
A correct-by-construction methodology for
designing symmetric circuits

Ashish Darbari

Oxford University Computing Lab
Wolfson Building

Parks Road
Oxford, OX1 3QD

ashish@comlab.ox.ac.uk

1 Introduction

Symbolic trajectory evaluation [1] or STE in short has been successfully used in
verification of large industrial sized circuit designs [2]. However, the data abstrac-
tion in STE via Xs is often insufficient to bring about any reasonable reduction
in the size of the verification of memory based circuits such as random access
memories (RAM), content addressable memories (CAM) and caches. Memory
based circuits offer a significant opportunity in achieving a reduction in the size
of the verification problem due to the inherent symmetry in their structure. Our
overall research goal is to develop a symmetry based reduction methodology for
STE model checking.

Two key problems have to be addressed in any symmetry based reduction
approach for model checking hardware. These are:

1. How can symmetries in circuits be found?
2. How can the symmetry identified in a given circuit lead to a reduction in

the size of the verification problem?

This paper addresses the first problem, by presenting a correct-by-construction
method of recording and identifying symmetries using an abstract data type for
circuit models. In a recent paper [3] we have presented a solution to the second
problem by providing a reduction strategy for STE properties based on having
identified symmetries using the approach we present in this paper.

2 Design of symmetric circuits

Symmetry has been investigated as a technique for computing reductions for var-
ious types of model checking [4–9]. An important lesson learnt is that symmetries
are best identified when they are recorded in the structure of the circuit at the
time of design. Once symmetries are captured in this manner, then discovering
them in the circuit amounts to merely reading them via type checking. This often
reduces the otherwise NP-complete problem of discovering symmetries from cir-
cuits using sub-graph isomorphism, to a polynomial time type checking problem

of circuit’s syntax described at a high-level. Although syntax based approach is
very efficient in practice, success has been achieved with automatic symmetry
detection as well [10, 11], and symmetry detection using input language restric-
tion [12].

We have worked on the design and implementation of a type system that is
used for designing a structurally symmetric class of circuits. The type system
is a way of defining an abstract data type of models, rather than attempting
to design a hardware description language like Verilog, VHDL or SystemC. We
have used this to design several symmetric circuits starting from basic logic gates
to multiplexers, comparators, registers, RAMs, CAMs and circuits that involve
multiple CAMs. These circuits appear regularly in all modern microprocessor
designs. Our methodology of designing the type system is based on identifying
the following key issues:

1. Propose a sufficiently generic type for circuits.
2. Define the functions that will be used for constructing symmetric circuit

blocks.
3. Provide the type judgement rules.
4. Articulate the mathematical definition of structural symmetry.
5. Prove a type soundness theorem, which says that every circuit definition

that is well behaved with respect to the typing rules, will have structural
symmetry.

A circuit is said to have structural symmetry with respect to a specific set
of inputs and outputs when the circuit’s behaviour remains unchanged under
permutation of those specific set of inputs and outputs. The specific inputs in
this case can be termed as symmetric inputs. Every circuit can have some inputs
which will be symmetric1. There would be some inputs that would not have any
role in the symmetry of the circuit, and they are referred to as non-symmetric
inputs. Thus a circuit can have the following type:

circ : (bool list) list → (bool list) list → (bool list) list

where the type (bool list) denotes the set of bit values of any one group of wires
(also known as a bus), and the list of Boolean lists ((bool list) list) denotes the
collection of several such buses. The first argument of the circuit type denotes
the values of non-symmetric inputs, the second argument denotes the values for
symmetric inputs and the third argument the outputs of the circuit. The type
of symmetric circuit blocks is

circ : (bool list) list → (bool list) list

We provide a set of functions that allow us to construct circuits with the
above type. The definition of these circuit constructing functions is structured
into layers. The first level, called Level 0 in our framework, is the layer that con-
sists of function definitions over Boolean lists, and provides type judgement rules,

1 In case the circuit has no symmetry the set of symmetric inputs will be empty.

to identify safe functions, that are used to design symmetric functional blocks.
The second layer, referred to as Level 1, is the layer where we provide circuit com-
binators, and a type system that is used for identifying ways in which these cir-
cuit combinators are combined to generate circuits that have symmetry. We show
that these circuits indeed have symmetry by proving the type soundness theorem.
We distinguish between the terms functions and combinators. The term function
is used to mean objects of the type bool list → bool list, whilst the term com-
binators, mean objects of the type (bool list list → bool list list → bool list list),
or bool list list → bool list list .

