Formalization and Execution of STE in HOL
AsHISH DARBARI

Computing Laboratory
University of Oxford
Oxford, England, OX1 3QD

Abstract. We present an early implementation of STE model checking
in the higher-order logic theorem prover HOL. Our results are based on an
earlier work done by [1,2] in combining STE with theorem proving. By
way of formalizing the results presented in [1], we have an initial platform
for executing STE semantics directly in HOL. We can relate correctness
results of the STE logic to the Boolean logic of HOL. We show how any
trajectory assertion that is validated to true in STE, can be translated
to an equivalent theorem in HOL. To this end we have extended the work
presented in [1, 2] by implementing not only the theoretical results of [1,
2] but also incorporating the core STE implementation presented in [3].
As a useful benefit of proving the lemmas and theorems on machine, we
discovered a flaw in the proof of one of the lemmas presented in [2].

1 Introduction

One of the main challenges posed to verification engineers today is to manage
the size of the verification problem. Classic verification techniques like symbolic
model checking typically suffer from the state explosion problem. However the
degree to which they allow automation, and the expressivity of the language
of the model checker, makes them very useful for verifying complex temporal
properties.

Deductive verification techniques like theorem proving can handle a verifica-
tion task of any size, but at the cost of manual intervention. Even the very best
state-of-the art theorem provers require substantial manual guidance through-
out the proof. To overcome the limitations of each of the above verification
approaches, the idea is to blend them together to exploit the strength of each
one of them, and alleviate the weaknesses. The work presented in this paper falls
in the general area of combining model checking with theorem proving. Specif-
ically we are investigating the combination of symbolic trajectory evaluation
based model checking with higher order logic theorem proving.

Symbolic trajectory evaluation [3] or STE in short, is a highly effective model
checking technique for datapath verification [4]. It has been combined with the-
orem proving to verify complex industrial designs [5, 6].

Aagaard et.al. in [1] outlined the theoretical foundation for linking the general
logic of STE with higher order logic. They outlined the issues involved in making
such a combination, and then presented a cohesive theory of integration, proving
lemmas and theorems which justify a sound semantic link between STE and
theorem proving. However, in that paper they did not provide formal proofs of
the lemmas and the theorems. In the extended technical report [2] they provided
proofs of some of the lemmas and theorems on paper. They claimed in their
paper and the report that using the lemmas and theorems we can in principle
verify properties using STE model checking and deduce the equivalent theorems
in higher order logic. They however did not give any implementation details to
show how this can be achieved in practice.

In this paper we provide the implementation machinery for integrating STE
model checking with higher order theorem proving based on the results presented
in [1,2]. We show in this paper the implementation details of embedding the STE
logic in a higher order theorem prover HOL.! By having an implementation of
the theory of STE, and the semantic link to higher order logic, we are able to
execute STE directly in HOL. Our implementation allows us to check properties
using STE, and if the property is valid, we get an equivalent theorem in HOL,
thereby achieving exactly what was envisioned by Aagaard et.al. in [1,2]. We
have tested a few examples using our implementation and the initial results are
encouraging.

As a side benefit of mechanizing the theory presented in [1, 2], we discovered
that there is a discrepancy in the proof of one of the lemmas in [2]. We shall talk
more about it when we show the mechanized version of that lemma.

We are not able to present in this paper, the machine proofs and the example
because of lack of space. The script file with all the details is available online.?

1.1 Related Work

Many researchers in the past have considered this problem of integrating the
model checking with theorem proving [5, 7-9].

Rajan et.al. [7] have presented an integration of a BDD based model checker
for propositional u-calculus with the PVS theorem prover. They argued that
p-calculus serves as a good basis for combining model checking with theorem
proving.

The long term goal of our research is to combine STE with theorem proving
for verifying large circuit designs. We have been greatly inspired by the work
done by Aagaard et.al. [5]. They claim that their verification effort resulted in
the discovery of eight previously unknown bugs, four of which were high quality
bugs — meaning they would not have been diagnosed with traditional validation
techniques.

The work we are presenting in this paper however comes closest to [1,2,8,
10].

! HOL here stands for the theorem prover HOL 4, Kananaskis 1
% http://users.comlab.ox.ac.uk/ashish.darbari/Research/TPHOLS03/

Joyce and Seger in the past have worked on combining the Voss system
with the HOL theorem prover [8]. They focused on Voss specific implementation
of STE. We took the approach advocated by Aagaard et.al. [1,2] in actually
integrating the general logic of STE with the HOL theorem prover.

