Geothermal Heating and its Influence on the Meridional Overturning Circulation
Geothermal Heating and its Influence on the Meridional Overturning Circulation
The effect of geothermal heating on the meridional overturning circulation is examined using an idealized, coarse-resolution ocean general circulation model. This heating is parameterized as a spatially uniform heat flux of 50 mW m-2 through the (flat) ocean floor, in contrast with previous studies that have considered an isolated hotspot or a series of plumes along the mid-Atlantic ridge. The equilibrated response is largely advective: a deep perturbation of the meridional overturning cell on the order of several Sv is produced, connecting with an upper-level circulation at high latitudes, allowing the additional heat to be released to the atmosphere. Rising
motion in the perturbation deep cell is concentrated near the equator. The upward penetration of this cell is limited by the thermocline, analogous to the role of the stratosphere in limiting the upward penetration of convective plumes in the atmosphere. The magnitude of the advective response is inversely proportional to the deep stratification; with a weaker background meridional overturning circulation and a less stratified abyss, the overturning maximum of the perturbation deep cell is increased. This advective response also cools the low-latitude thermocline. The qualitative behavior is similar in both a single hemisphere and double hemisphere configuration.
The anomalous circulation driven by geothermal fluxes is more substantial than previously thought. We are able to understand the structure and strength of the response in the idealized geometry and further extend these ideas to explain the results of Adcroft et al. [2001], where the impact of geothermal heating was examined using a global configuration.
31141-31154
Scott, J.R.
c8bfed77-4818-4c44-93c7-b88abb3abec2
Marotzke, J.
6047bfd1-68a3-4abe-95ce-e1df9a56ce76
Adcroft, A.
513a48ba-1114-4ca9-a536-7cd905a8b1ce
2001
Scott, J.R.
c8bfed77-4818-4c44-93c7-b88abb3abec2
Marotzke, J.
6047bfd1-68a3-4abe-95ce-e1df9a56ce76
Adcroft, A.
513a48ba-1114-4ca9-a536-7cd905a8b1ce
Scott, J.R., Marotzke, J. and Adcroft, A.
(2001)
Geothermal Heating and its Influence on the Meridional Overturning Circulation.
Journal of Geophysical Research: Oceans, 106 (C12), .
(doi:10.1029/2000JC000532).
Abstract
The effect of geothermal heating on the meridional overturning circulation is examined using an idealized, coarse-resolution ocean general circulation model. This heating is parameterized as a spatially uniform heat flux of 50 mW m-2 through the (flat) ocean floor, in contrast with previous studies that have considered an isolated hotspot or a series of plumes along the mid-Atlantic ridge. The equilibrated response is largely advective: a deep perturbation of the meridional overturning cell on the order of several Sv is produced, connecting with an upper-level circulation at high latitudes, allowing the additional heat to be released to the atmosphere. Rising
motion in the perturbation deep cell is concentrated near the equator. The upward penetration of this cell is limited by the thermocline, analogous to the role of the stratosphere in limiting the upward penetration of convective plumes in the atmosphere. The magnitude of the advective response is inversely proportional to the deep stratification; with a weaker background meridional overturning circulation and a less stratified abyss, the overturning maximum of the perturbation deep cell is increased. This advective response also cools the low-latitude thermocline. The qualitative behavior is similar in both a single hemisphere and double hemisphere configuration.
The anomalous circulation driven by geothermal fluxes is more substantial than previously thought. We are able to understand the structure and strength of the response in the idealized geometry and further extend these ideas to explain the results of Adcroft et al. [2001], where the impact of geothermal heating was examined using a global configuration.
Text
geotherm_JGR_new.pdf
- Other
More information
Published date: 2001
Additional Information:
attached PDF is "In Press" version
Identifiers
Local EPrints ID: 266
URI: http://eprints.soton.ac.uk/id/eprint/266
PURE UUID: 21206b81-bff8-49be-9e95-9846323fd920
Catalogue record
Date deposited: 23 Jan 2004
Last modified: 15 Mar 2024 04:38
Export record
Altmetrics
Contributors
Author:
J.R. Scott
Author:
J. Marotzke
Author:
A. Adcroft
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics