A DELIVERY ENGINE FOR QTI ASSESSMENTS

A Delivery Engine for QTI Assessments

G. B. Wills, J. S. Hare, J. Kajaba, D. Argles, L. Gilbert and D. E. Millard
School of Electronics and Computer Science, University of Southampton, Southampton, UK

Abstract—The IMS Question and Test Interoperability
(QTI) standard has had a restricted take-up, in part due to
the lack of tools. This paper describes the ‘ASDEL’ test
delivery engine, focusing upon its architecture, its relation to
item authoring and item banking services, and the
integration of the R2Q2 web service. The tools developed
operate with a web client, as a plug-in to Moodle, or as a
desktop application. The paper also reports on the load
testing of the internal services and concludes that these are
best represented as components. The project first developed
a Java library to implement the system. This will allow
other developers and researchers to build their own system
or incorporate aspects of QTI they want to implement.

Index Terms—E-assessment, Software tools, Question and
Test Interoperability, QTI, e-learning.

. INTRODUCTION

At the 2006 JISC/CETIS conference, the UK
assessment community confirmed that kick-starting the
use of the IMS Question and Test Interoperability version
2 specifications was a high priority. The conference
concluded that there needed to be a robust set of tools and
services that conformed to the QTIv2 specification to
facilitate this migration. It was also felt that formative
assessment would be where such a system would be used
by early adopters.

Formative assessment aims to provide appropriate
feedback to learners, helping them gauge more accurately
their understanding of the material set. It is also used as a
learning activity in its own right to form understanding or
knowledge. Lecturers/teachers often do not have the time
to develop, set, and then mark formative assessment as
much as they would like. A formative e-assessment
system allows lecturers/teachers to develop and set the
work once, allows the learner to take the formative test at
a time and place of their convenience, possibly as often as
they like, to obtain meaningful feedback, and to see how
well they are progressing in their understanding of the
material. McAlpine [9] also suggests that formative
assessment can be used by learners to “highlight areas of
further study and hence improve future performance”.
Draper [10] distinguishes different types of feedback,
highlighting the issue that although a system may provide
feedback, its level and quality is still down to the author.

E-learning assessment covers a broad range of activities
involving the use of machines to support assessment,
either directly (such as web-based assessment tools or
tutor systems) or indirectly by supporting the processes of
assessment (such as quality assurance processes for
examinations). It is an important and popular area within
the e-learning community [4, 1, 2]. From this broad view
of e-learning assessment, the domain appears established
but not mature, as traditionally there has been little

agreement on standards or interoperability at the software
level. Despite significant efforts by the community, many
of the most popular software systems are monolithic and
tightly coupled, and standards are still evolving. To
address this there has been a trend towards Service-
Oriented Architectures (SOA). SOAs are an attempt to
modularize large complex systems in such a way that they
are composed of independent software components that
offer services to one another through well-defined
interfaces. This supports the notion that any of the
components could be ‘swapped’ for a better version when
it becomes available. SOA frameworks are being used as
a strategy for developing frameworks for e-learning [3, 5].
The e-assessment domain has been mapped and a
framework constructed [11].

A leading assessment standard has emerged in Question
and Test Interoperability (QTI) developed by the IMS
Consortium. The QTI specification describes a data
model for representing questions and tests and the
reporting of results, thereby allowing the exchange of data
(item, test, and results) between tools (such as authoring
tools, item banks, test constructional tools, learning
environments, and assessment delivery systems) [8].
Wide take-up of QTI would facilitate not only the sharing
of questions and tests across institutions, but would also
enable investment in the development of common tools.
QTI is now in its second version (QTIv2), designed for
compatibility with other IMS specifications, but despite
community enthusiasm there have been few examples of
QTIv2 being used, with no definitive reference
implementation [6, 7]. The other problem is that no sooner
has the reference implementation been finished than the
specification is likely to be updated. Also people have
their own views on how this should be implemented, so in
this work we have also looked at how to implement the
specification in such a way to stop it from becoming
obsolete the moment the implementation is finished.

In this paper we first give an overview of the QTI
specification and the R2Q2 project (a project for rendering
and responding to questions). An overview of the
architecture for the ASDEL project (a project for
rendering and conducting tests) and the tools developed is
then described in section 4. In section 5 we describe the
rationale for first building a Java library for QTI and in
section 6 we present the results of load testing the tools.
In section 7 we present a discussion of this work and some
conclusions.

