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Abstract

UML sequence diagrams (SDs) are a mainstay of requirements specifications for communication

protocols. Mauw and Reniers’ algebraic (MRA) semantics formally specifies a behaviour for these SDs

that guarantees deadlock free processes.

Practitioners commonly use communication semantics that differ from MRA, which may result

in deadlocks. For example FIFO, token ring, etc. We define a process algebra that is an extension of

the MRA semantics for regular sequence diagrams. Our algebra can describe several commonly used

communication semantics. Regular SDs are constructed from concurrent message flows via iteration,

branching, and sequential composition. Their behaviour is defined in terms of a set of partial orders on

the events in the SD. Such partial orders are known as causal orders.

We define partial order theoretic properties of a causal order that are particular kinds of race

condition. We prove any of the common communication semantics we list either guarantees deadlock

free SDs or can result in a deadlock if and only if a causal order of an SD contains one of these types of

race condition. This describes a complete classification of deadlocks as specific types of race condition.

1. INTRODUCTION

Scenario based graphical languages, such as message sequence charts (MSCs) [39] and UML

sequence diagrams (SDs) [28], are popular for defining requirements specifications. For example,

in the automotive industry the dynamic behaviour for the new Media Oriented Systems Trans-

port (MOST) standard has been defined using MSCs [38]. This is a standard agreed between

seventeen automotive manufacturers, including BMW, DaimlerChrysler and Jaguar, as well as

sixty consumer electronic manufacturers, including Siemens, Philips, and Pioneer.

One reason for the popularity of sequence diagrams is that practitioners find them more

intuitive and ‘easier’ to understand than state machines, [34]. This popularity has lead to the

development of verification and test automation tools, such as [6], that can work directly with

MSCs and SDs. Such tools then reinforce the use of scenario based specifications.

MSC is the precursor to SD, and was first standardised by the International Telecommuni-

cations Union (ITU) in 1992. MSC-96 was given a formal behavioural algebraic semantics by

Mauw and Reniers in [23], [24], which we refer to as the MRA semantics. MSC and SD are

now mandated by the European Telecommunications Standards Institute (ETSI) for use in the

protocol standards making process, [12], [13].
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From case studies at Motorola and DaimlerChrsyler [5], we found that practitioners frequently

do not use the MRA semantics. It is often the case that they use particular semantics for

communication channels between processes and message consumption for input buffers. We

found there were a handful of different communication channel semantics that form the majority

of these alternative semantics, which will be the focus for this paper. Roughly, these brake

down into the following categories. Message passing semantics were almost always one of:

asynchronous, synchronous, FIFO and Token-Ring. Whilst most message consumption semantics

for input buffers were one of what we termed ‘eager’ or ‘lazy’. For example, the MOST

specification uses token ring semantics with ‘eager’ input buffers rather than the MRA semantics.

The MRA semantics is constructed so that scenario processes do not deadlock. Processes are

guaranteed to coordinate correctly according to the specification. However, for the everyday types

of semantics we consider here it can well be the case that deadlocks do occur. The fundamental

question we address is: what type of behaviour that can now occur as a consequence of such

communication channel semantics leads to a sequence diagram deadlock.

Main Results

We first define an operational semantic framework for the various communication semantics

that we consider (Section 3), which extends the MRA semantics for partial order scenarios.

Such scenarios (defined in Section 2) characterise behavioural semantics as a partial order on

the events in the scenario. This partial order is known as the causal order for the scenario. These

scenarios allow concurrent threads of activity via parallel constructs, but do not include iteration

or branching behaviour.

Once we establish our results for partial order scenarios we extend them to regular sequence

diagrams in Section 4. A regular sequence diagram is constructed from a set of partial order

scenarios via sequential composition, iteration and branching. For brevity we often refer to a

partial order scenario as simply a scenario when this will not cause confusion.

In Section 3 we define a concurrent composition operator ‖U for each of the communication

semantics U that we are interested in. Essentially this defines an abstract representation of the

various communication semantics that we found were common in the case studies, which were

mentioned above.

We define purely partial order theoretic properties of a causal order we call chase and sprint
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conditions. These are a refinement of the partial order characterisation of race condition discussed

in [25]. In the paper we prove a series of propositions (3.5, 3.6, 3.12, 3.16, 3.18) that characterise

what deadlocks are permitted by the various communication channel semantics U . These results

prove that a deadlock occurs between partial order scenario processes if and only if the causal

order contains either chase or sprint conditions. When this occurs we say the scenario has a

chase or sprint condition.

In Definition 4.5 we formally define the notion of a partial order scenario being included in

a regular sequence diagram. Intuitively this defines when a scenario describes a specific set of

choices for the all the branch points in a sequence diagram up to some particular point. We say

a sequence diagram includes a chase or sprint condition if the diagram includes a scenario that

has a chase or sprint condition.

Proposition 4.6 proves that a deadlock occurs in a sequence diagram if and only if it includes a

partial order scenario that deadlocks. An immediate corollary is that the only cause of a deadlock

in a regular sequence diagram is a chase or sprint condition in one of the underpinning causal

orders. That is a deadlock occurs in a regular sequence diagram if and only if it includes a chase

or sprint condition.

Hence, for the common types of communication semantics that we consider, deadlocks are

uniquely determined by partial order theoretic properties of the underpinning causal orders.

Further, we can say that different types of race condition in those causal orders completely

determine what deadlocks result from communication channel behaviour.

The results reported here grew out of case studies with Motorola and DaimlerChrsyler. They

lead to a prototype sequence diagram analysis tool MINT reported in [5], which found errors in

approximately one in five sequence diagrams in an early draft version of MOST.

Related Work

[4], [35] contain good surveys of work related to scenario based reasoning. There are many

issues relevant to the verification of protocols expressed as UML/MSC diagrams that have

been studied. [1], [15], [31], amongst others, have considered verification of logical properties

for languages defined by MSCs and MSC-Graphs. [9], [10], [21], [20], [27], [31] consider

various different compositional semantics for message sequence charts in order to construct state

machines from MSCs and MSC-Graphs. Other work has considered how to interpolate missing
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requirements from scenario based specifications [2], [3], [7], [22], [35]. This work is useful

both in verifying a system and in synthesising a more complete specification. [36] describes

a different approach to synthesis where safety properties are used to determine how scenarios

are combined into Modal Transition Systems. [3] is the seminal work that first considered the

realisability of collections of MSCs.

Research into automatic test generation from partial order scenarios is an active research area

[6], [8], [11], [29]. Amongst others, [30] considers how to reverse engineer a set of scenarios from

source code that can then be used for test purposes in an automated test execution environment.

[7] has researched error detection in MSCs that are due to concurrent aspects of the scenarios

which are caused by a lack of coordination between processes.

The seminal paper to consider race conditions in MSCs was [16]. They characterise the idea

of a race condition as a disparity between the causal order on events and an implementation

ordering of events. [25], [26] considered issues surrounding ambiguous scenarios. They proved

that when resolving race conditions by altering message flows, there exists a unique minimal

extension of the original scenario that removes all race conditions.

Live sequence charts (LSCs) [17] are a variation on mainstream MSC/UML scenarios. It is

possible to synthesise state machines from LSCs [18], [19], [32], [33], just as with sequence

diagrams and MSCs. One of the aims for LSCs has been to allow greater expressitivity. For

example, by permitting exemplary and mandatory behaviour to be annotated directly within a

scenario. At present LSCs do not have the same following in industry as they have in academia.

Also, as mentioned above, MSC/UML SDs are used by a variety of international standards bodies

whereas LSCs have not yet gained that level of institutional support.

Graphical Notation

In the paper we will use UML sequence diagrams (SDs) as the graphical language for

describing partial order scenarios. We will assume the reader is broadly familiar with the basic

concepts of UML SDs. In this section we briefly describe the semantics for those aspects of

SDs that we use in the paper.

Consider the SD depicted graphically in Figure 3. Each vertical line describes the time-line for

a process, where time increases down the page. Messages are depicted by arrows. Each message
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m defines a pair of events (!m, ?m), where !m is the send event for m, and ?m is the receive

event for m.

The distance between two events on a time-line does not represent any literal measurement of

time, only that non-zero time has passed. Events on the same time-line are ordered linearly down

the page, except where they occur within a coregion or distinct threads of a parallel construct.

Within a coregion events are not locally ordered. Each coregion can only occur on a single time

line. It is depicted by a short dashed line delineated by short horizontal lines.

A parallel construct in an SD, denoted by keyword PAR, describes a set of interleaving threads

that occur in the diagram. Horizontal dotted lines delineate the different threads. Hence, events

from one thread are not causally ordered with respect to events from any other thread. Figure 3

contains a parallel constructs split into three threads. The bounding box of a parallel construct

has no effect on the ordering of events, it solely delineates the scope of the concurrent threads.

Events within a particular thread are ordered in the usual way. Branching in a sequence diagram

is represented by the ALT construct. Figure 3 contains an ALT construct with two possible

choices within it. There may be any number of choices within an ALT and they are mutually

exclusive. Iteration is given by the loop construct. This has inline-sequential compositional

semantics. A loop iterates any finite number of times before terminating. Often A system is

described as a set of sequence diagrams. We can always regard such a set as equivalent to a

single sequence diagram by using the ALT construct to combine all the diagrams in the given

set.