Aagaard et.al. in [10] proposed a solution of combining STE with theorem
proving using a strongly typed functional language in the ML family, called fl.
They lifted the language to make it reflective similar to Lisp. This gives them
a possibility of executing fl functions and also to reason about the behavior of
fl functions. The link from theorem proving to model checking is established in
their approach by evaluating the lifted fl expressions.

The theorem proving support they offer in the lifted-fl language is an LCF-
style implementation. However the core of the theorem prover is a set of trusted
tactics and is not not fully expansive. Tactics work backwards and do not allow
forward proofs.

1.2 Organization of the Paper

In this section we outline the road map of our paper. We start in the next
section by presenting an outline of the basic STE theory. We show fragments of
our implementation of the definitions of the basic concepts of the STE theory in
HOL. In Section 3 we present the formalization of the link between STE and the
two valued Boolean logic, providing relevant details together with the lemmas
and theorems which justify the link.

In Section 4 we show how to use the combined formalization of STE theory
and the linkage with HOL, to execute STE on an example design. In the last
section we present conclusions and point to future directions.

2 Symbolic Trajectory Evaluation

Symbolic trajectory evaluation [3], combines the ideas of ternary modelling with
symbolic simulation. In ternary modelling the binary set of values {0, 1} is ex-
tended with a third value X which indicates an unknown logic value. By assuming
a monotonicity property of the simulation algorithm one can ensure that any bi-
nary value resulting when simulating patterns containing X’s would also result
when X’s are replaceed by 0’s and 1’s. Thus the number of patterns that must
be simulated to verify a circuit are reduced dramatically by representing many
different operating conditions by patterns containing X’s. With ternary simula-
tion, a state with some nodes set to X covers those circuit states obtained by
replacing the X values with either a 0 or a 1. The state with all nodes set to X
thus covers all possible actual circuit states.

Although ternary modelling allows us to cover many conditions with a single
simulation run, it lacks the power required for complete verification, except for
a small class of circuits such as memories [11].

Symbolic trajectory evaluation extends the idea of ternary modelling by in-
cluding the notion of time and the usage of symbolic Boolean variables. Using

STE one can specify and verify system behavior over time. By using symbolic
Boolean variables and propositional logic expressions over these, we can repre-
sent whole classes of data values on circuit nodes. The Boolean expressions or
BDDs respresenting values at different circuit nodes can have variables in com-
mon. These variables can record complex interdependencies among node values.

In the subsequent sections, we shall present an implementation of STE in
HOL. Readers unfamiliar with the detailed theory of STE and the syntax of HOL
are referred to [1, 3].

2.1 The four valued lattice

Symbolic trajectory evaluation employs a ternary circuit state model, in which
the usual binary values 0 and 1 are augmented with a third value X that stands
for an unknown. To represent this mathematically, we introduce a partial order
relation C, with X C 0 and X C 1. The relation orders values by information
content: X stands for a value about which we know nothing, and so is ordered
below the specific values 0 and 1.

To develop a smooth mathematical theory for STE, we add a further value T
(called ‘top’) to get the set of circuit node values D = {0,1,X} U T. We extend
the ordering relation to make (D, C) a complete lattice.

We use the idea of dual-rail encoding [12], to define the four lattice values in the
STE logic.

(* Four lattice values *)
|- Top = (F,F)
|- One = (T,F)
|- Zero = (F,T)
|- X = (T,T)

Please note that the choice of Top, being defined as (F, F) and other values
like X being (T, T) is in principle arbitrary, any possible permutation on the two
Boolean values T, and F can be chosen to denote the four values. However efficient
definition of least upper bound, and the ordering C, does depend crucially on
a particular permutation of T and F that we choose for representing the lattice
values.

(* Least upper bound (lub) *)
|- Vabcd. 1lub (a,b) (c,d) = (a A c,b A d)

(* Information ordering *)
|- Va b. 1leq a b= (b =1ub a b)

Observable points in circuits are nodes. Nodes can be defined by the HOL type
string. A lattice state is then defined as an instantaneous snapshot of circuit
behavior given by an assignment of lattice values to nodes. If we denote the
lattice state by s then

s: string->(bool # bool)

A lattice sequence assigns a lattice value to each node at each point in time.
Time is just the set of natural numbers (num in HOL). If we denote the lattice
sequence by sigma then

sigma: num->string->(bool # bool)

Because of lack of space here, we do not show all the functions that we have
implemented in HOL. However, we do think its important to mention them be-
cause we use them in other definitions. Some of these functions we wrote in HOL
are the Suffix and the extension of the information ordering on lattice states
(leq_state) and sequences (leq-seq).