1. QTI

The IMS QTI Specification is a standard for
representing questions and tests with a binding to the
eXtended Markup Language (XML, developed by the
W3C) to allow interchange. Each item (question) has
three core elements: ItemBody declares the content of the

A DELIVERY ENGINE FOR QTI ASSESSMENTS

item itself, ResponseDeclaration declares a variable to
store the student’s answer, and OutcomeVariables
declares other variables, in this case a score variable to
hold the value of the result. There are 16 core item types
described in version 2 of the QTI specification (QTIv2).
These are:

1) Choice 2) Hotspot

3) Order 4) Select point

5) Associate 6) Graphic

7) Match 8) Graphic Order

9) Inline Choice 10) Graphic Associate
11) Text Entry 12) Graphic Gap Match
13) Extended Text 14) Position object
15) Hot Text 16) Slider

The different item types can be written with templated
questions or adaptive questions, providing an author with
numerous alternative methods for writing questions
appropriate to the needs of the students. Templated
questions include variables in their item bodies that are
instantiated when a question is rendered (for example,
inserting different values into the text of mathematics
problems). Adaptive questions have a branching
structure, and the parts that a student sees depends on their
answer to previous parts of the branch. In total these
allow at least sixty-four different possible combinations of
question types.

|:> Router
<:| Splitter
Interaction controller
GUID
generator

Initialiser Renderer Processor

Figure 1. The R2Q2 Architecture

1. R2Q2

The R2Q2 project was an earlier project funded by
JISC for rendering and responding to the 16 core item
types, discussed in section 2. The R2Q2 service allows a
student to view a question, answer a question, and view
the feedback. The R2Q2 engine (see Figure 1) is a loosely
coupled architecture comprising of three interoperable
services. All the interactions with and within the R2Q2
engine are managed by an internal component called the
Router.

The Router is responsible for parsing and passing the
various components of the item (QTIv2) to the responsible
web services. It also manages the interactions of external
software with the system, and it is therefore the only
component that handles state. This enables the other
services to be much simpler, maintaining a loosely
coupled interface but without the need to exchange large
amounts of XML.

The Processor service processes the user responses and
generates feedback. The Processor compares the user’s
answer with a set of rules and generates response variables
based on those rules. The Renderer service then renders
the item (and any feedback) to the user given these
response variables.

IV. ASDEL

The QTI specification details how a test is to be
presented to candidates, the order of the questions, the
time allowed, etc. The ASDEL project built an
assessment delivery engine to the IMS QTI 2.1
specifications that can be deployed as a stand-alone web
application or as part of a SOA enabled Virtual Learning
Environment (VLE) or portal framework.

The core components of the ASDEL system were built
into a Java library called JQTI (see section 5). The JQTI
library enables valid QTI assessment XML documents to
be interpreted and executed. The library also provides
auxiliary services like the handling of QTI content
packages and the provision of valid QTI conformance
profiles and reports.

The first instantiation of the library is called Playr, the
ASDEL tool which delivers a QTI test. The
AssemblerRenderingEngine part of this tool is responsible
for the assembly and rendering of output (i.e. questions
and associated rubric). Initially, only an XHTML
renderer has been developed; however, the design of the
Playr enables different renderers to be plugged in. Figure
2 presents the conceptual design diagram for the Playr.

ASDEL Playr

"APISarvT
REST-style Interface

Piayr Webapp

il
:[< A0z e
- SOAP+WSDIL

style
WebSenvice
Figure 2. Architecture for the Assessment Delivery System

The ASDEL project integrated with the other projects
in the JISC Capital Programme on item banking
(Cambridge: ‘Minibix”) and item authoring (Kingston:
‘AQuRate’) to provide a demonstrator (see Figure 3).
Together the three projects provide an end-to-end service:
AQuRate allows item authoring, which are stored in
MiniBix. A test incorporates these items and is played
through the ASDEL playr. Regular workshops between
the projects ensured this happened. These projects can be
found at www.gtitools.org.

A DELIVERY ENGINE FOR QTI ASSESSMENTS

|| constructr

validatr | |

Item Bank | . o !
minibix i| Test Authoring Test Validation
Tool Tool i

S

I
'
'
1
I
|
WebSenvice i
Imartace I
! Tool

Test Delivery

H Test Player Tool @
| Store !

. | playr assessr
Authoring Tool | Y
AQuR@te ! ASBELy |

J § QTITools |
Figure 3. Integration of the ASDEL, AQuRate Item Authoring

(Kingston) and MiniBix, Item Banking (Cambridge)

The test player only rendered the test, while the
rendering of the questions and the response to these
questions was the responsibility of the R2Q2 web service.
During the design and implementation of ASDEL a
number of small problems were identified in R2Q2 that
needed to be fixed. Firstly, the default R2Q2 render
renders full xhtml pages rather than rendering
fragments—ASDEL requires fragments so that it can
append various elements of rubric and other textual
information about the test before and after the question.
The output from ASDEL also needs to be in the form of a
fragment so that it can be integrated with a VLE or portal
framework. The second problem with R2Q2 was due to
the way it always rendered feedback that was included in
an item (at the correct time of course)—the problem is
that the QTI assessment specification allows the delivery
engine to control whether or not an individual item should
render feedback.

Further ASDEL tools were developed. The validatr
tool provides the validation of a QTI test and also gives
indications of any errors in the QTI document. Similar to
an integrated design environment for writing program
code, validatr also allows experienced users to correct the
XML of the test. The validatr has a visual front end that
allows users to visualize the structure of the test and the
different paths students can take through the assessment
(see Figure 4).

The test player tool only delivers the test, so the assessr
tool manages the test for the lecturer or teacher. Lecturers
can upload a class list from a spreadsheet, schedule the
test, put embargos on the release of the test information,
etc.

The assessr tool sends a token and a URL for the test to
each student who can log into the playr using the token
and take the test. The assessr allows the lecturer to see
which test they have set, who has taken them, and which
tests are shared with someone else (see Figure 5).

Constructr is an extremely lightweight test construction
tool. This is distinguished from item authoring since it
simply allows a lecturer to select a pool of questions from
an item bank and put them into a basic test.

cooo |

Figure 4. Validatr screenshot

Ay ASDEL assessr

[0 etmpusiys rm saarth | amset Tosk Ufsray FM - LowrarPris BB RIWL | T sl Pamet Comirasm By Pragmts s WabCodg s - Cadieg = Tele
L —

dSsSessr
Waelcome to assessr Jonathon Hare

Aevem [[Descrption
= e

Figure 5. Assessr main screen

During the development of the project, a number of
modifications and fixes were made to the R2Q2 tool in
order to facilitate its interoperability with the ASDEL
toolset. The biggest changes were the development of a
better web service interface, improvements to enable finer
control over the rendering, and the addition of basic
MathML support.

We have also developed a version of the playr tool
called PlayrDE, which can be downloaded and used from
the desktop without an Internet connection. It provides a
simple online QTI validation tool which enables a
validation report to be generated for an uploaded content
package or assessment XML file. Finally, we have
developed an activity module plug-in for the Moodle VLE
that replicates all of the functionality of assessr, but
directly integrated with Moodle.

V. JQTI: WHY BUILD A LIBRARY FIRST

In this section we reflect on some of the issues and
factors that needed to be considered in implementing a
software library for the QTI specification.

The core of the ASDEL software is a library we call
JQTI. JQTI is essentially an interpreter for IMS QTI v2.1
XML. QTI XML is rather unlike most XML documents,
as it contains instructions as well as data. These
instructions determine how tests and items are presented,
processed, and evaluated. The QT]I specification defines a
programming language that happens to be expressed in the
form of an XML document. For the ASDEL project,
JQTI implements all of the parts relevant to the
AssessmentTest class, although we hope in the future to

A DELIVERY ENGINE FOR QTI ASSESSMENTS

add the remaining (Assessmentltem) classes and to retrofit
JOTI into R2Q2.