The UML notation also allows a message to be split into lost and found events. This allows

a message to be sent in one scenario and received in another. The send part of the message

is represented by a lost event, and the receive part by a found event. Figure 3 contains two

lost messages l0 and l1. The OMG semantics for lost and found messages does not make any

connection between a lost message and its corresponding found message. We regard a lost

message as syntactic sugar for a complete message to a special Null process, and vice-versa for

found messages. The Null process has the empty causal ordering. This does not alter message

flows with regard to deadlocks and is therefore a harmless convention from our viewpoint.
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2. PARTIAL ORDER SCENARIOS

In this section we define the causal order for a partial order scenario and its associated

semantics. We use the same message semantics as the MSC 2000 standard [39]. Hence, within

this section a partial order scenario defines a set of message exchanges between processes with

asynchronous communication channels.

Definition 2.1:

• A partial order over a set E is a binary relation < such that

< is irreflexive, i.e. there is no x ∈ E where x < x

< is transitive, i.e. if x < y and y < z then x < z

< is asymmetric, i.e. there are no elements x, y ∈ E such that x < y and y < x

• A total order over the set E is a partial order on E where for any two distinct elements a

and b, either a < b or b < a.

• For x, y ∈ E when it is not the case that x < y we write ¬(x < y).

• Two elements x and y of E are unordered if ¬(x < y) and ¬(y < x).

We define a set to be unordered if every pair of distinct elements from that set are unordered.

Let P be a set of processes. A message m between processes is a pair (!m, ?m) where !m

is the send event for m, and ?m is the receive event for m. Let E be the set of all send and

receive events between all processes.

Definition 2.2: A partial order scenario Sc on processes P is

• a collection of disjoint sets E(P ) ⊆ E, for each P ∈ P

• a set of partial orders <P , where <P is a partial order on E(P ) and is referred to as the

process order for P

subject to the constraint that for each send event !m in a set E(P ) the corresponding receive

event ?m occurs in some set E(Q). Note it is possible for P = Q.

We treat a partial order as a binary relation that can be represented as the set of pairs that are

ordered by the relation. Hence we can take the union of partial orders, which is just the set

theoretic union of the sets of pairs given by the relevant order relations. Next, we define the

causal ordering that represents the behavioural semantics for a partial order scenario.
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Definition 2.3: The causal ordering <C on a partial order scenario Sc is the transitive

closure of the relation given by∪
P∈P

(<P ) ∪ {(!e, ?e) | !e ∈ E(P ) and ?e ∈ E(Q) for some P, Q ∈ P}

The set of pairs (!e, ?e) is used to assert that orderings between processes can only be a

consequence of message exchanges. Hence, the causal ordering combines process orderings

solely through the causality between send and receive event pairs.

Note, it is possible for there to be two events x and y, both in the same process P , where

x <C y but ¬(x <P y). Without loss of generality we will assume this is not the case from now

on. That is, when x, y ∈ E(P ), we assume x <C y if and only if x <P y. This is acceptable

since the causal semantics will only allow events to be ordered as defined by x <C y. We can

therefore modify <P to include any additional orderings x <C y where x <C y but ¬(x <P y). If

we do not adopt this convention the notation becomes irksome without giving us any additional

benefits. Hence, if we are given a causal ordering it will be straightforward to extract the process

orderings from it. The following definition describes the global system behaviour of a partial

order scenario that is meant to occur with respect to the causal order. We will refer to this

behaviour as the causal behaviour, or causal semantics depending on the context in which we

refer to it.

Definition 2.4: For a causal ordering <C , a causal system trace is a total order extension

of <C . For a process P ∈ P with process order <P , a trace of P is a total order extension of

<P .

Thus, the causal order defines which events must be ordered with respect to each other in each

system trace, and which events must be independent of each other over the set of all system

traces. The causal order does not take into account whether it is possible for processes to act in

concert to ensure that the causal order is preserved during execution. As we shall see it is quite

possible for execution traces to differ from those specified by the causal order.

2.1. Chase and Sprint Conditions

In this section we define the concept of chase and race condition in a partial order scenario

Sc. We also motivate the definition with various examples that illustrate different ways in which
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chase and race conditions may cause coordination errors between processes. Chase conditions

are a refinement of race conditions, discussed in [16] and [25] amongst others.

Definition 2.5: Let Sc be a partial order scenario with causal ordering <C , and events x,

?e ∈ E. Let ![x] =!h if x is either !h or ?h for some h. A chase exists between x and ?e when

(x <C?e) and ¬(![x] <C!e)

A race exists between x and ?e when

(x <C?e) and ¬(x <C!e)

Scenario Sc is race free if and only if for every pair of events x, ?e:

(x <C?e) ⇒ (x <C!e)

Denote the race property by r(x, ?e,<C) and the chase property by ρ(x, ?e,<C). Notice that

ρ(x, ?e, <C) ⇒ r(x, ?e,<C), so that chase is a stronger condition than race. We use the term

sprint condition to refer to a pair of events x, ?e which form a race condition and not a chase

condition.

This definition has refined the notion of race condition into chase and sprint conditions. Below

we will look at some examples of how these occur in case studies.

A B C

a
b

c

Fig. 1. Simple Example of Chase and Race Condition

In Figure 1 there is a chase between !b and ?c. There is also a sprint between ?a and ?c,

(which is not therefore a chase). This is an interesting example since ?a and !b are events on

the same life line, with ?a preceding !b, and yet they cause different race conditions.

Figure 2 shows an example specification taken from a Motorola case study of a telecom-

munications system used in North America. This has been anonymised to remove all propriety

information. Since this scenario specifies system behaviour the causal system traces defined by
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this scenario are a subset of the legitimate traces of the system. We will suppose the processes

have reached a particular configuration at the start of the scenario (which in the original scenario

is described with textual comments), and that the scenario describes how the processes then

proceed to reach the next desired configuration at the end of the scenario.

Consider events ?mi and ?mk, which are specified by this example to arrive at process E

in the order ?mi <C?mk. If communication channels between C, D and E are asynchronous,

which is perfectly possible for a telecommunications system, it is not possible to ensure ?mi will

occur before ?mk in practice because there is no coordination between C, D and E to force this

to happen. Hence, latency may cause ?mi to be delayed so that it is received after ?mk, even

though !mi is correctly sent before !mk. However, if there is only a single FIFO input channel

to E, then we can guarantee that ?mi will occur before ?mk in practice. As a second example

consider !mk and ?mm. This is a worse situation, since no matter what latency assumptions we

make it will always be possible for G to transmit !mm too early, so that it arrives before !mk

has occurred. This can occur since there are no messages between D and G which occur after

!mk and before !mm that could force the necessary coordination to occur.

In Figure 2 we can see race conditions between the following pairs of events

• Sprints: (?mc, ?mi), (?mi, ?mk), (?mo, ?mq), (?mt, ?mv)

• Chases: (!mk, ?mm), (!ml, ?mo), (!mr, ?ms), (!mt, ?mu)

This list is not exhaustive, for example (?mq, ?ms) is another chase. However, since ?mq <C!mr

and (!mr, ?ms) is already listed it is not useful to include (?mq, ?ms) as well. Looking at

this list we can see that the sprint conditions can be resolved, for example, by introducing FIFO

communication semantics between the appropriate processes. Whereas, the chase conditions will

still be present even with, for example, token ring semantics. As we shall prove in later sections,

sprint conditions exactly characterise those race conditions that can be resolved by supposing

communication channels have something like FIFO semantics, whereas chase conditions can

not be resolved in this way. In other words sprint conditions can be resolved by asserting some

kind of transmission interdependence between related send and receive messages. Whereas chase

conditions can not be resolved in this way.

One way to resolve chase conditions is to allow a process to use lazy message consumption

semantics. By this we mean a process has random access to it’s input buffer and can delay

message consumption from the input buffer until necessary. The structural semantics for lazy
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A B C D E F G

ma: audioSetUpReq
mb: fwSetUpReq

mc: routeCallSetUp

md: infoReq
me: audioRoutingReq

mf : audioRoutingReq

mg: audioRoutingResponse
mh: infoResponse

mi: routingCallUpdate

mj: continuityReq
mk: cntyCheckReq

ml: routeCntyCheckReq

mm: audioRoutingResponse
mn: infoResponse

mo: routingCallUpdate

mp: continuityReq
mq: cntyCheckReq

mr: routeCntyCheckReq

ms: routeCntyCheckRes
mt: cntyCheckResponse

mu: routeCntyCheckRes
mv: cntyCheckResponse

Fig. 2. Example of Multiple Chase and Race Conditions from Motorola Case Study

consumption are formally defined in Section 3. Lazy message consumption generalises the

original scenario, in that it results in allowing more system traces than defined by the causal

order. Whereas, resolving sprint conditions can be achieved in a way that refines the original

system traces.

Figure 3 is a simplified version of an MSC taken from the MOST specification referred to

in the introduction. This example has both branching behaviour (shown by the ALT construct,

which is short for alternative) and iterative behaviour (shown by the loop construct).

We can consider finite approximations to this scenario that are obtained by unwinding the

loop a small finite number, and by looking at different branches that could be taken at each

iteration. In doing so we are enumerating the partial order scenarios that are included in Figure

3, (see Definition 4.5). Even before considering the iterative behaviour we can see that there is

a sprint between ?m3 and ?m7. This could be resolved, for example, by adding FIFO semantics

to process NetworkSlave 2.

