
Lazy buffer semantics for partial order scenarios

Bill Mitchell (w.mitchell@surrey.ac.uk)
Department of Computing, University of Surrey, Guilford, Surrey GU2 7XH, UK

July 30, 2007

Abstract. There exists a unique minimal generalisation of a UML sequence di-
agram (SD) that is race free, known as the inherent causal scenario. However,
practitioners sometimes regard this solution as invalid since it is a purely mathe-
matical construct that apparently does not describe a concrete software engineering
solution for resolving race conditions.

Practitioners often implement SDs with random access input buffers. Messages
are then consumed correctly regardless of the order or time at which they arrive,
which appears to avoid race conditions altogether. However, this approach changes
the observable system behaviour from that specified. We refer to this approach as
the lazy buffer realization of a SD.

We introduce an operational semantics for the lazy buffer realization. We prove
the inherent causal scenario global behaviour is bisimulation equivalent to the global
behaviour of lazy buffer semantics. Hence, in this sense, the practitioners solution
is theoretically the best possible. Also this proves that the inherent causal scenario
does represent a ‘real-world’ software solution

1. Introduction

Historically, ‘ladder diagrams’ have played a central role in defining
requirements specifications for asynchronous concurrent systems. These
have gradually evolved into sequence diagrams in UML 2.0 [24], and
have become so expressive that property checking for languages defined
by arbitrary sequence diagrams is undecidable [1]. Today international
standards bodies such as ETSI and the ITU incorporate sequence di-
agrams as part of their protocol specification methodology and have
formally specified many aspects of sequence diagram behaviour [33].
The OMG has also adopted this semantics as part of the current UML
2.0 standard. Thus, sequence diagrams are still a major component
in defining the requirements specifications for commercial and govern-
ment communication systems. This is despite the fact that the verifica-
tion benefits of using state-based behavioural models for specifications
have long been known, [10]. One reason for this lasting popularity is
that practitioners find sequence diagrams more intuitive and ‘easier’ to
understand than state machines, [30].

For this paper we will be concerned with asynchronous basic se-
quence diagrams that specify communication between concurrent pro-
cesses within a distributed environment. Basic sequence diagrams can

prag_ASE.tex; 30/07/2007; 10:37; p.1



2 Bill Mitchell

be given behavioural semantics in the form of a partial order between
communication events. Such diagrams usually form the starting point
for communication protocols and so are still a valid area of interest. The
partial order restricts how events can occur in any observable trace of
the system. The semantic partial order is known as the causal order of
the specification. We call any basic sequence diagram with partial order
behavioural semantics a partial order scenario. For brevity, we will
refer to the standard partial order semantics as the causal semantics
from now on. Also, we will refer to the behaviour of a partial order
scenario with respect to the causal semantics as the causal behaviour.
A causal order not only specifies that certain events must be ordered
in a particular way, but also that certain events are independent of one
another. This can be the case even for events within the same process.
Therefore a partial order scenario specifies separate concurrent threads
of activity and at what points these threads must be synchronized.

Industrial requirements specifications often contain inconsistencies
between the causal behaviour and the order that events can occur in
practice. Race conditions are amongst the most common of these in-
consistencies. Essentially a race condition occurs when processes must
act in concert to ensure the causal behaviour is correctly implemented,
when in practice such coordination can not be guaranteed to occur in
a distributed environment. Differences between distributed and non-
distributed views of the specification are the root cause of such incon-
sistencies. In a non-distributed view the causal behaviour can always
be imposed by the environment somehow enforcing the correct global
coordination. In a distributed implementation there is no such global
coordination mechanism and processes are only obliged to follow the
local behaviour imposed on them by the causal order. [13, 14] give the
original formal description of race conditions.

Inherent causal scenario

[21] proved that there is a unique minimal generalization of a partial
order scenario that is race free, which is known as the inherent causal
scenario. That paper characterises race conditions purely within a par-
tial order theoretic framework. [21] proved there is a unique partial
order that is the minimal race free generalisation of a given causal
order. This unique partial order is known as the inherent causal order. A
partial order in itself does not necessarily define a partial order scenario.
[21] proved that the inherent causal order can be realized as a partial
order scenario, which is then defined to be the inherent causal scenario.

Feedback from case studies shows that the inherent causal scenario
gives engineers an overview of what concurrent behaviour can real-

prag_ASE.tex; 30/07/2007; 10:37; p.2



Lazy buffer semantics 3

istically be expected in a distributed environment, as opposed to the
behaviour that the original scenario asserts must occur. However, prac-
titioners tend to regard this solution as artificial since the inherent
causal scenario is a mathematical construct that has no intuitive expla-
nation in terms of software engineering constructs. Hence, practitioners
are sometimes inclined to regard this solution as ‘invalid’ because it is
not seen as a real-world software engineering solution for removing race
conditions.