In subsequent sections, we present the details of our approach.

3 Functional blocks — Level 0 framework

We use several well known functions on lists from functional programming [13–
15], such as hd , tl , append , map, map2 , foldr and so on, as building blocks
for defining other higher-order combinators that are used to define symmetric
circuit blocks. The definition of symmetry we are going to present relies on the
concept of a permutation. Any arbitrary permutation on a set of n elements can
be composed from pair-wise distinct swaps on the elements of the set. Since we
represent the buses as lists, we are interested in swaps on lists. Thus we define
the concept of symmetry in terms of atomic swap operations.

Definition 1. Swap on lists

swap (i, j) lst
4= if (i < length lst) ∧ (j < length lst))

then (insert (el j lst) i (insert (el i lst) j lst))
else lst

The function swap itself is defined in terms of a function called insert , that
simply inserts (overwrites) a given element at a certain position in a given list.
At Level 0 we define the concept of symmetry for functional blocks.

Definition 2. Symmetry of functional blocks

sym c
4= ∀inp i j. c (swap (i, j) inp) = swap (i, j) (c inp)

The functions that constitute the Level 0 framework are id , map, ◦ and fold .
The function fold , folds a given function f onto a functional block c using the
familiar function foldr (right-fold) on lists; others are described in Table 1. Also
shown in the table are the typing rules for Level 0 framework, defined inductively
by using the predicate safe.

Definition 3. The function fold

fold f (c : bool list → bool list) 4= λinp. [foldr f (hd (c inp)) (tl (c inp))]

The property that all Level 0 functional blocks preserve the symmetry defi-
nition shown above, is characterised by the Level 0 safety theorem.

safe id

f : bool → bool

safe (map f)

(safe c) (f : bool → bool → bool) (assoc f) (comm f)

safe (fold f c)

safe c1 safe c2

safe (c1 ◦ c2)

Table 1. Rules for safe functional blocks. The function map is the polymorphic function
that maps a function f onto a list. The function id is the identity function on Boolean
lists, while ◦ is the polymorphic serial composition function. Note that f needs to be
associative (assoc) and commutative (comm) for fold to be a safe functional block.

Theorem 1. Level 0 Safety Theorem

` ∀c. safe c ⊃ sym c

Proof outline: The proof takes place by an induction on the rules defining safe.
ut

4 Constructing symmetric circuits — Level 1 framework

In this section we shall present the elements of the next layer of our framework
of designing structured models. This layer, called Level 1, consists of circuit
construction combinators that allow us to construct symmetric circuits. We use
the safe functions from Level 0 in the definition of circuit construction, and
also define a new set of higher-order combinators that is used for designing
bottom-up symmetric circuits. We provide type judgement rules that govern the
way symmetric circuits can be constructed, and later on prove that the type
judgement rules are sound, meaning that every piece of circuit definition that is
well-behaved with respect to the type judgement rules has symmetry.

Before we proceed to show the definitions of our combinators, we define a
predicate asserting that all buses in a list are of equal length. This is vital for us
since circuits that do bitwise operations on a pair of inputs, require the inputs
to be of equal length.

Definition 4. Buses are of equal length

CheckLength inp
4= ∀l. l ∈ inp ⊃ ∀m. m ∈ inp ⊃ (length l = length m)

The combinators used for defining circuit blocks are defined in the subsequent
section. Note that all these combinators take a list of Boolean lists and produce
a list of Boolean lists as an output. The intuition is that these combinators are
all functions from symmetric inputs to outputs, where the type of list of Boolean
lists is used for representing the symmetric input and outputs. When defining a
circuit with non-symmetric inputs, one can pass them as the first argument and
the symmetric inputs can be the second argument. Thus the combinators we
define encapsulate the non-symmetric inputs (list of Boolean lists), and hence
have the following type:

(bool list) list → (bool list) list

4.1 Circuit construction combinators

The combinator Null does not produce any output, and is useful for circuit
designs, where for a certain configuration of inputs, the user wants to have an
empty list of outputs. Then we have the identity or the buffer circuit defined by
the combinator Id , which simply returns the list of symmetric input buses in the
output. The third combinator is the polymorphic combinator map. In Level 1,
the function map maps a safe function c0, onto a list of symmetric input buses.