May 22, 2008 DRAFT



12NetworkMaster NetworkSlave 1 NetworkSlave 2 NetworkSlave Nm1: FBlo
kIDs.Getm2: FBlo
kIDs.Statusm3: FBlo
kIDs.Get l0: FBlo
kIDs.Statusm4: FBlo
kIDs.Getm5: FBlo
kIDs.Status
PAR

m6: Con�g.Status m7: Con�g.Status m8: Con�g.Statusm9: FBlo
kIDs.Getm10: FBlo
kIDs.Statusm11: Con�g.Status m12: Con�g.Status m13: Con�g.Statusl1: FBlo
kIDs.Status
ALTloop

Fig. 3. Simplified SD taken from MOST specification

By adding such semantics we would also resolve the sprint between ?m3, ?m7 and ?m9.

Depending on which alternative is taken with each iteration of the loop, there may also be a

sprint between consecutive iterations of ?m9. This would occur if at some iteration the later

branch of the alternative was chosen. Again this would be resolved if NetworkSlave 2 had eager

FIFO semantics.

3. GENERAL COMMUNICATION SEMANTICS

The causal semantics in Definition 2.4 describes the global system behaviour of a partial

order scenario that is meant to occur, but does not describe a communication semantics between

processes that enables them to realise this behaviour. [14] describes such a communication

semantics in the form of a process algebra, which extends the MRA semantics. Intuitively we
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can summarise the communication semantics from [14] as follows. A process can not send

messages directly to another process. Instead, a process can only transmit messages to a global

traffic channel, T . Within the process algebra, T is a special process that behaves differently to a

normal process. T can always receive messages and stores them in an unbounded random access

buffer B, which is represented in the form of a multiset. At the moment a process is specified

to receive a message, as defined by the causal behaviour, T removes the relevant message from

its buffer and sends it directly to the waiting process. Hence, T acts as a global coordination

mechanism that ensures messages always arrive exactly in accordance with the causal ordering.

The causal behaviour is equivalent to the globally observed behaviour given by concurrently

composing a system’s processes and T within the process algebra.

In this section we define structural operational rules that allow us to describe various com-

munication semantics for partial order scenarios. Each type of communication is a modification

of the standard causal semantics in [14]. Thus, communication will always consist of processes

transmitting messages to a transmission channel T . This channel will then deliver the messages

according to the particular semantics being considered.

The causal semantics assumes the traffic channel can act as a global coordination mechanism.

The variations defined in this section will not have this property. Hence, it will be possible for

processes to become deadlocked if they are not explicitly forced to act in concert to ensure

messages arrive in the correct order. The different semantics considered in this section are

asynchronous, synchronous, FIFO and token ring communication. We will also consider two

variations of FIFO and asynchronous semantics, which we call eager and lazy consumption

semantics.

An essential difference from the causal semantics is that processes will now have an input

buffer where messages are delivered to. How a message is consumed from the buffer will depend

on the particular communication semantics being considered. We will treat message consumption

as an internal action that can not be externally observed. We use τ to denote the silent action,

which will be generated when a process silently consumes a message from its input buffer. Each

operational rule will be controlled by a predicate condition, which is defined in terms of the

causal order <C . These will determine exactly how communication occurs. They are designed

so that those aspects of the communication semantics we wish to consider can be expressed as

properties of the causal order within a partial order theoretic framework.
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The structural rules defining the various semantics are given in Figure 4. Each of the constraints

InBuf, Trns and Dlv are predicate conditions. By choosing the appropriate values for these

conditions we can define the particular communication semantics mentioned above. These choices

are given in table 5. The reader will note that the definition of FIFO semantics is a little unusual.

We use this format so that we can present all the communication channel semantics in a consistent

and concise style. In section 3.3 we will prove that the FIFO semantics here are equivalent to

the usual semantics.

Throughout this section we will take Sc to be a partial order scenario on processes P = {Pi |

0 ≤ i ≤ n}. For each process P ∈ P we define a primitive process term Pr(P ) that describes

the behaviour of P . Each primitive term Pr(P ) will be of the form Pr(In, S,<P ), where In is

an input buffer, S ⊆ E(P ) is a set of events that are eligible to occur next in a trace, and <P

will define what events will be consecutive to those in S. In is a multiset, as is the buffer B for

the transmission channel T .

Definition 3.1: For a set S ⊆ E and partial order < on E define

n(S,<) = {x ∈ E | ∃ y ∈ S : y < x, and ¬∃ z ∈ E : y < z < x}

m(S,<) = {x ∈ S | ¬∃ y ∈ S : y < x}

cns(a, S,<) = m((S − {a}) ∪ n({a}, <), <)

The set m(S,<) contains the minimal elements in S with respect to <. The set n(S,<) is the

least upper bound of S with respect to <. Notice that cns(a, S,<) is an unordered set, since the

minimal elements of a set are themselves always unordered. If S is an unordered set and a ∈ S,

then S − {a} ⊆ cns(a, S,<). In this case cns(a, S,<) consists of S − {a} together with those

elements of n({a}, <) that are unordered with respect to S − {a}.

cns is an abbreviation for consecutive. Suppose we have a causal system trace t that is a total

extension of <. Let a be some event in t, so that t is of the form t0 · a · t1 (where · denotes

concatenation). Let S be the set of minimal events from the set of all events not in t0 · a. Then

t1 must be of the form b · t2 where b ∈ cns(a, S,<), (Lemma 4.2 of [25]). If S contains those

events that could occur next at a given point in a system execution and a is the event that then

does occur, the set cns(a, S,<) defines what events may be consecutive to a in a causal system

trace.

For the following rules, when x ∈ E(P ) we define E(x) = E(P ). We define the concurrent
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composition operator ‖ to be commutative and associative. We use End(P ) to denote that process

P has successfully terminated.

Receive
φ = Pr(In, S,<P )

φ
?e−→ Pr(In ∪ {?e}, S,<P )

?e ∈ E(P ) and InBuf(In)

Consume
φ = Pr(In ∪ {?e}, S ∪ {?e}, <P )

φ
τ−→ Pr(In, cns(?e, S,<P ), <P )

InBuf(In)

Send
φ = Pr(In, S ∪ {!e}, <P )

φ
!e−→ Pr(In, cns(!e, S,<P ), <P )

!e 6∈ S and InBuf(In)

Transmit
φ

!e−→ φ′

T (B) ‖ φ
!e−→ T (B ∪ {?e}) ‖ φ′

Trns(B, ?e)

Deliver
φ

?e−→ φ′

T (B ∪ {?e}) ‖ φ
?e−→ T (B) ‖ φ′

Dlv(B ∩ E(?e), !e)

Terminate Pr({ }, { }, <P ) = End(P )

Fig. 4. General Communication Semantics for Partial Order Scenario

Notice that the Receive, Consume and Send rules do not involve the transmission channel.

They define how a process ordering controls the internal part of message transmission through

the input buffer. These rules control process behaviour by ensuring the set of events that are

eligible to concurrently occur next is determined by the cns(e, S,<P ) set. This ensures that

internally a process behaviour is determined by its process orders <P , which is consistent with

causal semantics.

The Transmit and Deliver rules define how the transmission channel then applies a particular

communication semantics to messages whilst in transit. These rules are independent of how the

process will internally handle sending and receiving messages.

Definition 3.2: We say that !e is connected to a set of events X , if !e ∈ X or ?e ∈ X . For

May 22, 2008 DRAFT



16

a set X ⊆ E, let Sd(X) = {!e | !e is any send event connected to X}, and let

↓X = {y ∈ E | ∃x ∈ X : x <C y}.

Hence, ↓Sd(X) represents events that are later than any send event connected to X .

InBuf Trns Dlv

Eager Asynchronous (EA) In = { } true true

Lazy Asynchronous (LA) true true true

Eager Fifo (EF) In = { } true ¬(!e ∈↓Sd(B ∩ E(?e)))

Lazy Fifo (LF) true true ¬(!e ∈↓Sd(B ∩ E(?e)))

Synchronous (S) In = { } ¬(?e ∈↓Sd(B)) true

Token Ring (TR) In = { } B = { } B = { }

Fig. 5. Table of Predicates Defining Communication Semantics

When we set condition InBuf to be In = { } the semantics are defined to be eager. In this

case a process will deadlock if a message arrives that can not be consumed immediately. Hence,

a process must consume messages in an eager manner to avoid deadlock. Note, the deliver rule

only permits T to add a message to a process input buffer when it is able to receive a message.

As we shall prove below, eager message consumption models the idea that if a message arrives

out of order a process will then deadlock. Despite the fact that T will only deliver a message

when an input buffer is capable of receiving a message, this does not imply that T acts as a

global coordination mechanism. T will deliver a message arbitrarily once it is able, irrespective

of whether this is correct with respect to the causal order for a specification. The fact that there

is a global delivery system T , does not imply that it must act as a global coordination system.

Definition 3.3: When U is one of LA, EA, LF, EF, S or TR, then we define ‖U to be the

concurrent composition defined by Figure 4 with the constraints corresponding to U in the table

of Figure 5. Let

Pr(Pi) = Pr({ }, m(E(Pi), <Pi
), <Pi

)

Define,

PrU(Sc) = Pr(P0) ‖U · · · ‖U Pr(Pn)
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and PU(Sc) = T (∅) ‖U PrU(Sc). Define two sequence of events to be trace equivalent if they

are equal once all τ actions are deleted from them.