2.2 Circuit Models in STE

In STE, the formal model of a circuit is given by a next-state function Y_ckt
that maps lattice states to lattice states:

Y_ckt: (string->(bool # bool))->(string->(bool#bool))

Intuitively, the next-state function expresses a constraint on the set of possible
states into which the circuit may go for any given state. In implementations
of STE, the circuit model Y_ckt is constructed incrementally and piecemeal by
ternary symbolic simulation of an HDL or a netlist source for the circuit. In our
presentation here the circuit is uninterpreted. To run a typical example using
our STE formalization requires one to define the model Y_ckt completely.?

One crucial property the next-state function needs to preserve is the property
of monotonicity. Any next-state funcntion is monotonic if for all lattice states s
and s, if s C s’ then state obtained by applying the next-state function (Y_ckt)
on s is also less than or equal to (C) the state reached by applying Y_ckt to s’.

Since sequences return lattice values for each node at a given time point,
a sequence encodes a set of behaviors that a circuit can exhibit. The next-
state function or the lattice model of the circuit provides the meaning of circuit
behavior. Now we shall define what it means for a sequence to be in the lattice
model of a circuit. A sequence is in the language of a lattice model of a circuit if
the set of behaviors that the sequence encodes is a subset of the beahviors that
the circuit can actually exhibit. Below we show the formalization in HOL.

(* Lattice sequence in the language of a circuit *)
|- Vsigma Y_ckt.
in_STE_lang sigma Y_ckt =
Vt. leq_state (Y_ckt (sigma t))(sigma (t + 1))

3 We will show in a later section, how we do this for a specific circuit.

2.3 Syntax of STE

In STE, the basic syntactic entity used in specifcation is a symbolic trajectory
formula. In formalizing the definition of STE syntax, we define a new type TF,
of trajectory formulas in HOL.

(* Syntax of trajectory formula *)
val _ = Hol_datatype
‘TF =
Is_0 of string
| Is_1 of string
| AND of TF => TF
| WHEN of TF => bool
| NEXT of TF¢;

We have a deep embedding [13-15] of all the operators Is_0, Is_1, AND, WHEN
and NEXT. However we have chosen to represent the guard [1,2] shallowly by
actually using the HOL type bool to represent the guard.* This is to allow us to
inherit the theory of booleans (bool) in HOL. The HolBdd [16] package is also
interfaced to the type bool in HOL, possibly later we can use the HolBdd package,
without having to invest too much effort (we won’t have to reinvent the theory
of Booleans and link them with BDDs).

2.4 Semantics of STE

We now define the semantics of the trajectory formula in HOL. We formalize in
HOL, the function SAT_STE, that defines when a trajectory formula is satisfied by
the lattice sequence.

(¥ Sequence satisfying a formula x)

|- (Vn. SAT_STE (Is_0 n) = (Asigma. leq Zero (sigma O n)))

A (Vn. SAT_STE (Is_1 n) = (Asigma. leq One (sigma O n)))

A (Vtf1l tf2. SAT_STE (tfl AND tf2) = (Asigma. SAT_STE tfl sigma
A SAT_STE tf2 sigma))

A (Vtf P.SAT_STE (tf WHEN P) = (Asigma. P ==> SAT_STE tf sigma))

A (Vtf. SAT_STE (NEXT tf) = (Asigma. SAT_STE tf (Suffix 1 sigma)))

* Angelo et.al. in [15] and Boulton et.al. in [14] present interesting case studies of
different kinds of embeddings of hardware description languages.

2.5 STE Verification Engine
Verification in STE takes place by testing the validity of an assertion of the form
Ant ==>> Cons

where Ant and Cons are trajectory formulas having the abstract type TF in HOL
formalization, and ==>> is a constructor that takes two elements of type TF and
returns an element of an abstract type Assertion in HOL.

The function that checks the validity of such an assertion is formalized in
HOL as SAT_CKT

(¥ Validity of a trajectory assertion *)
|- VAnt Cons Y_ckt.
SAT_CKT (Ant ==>> Comns) Y_ckt =
Vsigma. in_STE_lang sigma Y_ckt ==>
Vt. SAT_STE Ant (Suffix t sigma) ==>
SAT_STE Cons (Suffix t sigma)

Seger and Bryant in [3] proposed an implementation algorithm of STE. They
introduced the idea of a defining sequence and a defining trajectory. They then
argued that any trajectory assertion of the form Ant ==>> Cons can be verified
by the STE implementation if and only if the defining sequence of Cons is less
than or equal to (C) the defining trajectory of Ant, for all nodes mentioned in
the assertion and for all time points upto the depth of Cons.