Null 4= λsym. []
Id 4= λsym : (bool list) list. sym

The serial composition operator ◦ is the polymorphic function ◦. It is used
here to compose two circuits serially.

Parallel composition of two different symmetric circuit blocks is accomplished
by a parallel composition operator (‖). One important constraint to keep in mind
is that the length invariant CheckLength should be preserved by buses both
before and after the ‖ combinator is applied. This is important to ensure since
we do not want to club unequal buses together in one list because we would like
to be able to do a bitwise operation on this list.

(c1 ‖ c2) 4= λsym. if CheckLength(append (c1 sym)(c2 sym))
then append (c1 sym)(c2 sym) else []

Given a circuit c, if we want to duplicate it, we can use the Fork combinator,
the definition of this is presented below.

Fork c
4= λsym. append (c sym) (c sym)

Amongst a list of n buses, we may wish to select any one of the n buses, and
this is done by the Select combinator. Again note that it uses the definition of
list selection function el .

Select n c
4= λsym. if (n < length(c sym))

then [el n (c sym)] else []

Given a list of buses, we wish to have an operator that can allow us to take
all the buses but the first one. This is a feature that is similar to the tl function
on lists. This is done by the Tail combinator. We define the combinator Tail in
terms of tl .

Tail c
4= λsym. if (1 < length(c sym))

then tl (c sym) else []

Our last combinator definition is also one of the most useful ones. This is the
definition of the Bitwise operation on a list of buses, all of which are of equal
length. The function Bitwise, applies the function f bitwise to all the buses,
and it does this by using the usual bitwise function on lists, map2 . Bitwise is
defined by folding the combinator (map2 f), onto a list of buses. The starting
value for the foldr function comes from the head of the list of Boolean lists, and
then Bitwise traverses the remainder of the list of buses, and using the function
f , applies (map2 f) bitwise to all the buses.

Bitwise f c
4= λsym. if ((c sym) 6= [])

then [foldr (map2 f)(hd (c sym))(tl (c sym))]
else []

Once we define the combinators, we have to establish rules of combining
them. These rules lay the foundation of distinguishing the symmetric circuits
from non-symmetric ones. By using these rules to type check a given piece of
circuit syntax, we can conclude that the circuit has symmetry. This is possible
because we prove a type soundness theorem, which we will present later.

4.2 Typing rules for symmetric circuits

In this section we shall present a type system that provides the type judgement
rules for building symmetric circuits. The typing rules are defined by inductively
defining the predicate SS , which represents the concept “symmetry-safe”. The
rules are shown in Table 2.

4.3 Symmetry of circuits

In this section we will present the definition of symmetry. A circuit is symmetric
if its behaviour remains unchanged under permutation of its symmetric input
and output states.

Definition 5. Symmetry of circuits

Sym c
4= ∀inp. CheckLength inp ⊃

∀i j. map(swap(i, j))(c inp) = c (map(swap(i, j)) inp)

Now we present the most important result of this paper, which is the type
soundness theorem. This theorem characterises the property that all Level 1
circuit construction combinators preserve the symmetry property shown in De-
finition 5.

SS Null SS Id

safe c0

SS (map c0)

SS c1 SS c2

SS (c1 ◦ c2)

SS c1 SS c2

SS (c1 ‖ c2)

SS c

SS (Fork c)

SS c n : num

SS (Select n c)

SS c

SS (Tail c)

SS c (assoc f) (comm f) f : bool → bool → bool

SS (Bitwise f c)

Table 2. Type judgement rules for symmetric circuits. Note that for Bitwise to be a
symmetry-safe (SS) combinator, f needs to be associative and commutative.

Theorem 2. Symmetry safe circuits have symmetry

` ∀c. SS c ⊃ Sym c

Proof outline. The proof is done by using rule induction on the predicate SS .
For details please refer to [16].

5 Conclusion

The novelty of this paper lies in the design of a framework which allows efficient
discovery of symmetry through a correct-by-construction methodology that relies
on the design of an abstract data type for circuits. The abstract data type is
designed using some basic types of lists, and Booleans, and well-known functions
over lists. The heart of the abstract data type is the set of type inference rules
that are defined inductively on the circuit combinators (Table 2). On one hand
these rules enable type checking and on the other, allow a bottom-up design of
symmetric circuits.