Define a U communication trace of Sc to be any sequence of events α where there is some

α′ trace equivalent to α and

PU(Sc)
α′

−−−→? T ({ }) ‖U End0 ‖U · · · ‖U Endn

For a communication trace α and x, y ∈ E, we write x <α y when α is of the form α0·x·α1·y·α2.

Examining the communication structural rules in Figure 4 we can see that it is no longer the

case that messages are necessarily delivered in the order dictated by <C . If messages no longer

arrive in the right order this may result in deadlock, depending on the particular communication

semantics being considered. Inspection of the rules does show that if x <C !e for any events x

and !e, then it still is the case that for any communication trace α, x <α!e. This follows since a

send event can only be transmitted once all the events before it (with respect to <C) have been

consumed. In order to refer to this fact when needed we will formally state it as a proposition.

Proposition 3.4: For any communication semantics U , if α is a communication trace of

PU(Sc) and there are events x and !e where x <C!e then x <α!e.

Although deadlocks can occur when messages are sent in the wrong order, the lazy semantics has

been designed to allow a receiving process the ability to delay the consumption of a message

until the appropriate point. Lazy semantics also allows a process to pick any value from its

input buffer for consumption. These two facts together mean that processes never deadlock with

respect to lazy communication semantics.

Proposition 3.5: When U is any lazy message passing semantics (i.e. when InBuf = true)

process PU(Sc) has no deadlocks.

Proof

Let φk
i = Pr(Ink

i , Sk
i , <Pi

), ψk = T (Bk) ‖U φk
0 ‖U · · · ‖U φk

n and suppose there is a

deadlock trace β = b1 · · · bk where

PU(Sc)
β

−−−→? ψk
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Let ER be the set of receive events in E.

Notice that with any lazy semantics although T (Bk) may have to deliver messages in

some constrained way it can always deliver some message as long as its buffer is not

empty. Also any process φk
i can send a message to T so long as there is some send

event in Sk
i . Thus a deadlock can occur if and only if Bk = ∅ and

∀ 0 ≤ i ≤ n. (Sk
i ⊆ ER) and (Sk

i ∩ Ink
i = ∅)

Let

?e ∈ m(
∪

0≤i≤n

Sk
i , <C)

and suppose that ?e ∈ Sk
i for some i, and that !e ∈ E(Pj) for some j. If !e has not

already occurred in β this can only be because there is some x ∈ Sk
j where x <Pj

!e.

This contradicts that ?e is minimal. Hence, !e = br for some 1 ≤ r ≤ k. Since Bk = ∅

this can only be true if ?e ∈ Ink
i , which is a contradiction. This completes the proof. 2

Note the above proposition will also be true if, for example, we consider a lazy version of

the Token Ring or Synchronous semantics. The reason we don’t consider such lazy alternatives

is that Synchronous and Token Ring are meant to work without the need to delay message

consumption.

Proposition 3.6: Let U be any eager message passing semantics (i.e. InBuf is the condition

In = { }). If there is a deadlock trace of PU(Sc) then there are events ?e, x ∈ E such that

(x <C?e) and ¬(x <C!e)

That is a deadlock can only occur when <C contains a race condition.

Proof

Let φk
i = Pr(Ink

i , Sk
i , <Pi

), ψk = T (Bk) ‖U φk
0 ‖U · · · ‖U φk

n and suppose there is a

deadlock trace β = b1 · · · bk where

PU(Sc)
β

−−−→? ψk

First we will prove there must be some ?e ∈ E and some i where {?e} = Ink
i , and

there is some x ∈ Sk
i where x <C?e.
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As we saw in the proof of proposition 3.5, ψk will not deadlock if any process is capable

of sending a message. With eager semantics the various φk
i can always transmit to T

as long as their input buffers Ink
i are empty. Consider if a deadlock has been reached

because T (Bk) is unable to deliver any of the messages in Bk. From the rules in Figure

4 this can only be if the various φk
i that are meant to receive one of these events all

have a value in their respective input buffers. Thus ψk can only be deadlocked if some

φk
i has a non-empty input buffer from which it is unable to consume the contents.

Hence there is some φk
i where ?e ∈ Bk, ?e 6∈ Sk

i and {?e} = Ink
i . From the definition

of the structural communication rules, since ?e has not yet been consumed, this implies

?e ∈↓Sk
i . Since ?e 6∈ Sk

i that implies there exists some y ∈↓Sk
i where y <C?e. Choose

the minimum such y, and take this to be the value for x. Note that since !e has already

occurred and x has not then ¬(x <C!e) by proposition 3.4, as required to complete the

proof. 2

This proposition shows that deadlocks can only occur if <C does not properly coordinate message

passing between processes. Intuitively, it seems quite reasonable that the causal ordering should

ensure that when an event is ordered before some receive event it ought also to be ordered before

the corresponding send event. Notice the proof of this proposition shows that the eager message

passing semantics causes a deadlock if any message is delivered in the wrong order with respect

to the causal ordering <C . Thus eager and lazy semantics have opposite policies for handling

messages that occur out of order with respect to the causal ordering <C .

Note that from the proof of Proposition 3.6 we immediately have the following corollary.

Corollary 3.7: Suppose that PU(Sc) deadlocks with trace β = b1 · · · bk. Then there is

PU(Sc)
β

−−−→? ψU
k

where ψU
k = T (Bk) ‖U φk

0 ‖U · · · ‖U φk
n, φk

i = Pr(Ink
i , Sk

i , <Pi
) and for some i there is x ∈ Sk

i ,

{?e} = Ink
i , ¬(x <C!e) and x <C?e.

3.1. Eager Asynchronous

With Eager Asynchronous (EA) communication, T has no restrictions on delivering messages,

except that the relevant input buffer must be empty. EA semantics restricts the input buffer for
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a process to be a single place buffer. The Send rule for EA will not allow a process to pass a

message to the transmission channel if there is a message waiting to be consumed. EA semantics

assumes scenario processes will spontaneously act in concert to enforce the causal order. Clearly

then, so long as processes do not deadlock, the EA semantics will act like the causal semantics.

The interesting question is when will processes deadlock.

Proposition 3.8: The communication traces for PEA(Sc) are the causal system traces for

Sc.

Proof

It is clear from the construction of the EA semantics that when PEA(Sc) does

not deadlock, there is an equivalence between transitions of PEA(Sc) and Pc(Sc). This

follows since each transition

T (B) ‖c Pr(S ∪ {!e}, <P )
!e−→ T (B ∪ {?e}) ‖c Pr(cns(!e, S,<P ), <P )

is equivalent to a transition

T (B) ‖EA Pr({ }, S ∪ {!e}, <P )
!e−→ T (B ∪ {?e}) ‖EA Pr({ }, cns(!e, S,<P ), <P )

Also, each transition

T (B ∪ {?e}) ‖c Pr(S,<P )
?e−→ T (B) ‖c Pr(cns(?e, S − {?e}, <P ), <P )

is equivalent to the combined transition

T (B ∪ {?e}) ‖EA Pr({ }, S,<P )
τ ·?e−→ T (B) ‖EA Pr({ }, cns(?e, S − {?e}, <P ), <P )

Hence, the communication traces of PEA(Sc) are the same as Pc(Sc). This completes

the proof. 2

Proposition 3.9: PEA(Sc) deadlocks if and only if there are events x and ?e such that

(x <C?e) and ¬(x <C!e)

Proof
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Since we already have Proposition 3.6, it only remains to prove the converse to the

result. Suppose then that there are x and ?e such that

(x <C?e) and ¬(x <C!e)

Suppose that x ∈ E(Pi). If ?e 6∈ E(Pi) then let x′ ∈ E(Pi) be minimal such that

(x′ <C?e) and ¬(x′ <C!e). Such an x′ must exist from the definition of <C . Hence,

without loss of generality we may suppose that ?e ∈ E(Pi).

First consider if x is of the form ?g. Consider those traces generated by allowing

PSF (Sc) to execute as follows. We allow processes to execute in a random manner

with respect to the EA semantics. However, we restrict T so that if ?g is transmitted

to its buffer B, then T never delivers ?g. Effectively this will block any event y where

x <C y from being delivered.

Under these circumstances, either PEA(Sc) will deadlock or we will reach a point

where !e is transmitted to T . Suppose that there is a sequence of events β where

PEA(Sc)
β

−−−→? ψEA

with ψEA = T (B ∪ {?e}) ‖EA φ0 ‖EA · · · ‖EA φn and φi = Pr(Ini, Si, <Pi
). Either,

φi is deadlocked or has empty input buffer, or can silently consume any message

contained in its input buffer. If φi is deadlocked that completes this part of the proof.

Hence, without loss of generality we may suppose φi = Pr({ }, Si, <Pi
), and that there

is some y ∈ Si where ?g <c y. Otherwise, from the EA semantics, ?g would have

already occurred, which can not happen because of the restrictions we have placed on

T . Hence, we have a transition

T (B ∪ {?e}) ‖EA φi
?e−→ T (B) ‖EA Pr({?e}, Si, <Pi

)

and Pr({?e}, Si, <Pi
) is deadlocked.