We have defined the functions to calculate the defining sequence (DefSeq)
and the defining trajectory (DefTraj) in HOL, unfortunately we cannot show
their formalized definition here due to lack of space.

We now state the STE implementation (STE_-Impl) algorithm [3], that takes
an assertion and a circuit model Y_ckt and computes a symbolic constraint (over
the free variables appearing in the guard of the trajectory formulas in the asser-
tion) under which the assertion will be valid. The strength of this implementation
algorithm lies in the fact that it is sufficient to compute finite segments of the
defining sequence and the defining trajectory, to completely verify the assertion
even though in theory both the defining sequence and the defining trajectory is
infinite. The depth of the segment is computed from the depth of the consequent
in the assertion.

(* STE implementation *)
|- VAnt Cons Y_ckt.
STE_Impl (Ant ==>> Cons) Y_ckt = Vt. t <= Depth Cons ==>
Vn. MEMBER n (Nodes Ant Append Nodes Cons) ==
leq (DefSeq Cons t n) (DefTraj Ant Y_ckt t n)

The function Depth calculates the number of NEXT operators in a trajectory
formula. The function Nodes, calculates the list of nodes in a given formula, and

the function MEMEBR checks for the occurence of a node in a given list of nodes.
Append is the usual append on lists. We have defined all these functions in HOL.
We now present the theorem® that makes an assertion about the correctness
of the STE algorithm.
The theorem states that the trajectory assertion is valid for a circuit with
model Y_ckt if and only if the STE implementation guarantees that the trajec-
tory assertion is valid for the model Y_ckt.

(* Theorem 1: Correctness of STE algorithm *)
|- VAnt Cons Y_ckt.
SAT_CKT (Ant ==>> Cons) Y_ckt
= STE_Impl (Ant ==>> Coms) Y_ckt

3 From lattice world to the relational world

The language of the theorem prover HOL is based on a Boolean logic. Hence in
order to make a connection between STE and HOL, we have to address the key
problem of connecting the four valued STE logic to a two-valued Boolean logic.
This entails addressing the following issues

— defining when the embedded STE trajectory formulas are satisfied by a
Boolean valued sequence

— defining a connection between the lattice values and the Boolean values

— identifying a connection between the circuit model in STE world and the
circuit model in the Boolean world

— relating correctness results in the STE world to correctness results in the
Boolean world

We shall discuss these issues in subsequent sections.

3.1 Semantics of Trajectory Formulas in Boolean Logic

States in the Boolean world are functions from the set of nodes N to the Boolean
set B, where B = {T, F}. We refer to the states in the Boolean world as Boolean
states. The set B is the set bool in HOL. Using the type string to denote the
set of nodes N we shall represent a Boolean state by subscripting the letter s
with b.

s_b: string->bool

A Boolean sequence is a function which returns a Boolean state, at given point
of time. We denote the Boolean sequence by sigma b in HOL and time is denoted
by the type num.

sigma_b: num->string->bool

5 At present we have used this theorem as an axiom in HOL, since we are not finished
with the proof yet.

We shall now define the function SAT_BOOL that defines when a trajectory formula
is satisfied by a Boolean sequence sigma_b.

(* Boolean sequence satisfies a trajectory formula *)
|- (Vn. SAT_BOOL (Is_O n) = (Asigma_b. sigma_b O n = F))
A (Vn. SAT_BOOL (Is_1 n) = (Asigma_b. sigma_b O n = T))
A (Vtfl tf2.
SAT_BOOL (tf1 AND tf2) =
(Asigma_b. SAT_BOOL tfl sigma_b A SAT_BOOL tf2 sigma_b))
A (Vtf P.
SAT_BOOL (tf WHEN P) = (Asigma_b. P ==> SAT_BOOL tf sigma_b))
A (Vf.
SAT_BOOL (NEXT tf) =
(Asigma_b. SAT_BOOL tf (Suffix_b 1 sigma_b)))

The function Suffix b is defined in a way similar to the function Suffix.
Suffix_b returns the it? suffix of a Boolean sequence.

3.2 Relating Lattice values to Boolean values

We define an operation called drop which drops the values from the Boolean
world to the values in the STE world.