Practitioners also sometimes object to the additional concurrency
introduced by the inherent causal scenario in order to resolve race
conditions. A specification is meant to be as general as possible, and so
introducing more concurrency is acceptable from a specification view-
point. In the implementation phase additional concurrency can result
in scheduling overheads and affect performance, so that practitioners
often want to minimise concurrency at that later stage. The inherent
causal scenario is the unique minimal generalisation that can remove all
race conditions from the specification. That means it is not possible to
avoid the subsequent additional concurrency if race conditions are to be
resolved through generalisation. However, just because a specification
contains several concurrent threads, this does not imply the implemen-
tation has to reflect that level of concurrency. An implementation is
a refinement of the specification. So, it is perfectly acceptable for an
implementation to be more synchronous than the specification through
some domain specific refinement that makes this possible. Such as,
for example, the use of coordination messages that are in addition to
any existing in the specification. Implementation concerns should be
separate from the specification, so that efficiency concerns related to
concurrent threads should not be addressed at the requirements capture
stage.

Lazy buffers

An alternative to generalising a scenario in order to resolve race con-
ditions is to equip each process with an unbounded random access
input buffer, from which messages are only consumed when needed.
Hence, even if messages are delivered in the wrong order because some
processes are not correctly acting in concert, the receiving process can
still consume messages in the correct order from its input buffer. At
first glance it appears this solves the problem without apparently in-
troducing any additional concurrency and so it would seem to lead
to an efficient implementation. This provides a pragmatic workaround
for resolving race conditions that is more intuitive and much easier
to explain and implement than the inherent causal order. Anecdotal

prag_ASE.tex; 30/07/2007; 10:37; p.3



4 Bill Mitchell

evidence from work with Motorola and DaimlerChrysler suggests many
engineering groups assume they can always realize sequence diagrams in
this way whenever necessary. We will refer to this pragmatic approach
as the lazy buffer realization for a scenario.

The lazy buffer realization is straightforward and intuitively appeal-
ing since it defines a concrete software engineering approach to avoiding
race conditions altogether. However, it is not clear what global system
behaviour it defines. Global behaviour is determined by the order that
messages travel around the system, rather than when messages are
consumed internally within a process. A sequence diagram specifies this
globally observable behaviour, where the local externally observable
behaviour is then a consequence of the global behaviour. The lazy buffer
realization obscures the fact that the globally specified behaviour does
not now correctly describe how messages travel around the system, but
rather in what order messages must be consumed locally. Also it is not
the case that this pragmatic approach does not introduce additional
concurrency, rather it hides it so it becomes more difficult to detect.
Thus system requirements analysis becomes more challenging where
this approach is adopted. To properly understand how the lazy buffer
realization has modified the flow of messages it would be very useful to
understand how it relates to the inherent causal scenario.

Main Result

In the paper we prove that the globally observable behaviour for the
lazy buffer realization of a scenario is weak bisimulation equivalent to
that of the inherent causal scenario. Hence, at the global system level
the inherent causal scenario describes the behaviour that is given by
allowing processes to locally realize the specification through lazy input
buffers. This proves that allowing processes to realize a specification
through lazy buffers results in global behaviour that is the unique min-
imal generalisation necessary to remove all race conditions. In proving
this equivalence we also prove that the lazy buffer realization defines
a valid partial order scenario in its own right and therefore represents
a coherent solution as well as one that is the optimal race resolution.
Hence, in this particular situation, the pragmatic work-around turns
out to be the best possible solution. Conversely, we also prove that the
inherent causal scenario does represent a genuine ‘real-world’ software
engineering solution. A practitioner can then have the best of both
worlds. They may use the lazy buffer realization as the basis for an
implementation, whilst still be able to explicitly see the correct global
system behaviour in the form of the inherent causal scenario.

prag_ASE.tex; 30/07/2007; 10:37; p.4



Lazy buffer semantics 5

The causal semantics describes the global system behaviour of a
partial order scenario that is meant to occur, but does not describe
a communication semantics between processes that enables them to
realize this behaviour. [11] describes such a communication semantics
within a process algebra setting. This semantics generalises the original
ITU standard semantics for MSCs [19, 20] to include various additional
constructs. For partial order scenarios the [11] semantics is equivalent
to the [19, 20] semantics and, for our purposes, is easier to reason with.

Intuitively we can summarise the communication semantics from
[11] as follows. A process can not send messages directly to another
process. Instead, a process can only transmit messages to a global
traffic channel, T . Within the process algebra, T is a special process
that behaves differently to a normal process. T can always receive mes-
sages and stores them in an unbounded random access buffer, which
is represented in the form of a multiset. At the moment a process is
specified to receive a message, as defined by the causal behaviour, T
removes the relevant message from its buffer and sends it directly to the
waiting process. Hence, T acts as a global coordination mechanism that
ensures messages always arrive exactly in accordance with the causal
ordering. The causal behaviour is equivalent to the globally observed
behaviour given by concurrently composing a system’s processes and
T within the process algebra.

We define the semantics of a lazy buffer realization for a scenario by
generalising the algebra in [11]. In an asynchronous distributed envi-
ronment there is no global coordination mechanism, so we must adapt
the communication model in [11] to reflect this. We will suppose that
there is still a traffic channel T , through which all messages must be
transmitted. T will still be represented as a special process. However,
T will only act as a transmission medium. Within T messages can
overtake one another, and have arbitrary latency. To achieve this T will
store messages in a multiset as before, but will now deliver messages in
an arbitrary fashion, without reference to the specification. This repre-
sents asynchronous message transmission in a distributed environment.
Notice that T is still global in the sense that all messages must pass
through it, but makes no attempt to coordinate messages according to
the specification as do the original [19, 20] semantics.