Next consider if x is of the form !g. We generate traces by allowing PSF (Sc) to

execute as follows. We allow all processes except Pi to execute at will, and we place

no restrictions on T . However, we do not allow Pi to transmit !g. Since ¬(!g <C!e),

this does not prevent !e being transmitted to T at any time. Thus, either PEA(Sc) will

deadlock or we will reach a point where !e is transmitted to T . The argument now

proceeds just as for the ?g case. Thus, we have shown that there will be a deadlock
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of PEA(Sc), which completes the proof. 2

The Eager Asynchronous semantics illustrates what happens if we try to implement the causal

order with the simplest of buffer semantics. When the transmission channel can not enforce the

causal ordering then deadlocks will occur exactly when the causal order contains race conditions.

Hence, for the EA semantics, race conditions precisely capture when the causal order does not

adequately describe coordination between processes in order to avoid deadlock.

3.2. Lazy Asynchronous

We know from Proposition 3.5 that there are no deadlocks for lazy communication semantics.

Lazy communication allows messages to be delivered in any order to a process. The process

has the responsibility of consuming messages in the correct order with respect to the causal

order <C . Since consumption is internal to the process, external observation can only detect that

messages are delivered in an arbitrary order. Also, external observation will show that when the

correct triggers for some message have arrived (albeit in a random order) then that message will

be sent. This turns out to precisely define what communication traces are generated by the Lazy

Asynchronous (LA) semantics.

Proposition 3.10: Let α = a0 · · · am, where ai ∈ E for 0 ≤ i ≤ m. Then α is an LA

communication trace if and only if

• ∀ x, !y ∈ E, x <α!y ⇔ x <C!y

• ∀ !x ∈ E, !x <α?x

Proof

It is clear from the definition of LA semantics, that any LA communication trace

must be of the form α as given in the hypothesis.

Suppose then we have a sequence α as in the hypothesis. Let αk = a1 · · · ak. We will

prove by induction on k that there are φk
i = Pr(Ink

i , Sk
i , <Pi

), and ψLA
k = T (lstk) ‖LA

φk
0 ‖LA · · · ‖LA φk

n such that

PLA(Sc)
α′

k

−−−→? ψLA
k

for some α′
k trace equivalent to αk.
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The base case is trivial, since the first element of α must be a send event which is

minimal with respect to <C . It therefore remains to prove that the above holds for

k + 1.

First consider if ak+1 is a receive event ?e ∈ E(Pi) for some i. By definition for

α, there is some r ≤ k such that !e = ar. Hence, by induction ?e ∈ Bk. In which

case, since the lazy semantics allows messages to be delivered at any time, we have a

transition

T (Bk) ‖LA φk
i

?e−→ T (Bk − {?e}) ‖LA Pr(Ink
i ∪ {?e}, Sk

i , <Pi
)

Next consider if ak+1 is a send event !e ∈ E(Pi) for some i. By definition of αk, for

any event y <C!e, y must have already occurred in αk.

If we can not form a transition

T (Bk) ‖LA φk
i

!e−→ T (Bk ∪ {?e}) ‖LA Pr(Ink
i , cns(!e, Sk

i , <Pi
), <Pi

)

Then there is a value x ∈ Sk
i where x <C!e. Note, from our observation about αk, there

are no send events !f where x ≤C!f <C!e. Hence x is of the form ?h, and any value y

where x <C y <C!e must also be a receive event. We also know that any such y must

have already occurred in αk. From the LA semantics defined by Figure 5 this can only

be if every such y is an element of Ink
i . Hence, every such y can be silently consumed

by φk
i . We may therefore replace φk

i with some term of the form Pr(Ink
i

′
, Sk

i
′
, <Pi

),

where ?e ∈ Sk
i
′. We now do have a transition

T (Bk) ‖LA φk
i

′ !e−→ T (Bk ∪ {?e}) ‖LA Pr(Ink
i

′
, cns(!e, Sk

i

′
, <Pi

), <Pi
)

as required. This completes the induction step, and hence completes the proof. 2

3.3. Eager FIFO

The FIFO semantics defined by Figure 5 at first sight seems to have little in common with

a more standard definition of FIFO message passing. In this section we will show that from

the point of view of deadlock detection they are in fact equivalent. For this section we will

abbreviate standard FIFO semantics to SF semantics. Throughout this section let lst be a list

of events from E. Let e :: lst be the concatenation of e to the front of lst, and lst@e be the
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appending of e to the end of the list. With SF semantics we will use a traffic channel T (lst),

where lst will now apply the usual FIFO rules to pass messages.

The SF semantics has the Receive, Consume, Send and Terminate rules of Figure 4, which we

give the eager semantics. We replace the Transmit and Deliver rules with the following versions:

Transmit
φ

!e−→ φ′

T (lst) ‖ φ
!e−→ T (?e :: lst) ‖ φ′

Deliver
φ

?e−→ φ′

T (lst@?e) ‖ φ
?e−→ T (lst) ‖ φ′

Proposition 3.11: There is a deadlock trace for PSF (Sc) if and only if there is a deadlock

trace for PEF (Sc).

Proof

First consider the Dlv constraint for the EF semantics. Unpicking the definition for

Dlv we can see that !e ∈↓Sd(B ∩ E(?e)) holds if and only if

∀ ?f ∈ B ∩ E(?e).¬(!f <c!e)

Hence, if ?e and ?f belong to the same process and are both present in T ’s buffer,

and !f <c!e, then ?f must be delivered before ?e. From the definition of SF we can

see that if !f <c!e, and both ?e and ?f are elements of lst, then ?f must occur later

than ?e. Hence, ?f will be delivered before ?e. Therefore the SF semantics preserves

the EF semantics for delivery.

Let φk
i = Pr(Ink

i , Sk
i , <Pi

), ψSF
k = T (lstk) ‖SF φk

0 ‖SF · · · ‖SF φk
n and suppose there

is a deadlock trace β = b1 · · · bk where

PSF (Sc)
β

−−−→? ψSF
k

From our earlier remarks we thus have

PEF (Sc)
β

−−−→? ψEF
k

where ψEF
k = T (Bk) ‖EF φk

0 ‖EF · · · ‖EF φk
n, and Bk is the set of events in lstk.

Hence, by Corollary 3.7, if ψSF
k deadlocks then there is some φk

i where Ink
i = {?e}

and ?e 6∈ Ink
i . Hence, ψEF

k must also be deadlocked.
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Consider next if EF deadlocks. So we have a deadlock trace β and process terms

ψEF
k , and φk

i as above. From proposition 3.6, there are events x, ?e where x <C?e

and ¬(x <C!e). From Corollary 3.7 we can also suppose that for some i, Ink
i = {?e}

and x ∈ Sk
i . If x =?g for some g, then we also know that ¬(!g <C !e). (Otherwise,

EF semantics dictates that !g would have to occur before !e. In which case ?g would

have had to be consumed before ?e could be received. Hence, x 6∈ Sk
i , which is a

contradiction.) If x =!g for some g, then φk
i has not yet sent !g. Whichever of these

cases holds, let x′ =!g.

Next, we allow PSF (Sc) to execute as follows. Execute any element y where y ≤C!e

whenever possible. Never allow PSF (Sc) to execute x′. Otherwise allow events to be

executed at random. Since ¬(x′ <C!e) there will be no reason why we are forced with

SF semantics to execute x′ in order to ensure some value less than !e can be executed.

Therefore, either PSF (Sc) will deadlock, or it must become equal to some process of

the form ψSF
r where Inr

i = {?e} and there is some y <C x where y ∈ Sr
i . In which

case, PSF (Sc) is again deadlocked. This completes the proof. 2

Given that EF communication semantics deadlock exactly when the SF semantics deadlocks, we

next need to characterise exactly when such deadlocks can occur.

Proposition 3.12: PEF (Sc) will deadlock if and only if there are events x and ?e where

(?x <C?e) and ¬(![x] <C!e)

Proof

Suppose that PEF (Sc) deadlocks with trace β = b1 · · · bk. Hence there is

PEF (Sc)
β

−−−→? ψEF
k

with ψEF
k = T (Bk) ‖EF φk

0 ‖EF · · · ‖EF φk
n and φk

i = Pr(Ink
i , Sk

i , <Pi
). Looking at the

proof for proposition 3.11, we must have that for some i there is x ∈ Sk
i , {?e} = Ink

i ,

¬(![x] <C!e) and x <C?e. This follows, since in the proof of proposition 3.11, a value

x′ is constructed that is exactly the value we need for ![x]. This completes the proof. 2
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Note, the deadlock condition for proposition 3.12 is a stronger condition than that of proposition

3.6. Thus, we have a complete characterisation of how deadlocks occur for EF communication

semantics, and have proved that our representation of FIFO semantics is equivalent, with respect

to deadlock detection, to a standard representation. In the following proposition we charac-

terise EF communication traces, which are those traces that describe successful executions of a

sequence diagram.

Proposition 3.13: A sequence α = a0 · · · am is an EF communication trace if and only if α

is a causal system trace, and for all P ∈ P and ?x, ?y ∈ E(P )

!x <C!y ⇒ ?x <α?y

Proof

First consider where α is an EF communication trace. It is clear from the structural

semantics in Figure 4, that any EF communication trace must be a causal system trace.

We will prove that !x <C!y ⇒ ?x <α?y by contradiction.