(* Dropping from Boolean to lattice Values *)
|- (drop T = One) A (drop F = Zero)

We shall need the point wise extension of the drop operation on states and
sequences, in order to define some useful lemmas later. Lifting the drop operation
pointwise, we can relate the lattice valued states and sequences to the Boolean
valued states and sequences as

(* Drop operation lifted over states *)
|- Vs_b. extended_drop_state s_b = (Anode. drop (s_b node))
(* Definition : Drop operation lifted over sequences *)
|- Vsigma_b.
extended_drop_seq sigma_b =

(At. extended_drop_state (sigma_b t))

3.3 Relational Circuit Model

A circuit in the Boolean world, is modelled by a next-state relation, which for
a given circuit gives a relation between present and next Boolean state. The
circuit is uninterpreted here similar to the way it was in the definition of the
lattice model. While running example circuits, we define the relational model of
a circuit in HOL. We will show in a later section how we accomplish this for a
concrete example.

Yb_ckt: (string->bool)->(string->bool)->bool

3.4 Boolean Sequence in the language of the circuit

A Boolean valued sequence is in the language of the circuit, with the relational
model Yb_ckt, iff the consecutive Boolean valued states are included in the next-
state relation Yb_ckt.

(* Boolean sequence is in the language of a circuit *)
|- Vsigma_b Yb_ckt.

in_BOOL_lang sigma_b Yb_ckt =

Vt. Yb_ckt (sigma_b t) (sigma_b (t + 1))

3.5 Relating circuit models in STE and Boolean World

We have made connections between Boolean and lattice valued states and se-
quences. In order to make a sound connection between the functional circuit
model in the STE world with the relational circuit model of the Boolean world,
we need to make sure that the two models of the circuit (Y_ckt and Yb_ckt)
describe the same behavior.

Intuitively, for a given circuit, with a relational model Yb_ckt and the lattice
model Y_ckt, the two circuit models describe the same circuit, if and only if for
any two Boolean states s_b and s_b’ (where s_b is the present state and s_b’ is
the state at next point of time) if s_b and s_b’ are related by the relational model
Yb_ckt, then the lattice model Y_ckt when applied to the drop of the present
Boolean state s_b should return a lattice value, that conveys information less
than or equal (C) to, the information conveyed by the lattice value returned by
the drop of the next Boolean state s_b’.

We define the predicate Okay in HOL, that asserts when the two circuit models
describe the same circuit.

(* Linking Boolean and lattice models *)
|- VY_ckt Yb_ckt.
Okay (Y_ckt,Yb_ckt) =
Vs_b s_b’.
Yb_ckt s_b s_b’ ==
leq_state (Y_ckt (extended_drop_state s_b))
(extended_drop_state s_b’)

3.6 Relating Correctness Results

In this section we shall relate the correctness results from the STE world to the
Boolean world. The intuition is that any trajectory assertion that is satisfied by
lattice valued sequence should be satisfied by the Boolean valued sequence.

Before we state the theorem that relates the correctness results between the
two worlds, we shall state two lemmas which we have used in the proof of the
theorem.

(* Lemma 1: Relating Boolean and lattice valued sequences *)
VY_ckt Yb_ckt.
Okay (Y_ckt, Yb_ckt) ==
Vsigma_b. in_BOOL_lang sigma_b Yb_ckt ==>

in_STE_lang (extended_drop_seq sigma_b) Y_ckt

The lemma states a fact that whenever the two circuit models Y_ckt and Yb_ckt
talk about the same circuit (i.e. satisfy the property Okay) then for every Boolean
sequence which is in the relational model of the circuit, the drop of the Boolean
sequence is in the lattice model of the circuit.

As mentioned earlier in the introduction, the proof of Lemma 1 presented
in [2] is incorrect. The lemma as stated in [2], says that whenever two circuits
satisfy the property Okay (Axiom 2 in [2]), then every Boolean sequence is in
the language of the relational model of the circuit if and only if the drop of
the Boolean sequence is in the lattice model of the circuit. The proof of the
lemma relies on Axiom 2 (in [2]), which is stated as an implication. Just by
using the implication in Axiom 2, we cannot prove the equivalence property of
the lemma [2].

Our claim here is that either we state both Axiom 2 and Lemma 1 (in [2])
as an implication or state them both as an equivalence. We chose to keep an
implication in the definition of Okay (the counterpart of Axiom 2), since it gives
us enough power to say what we wanted to say, and we also state Lemma 1 (the
counterpart of Lemma 1 in [2]) as an implication. Interestingly, in the paper [1]
the authors have stated the Axiom and the Lemma both as an implication.