Clearly in such an environment even if messages are transmitted as
specified, they are not guaranteed to arrive in the same order unless
sufficient coordination messages are in place. Each process will be given
an unbounded random access input buffer, represented as a multiset
within the process algebra. We will allow processes to leave received
messages in the buffer until the specification states that they must
be consumed. Note, this supposes messages are uniquely identifiable.

prag_ASE.tex; 30/07/2007; 10:37; p.5



6 Bill Mitchell

The lazy buffer realization of a specification is formally represented in
the algebra by concurrent composition of the scenario processes and T
(Definition 6.1). The main result of the paper, Proposition 6.5, states
that the global behaviour defined by the inherent causal scenario is
weak bisimulation equivalent to the global behaviour defined by the
lazy buffer realization.

[21] proved that the global behaviour of a specification scenario
differs from its inherent causal scenario if and only if the specification
contains race conditions. Hence, Proposition 6.5 implies that lazy buffer
realization and causal semantics of a scenario are the same if and only
if the scenario is race free.

Structure of the Paper

In Section 3 we describe those aspects of [11] that are pertinent to the
discussion here. [11] gives a process algebra semantics for almost all the
constructs in a general sequence diagram, such as alternatives, timers,
general orderings, subprocess creation and inline references. These are
outside of the scope of this paper as we are solely concerned with partial
order scenarios. Hence, we only need to be concerned with the commu-
nication aspects of the process algebra in [11] that relate to partial order
scenarios. Because of this we can define a much simplified version of
the process algebra in [11], which facilitates simpler bisimulation proofs
later in the paper.

Section 4 discusses interrelated race conditions by way of an exam-
ple from a case study and defines race conditions as a purely partial
order theoretic construct. Section 5 sets out the context for optimally
resolving race conditions and summarises the main proposition from
[21] in order to make the paper as self contained as possible.

Section 6 defines an operational semantics for the lazy buffer real-
ization of a partial order scenario. This includes a parallel composition
operator that captures asynchronous distributed communication be-
tween processes via a traffic channel T . We then prove that the observed
global behaviour of the local realization is weak bisimulation equivalent
to the behaviour defined by the inherent causal scenario, Proposition
6.5. The concept of formally specifying lazy buffers is in itself nothing
new, and has been around in Harel state-charts for a long time. How-
ever, specifying lazy buffer semantics directly for partial order scenarios
appears to be novel. For our purposes though, we regard defining such
a semantics as a means to an end and not a goal in its own right. Its
value in this paper is to provide an effective formal tool that we can
use for bisimulation proofs of the different semantics we consider.

prag_ASE.tex; 30/07/2007; 10:37; p.6



Lazy buffer semantics 7

Related Work

For the reader interested in an extensive in depth exposition of the
current state of the art in this area we recommend two excellent papers
[32, 25], which contain very good surveys. For this paper, we will give
a briefer summary of related work in the area.

This paper is focussed on scenarios that describe communication
protocols in an asynchronous distributed environment and their lazy
buffer realization. There are many other issues relevant to the verifi-
cation of protocols expressed as UML/MSC diagrams that have been
studied. [1, 12, 28], amongst others, have considered verification of log-
ical properties for languages defined by MSCs and MSC-Graphs. This
work has applied model checking techniques to sequence diagrams in
order to detect standard properties such as dead-lock, live-lock and en-
suring trace coverage. Much of this work has been based on synthesising
finite state automata from sequence diagrams. [7, 8, 17, 23, 28] consider
various different compositional semantics for message sequence charts,
in order to construct state machines from MSC-Graphs. Other work has
considered how to interpolate missing requirements from scenario based
specifications [2, 3, 4, 18, 32]. This work is useful both in verifying a
system and in synthesising a more complete specification. [3] is the sem-
inal work that first considered the realizability of collections of MSCs.
In their work they consider when MSCs composed via an MSC-Graph
can collectively be realized with respect to the causal semantics.

Live sequence charts (LSCs) [15] are a variation on mainstream
MSC/UML scenarios. It is possible to synthesise state machines from
LSCs [16, 27, 29], just as with sequence diagrams and MSCs. One of
the aims for LSCs has been to allow greater expressitivity. For example,
by permitting exemplary and mandatory behaviour to be annotated
directly within a scenario. At present LSCs do not have the same
following in industry as they have in academia, although many of the
ideas from LSCs have now found their way into UML 2.0 sequence
diagrams.

Sequence diagrams are often used to capture conformance test pur-
poses. Research into automatic test generation from partial order sce-
narios is another active research area [5, 6, 9, 26].