For a contradiction suppose that there are !x, !y ∈ E where !x <C!y and ¬(?x <α?y).

Since α contains all events in E this implies ?y <α?x. The semantics from Figure 4

dictate that !x <α!y. Hence it is only possible for ?x <α?y if at some point they are

both present in the transmission channel’s delivery buffer, and ?y is delivered before

?x. At the point when ?y is delivered ?x will still be present in the delivery buffer for

T . Let ?x, ?y ∈ E(Pi) for some i.

Hence, at some point during the execution of α, PEF (Sc) has transformed into a term

of the form ψEF
k = T (Bk) ‖EF φk

0 ‖EF · · · ‖EF φk
n and φk

i = Pr(Ink
i , Sk

i , <Pi
), where

?x, ?y ∈ Bk. In order for there to be a transition

T (Bk) ‖EF φk
i

?y−→ T (Bk+1) ‖EF φk+1
i

it must be that Dlv holds. Hence, unravelling the definition for Dlv we must have

¬(!x <c!y). This is a contradiction as required.

Next suppose that α is a sequence as in the hypothesis of the proposition, and we

will assume without loss of generality that it does not contain any τ actions. Let

αk = a0 · · · ak. Then there is some ψ(C)k where

ψ(C)k = T (Bk) ‖c Pr(Sk
0 , <P0) ‖c · · · ‖c Pr(Sk

n, <Pn)
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and

Pc(Sc)
αk

−−−→? ψ(C)k

Note, in the equation above Pr(S,<) represents the behaviour of a process in the

causal semantics. At the same time, we use Pr(In, S,<) to denote the behaviour of a

process for the EF semantics.

We can prove by induction on k that if we define

ψk = T (Bk) ‖EF Pr({ }, Sk
0 , <P0) ‖EF · · · ‖EF Pr({ }, Sk

n, <Pn)

then there is some α′
k equivalent to αk where

PEF (Sc)
α′

k

−−−→? ψk

The base case is straightforward, so we move on to the induction step. Suppose the

above equations hold, we need to show that they also hold for k + 1. Suppose that

ak+1 ∈ E(Pi). Consider first if ak+1 =!e for some !e. In this case we can trivially prove

that the k + 1 case holds since there is no restriction on EF transmitting messages to

T . Without loss of generality we may then suppose that ak+1 is of the form ?e. In

which case ?e ∈ Sk
i , Sk+1

i = cns(?e, Sk
i − {?e}, <Pi

) and

T (Bk) ‖c Pr(Sk
i , <Pi

)
?e−→ T (Bk − {?e}) ‖c (Sk+1

i , <Pi
)

Hence, for all ?y ∈ Bk, ?e <α?y. Therefore by definition of α, for all ?y ∈ Bk,

¬(!y <C!e). Hence from the definition for EF , we have

T (Bk) ‖EF Pr({ }, Sk
i , <Pi

)
?e−→ T (Bk − {?e}) ‖EF ({?e}, Sk

i , <Pi
)

τ−→ T (Bk − {?e}) ‖EF ({ }, Sk+1
i , <Pi

)

This completes the induction step, and hence completes both the proof by induction

and the proof of the proposition. 2

Proposition 3.13 proves that the EF semantics acts in the usual FIFO manner precisely when the

causal order dictates that this must be the case. Proposition 3.11 proves that the EF semantics is

equivalent, with respect to deadlock detection, to the usual FIFO semantics. Finally proposition

3.12 gives a purely partial order theoretic characterisation for EF deadlocks.
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3.4. Lazy FIFO

Lazy FIFO (LF) semantics asserts that when send events are causally ordered, then their

corresponding receive events will be delivered in the same order. The only difference from EF

semantics is that input buffers are unbounded and messages can be consumed from them in the

order that a process requires. From Proposition 3.5 we know that LF semantics do not deadlock.

In the following proposition we describe the LF communication traces.

Proposition 3.14: A sequence of events α is a communication trace for PLF (Sc) if and

only if it is a communication trace of PLA(Sc) and for all P ∈ P and ?x, ?y ∈ E(P )

!x <C!y ⇒ ?x <α?y

Proof

Clearly PLA(Sc) can perform any transition that PLF (Sc) can. Hence, any LF

communication trace must be an LA communication trace. Proposition 3.13 proved

that EF communication traces are exactly the causal system traces that satisfy the

partial order constraint of the hypothesis above. This was proved by demonstrating

that PEF (Sc) can generate any trace that PC(Sc) can generate if and only if the above

partial order constraint is satisfied. If we replace PEF (Sc) by PLF (Sc), and replace

PC(Sc) by PLA(Sc), then the proof for Proposition 3.13 will go through word for word,

which provides a proof for Proposition 3.14. 2

This proves that if we generalise EF semantics to allow processes to consume messages when

they are required to the result is a FIFO form of LA semantics, as one would expect.

3.5. Synchronous

The intuition for synchronous message passing is that processes wait for an acknowledgement

after sending a message before continuing to execute. In MSC/SD this can be explicitly mod-

elled with a suspend region on a life-line, which ends when an acknowledgement is received.

Alternately, in SDs there is a graphical notation for depicting a message as synchronous without

using a suspend region or explicitly showing an acknowledgement. The intuition here is that

a process will not perform any act after sending a message until it is received, and that there
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is some observationally silent acknowledgement mechanism that allows the sending process to

know when to proceed.

From a trace perspective we can capture this intuition in a partial order theoretic manner that

characterises the Synchronous (S) semantics. S semantics dictates that for any message m and

S communication trace α, if there is some event e where !m <C e then ?m <α e. We prove this

formally in Proposition 3.15 below.

Proposition 3.15: A sequence of events α is a communication trace for PS(Sc) if and only

if it is a causal system trace and for all events x and messages m

!m <C x ⇒?m <α x

Proof

PEA(Sc) can execute any transition that PS(Sc) can. Hence, S communication

traces must be EA communication traces. From Proposition 3.8 it follows that S

communication traces are therefore causal system traces.

For a contradiction suppose that there are x and m where !m <C x and x <α?m. Let

αk = a0 · · · ak, then for 0 ≤ k ≤ n we can write

PS(Sc)
αk

−−−→? ψS
k

where αk = a0 · · · ak, ψS
k = T (Bk) ‖S φk

0 ‖S · · · ‖S φk
n, and φk

i = Pr(Ink
i , Sk

i , <Pi
)

Suppose that x = ak for some k. Since ?m is not in the sequence αk and since !m is,

we must have ?m ∈ Bk. Also if !m = ai, then ?m ∈ Bj for i ≤ j ≤ k.

Consider if x is of the form ?g. There must have been an earlier transition ψS
j−1

aj−→ ψS
j

where aj =!g, and i ≤ j ≤ k. This must have been the result of a transition

T (Bj−1) ‖S φj−1
i

!g−→ T (Bj−1 ∪ {?g}) ‖S φj
i

From the S structural rules, this transition can only occur when ¬(?g ∈↓Sd(Bj−1)). If

!m <C!g, then by definition ?g ∈↓Sd(Bj−1)). Hence, we must have that ¬(!m <C!g).

This implies that there is a chase condition between !m and ?g, as we have !m <C?g

and ¬(!m <C!g). From Corollary 3.7 this implies α can not be an S communication

trace, which is the contradiction we require.
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Next suppose that x is of the form !g. Then the transition ψS
k−1

ak−→ ψS
k must be due

to a transition

T (Bk−1) ‖S φk−1
i

x−→ T (Bk−1 ∪ {?g}) ‖S

As we saw for the previous case, this can only occur when Trns holds, which can not

be true since !m <C!g implies that ?g ∈↓Sd(Bk−1)). Again we have a contradiction.

Hence, any S communication trace must satisfy the partial order constraint.

Next we turn out attention to the converse. Suppose that α is a sequence as in the

statement of the proposition. Let αk = a0 · · · ak. We will prove by induction on k that

there are ψS
k = T (Bk) ‖S φk

0 ‖S · · · ‖S φk
n, and φk

i = Pr({ }, Sk
i , <Pi

) where

PS(Sc)
α′

k

−−−→? ψS
k

for some α′
k equivalent to αk. The base case is straightforward, so we move on to

the induction step. First consider when ak+1 is of the form !e. For each !m <C!e, we

trivially have !m <C?e. Hence, each ?m is an element of αk. Therefore, there is no

?m ∈ Bk where !m <C!e. Hence, Trns is true and we have a transition

T (Bk) ‖S φk
i

ak−→ T (Bk+1) ‖S φk+1
i

Next consider when ak+1 is of the form ?e ∈ E(Pi) for some i. For S semantics there

is no restriction on delivery except that the input buffer be empty, which is the case

by the induction hypothesis. Process φk+1
i is of the form

Pr({?e}, Sk
i , <Pi

)

We need to prove that ?e ∈ Sk
i . For a contradiction suppose that there is some x ∈ Sk

i

where x <C?e.

Consider first if x is of the form !g. Since !g <C?e, we have ?g <α?e, by the induction

hypothesis. This implies that x must be in αk which contradicts that it is a value in

Sk
i . Consider next if x is of the form ?g. If ¬(!g <C?e) then we have a chase condition

which is a contradiction by the proof of Proposition 3.6. Hence, we again have !g <C?e

and again this leads to a contradiction. Therefore, φk+1
i is able to silently consume ?e.