In implementing JQTI we considered two options; we
could either use a binding technology such as JAXB or
Castor to bind the QTI XML schema to a set of
automatically generated Java classes, or we could write
the whole library from scratch, using a DOM parser to
parse the XML. XML binding technologies work well for
binding to XML containing data, but are problematic
when the XML contains instructions that need to be
evaluated. In this case, every automatically generated
class would have to be manually modified to have a
‘behavior’ added to it so that it could be evaluated.
Another problem with binding to the XML schema is that
the schema is not nearly as expressive as the full QTI
specification document—it is possible to have an XML
document that validates against the schema, but is not
valid QTI. It is for these reasons that we used “custom
classes + DOM parser” in our implementation of JQTI.

A comprehensive library for handling QTI needs to
perform two core operations; it needs to be able to
generate QTI XML, and it needs to be able to
parse/evaluate QTI XML. The library should not be
responsible for the actual rendering of items/assessments,
although it should provide relevant hooks to obtaining the
required information needed for rendering. The reason is
that the specification itself is agnostic towards how
content should be rendered (even though most
implementations so far have rendered XHTML).

QTI XML is more of a programming language than a
data format. This means that there are some very special
considerations that need to be taken into account when
designing and implementing a QTI library. Perhaps the
most significant of these considerations was that it is
possible (and rather easy) to write a QTI XML document
that is syntactically valid according to the QTI XML
schema, but is not syntactically or semantically correct
according to the specification. As an example of this,
consider the following XML fragment:

<equal toleranceMode="relative">
<baseValue baseType=""float'>
1.0
</baseValue>
<baseValue baseType=""float'">
1.0
</baseValue>
</equal>

This XML will validate correctly against the QTI XML
schema, but it is not valid against the specification
because the element is missing the tolerance attribute that
is required (the toleranceMode is relative). An example of
a semantic error occurs in referring to an element (for
example in the target of a branchRule) using an identifier
that does not actually exist.

This consideration mandates that the library must be
able both to validate the syntax of the QTI XML
documents that it reads (in a more comprehensive manner
than by simply validating the XML against the schema)
and to assess the semantic correctness of the document.
Semantic correctness is important, because the chance of
any errors or exceptions being thrown during the
execution of a test or item needs to be minimized, though

it is impossible to check every possible error case because
processing the XML will rely on user input. Checking
QTI XML for semantic correctness (at least as far as
possible) requires a static analysis on the XML document
in order to verify that it will work correctly as it is
executed.

There are two possible implementations for processing
and evaluating a QTI XML document: either parse the
data on a line-by-line basis and perform steps as required
(for example by user response), or read in all the data and
construct an object tree. The first option has the
advantage of lower memory consumption, but has the
disadvantages of a difficult implementation for syntactic
and semantic validation (c.f. static analysis), and for
moving around (i.e. backward/forward through a test).

The class hierarchy in the library also needs to be
considered. The specification provides some hints as to
how QTI classes are related, but is not an implementation
guide. Many of the classes defined in the QTI
specification are implemented in our JQTI library, though
the hierarchy is often a little different—i.e. all the Java
classes that are related to QTI classes inherit from a
common abstract XmlObject class. Another consideration
is that some classes defined in the specification are not
relevant to the processing and evaluation of the XML
document, and only serve as hints to the renderer (i.e. the
XHTML classes). These classes usually don’t need to
have any concrete implementation associated with them.
The QTI specification also serves as a good pointer as to
the breakdown of the class structure into a suitable
granularity. For example, rather than implementing all of
the expression classes in a single class (there are so many
of them, and some are rather complex), the specification
suggests that all the expressions would be individual
classes inheriting a common abstract expression class
whose methods can be overridden for evaluation of the
expressions.

The library requires a good testing framework, and the
QTI specification forms a basis for determining the
functional requirements for each class. The library
implementation can make use of these for constructing a
set of unit tests for individual components, as well as for
determining when runtime exceptions should be thrown.

In summary, a good QTI library implementation needs
to provide a set of custom classes that implements the
functionality of the QTI specification (i.e. items and
assessments can be run, evaluated, validated, etc), and that
also binds to the XML (so that tests and items can be read
in and written out). The library also needs to handle
runtime errors in a systematic way through the use of
exceptions, and be backed by a comprehensive test suite
that validates that it conforms to the specification.