Graphical Notation

In the paper we will use UML sequence diagrams (SDs) as the graphical
language for describing partial order scenarios. We will assume the
reader is broadly familiar with the basic concepts of UML SDs. In
this section we briefly describe the semantics for those aspects of SDs
that we use in the paper. Consider the SD depicted graphically in

prag_ASE.tex; 30/07/2007; 10:37; p.7



8 Bill Mitchell

A B C D E F G

ma

mb

mc

md

me
mf

PAR

mg
mh

mb

mi
mj

mk

Figure 1. Inherent causal scenario resolving race conditions for Figure 5

Figure 1. Each vertical line describes the time-line for a process, where
time increases down the page. Messages are depicted by arrows. Each
message m defines a pair of events (!m, ?m), where !m is the send event
for m, and ?m is the receive event for m. Messages in SDs are always
asynchronous since we are dealing only with asynchronous protocols.

The distance between two events on a time-line does not represent
any literal measurement of time, only that non-zero time has passed.
Events on the same time-line are ordered linearly down the page, except
where they occur within a coregion or distinct threads of a parallel con-
struct. Within a coregion events are not locally ordered. Each coregion
can only occur on a single time line. It is depicted by a short dashed line
delineated by short horizontal lines. For process D in Figure 1, events
?mb, ?mi and ?mj are unordered as they occur within a coregion.

A parallel construct in an SD, denoted by keyword PAR, describes a
set of concurrent threads that occur in the diagram. Horizontal dotted
lines delineate the different threads. Hence, events from one thread
are not causally ordered with respect to events from any other thread.
Figure 1 contains a parallel constructs split into two threads. The first
thread contains messages ma, mb, mc and md, while the second thread
contains messages me and mf . The bounding box of a parallel construct
has no effect on the ordering of events, it solely delineates the scope
of the concurrent threads. For example, receive event !mg is ordered
after each of ?mf and !md, even though these events are not ordered

prag_ASE.tex; 30/07/2007; 10:37; p.8



Lazy buffer semantics 9

with respect of one another since they are in separate threads. Events
within a particular thread are ordered in the usual way, so for example,
!ma must be before ?md.

The UML notation also allows a message to be split into lost and
found events. This allows a message to be sent in one scenario and
received in another. The send part of the message is represented by a
lost event, and the receive part by a found event. In this paper we will
only use this construct to simplify the visual layout of scenarios. So
that the found event corresponding to a lost event always occur in the
same scenario. Figure 1 gives an example where message mb has been
split into lost and found events. The lost event for !mb is depicted by
the solid circle terminating the arrow mid-process. The found event for
?mb is depicted by the empty circle that initiates an arrow into process
D. In this paper we follow the convention that the found event given by
a message must always occur after the lost event for the message. The
UML standard does not make any formal link between a lost event and
a found event, that is it does not identify them as component parts of a
single message. However, our convention is only used in simplifying the
visual layout of our example and does not affect the theoretical results
in any way.

2. Partial order scenarios

In this section we define the causal semantics for partial order scenar-
ios. We use the same message semantics as the MSC 2000 standard
[33]. Hence, a partial order scenario defines a set of message exchanges
between processes with asynchronous communication channels.

DEFINITION 2.1.

− A partial order over a set E is a binary relation < such that

< is irreflexive, i.e. there is no x ∈ E where x < x

< is transitive, i.e. if x < y and y < z then x < z

< is asymmetric, i.e. there are no elements x, y ∈ E such that
x < y and y < x

− A total order over the set E is a partial order on E where for
any two distinct elements a and b, either a < b or b < a.

− For x, y ∈ E when it is not the case that x < y we write ¬(x < y).

prag_ASE.tex; 30/07/2007; 10:37; p.9



10 Bill Mitchell

− Two elements x and y of E are unordered if ¬(x < y) and ¬(y <
x).

We define a set to be unordered if every pair of distinct elements
from that set are unordered.

Let P be a set of processes. A message m between processes is a
pair (!m, ?m) where !m is the send event for m, and ?m is the receive
event for m. Let E be the set of all send and receive events between all
processes.

DEFINITION 2.2. A partial order scenario Sc on processes P is

− a collection of disjoint sets E(P ) ⊆ E, for each P ∈ P

− a set of partial orders <P , where <P is a partial order on E(P )
and is referred to as the process order for P

subject to the constraint that for each send event !m in a set E(P )
the corresponding receive event ?m occurs in some set E(Q). Note it
is possible for P = Q.

?ma

!mb

!mc

!md

?mf

!mg

!mi

B<

D<

?mb ?mi ?mj

!mk

Figure 2. Examples of Process Orderings for Figure 1

For example, in Figure 1 all the process orders are total except for
<B and <D. These process orderings are depicted as Hasse diagrams,
shown in Figure 2.

We treat a partial order as a binary relation that can be represented
as the set of pairs that are ordered by the relation. Hence we can take
the union of partial orders, which is just the set theoretic union of the
sets of pairs given by the relevant order relations. Next, we define the
causal ordering that represents the behavioural semantics for a partial
order scenario.

prag_ASE.tex; 30/07/2007; 10:37; p.10



Lazy buffer semantics 11

DEFINITION 2.3. The causal ordering <C on a partial order sce-
nario Sc is the transitive closure of the relation given by∪

P∈P(<P ) ∪
{(!e, ?e) | !e ∈ E(P ) and ?e ∈ E(Q) for some P, Q ∈ P}

The set of pairs (!e, ?e) is used to assert that orderings between
processes can only be a consequence of message exchanges. Hence, the
causal ordering combines process orderings solely through the causality
between send and receive event pairs. As an example, Figure 3 depicts
the causal ordering for the sequence diagram in Figure 1.