We now state a lemma below which captures the fact that a trajectory for-
mula is satisfiable by a Boolean sequence if and only if it is satisfiable by the
drop of the Boolean sequence.

(x Lemma 2: Relating satisfaction over Boolean and lattice valued
sequences *)
Vtf seq_b. SAT_BOOL tf seq_b = SAT_STE tf (extended_drop_seq seq_b)

Now we are in a position to state Theorem 2. Theorem 2 states that for a given
circuit with lattice model Y_ckt and the Boolean model Yb_ckt, if Y_ckt and
Yb_ckt satisfy the property Okay, then if a given trajectory assertion is satisfied
by the lattice model, then for all Boolean valued sequences which are in the
language of the Boolean model Yb_ckt, for all time points t greater than zero,
if the antecedent of the trajectory assertion (Ant) is satisfied by the t'* suffix
of the Boolean valued sequence, then the consequent of the trajectory assertion
Cons is also satisfied by the t** suffix of the Boolean valued sequence.

(* Theorem 2: Correctness in STE world implies correctness

in the Boolean world *)

|- VAnt Cons Y_ckt Yb_ckt.
Okay (Y_ckt,Yb_ckt) ==

SAT_CKT (Ant ==>> Coms) Y_ckt ==>
Vsigma_b.
in_BOOL_lang sigma_b Yb_ckt ==>
vt.

SAT_BOOL Ant (Suffix_b t sigma_b) ==
SAT_BOOL Cons (Suffix_b t sigma_b)

Theorem 2 forms the crux of the connection between the lattice world and the
relational world. It gives us the power to link the correctness statements in STE
world to the notion of correctness in the relational world. This means we can
use the STE verification engine to compute a symbolic constraint under which a
trajectory assertion would be valid, and then infer a corresponding Theorem in
the relational world. These theorems in the Boolean world are the theorems we
intuitively expect to hold when the property stated in the trajectory assertion
is verified independently in the theorem prover.

Of course, the validity of Theorem 2 and Lemma 1 relies on the fact that it
is possible to translate the correctness statements from the STE world to the
Boolean world only if the circuit models in the two worlds satisfy the property
Okay.

In the next section we show how we combine Theorem 1 and Theorem 2 to
prove for the unit-delay Nand gate® that if an implementation of STE algorithm
(STE_Impl) returns the value T, then we can get an equivalent theorem in HOL.

4 Executing STE in HOL

In this section we illustrate the example of a two input unit-delay Nand gate,
whose output is tied to one of its inputs (see [1,2]). We define the lattice and
the Boolean models for such a circuit. Below is an example we wrote in HOL.

 We have taken the example from [1, 2]

(* Definition of Not, And and Nand using dual-rail encoding *)
|- Va b. Not (a, b) = (b, a)

|- Vabcd. And (a, b) (c, d) = (a A c, bV d)

|- Va b. Nand a b = Not (And a b)

(* Definition of lattice model for the unit delay Nand gate *)
|- Vs node.
Nand_lattice s node =
(if node = "in" then
X
else

(if node = "out" then Nand (s "in") (s node) else X))

(* Definition of the relational model for the unit delay Nand gate *)
|- Vs_b s_b’.
Nand_bool s_b s_b’ =
Vnode.
((node = "out") ==> (s_b’ node = “(s_b "in" A s_b node))) A

((node = "in") ==> s_b’ node V “s_b’ node)

We then write the STE assertions that we need to verify, using the STE imple-
mentation STE_Impl. Intuitively, if we assert the Boolean variables v1 and v2 on
one of the input nodes and the output node respectively, then after one unit of
time we can expect to observe the value —(v1 A v2) at the output. Infact this is
exactly what we assert in the STE assertion as shown below.

(* input node has a value vl *)
val antl = ‘“(Is_1 "in" WHEN v1) AND (Is_O "in" WHEN ~v1) ‘¢

(* output node has a value v2 *)
val ant2 = ‘“((Is_1 "out") WHEN v2) AND ((Is_O "out") WHEN "“v2) ‘¢

(* Antecedent: "in" is vl and "out" is v2 *)
val Ant = Term ‘“antl AND “ant2‘;;

(* Consequent: N("out" is ~“(viAv2)) *)
val Cons = ‘‘NEXT
((Is_1 "out" WHEN ~(vli A v2)) AND (Is_O "out" WHEN (vli A v2)))‘¢

We have written ML functions and (conversions” in HOL) to develop automated
proof strategies which perform computation. Here we will present informally an
outline.