VI. LOAD TESTING

The original design for the ASDEL playr tool called for
a number of small loosely coupled internal services
communicating using SOAP, together with an external
SOAP-based APIl. Running load tests with tens of
simultaneous users showed significant failings in the
quality of service the tool could provide. These were
traced to numerous problems with the standard Java
libraries we used for creating SOAP web services. By
redeveloping the internal services as components we
removed the errors, and the system worked well in

A DELIVERY ENGINE FOR QTI ASSESSMENTS

simulations with hundreds of simultaneous users. This
supports the idea that small internal services are better
provisioned as components and that the whole tool can be
wrapped as a web service. In addition to redeveloping the
internal infrastructure we also refactored the original
external SOAP API into a much easier-to-use REST-style
API. This facilitated the fast construction of the Moodle
plug-in.

Figure 6 illustrates the performance differences between
the original web service-based design and the
componentized design. The graph shows two sets of
curves; one shows the throughput for a given number of
users, whilst the other shows the error rate. Throughput is
the number of requests the software is dealing with per
second, and initially increases as a function of the number
of users. It eventually peaks and then decreases as the
server resources become exhausted (i.e. server runs out of
available processing power, memory, file handles, etc).
The error rate is the number of times the software fails to
produce the expected outcome (for example, fails to load a
page due to resource limits). In real e-assessment
scenarios no errors can be tolerated, so it is useful to
determine how many simultaneous users the software can
support before errors will start to occur. The curves on the
graph clearly show that the componentized version of the
playr performs much better than the web service version;
so much so that the number of simultaneous users can
increase from about 10 to 400 before errors will start to
occur. The reasons for this somewhat dramatic
improvement are numerous, but are mostly related to the
reduction in memory and CPU resource usage from not
having to continuously encode and decode SOAP XML
messages.

25.00% 30

20.00% /

15.00% /
\ Error (Component)
—a ~Error (WS)
—=m— Throughput (Component)
Throughput (WS)

10.00% , \

~
P
=
15
Throughput (request-responses/sec)

5.00%

0.00% / —

o 100 200 300 400 500
Number of Simulated Users

Figure 6. Performance of the original playr versus the improved
design.

VII. CONCLUSIONS

At the 2006 JISC/CETIS conference, the UK
assessment community confirmed that kick-starting the
use of the IMS Question and Test Interoperability version
2 specifications was a high priority. The conference
concluded that there needed to be a robust set of tools and
services that conformed to the QTIv2 specification to
facilitate this migration.

R2Q2 is a definitive response and rendering engine for
QTIv2 questions. While it only deals with question items,
it is essential to all processing of QTI questions and so
would form the core component of all future systems.

In the ASDEL project we built an assessment delivery
engine to the QTIv2.1 specifications. Like R2Q2, it is a
web service-based system that can be deployed as a stand-
alone web application or as part of a SOA-enabled VLE or
portal framework. We have also built a desktop version
for those who are not connected to the internet.

The engine itself cannot function alone so a small set of
lightweight support tools have also been built. The
engine, in combination with the tools, provides:

o Delivery of an assessment consisting of an
assembly of QTI items, with the possibility that the
assessment is adaptive and that the ordering of
guestions can depend on previous responses,

e Scheduling of assessments against users and
groups,

e Rendering of tests and items using a web interface,
e Marking and feedback, and

e A web service APl for retrieving assessment
results.

We have provided a small set of lightweight tools that
will enable a lecturer or teacher to quickly manage a
formative assessment using the Web. The outcome of this
project is the first open source test delivery system for
tests written in the QTIv2 format. The ASDEL toolset is
freely available. The toolset is designed to work as a
standalone set of web based tools or on the desktop.
Alternatively these tools can be integrated into a VLE (or
other web based course delivery systems). We have
demonstrated this by writing a plug-in for Moodle.

The library has proven to be an effective method of not
only producing a reference implementation but also in
solving the problem of becoming obsolete the moment it
is implemented. The library will easy accommodate
changes in the specification and allow people to
implement a QT solution that suits their circumstances.

We originally set out to build the set of tools as web
services that could be used together to form the ASDEL
web service in another application. However load tests
showed that having small, single function web services
caused too much of an overhead in terms of resource
allocation and limited the number of simultaneous users.
This has implications for the e-learning framework, in that
the granularity of the service matters when being
combined to produce an effective system.