Note, it is possible for there to be two events x and y, both in
the same process P , where x <C y but ¬(x <P y). Without loss of
generality we will assume this is not the case from now on. That is,
when x, y ∈ E(P ), we assume x <C y if and only if x <P y. This
is acceptable within our context as we want to study the externally
observable system behaviour and will never need to consider when the
process ordering is not the same as the causal ordering. Hence, if we are
given a causal ordering it will be straightforward to extract the process
orderings from it.

?ma

!mb

!mc

!md

?mf

!mg

?mb

?mi ?mj!mk

!ma

!mf

?mc

?md

?me !me

?mh

!mh

!mi

!mj

?mk

?mg

Figure 3. Causal Order for Figure 1

DEFINITION 2.4. For a causal ordering <C , a system trace is a
total order extension of <C . For a process P ∈ P with process order
<P , a trace of P is a total order extension of <P .

prag_ASE.tex; 30/07/2007; 10:37; p.11



12 Bill Mitchell

?ma

!mb

!mc

!md

?mf

!mg

?mb

?mi ?mj!mk

!ma

!mf

?mc

?md

?me !me

?mh

!mh

!mi

!mj

?mk

?mg

S

a

cns(a,S,<)

Figure 4. Examples of S and cns(a, S, <) for Figure 3

3. Causal Communication Semantics

In this section we define an elementary process algebra term P (Sc)
that defines the causal behaviour of a scenario Sc up to bisimulation
equivalence. In order to define P (Sc) we first have to set up some
notation.

DEFINITION 3.1. For a set S ⊆ E and partial order < on E define

n(S,<) = {x ∈ E | ∃ y ∈ S : y < x, and
¬∃ z ∈ E : y < z < x}

m(S,<) = {x ∈ S | ¬∃ y ∈ S : y < x}
cns(a, S,<) = m((S − {a}) ∪ n({a}, <), <)

Intuitively we can think of n(S,<) as the ‘next’ elements in E af-
ter the set S according to the partial order <. m(S,<) is the set of
minimal events in S with respect to <. Notice that cns(a, S,<) is an
unordered set, since the minimal elements of a set are themselves always
unordered. cns is an abbreviation for consecutive. Suppose we have a
system trace t that is a total extension of <. Let a be some event in t,
so that t is of the form t0 · a · t1 (where · denotes concatenation). Let S
be the set of minimal events from the set of all events not in t0 ·a. Then
t1 must be of the form b · t2 where b ∈ cns(a, S,<), (Lemma 4.2 of [21]).
Therefore, the set cns(a, S,<) defines what events may be consecutive
to a in a system trace, when S describes a set of events that are eligible
to occur concurrently with a at a given point of the system execution.

Consider a partial trace of events for the scenario in Figure 1 where
messages ma, mb, and me have been sent and received, and where

prag_ASE.tex; 30/07/2007; 10:37; p.12



Lazy buffer semantics 13

message mf and mc have been sent and not yet received. The events
that are eligible to occur next are given by S as shown in Figure 4.
Suppose that !md occurs next in the trace. In that case ?md could
consecutively follow !md in the trace, whereas !mg could not. The reason
for this is that although ?md is a trigger for !mg so is ?mf , which has
not yet occurred in the trace. Hence the events that are eligible to occur
consecutively with !md are ?mc, ?md and ?mf . That is, in this example
cns(a, S,<) = {?mc, ?md, ?mf}. These events are shown in Figure 4
enclosed by the dashed line.

We can now define a recursive process algebra term that defines the
causal behaviour of a scenario Sc.

DEFINITION 3.2. For a set S ⊆ E and partial order < on E define

P (S,<) =
∑

{a∈S}
a · P (cns(a, S,<), <)

and P (∅, <) = 0. Where · denotes action prefix and
∑

denotes the
usual choice operator for a process algebra term.

Let Sc be a partial order scenario over processes P, with causal order
<C . Define

P (Sc) = P (m(E,<C), <C)

This description is equivalent to the descriptions in [1, 11] of process
algebra characterisations of the causal semantics for a partial order
scenario. [21] proved (Lemma 4.5) that this particular description does
indeed characterise the correct traces for Sc. That is the traces for
P (Sc) are exactly the system traces of Sc (see Definition 2.4).

4. Race Conditions

A race condition represents a semantic inconsistency between the spec-
ified order that events are meant to occur in and the actual order that it
is possible for them to occur in. In our context ‘possible’ is interpreted
within a distributed asynchronous environment. Within a partial order
theoretic framework we can define a race formally as follows.

