:AS3 assessmentTestJW_DFES_SAMPLEI->test..
branchRule:AS5 assessmentTestJW_DFES_SAMPLE 1->test...
branchRule:ASE assessmentTestJW_DFES_SAMPLE 1->test... \J

@ Cannot jump back to: ASLO branchRule:AS10 assessmentTestW_DFES_SAMPLE1->fest.. v —Fr
800 ASDEL assessr
[4 >] ‘ (4] + | A http:/ foctopussy.ecs soton.ac.uk/assessr/ @ 2(Q~ Coogl
[I1 Octopussyv MNew searcht .entist Tech Liferay FAQ - LiferayPedia BBC NEWS | T ital Planet Continuum My Projects v WebCodingv Codingv TeXw »
: r [AuwribueAppender e | @ ASDELassessr | |
Signed in as jsh2 | Help | Sign Out
Welcome to assessr Jonathon Hare
Schedule a new assessment
Your scheduled assessments:
Actions Date Created Name Description
| view details | print tokens | 12/12/07 test 1
| view details | print tokens | 1211207 lest 2
My Assessments: Shared Assessments:
Actions Name Description Actions Name Description
7o S my test (broken) test package - second No Records Found
[view | plave | share | package item is broken
| view | playr | share | test test
JISC

23 6 errors { 7 wamnings

Figure 4: Assessr main screen

The test player tool only renders the test, so
the Assessr component manges the test for the
lecturer or teacher. Lecturers can upload a
class list from a spreadsheet, schedule the test,
put embargos on the release of the test
information, etc. The Assessr sends a token
and a URL for the test to each student. The
student logs in to the Playr using the token and
takes the test.

The Assessr allows the academic to see
which tests they have set, who has taken them,
and which tests are shared with someone else,
see Figure 4.

An extremely light weight test construction
tool has been developed, called a Constructr.
This is distinguished from item authoring,
since it simply creates a test comprising
questions selected from an item bank.

5. Conclusions

At a recent conference, the UK assessment
community confirmed that kick-starting the
use of the IMS Question and Test
Interoperability version 2 specifications was a
high priority. The conference concluded that
there needed to be a robust set of tools and
services that conformed to the QTIv2
specification to facilitate this migration.

R2Q2 is a definitive response and
rendering engine for QTIv2 questions. While
this only deals with an item in QTI terms, it is
essential to all processing of QTI questionsand
so forms the core component of all future
systems. Due to the design and use of internal
Web services, the system could be enhanced if
required. So while every effort has been made
to ensure this service can be dropped into
future systems, if necessary it can be changed
to suit any application

In the ASDEL project we built an
assessment delivery engine to the IMS
Question and Test Interoperability version 2.1
specifications. Like R2Q2 this is a Web
service based system that can be deployed as a
stand-alone web application or as part of a
Service Oriented Architecture enabled Virtual
Learning Environment or portal framework.
The engine itself cannot function alone so a
small set of lightweight support tools have also
been built. The engine provided in
combination with the tools:

o Delivery of an assessment consisting of an
assembly of QTI items, with the possibility
that the assessment is adaptive and that the
ordering of questions can depend on
previous responses,

e Scheduling of assessments against users
and groups,

e Rendering of tests and items using a web
interface,

e Marking and feedback, and

e A web service API for retrieving
assessment results.

We have provided a small set of
lightweight tools that will enable a lecturer or
teacher to manage a formative assessment
using the World Wide Web quickly.

6. Acknowledgements

The Work was funded in the UK by the
Joint Information Systems Committee (JISC).
All tools and source code are available from
www.qtitools.org

7. References

[1] Bull, J., and McKenna, C. Blueprint for
Computer Assisted Assessment. Routledge
Falmer, 2004.

[2] Conole, G. and Warburton, B. A review of
computer-assisted assessment. ALT-J
Research in Learning Technology, vol. 13, pp.
17-31, 2005.

[3] Olivier, B., Roberts, T., and Blinco, K.
The e-Framework for Education and Research:
An Overview. DEST (Australia), JISC-CETIS
(UK), www.e-framework.org, accessed July
2005.

[4] Sclater, N. and Howie K. User
requirements of the “‘ultimate’” online
assessment engine, Computers & Education,
40, 285-306 2003.

[5] Wilson, S., Blinco, K., and Rehak, D.
Service-Oriented Frameworks: Modelling the
infrastructure for the next generation of e-
Learning Systems. JISC, Bristol, UK 2004.

[6] APIS [Assessment Provision through
Interoperable Segments] - University of
Strathclyde—(eLearning Framework and Tools
Strand)
http://www.jisc.ac.uk/index.cfm?name=apis,
accessed 30 April 2006.

[7] Assessment and Simple Sequencing
Integration Services (ASSIS) — Final Report —
1.0.
http://www.hull.ac.uk/esig/downloads/Final-
Report-Assis.pdf, accessed 29 April 2006.

[8] IMS Global Learning Consortium, Inc.
IMS Question and Test Interoperability
Version 2.1 Public Draft Specification.
http://www.imsglobal.org/question/index.html,
accessed 9 January 2006.

[9] McAlpine, M. Principles of Assessment,
Bluepaper Number 1, CAA Centre, University
of Luton, February 2002.

[10] Draper, S. W. Feedback, A Technical
Memo, Department of Psychology, University
Of Glasgow, 10 April 2005:
http://www.psy.gla.ac.uk/~steve/feedback.htm
l.

http://www.qtitools.org/
http://www.e-framework.org/
http://www.jisc.ac.uk/index.cfm?name=apis
http://www.hull.ac.uk/esig/downloads/Final-Report-Assis.pdf
http://www.hull.ac.uk/esig/downloads/Final-Report-Assis.pdf
http://www.imsglobal.org/question/index.html

	Abstract
	1. Introduction
	2. QTI
	3. R2Q2
	4. ASDEL
	5. Conclusions
	6. Acknowledgements
	7. References