" conversions have the type term -> thm

Theorem 1 states the equivalence of SAT_CKT and the STE_Impl. We substi-
tute STE_Impl for SAT_CKT in Theorem 2 and we get an auxiliary theorem, that
relates the STE_Impl and the satisfaction of trajectory assertion over Boolean se-
quence. We then take this auxiliary theorem and apply some of our hard-wired
conversions on it, to eventually get the desired theorem in HOL.

We wrote the top-level function STE_TO_BOOL that takes an antecedent, a
consequent, the lattice model of the circuit (¢ ‘Nand_lattice‘*), the relational
model (¢ ‘Nand bool‘ ‘) and the string "Nand" and it computes a theorem in HOL.
The string "Nand" actually tells the function STE_T0_BOOL to use the conversion
written specifically for the Nand gate circuit.

- STE_TO_BOOL Ant Cons ‘‘Nand_lattice‘‘ ‘‘Nand_bool‘‘ "Nand";
runtime: 14.100s, gctime: 2.070s, systime: 0.050s.
Meson search level:ciiiiiiiiiiiiinnrnnnnnn

> val it =

|- Vv2 vl sigma_b.

in_BOOL_lang sigma_b Nand_bool ==>
Vt.
(sigma_b t "in" = v1) A (sigma_b t "out" = v2) ==>

(sigma_b (t + 1) "out" = “(sigma_b t "in" A sigma_b t "out"))

In the above example the trajectroy assertion is true, for any assignment of
Boolean values to the variables v1 and v2. So the STE implementation in this
case returns the value T.

If the STE implementation doesn’t return the value T but instead returns a
symbolic Boolean expression (residual), even then we can get an equivalent the-
orem in HOL, however that theorem will have the residual as an assumption. We
are at present working on developing functions that will take the residual and
come up with a counter examples or sets of satisfying valuations that will make
the residual T. One possibility we are considering is to use the HolSatLib [17]
package. At the moment we have not completely investigated this, but this def-
initely something for future work.

The functions and conversions that we have written have two components,
one is a fairly general component that can take any circuit model and do some
pre-processing; the other specific component is tailored to handle the proof of
the Okay property for each specific circuit in question. Since the proof for each
circuit in question depends on the model definitions, it seems impractical to have
one general purpose proof routine for every circuit.

5 Conclusion and Future Work

In this paper we presented the formalization of the STE logic in HOL. We for-
malized the results presented in Aagaard et.al’s work [1] on linking trajectory
evaluation to higher-order logic. We also extended their idea by writing func-
tions that implement the core STE algorithm known from [3] and show that one

can execute the semantics of STE directly in a theorem prover like HOL. In this
process, we wrote special purpose proof strategies (conversions) that we used
to advance the computation of the STE Implementation and reach to a point
where we get theorem in HOL.

Since our work is in a preliminary stage, we cannot yet compare our imple-
mentation with Aagaard et.al. [10]. It seems it will be very useful to compare
and also draw on their experience of doing a similar task, specially because they
use a language (lifted-fl) specially tailored for this kind of task. The language
allows representation of Boolean expressions as BDDs. This gives them a seam-
less integration of model checking and theorem proving. In our case, we don’t
model guards in STE by BDDS.

In HOL the Booleans and the BDDS are two different types. We will need to
stitch them together possibly using the HolBdd package [16]. At the moment
we have not completely investigated the usage of HolBdd and the ramifications
it will have on our work. This is one of the goals we have set for immediate
future work in this area. Together with BDDs we intend to experiment with
other abstraction ideas which can help us reduce the verification effort of large
circuit designs.

We are also working on making the function STE_Impl more efficient, and
optimizing other functions and conversions that we have.

In the process of formalizing the theory of STE we have uncovered a bug in
the proof of one of the lemmas stated in the technical report [2]. Although the
discrepancy isn’t a major bug in the report, we believe our effort in uncovering
it is well worth it.

6 Acknowledgment

Thanks are due to Mike Gordon for arranging my visit to the Computing Lab-
oratory at Cambridge and motivating me to work on this. Michael Norrish at
Cambridge provided me some useful hints on how to get started with HOL. John
O’ Leary, Jim Grundy and Robert Jones at Intel, gave me useful feedback in
early stages of my work. Myra Vanlnwegen gave useful feedback on an early
draft of the paper.

Special thanks to Tom Melham who really made a difference with his exper-
tise in the subject and has provided continuous help and inspiration.

This work has been supported in part by a research grant from Intel Corp.
USA.