DEFINITION 4.1. Define a partial order < on E to be race free
when for every event x and message e:

x < ?e ⇒ (x < !e or x =!e)

A partial order scenario is race free when its causal order is race free.

prag_ASE.tex; 30/07/2007; 10:37; p.13



14 Bill Mitchell

A B C D E F G

ma:AudioChannelReq
mb:FwdReq

mc:DeviceAllocation1

md:DeviceAllocation2

me:RouteInfoReq
mf :InfoVerifyReq

mg:VerifyResponse
mh:RouteResponse

mi:CallUpdate
mj:ContinuityReq

mk:ContinuityResponse

Figure 5. Motorola example containing race conditions

From this definition we see a race occurs when there is an event x
and a message e such that x < ?e and x 6< !e. That is two processes are
meant to be coordinating to ensure that x occurs before e is received. In
a distributed asynchronous environment that implies x occurs before
!e. Otherwise !e can be sent without reference to x, and that could
mean ?e arrives earlier than x, contradicting the causal order. Figure 5
depicts a UML 2.0 sequence diagram taken from a Motorola proprietary
case study. The study looked at approximately one hundred sequence
diagrams that were part of a 3G protocol stack specification, of which
fifteen contained multiple interrelated race conditions. The diagram is
anonymized to protect proprietary information. In the discussion we
will use the short form of message names from the sequence diagram
for brevity. Altogether there are seven races in the scenario. Receive
event ?mf is in a race with each of ?ma, !mb, !mc and !md. For ex-
ample, !md <C?mf but ¬(!md <C !mf ). Thus process C must ensure
that mf is received after md is sent, and yet there is no coordination
between processes that can enforce this. The remaining three races
occur between each of ?mb, ?mi and ?mj .

This is an interesting example in that it illustrates how multiple race
conditions can be interrelated. Attempting to resolve each of the race
conditions independently in a piecemeal fashion would not necessarily
lead to a satisfactory solution. For example, message mf is independent
of md (in that it can be sent at any time after ?me, and me is one of
the initial messages in the scenario). Resolving the race between ?mf

and !md by itself would not resolve the races between ?mf and ?ma,
!mb and !mc. Rather it would complicate the process of identifying a
solution to the other races.

prag_ASE.tex; 30/07/2007; 10:37; p.14



Lazy buffer semantics 15

5. Optimal Race Resolution

In this section we give a brief introduction to the inherent causal sce-
nario defined in [21]. Also, we explain how the inherent causal scenario
defines a canonical race free generalisation for partial order scenarios.

Faced with the complex set of race conditions exemplified by Figure
5, a natural question to ask is whether there is always a non-trivial
generalisation of a scenario that removes race conditions. In the partial
order setting for this paper that translates into the question:

Let Sc be a partial order scenario with events E, processes P with
process orders <P for P ∈ P and causal order <C . Is there a
non-trivial partial order scenario over the same set of events and
processes with a race free causal order <C′ that is a generalisation
of <C .

Partial order <1 is a generalisation of <2 if, when regarding a partial
order as a set of pairs, (<1) ⊆ (<2). That is <1 has weakened some
of the constraints defined by <2. This question motivated the research
in [21]. [21] proved there is a unique minimal race free generalisation
of a partial order scenario, which is referred to as the inherent causal
scenario. In addition, [21] proves that any race free partial order sce-
nario that simulates the behaviour of a partial order scenario must
also simulate the behaviour of its inherent causal scenario. So that the
inherent causal scenario is unique up to simulation equivalence.

In order to construct the inherent causal scenario, first a particular
partial order known as the inherent causal ordering is constructed. The
inherent causal order is generalised from the causal order of a scenario
as explained in the following definition.

DEFINITION 5.1. The inherent causal ordering <I of <C is defined
to be the transitive closure of the following binary relation <. For every
event x and message e define:

1. x < !e ⇐⇒ x <C !e

2. !e < ?e

The inherent causal scenario is the realisation of the inherent causal
order in the form of a partial order scenario. The inherent causal order
is race free in the sense of Definition 4.1. It is also the unique minimal
generalisation of <C that is race free.

Returning to the example in Figure 5, the inherent causal scenario
for this is given in Figure 1. Thus, Figure 1 represents the unique

prag_ASE.tex; 30/07/2007; 10:37; p.15



16 Bill Mitchell

minimal race free generalisation of Figure 5. Note race conditions have
been resolved by introducing additional concurrency into the original
scenario. Message flows have been split into concurrent threads within
a parallel construct to prevent them racing against each other. As men-
tioned in the introduction, we have used the lost and found construct
as a visual convenience to split mb into two parts.

The partial order given in Figure 3 is therefore the inherent causal
order of Figure 5, as well as being the causal order of Figure 1. Note,
although the inherent partial order scenario is unique, its graphical
representation is not. Thus, Figure 1 is only one way of graphically
depicting the behaviour of the inherent causal scenario as a UML
sequence diagram.

Finally in this section we quote the result from [21] that formally
describes how the inherent causal scenario gives a canonical race free
generalisation of a partial order scenario, up to simulation equivalence.

DEFINITION 5.2. The inherent process behaviour of a partial order
scenario Sc is defined to be

PI(Sc) = P (m(E,<I), <I)

Let = denote the standard simulation relation for process algebras.
That is P = Q iff

for every transition Q
a−→ Q′, there exists a transition P

a−→ P ′

where P ′ = Q′

PROPOSITION 5.3. [Theorem 7.2 [21]]

1. <I is race free.