It is envisioned that lightweight suites of tools
developed from ASDEL and R2Q2 will enable early
adaptors of, and those researching into, e-assessment an
opportunity to experiment with the alternative ways of
presenting tests afforded by the QTI specification.

REFERENCES

[1] Bull, J., and McKenna, C. Blueprint for Computer Assisted
Assessment. Routledge Falmer, 2004.

[2] Conole, G. and Warburton, B. "A review of computer-assisted
assessment”. ALT-J Research in Learning Technology, vol. 13,
pp. 17-31, 2005.

[3] Olivier, B., Roberts, T., and Blinco, K. "The e-Framework for
Education and Research: An Overview". DEST (Australia), JISC-
CETIS (UK), www.e-framework.org, accessed July 2005.

[4] Sclater, N. and Howie K. User requirements of the “‘ultimate’”’
online assessment engine, Computers & Education, 40, 285-306
2003.

(5]

6]

[71

(8]

[°]

[10]

[11]

A DELIVERY ENGINE FOR QTI ASSESSMENTS

Wilson, S., Blinco, K., and Rehak, D. Service-Oriented
Frameworks: Modelling the infrastructure for the next generation
of e-Learning Systems. JISC, Bristol, UK 2004.

APIS [Assessment Provision through Interoperable Segments] -
University of Strathclyde—(eLearning Framework and Tools
Strand) http://www.jisc.ac.uk/index.cfm?name=apis, accessed 30
April 2006.

Assessment and Simple Sequencing Integration Services (ASSIS)
— Final Report — 1.0. http://www.hull.ac.uk/esig/downloads/Final-
Report-Assis.pdf, accessed 29 April 2006.

IMS Global Learning Consortium, Inc. IMS Question and Test
Interoperability Version 2.1 Public Draft Specification.
http://www.imsglobal.org/question/index.html, accessed 9 January
2006.

McAlpine, M. Principles of Assessment, Bluepaper Number 1,
CAA Centre, University of Luton, February 2002.

Draper, S. W. Feedback, A Technical Memo Department of
Psychology, University Of Glasgow, 10 April 2005:
http://www.psy.gla.ac.uk/~steve/feedback.html.

Wills, G., Bailey, C., Davis, H., Gilbert, L., Howard, Y., Jeyes, S.,
Millard, D., Price, J., Sclater, N., Sherratt, R., Tulloch, I. and
Young, R. (2007) AN _ E-LEARNING FRAMEWORK FOR
ASSESSMENT (FREMA). In: International CAA Conference,
10th - 11th July 2007., Loughborough UK.

AUTHORS

G. B. Wills is a senior lecturer in the School of
Electronics and Computer Science, University of
Southampton, Southampton, Hampshire, SO17 1BJ, UK
(e-mail: gbw@ ecs.soton.ac.uk).

J. S. Hare is a Research Fellow in the School of
Electronics and Computer Science, University of
Southampton, Southampton, Hampshire, SO17 1BJ, UK
(e-mail: jsh2@ ecs.soton.ac.uk).

J. Kajaba is a Research Assistant in the School of
Electronics and Computer Science, University of
Southampton, Southampton, Hampshire, SO17 1BJ, UK
(e-mail: jk2@ ecs.soton.ac.uk).

D. Argles is a lecturer in the School of Electronics and
Computer Science, University of Southampton,
Southampton, Hampshire, SO17 1BJ, UK (e-mail: da@
ecs.soton.ac.uk).

L. Gilbert is a lecturer in the School of Electronics and
Computer Science, University of Southampton,
Southampton, Hampshire, SO17 1BJ, UK (e-mail: Ig3@
ecs.soton.ac.uk).

D. E. Millard is a lecturer in the School of Electronics
and Computer Science, University of Southampton,
Southampton, Hampshire, SO17 1BJ, UK (e-mail: dem@
ecs.soton.ac.uk).

Manuscript received 05 May 2008. This Work was funded in the UK
by the Joint Information Systems Committee (JISC).

http://www.psy.gla.ac.uk/%7Esteve/feedback.html
http://eprints.ecs.soton.ac.uk/14109/
http://eprints.ecs.soton.ac.uk/14109/

	I. Introduction
	II. QTI
	III. R2Q2
	IV. ASDEL
	V. JQTI: Why build a library first
	VI. Load Testing
	VII. Conclusions
	References
	Authors