References

1. M. D. Aagaard, T. F. Melham, and J. W. O’Leary, “Xs are for trajectory evalua-
tion, Booleans are for theorem proving,” in Correct Hardware Design and Verifi-
cation Methods: 10th IFIP WG10.5 Advanced Research Working Conference: Bad
Herrenalb, September 1999: Proceedings, L. Pierre and T. Kropf, Eds. 1999, vol.
1703 of Lecture Notes in Computer Science, pp. 202—218, Springer-Verlag.

10.

11.

12.

13.

14.

15.

16.

17.

M. D. Aagaard, T. F. Melham, and J. W. O’Leary, “Xs are for trajectory evalua-
tion, Booleans are for theorem proving (extended version),” Tech. Rep. TR-2000-
52, Department of Computing Science, University of Glasgow, January 2000.
C.-J. H. Seger and R. E. Bryant, “Formal verification by symbolic evaluation of
partially-ordered trajectories,” Formal Methods in System Design, vol. 6, no. 2,
pp. 147-189, March 1995.

. M. D. Aagaard, R. B. Jones, T. F. Melham, J. W. O’Leary, and C.-J. H. Seger,

“A methodology for large-scale hardware verification,” in Formal Methods in
Computer-Aided Design: Third International Conference, FMCAD 2000: Austin,
November 2000: Proceedings, Jr. W. A. Hunt and S. D. Johnson, Eds. 2000, vol.
1954 of Lecture Notes in Computer Science, pp. 263—-282, Springer-Verlag.

Mark Aagaard, Robert B. Jones, and Carl-Johan H. Seger, “Combining theo-
rem proving and trajectory evaluation in an industrial environment,” in Design
Automation Conference, 1998, pp. 538-541.

M. D. Aagaard, R. B. Jones, and C.-J. H. Seger, “Formal verification using para-
metric representations of Boolean constraints,” in ACM/IEEE Design Automation
Conference, July 1998.

S. Rajan, N. Shankar, and M. K. Srivas, “An integration of model checking with
automated proof checking,” in Proceedings of the 7th International Conference On
Computer Aided Verification, P. Wolper, Ed., Liege, Belgium, 1995, vol. 939, pp.
84-97, Springer Verlag.

J. Joyce and C.-J. Seger, “Linking BDD based symbolic evaluation to interactive
theorem proving,” in ACM/IEEE Design Automation Conference, June 1993.
Klaus Schneider and Dirk W. Hoffmann, “A HOL conversion for translating linear
time temporal logic to omega-automata,” in Theorem Proving in Higher Order
Logics, 1999, pp. 255-272.

Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger, “Lifted-fl: A prag-
matic implementation of combined model checking and theorem proving,” in The-
orem Proving in Higher-Order Logics. September 1999, Springer-Verlag.

R. Bryant, “Formal verification of memory circuits by switch-level simulation,”
IEEE Transactions on ComputerAided Design of Integrated Circuits and Systems,
January 1991, Vol.10, no.1, pp. 94-102.

C.-J. H. Seger, “Voss — a formal hardware verification system: User’s guide,” Tech.
Rep. TR-93-45, University of Brtish Columbia Department of Computer Science,
December 1993.

M.J.C. Gordon, “Mechanizing programming logics in higher-order logic,” in Cur-
rent Trends in Hardware Verification and Automatic Theorem Proving (Proceed-
ings of the Workshop on Hardware Verification), G.M. Birtwistle and P.A. Sub-
rahmanyam, Eds., Banff, Canada, 1988, pp. 387-439, Springer-Verlag, Berlin.

R. Boulton, A. Gordon, M.J.C. Gordon, J. Herbert, and J. van Tassel, “Expe-
rience with embedding hardware description languages in HOL,” in Proc. of the
International Conference on Theorem Provers in Circuit Design: Theory, Practice
and Ezperience, Nijmegen, 1992, pp. 129-156, North-Holland.

C. M. Angelo, L. Claesen, and H. De Man, “Degrees of formality in shallow
embedding hardware description languages in hol,” in Higher Order Logic Theorem
Proving and its Applications: 6th International Workshop (HUG’93), J. J. Joyce
and C.-J. H. Seger, Eds., pp. 89-100. Springer, Berlin, Heidelberg, 1994.

Mike Gordon, HolBddLib, Version 2, Computer Laboratory, University of Cam-
bridge, March 2002.

Mike Gordon, HolSatLib Documentation, Version 1.0, Computer Laboratory,
University of Cambridge, October 2001.