2. (<I) ⊆ (<C), and PI(Sc) = Pc(Sc)

3. For any race free partial order < that preserves message ordering,
let P< = P (m(E,<), <). Then P< = P (Sc) iff (<) ⊆ (<I) ⊆
(<C) and P< = PI(Sc)

That is PI(Sc) is the canonical process that simulates Pc(Sc) and is
race free.

prag_ASE.tex; 30/07/2007; 10:37; p.16



Lazy buffer semantics 17

6. Lazy Buffer Realization of Scenarios

For this section the purpose of a scenario specification is to show
how processes must behave locally, rather than what global behaviour
must be enforced. Rather than assume a specification scenario contains
adequate coordination to ensure there are no race conditions, in this
section we assume that a receiving process must determine in what
order messages were actually sent, or at least in what order incoming
messages should be consumed. A simple mechanism to achieve this is
to provide each process with its own unbounded random access buffer,
where incoming messages are stored until they are needed.

In this section we describe a modified form of the structural seman-
tics given in [11] that defines our lazy buffer realization for a partial
order scenario. Our goal is to construct a model where we can for-
mally reason about how this buffer mechanism affects the observable
global system behaviour. Hence, our model must directly describe how
messages are delivered to a buffer and then consumed from the buffer.

Let Sc be a partial order scenario over processes P. For P ∈ P we
will define a process term Pr(P ), which together with a parallel com-
position operator ‖d, defines the lazy buffer realization for Sc (where
the subscript d denotes that ‖d is a distributed form of concurrent
composition).

As in [11], processes do not transmit messages directly to one an-
other. Instead, there is a special transmission channel process, T , where
all messages are sent. Unlike the transmission channel in [11] T will
now simply transfer messages in an arbitrary fashion to simulate asyn-
chronous message passing. It will be assumed that the messages are
always delivered to the correct process. For convenience we assume
messages have unique labels that identify which process they can be
delivered to.

A process term Pr(P ) is a triple Pr(In, S,<), where In is an input
buffer multi-set, S is a set of concurrent events that are eligible to
occur next in a trace for the process, and < is the partial order that
constrains what order events occur in for that process. The distributed
behaviour for a process P ∈ P is defined to be Pr(∅, m(E(P ), <P ), <P ).
Here the input buffer is initialised as empty, the initial set of events are
the minimal events in P with respect to the process order for P , and of
course the process order for P defines how trace events are constrained.
The buffer mechanism splits the act of receiving a message into message
delivery followed later by message consumption.

In order to have a simple notation to track which processes have
finished and which are still active we introduce a primitive term End(P )

prag_ASE.tex; 30/07/2007; 10:37; p.17



18 Bill Mitchell

Receive
φ = Pr(In, S,<P )

φ
?e−→ Pr(In ∪ {?e}, S,<P )

?e ∈ E(P )

Consume
φ = Pr(In ∪ {?e}, S ∪ {?e}, <P )
φ

τ−→ Pr(In, cns(?e, S,<P ), <P )

Send
φ = Pr(In, S ∪ {!e}, <P )

φ
!e−→ Pr(In, cns(!e, S,<P ), <P )

!e 6∈ S

Transmit
φ

!e−→ φ′

T (B) ‖d φ
!e−→ T (B ∪ {?e}) ‖d φ′

Deliver
φ

?e−→ φ′

T (B ∪ {?e}) ‖d φ
?e−→ T (B) ‖d φ′

Terminate Pr({ }, { }, <P ) = End(P )

Figure 6. Lazy Buffer Realization Semantics for Partial Order Scenario

for each P ∈ P. This term can not perform any action and represents
a parameterised version of the 0 process.

DEFINITION 6.1. Let τ denote the silent action. Define the dis-
tributed composition operator ‖d to have the operational semantics
given in Figure 6. Further, ‖d is defined to be associative and commu-
tative. For each P ∈ P, define

Pr(P ) = Pr(∅, m(E(P ), <P ), <P )

Define the lazy buffer realization of Sc to be

Pd(Sc) = T (∅) ‖d Pr(P0) ‖d · · · ‖d Pr(Pn)

Notice that in Definition 6.1 we only define ‖d for composition be-
tween primitive process terms and traffic channel T . This is sufficient for
our purposes of discussing the behaviour of partial order scenarios. The
Receive, Consume and Send rules define how processes handle message
passing. The Transmit and Deliver rules define how the transmission
channel T takes messages from processes, places them in its buffer B
and at some arbitrary time later delivers them to the input buffer of
the appropriate process.

prag_ASE.tex; 30/07/2007; 10:37; p.18



Lazy buffer semantics 19

The Receive rule states that a process can accept any receive event
at any point during execution, as long as the event belongs to that
process. A process initially places any received event into its input
buffer. Suppose that the process term for P is Pr(In, S,<P ) at some
point during its execution. The set S defines concurrent events that are
eligible to occur next in the execution of P . The Send rule allows an
event !e to be sent by P whenever !e is one of the events in S irrespective
of what events are in buffer In.