Thus we can write

φk+1
i

τ−→ Pr({ }, cns(?e, Sk
i − {?e}, <Pi

), <Pi
)
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This completes the proof by induction, and so completes the proof of the proposition.

2

This proposition proves that during any S system execution, that does not deadlock, each process

will not perform any action once it has sent a message until the message is received.

Proposition 3.16: PS(Sc) will deadlock if and only if there are events x and ?e where

(x <C?e) and ¬(![x] <C!e)

Note this is exactly the same condition as for Proposition 3.12.

Proof

Suppose that PS(Sc) deadlocks with trace β = b1 · · · bk. Hence there is

PS(Sc)
β

−−−→? ψS
k

with ψS
k = T (Bk) ‖S φk

0 ‖S · · · ‖S φk
n and φk

i = Pr(Ink
i , Sk

i , <Pi
). From Corollary 3.7,

we must have that for some i there is x ∈ Sk
i , {?e} = Ink

i , ¬(x <C!e) and x <C?e.

If x is of the form !g then we are done. Suppose then that x is of the form ?g. Since

{?e} = Ink
i we know that !e is in αk. For a contradiction suppose that !g <C!e. This

implies that !g is also an element of αk. Since !g has occured, but ?g has not, ?g ∈ Bk.

Let ?e = bj , for some j. Thus there is a transition

T (Bj−1) ‖S Pr({ }, Sj−1
i , <Pi

)
!e−→ T (Bj−1 ∪ {?e}) ‖S Pr({ }, Sk−1

i , <Pi
)

It must also be that Trns holds for this transition to occur. That is ¬(?e ∈↓Sd(Bj−1)).

However, ?g ∈ Bj−1 since !g occurs before !e and ?g has not occurred. That implies

?e ∈↓Sd(Bj−1), which is a contradiction as required.

For the converse suppose that ![x] ∈ E(Pi). We allow PS(Sc) to execute randomly,

with the exception that Pi must not transmit ![x] to T . Either, PS(Sc) will deadlock at

some point, or eventually ?e will be transmitted. At that point we will reach a deadlock

as described by Corollary 3.7. This completes the proof. 2

We have proved that the deadlock condition for S semantics is exactly the same as for EF

semantics. Note however that the traces of these semantics are quite different.

May 22, 2008 DRAFT



32

3.6. Token Ring (TR)

TR semantics only allows a single message to be in transit at any time. The concept comes

from systems where a virtual token is continually passed around a network ring. When a process

holds the token no other process may send a message. Once a message is sent, the process holding

the token only releases it once the message is received. The structural communication rules in

Figure 4 can simulate this with the constraints given in Figure 5.

The constraints force at most one value to be in the buffer B for the transmission channel T at

any time. The Trns constraint ensures that a value can only be transmitted to T when B is empty.

The Dlv constraint for TR ensures that a message can not be delivered unless it is the only value

in B. Also the constraints force a process to consume messages in an eager fashion. Note, it is

possible for a process to send a message to T , which is then delivered to a process Q. It may be

that Q will deadlock at this point, but other processes can continue under the TR semantics to

send messages. It is also possible that Q does not immediately consume the message, and other

processes start to send messages before Q does so. However, consumption is silent and we can

suppose without loss of generality that it does occur as soon as possible without affecting the

discussion here. Hence, the TR semantics does not completely characterise the intuitive concept

of passing a token. However, this only fails when one of the processes deadlocks, and so for

the purposes of this paper it adequately characterises token ring semantics.

Proposition 3.17: A sequence of events α = a0 · · · an is a communication trace for PTR(Sc)

if and only if it is a causal system trace and for all messages m

∀ 0 ≤ i ≤ n. (!m = ai) ⇒ (?m = ai+1)

Proof

By inspection of the constraint on the structural rules for TR we can see that the

following holds.

• There can be a transition

T (B) ‖TR Pr(In, S,<P )
!e−→ T (B ∪ {?e}) ‖TR Pr(In, cns(?e, S − {?e}, <P ), <P )

if and only if B = ∅ and In = ∅.
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• There can be a transition

T (B∪{?e}) ‖TR Pr(In, S,<P )
?e·τ

−−−→? T (B) ‖TR Pr(In, cns(?e, S−{?e}, <P ), <P )

if and only if B = ∅ and In = ∅.

Hence, for any events !a and b there is a transition equivalent to

T (B) ‖TR Pr(In, S,<P )
!a·b

−−−→? T (B′) ‖TR Pr(In′, S ′, <P )

if and only if b =?a. This completes the proof. 2

Proposition 3.18: PTR(Sc) will deadlock if and only if there are events x and ?e where

(x <C?e) and ¬(![x] <C!e)

Note this is exactly the same deadlock condition as for EF and S semantics.

Proof

It is clear from the structural rules for TR, that EF can simulate any transition that

TR can. Thus, by Corollary 3.7, if TR deadlocks then so does EF. This proves that if

TR does deadlock then the condition above holds.

Suppose then that we are given events x and ?e where

(x <C?e) and ¬(![x] <C!e)

First consider if x is of the form !g. As we did with the other semantics we can

allow PTR(Sc) to execute randomly, but with the restriction that !g is not allowed to

be transmitted to T . As with the other semantics this will cause PTR(Sc) to deadlock

eventually.

Next consider the case where x is of the form ?g. From Proposition 3.17 we know

there can be no trace where !g occurs after !e and before ?e. Thus in any trace of

PTR(Sc) if !e <β!g then ?e <β!g, or PTR(Sc) deadlocks before !g can occur. Thus if

we have ?g <C?e, but ¬(!g <C!e) we can allow PTR(Sc) to execute randomly with

the restriction that !g is not allowed to be transmitted to T . In which case we must

eventually reach a deadlock. This completes the proof. 2
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4. REGULAR SEQUENCE DIAGRAMS

A regular sequence diagram is constructed from a set of partial order scenarios by combining

them with sequential composition, iteration and branching operators. This section extends the

earlier operational semantics for partial order scenarios to regular sequence diagrams. The

semantics we define are equivalent to those defined in the MRA semantics [23], [24]. We define

them in a form that permits us to integrate them with the earlier semantics for partial order

scenarios with minimal effort. This section also proves one of the main results of the paper,

Proposition 4.6.

Convention: Since we will only be concerned with regular sequence diagrams we will simply

refer to them as sequence diagrams from now on.

Definition 4.1: We define a sequence diagram process term as follows. This is defined with

respect to the possible communication semantics U given in the table of Figure 5 and using the

notation in Definition 3.3.

We assume there is a fixed set of processes P over which all the sequence diagrams will be

defined. If Sd1 and Sd1 are sequence diagram process terms then so are

• Sd1 + Sd2 (alternative operator)

• Sd1 :: Sd2 (concatenation operator)

• Sd∞
1 (loop operator)

For any partial order scenario Sc with processes P where PU(Sc)
α

−−−→? T (B) ‖U Pr′U for

some string of events α then Pr′U is also a sequence diagram process term. As usual we define

+ to be associative and commutative, and :: to be associative.

When α is the empty string we say Pr′U is an initial term. That is Pr′U is an initial term when

no event has yet occurred in PU(Sc). Recall from Definition 3.3 that the initial term is denoted

PrU(Sc).

A sequence diagram is a process term as above but constructed only from initial terms and

the operators +, :: and ∞.

Intuitively Sd1 + Sd2 is the mutually exclusive choice between alternatives. Graphically this

would be shown as an ALT construct. Sd1 :: Sd2 is the inline sequential composition operator.

We refer to it as the concatenation operator. This represents the visual idea of concatenating two
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sequence diagrams together when they contain the same processes. Sd1 :: Sd2 amounts to the

sequential composition of the corresponding processes in the two sequence diagrams. Note, it is

quite possible with concatenation for some events within the second sequence diagram to occur

before all the events in the first diagram have finished. Sd∞
1 represents the arbitrary iteration of

Sd1 any finite number of times. Note, we don’t need to explicitly define finite iteration since

any term formed by finite iteration can be replaced by an equivalent term using sequential

composition and branching.

In order to have compact operational semantics for sequence diagrams we define some notation

concerning when some or all of the processes in a partial order scenario have ended.

Definition 4.2: Let Sc be a partial order scenario with processes P , where PU(Sc)
α

−−−→?

T (B) ‖U Pr′U for some string of events α. We refer to Pr′U as a scenario process term.

If Pr′U is of the form End(P ) ‖U Q for some Q, then we say P has ended in Pr′U . We say P

has ended in a sequence diagram process term Sd when it has ended for every Pr′U that occurs

in Sd, which we denote by End(P, Sd). When P has ended in Sd for every P ∈ P we say Sd

has ended. We use End to denote a process term that has ended.

We formally define the operational semantics for the alternative, concatenation and loop operators

in Figure 6. End Alt is the only non intuitive rule in Figure 6. The alternative construct semantics

can have subtle consequences. Consider Figure 7, where the first alternative choice contains no

actions for process A. If this first alternative is chosen then !c will be the initial event for process

A. Moreover, this can validly occur before process C sends event !b.

Definition 4.3: For a sequence diagram Sd, string of events α and sequence diagram process

term Sd′ we write

T (B) ‖U Sd
α

−−−→? T (B′) ‖U Sd′

when the operational semantic rules in Figures 4 and 6 allow us to transform T (B) ‖U Sd into

T (B′) ‖U Sd′ via the events defined in the string α. We define Sd to have a deadlock trace when

there is a sequence of transitions

T ({ }) ‖U Sd
α

−−−→? T (B′) ‖U Sd′

and there are no (non-τ ) transitions possible for Sd′ and not all processes have ended in Sd′.