Using our approach symmetry detection (via type checking) for a given circuit
of different sizes takes a fixed amount of time, which is proportional to the
number of terms in the formula of the circuit definition. We have designed and
implemented the complete theory presented in this paper in the higher-order
logic theorem prover HOL 4 [15]. It is available on request from the author.

We have designed and implemented a framework of reduction where we record
symmetries in circuits using the approach presented in this paper, and then these

circuits are synthesized to gate-level netlists that are used for simulation in an
STE simulator. Together with the reduction methodology explained in [3], we
demonstrate significant reduction in the size of STE model checking for ver-
ification of several circuits ranging from simple designs such as comparators,
multiplexers, gates and n-bit registers to more complex ones such as random
access memories (SRAM), content-addressable memories (CAM), and circuits
with multiple CAMS [16].

References

1. C.-J. H. Seger and R. E. Bryant, “Formal Verification by Symbolic Evaluation
of Partially-Ordered Trajectories,” Journal of Formal Methods in System Design,
vol. 6, no. 2, pp. 147–189, March 1995.

2. Robert B. Jones, John W. O’Leary, Carl-Johan H. Seger, Mark D. Aagaard, and
Thomas F. Melham, “Practical Formal Verification in Microprocessor Design,”
IEEE Design & Test of Computers, vol. 18, no. 4, pp. 16–25, July/August 2001.

3. Ashish Darbari, “Symmetry Reduction for STE Model Checking,” in Sixth Inter-
national Conference on Formal Methods in Computer Aided Design, 2006.

4. C. Norris Ip and David L. Dill, “Better Verification Through Symmetry,” Formal
Methods in System Design, vol. 9, no. 1/2, pp. 41–75, 1996.

5. Manish Pandey and Randal E. Bryant, “Exploiting Symmetry When Verifying
Transistor-Level Circuits by Symbolic Trajectory Evaluation.,” IEEE Transactions
on CAD of Integrated Circuits and Systems, vol. 18, no. 7, pp. 918–935, 1999.

6. K. L. McMillan, “A Methodology for Hardware Verification using Compositional
Model Checking,” Science of Computer Programming, vol. 37, no. 1-3, pp. 279–309,
2000.

7. Edmund M. Clarke, E. Allen Emerson, Somesh Jha, and A. Prasad Sistla, “Sym-
metry Reductions in Model Checking,” in CAV ’98: Proceedings of the 10th Inter-
national Conference on Computer Aided Verification. 1998, pp. 147–158, Springer-
Verlag, Berlin.

8. A. Prasad Sistla and Patrice Godefroid, “Symmetry and Reduced Symmetry in
Model Checking,” ACM Transactions on Programming Languages and Systems,
vol. 26, no. 4, pp. 702–734, 2004.

9. A. Miller., A. Donaldson, and M. Calder, “Symmetry in Temporal Logic Model
Checking.,” ACM Computing Surveys, vol. 38, no. 3, 2006.

10. Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov, “Ex-
ploiting Structure in Symmetry Detection for CNF.,” in DAC, 2004, pp. 530–534.

11. Alastair F. Donaldson and Alice Miller, “Automatic Symmetry Detection for
Model Checking Using Computational Group Theory,” in FM, 2005, pp. 481–496.

12. A. Prasad Sistla, Viktor Gyuris, and E. Allen Emerson, “SMC: A symmetry-based
model checker for verification of safety and liveness properties,” ACM Transactions
on Software Engineering and Methodology, vol. 9, no. 2, pp. 133–166, 2000.

13. L. C. Paulson, ML for the Working Programmer, Cambridge University Press,
second edition, June 1996.

14. Richard Bird and Philip Wadler, An Introduction to Functional Programming,
Prentice Hall International (UK) Ltd., Hertfordshire, UK, 1988.

15. “HOL 4,” Available from http://hol.sourceforge.net/.
16. Ashish Darbari, Symmetry Reduction for STE Model Checking using Structured

Models, Ph.D. thesis, Oxford University Computing Lab, Wolfson Building, Parks
Road, Oxford, Submitted 2006, Available on request.