When Sd has a deadlock trace we say Sd deadlocks.
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In the following rules a is any event in E.

Alt
T (B) ‖U Sd1

a−→ T (B′) ‖U Sd′
1

T (B) ‖U (Sd1 + Sd2)
a−→ T (B′) ‖U Sd′

1

End Alt
End(P, Sd1)

Sd1 + Sd2
τ−→ Sd1

Concat
T (B) ‖U Sd1

a−→ T (B′) ‖U Sd′
1

T (B) ‖U (Sd1 :: Sd2)
a−→ T (B′) ‖U (Sd′

1 :: Sd2)

?Concat
T (B) ‖U Sd2

?a−→ T (B′) ‖U Sd′
2

T (B) ‖U (Sd1 :: Sd2)
?a−→ T (B′) ‖U (Sd1 :: Sd′

2)

!Concat
T (B) ‖U Sd2

!a−→ T (B′) ‖U Sd′
2

T (B) ‖U (Sd1 :: Sd2)
!a−→ T (B′) ‖U (Sd1 :: Sd′

2)
End(P, Sd1), !a ∈ E(P )

Null Concat
End :: Sd

Sd

Loop
Sd∞

End + Sd :: Sd∞

Fig. 6. Communication Semantics for Regular Sequence Diagrams

Before we go on to the main result we first show that if we concatenate two partial order scenarios

then the result is behaviourally equivalent to another partial order scenario. This lemma will be

key in proving the main result for this section. It proves that irrespective of which communication

semantics U we apply the result of concatenating two partial order scenarios is always another

partial order scenario that is independent of U .

Lemma 4.4: Let Sc1 and Sc2 be two partial order scenarios. Then the sequence diagram given

by PrU(Sc1) :: PrU(Sc2) is bisimulation equivalent to a partial order scenario, which we denote

as Sc1 :: Sc2.

Proof
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Fig. 7. Empty Alternative for Process A

Let Sd denote PrU(Sc1) :: PrU(Sc2). Both Sc1 and Sc2 are defined over the same set

of processes P = {Pi | 1 ≤ i ≤ n}. Without loss of generality we will assume that the

events for each scenario are distinct (or we can simply annotate them appropriately so

we can tell which scenario they belong to). We will denote the set of events in Sci for

process P as Ei(P ). The partial order over Ei(P ) defined by Sci is denoted <i
P .

Define a new scenario Sc with events E(P ) = E1(P )∪E2(P ) for each P ∈ P . Define

partial orders <P by

• For a, b ∈ Ei(P ), a <P b if and only if a <i
P b

• For a ∈ E1(P ) and b ∈ E2(P ) then a <P b.

Clearly we have sequentially composed the process causal orders for each P . This new

scenario Sc is the scenario Sc1 :: Sc2 referred to in the hypothesis.

Let φi = Pr(Ini, Si, <Pi
), ψ = φ0 ‖U · · · ‖U φn, a string of events α = a1 · · · ak and

suppose there is a trace where

PU(Sc)
α

−−−→? T (B′) ‖U ψ

By the construction of Sc we must have that Si = S1
i ∪ S2

i where S1
i ⊆ E1(Pi) and

S2
i ⊆ E2(Pi). Also we have that Ini = In1

i ∪In2
i where In1

i ⊆ E1(Pi) and In2
i ⊆ E2(Pi).

Let φj
i = Pr(Inj

i , Sj
i , <j

Pi
) for j ∈ {1, 2}. We also define

ψj = φj
0 ‖U · · · ‖U φj

n

Note that the only rule that allows events to be sent from Sc2 before any event from Sc1

is the !Concat rule. Also if a receive event ?e from Sc2 occurs before some event in
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Sc1 then !e must also occur before some of the events in Sc1. In either case End(Pi, ψ
1)

will be true for the relevant Pi.

From the definitions in Figure 5, if End(Pi, ψ
1) holds, then InBuf will be true at that

point for Pi in Sc. That implies that for all of the various communication semantics U

given by Figure 5 the corresponding operational rule has a valid trigger. The converse

is also true so that if we were able to execute an action in E2(Pi) for process PU(Sc)

for any communication semantics U then End(Pi, ψ
1) will be true. Hence we have that

T ({ }) ‖U Sd
α

−−−→? T (B′) ‖U (ψ1 :: ψ2)

The converse can be shown to hold in an analogous manner. Putting all of this together

gives us the bisimulation equivalence as required. 2

From a sequence diagram we can define a set of partial order scenarios generated by taking a

specific choice within each of the alternatives in the sequence diagram. These scenarios define

a partition of the concurrent threads in the parent sequence diagram.

Definition 4.5: For a sequence diagram process term Sd, define the set Sc(Sd) recursively

as follows:

• Sc(Sd) = {Sd} when Sd is iteself a partial order scenario process term.

• Sc(Sd1 + Sd2) = Sc(Sd1) ∪ Sc(Sd2)

• Sc(Sd1 :: Sd2) = {Sc1 :: Sc2 | Sc1 ∈ Sc(Sd1) and Sc2 ∈ Sc(Sd2)}

• Sc(Sd∞) = {Sc1 :: · · · :: Scn | n ∈ N, Sci ∈ Sc(Sd) for 1 ≤ i ≤ n}

When Sc ∈ Sc(Sd) we say Sc is included in Sd. From Lemma 4.4 it follows that when Sd is a

sequence diagram then Sc(Sd) is bisimulation equivalent to a set of partial order scenarios.

A deadlock occurs in a sequence diagram if and only if it includes a partial order scenario

that deadlocks, which we prove in Proposition 4.6. When combined with the results in Section

3, Proposition 4.6 proves that a regular sequence diagram will deadlock if and only if it contains

a chase or sprint condition.

Proposition 4.6: Let X be a sequence diagram process term and Sd be a sequence diagram.

There is a deadlock trace

T ({ }) ‖U Sd
α

−−−→? T (B) ‖U X
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if and only if there exists a partial order scenario Sc ∈ Sc(Sd) and for some Y ∈ Sc(X),

PU(Sc)
α

−−−→? T (B) ‖U Y

is also a deadlock trace.

Proof

It is straightforward to show that if there exists Sc ∈ Sc(Sd) and there is a deadlock

trace PU(Sc)
α

−−−→? T (B) ‖U Y , then we also have a deadlock trace T ({ }) ‖U

Sd
α

−−−→? T (B) ‖U X for some suitable X . It therefore only remains to prove the

converse.

Suppose then that we have a deadlock trace T ({ }) ‖U Sd
α

−−−→? T (B) ‖U X , where

α = a1 · · · an. To complete the proof it is enough to find Y ∈ Sc(X) and some

Sc ∈ Sc(Sd) where PU(Sc)
α

−−−→? T (B) ‖U Y . Without loss of generality we assume

we have annotated events in Sd so that the events in each particular alternative within

it can be considered distinct.

Let E(Sd) be the set of events in a sequence diagram process term. Let E(α) be the

events in the string α. For a sequence diagram process term Sd, define a partial order

scenarios process term (Sd)α recursively as follows:

• When Sd is a partial order scenario process term then (Sd)α = Sd if E(Sd) ∩

E(α) 6= { } otherwise (Sd)α = End.

• (Sd1 + Sd2)
α = (Sd1)

α if E(Sd1) ∩ E(α) 6= { }, (Sd1 + Sd2)
α = (Sd2)

α if

E(Sd2) ∩ E(α) 6= { }, otherwise (Sd1 + Sd2)
α = End.

• (Sd1 :: Sd2)
α = Sdα

1 :: Sdα
2

• (Sd∞)α = (Sd :: · · · :: Sd)α, which consists of n copies of Sd concatenated

together.

Let Sdi be process terms so that the deadlock trace T ({ }) ‖U Sd
α

−−−→? X expands

as

T ({ }) ‖U Sd
a1−→ T (B1) ‖U Sd1

a2−→ · · · an−→ T (Bn) ‖U Sdn = T (Bn) ‖U X

By Lemma 4.4 Sdα is a partial order scenario and hence Sdα ∈ Sc(Sd). We can now
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constuct a deadlock trace for Sdα:

PU(Sdα)
a1−→ T (B1) ‖U Sdα

1
a2−→ · · · an−→ T (Bn) ‖U Sdα

n = T (Bn) ‖U Y

This completes the proof. 2

5. CONCLUSION

Where sequence diagrams are constrained to follow MRA semantics deadlocks are not possible

since coordination is always guaranteed between processes. In this paper we have considered

various commonly used communication semantics, which were taken from industrial case studies

at Motorola and DaimlerChrysler. For example FIFO and token ring as well as eager and lazy

message consumption. We formalised these communication semantics with a process algebra

that generalises the MRA semantics for regular sequence diagrams.

We refined the idea of race condition into chase and sprint conditions. For each of the semantics

we considered we characterised deadlocks either in terms of sprint conditions, or in terms of

chase conditions. The chase and sprint conditions together exactly determine when a deadlock

can occur in a sequence diagram with one of the communication semantics that we considered.
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