The Consume rule states that an event ?e can be taken from the
input buffer In if and only if that is also an element of S. That is an
event can only be consumed from the input buffer when that event is
one of the concurrent events that is eligible to occur next according to
the process order for P . Since In is a multiset the order that events are
consumed from it are solely determined by S and <P . We have modelled
message consumption as an internal action by using τ to describe the
external action that will be observed when messages are consumed.
The Consume rule is the only rule that defines an interaction between
S and In. It is the Consume rule that defines how processes adopt a
lazy approach to internally consuming message events.

The Transmit rule states that whenever a send event !e is executed
by a process then T will store the corresponding receive event ?e in
the transmission buffer B. The Deliver rule states that T can remove
an event from its buffer and place it in the input buffer of a process
whenever that process is able to accept such an event. Since the Receive
rule allows a process to accept a receive event at any time this implies
T can deliver messages in an arbitrary manner.

Note that once an event a occurs (and is consumed in the case of
a receive event) then cns(a, S,<P ) defines the set of events that can
be consecutive to a in a trace of P . This is analogous to the causal
semantics given in Definition 3.2. Hence, the set S will always contain
concurrent events that are consistent with <C .

Each of the Pr(P ) processes locally realizes the causal order <C in
the sense that messages can only be consumed in the order given by
<P , as opposed to attempting to enforce the causal order <C . Also a
message !e is sent only when the correct stimuli have been consumed
in the correct order from the input buffer.

We claimed in the introduction that by realizing a specification with
lazy buffers we resolve race conditions. Race conditions are a problem
as they can result in deadlocks. For example, a process that receives
messages in the wrong order can deadlock because it is not able to
processes the current message until after it has consumed the following
message, but it is not able to consume the next message until it has
processed the current message. We prove in Proposition 6.3 that lazy

prag_ASE.tex; 30/07/2007; 10:37; p.19



20 Bill Mitchell

buffer realization can not deadlock. This demonstrates that our seman-
tics enables processes to continue to act and consume messages with
respect to the local process ordering even when events are not delivered
correctly at the global level.

DEFINITION 6.2. Let Sc be a partial order scenario over processes
Pi for 1 ≤ i ≤ n. Let Endi = End(Pi). Write Q0

α
−−−→? Qm, where α =

a1 · a2 · · · am, when there are processes Qi and transitions Qi
ai−→ Qi+1

for 0 ≤ i ≤ m − 1.
Define a sequence of events β = b1 · b2 · · · bk to be a deadlock trace

for Pd(Sc), if there exists a process Q 6= End0 ‖d · · · ‖d Endn where

Pc(Sc)
β

−−−→? T (B) ‖d Q, for some buffer B, and T (B) ‖d Q can not
perform any action according to the rules in Figure 6.

PROPOSITION 6.3. Let Sc be a partial order scenario over pro-
cesses Pi for 1 ≤ i ≤ n.

Pd(Sc) has no deadlock traces.

Proof

Suppose there is a partial trace β = b1 · · · bk of Pd(Sc). Then we
can suppose there are terms
φk

i = Pr(Ink
i , Sk

i , <Pi), and
ψk = T (Bk) ‖d φk

0 ‖d · · · ‖d φk
n where

Pd(Sc)
β

−−−→? ψk

That is each φk
i is the process that Pi has become once Pd(Sc) has

transformed into ψk. Bk contains the events that are still to be
delivered at the end of the trace. Let ER denote the set of receive
events in the set of all events E.

Although T (B) is constrained by the operational semantics of Def-
inition 6.1 it can always deliver any messages remaining in B. Also,
any process φk

i can send a message to T so long as there is some
send event in Sk

i . Thus a deadlock can occur if and only if Bk = ∅
and

∀ 0 ≤ i ≤ n. (Sk
i ⊆ ER) and (Sk

i ∩ Ink
i = ∅)

Let
?e ∈ m(

∪
0≤i≤n

Sk
i , <C)

prag_ASE.tex; 30/07/2007; 10:37; p.20



Lazy buffer semantics 21

and suppose that ?e ∈ Sk
i for some i, and that !e ∈ E(Pj) for some

j. If !e has not already occurred in β this can only be because
there is some x ∈ Sk

j where x <Pj !e. This contradicts that ?e is
minimal. Hence, !e = br for some 1 ≤ r ≤ k. Since Bk = ∅ this can
only be true if ?e ∈ Ink

i , which is a contradiction. This completes
the proof. 2

DEFINITION 6.4. For a set of events X, let !X be the set of all
send events contained in X, and let ?X be the set of all receive events
in X. Given a term P ′

d of the form

T (B′) ‖d Pr(P1)′ ‖d · · · ‖d Pr(Pn)′

where Pr(Pi)′ = Pr(In′
i, S

′
i, <Pi) for 1 ≤ i ≤ n, let

S(P ′
d) = B′ ∪

∪
1≤i≤n

!S′
i

This set will be used later in the proof of the main result of the paper
Proposition 6.5.

When P ′
d represents the system state at some point, then S(P ′

d) rep-
resents the set of send events in all the system processes and all the
receive events in the transmission buffer that are eligible to occur next.

We can now state and prove the main result of the paper. The
globally observable behaviour defined by the lazy buffer realization for
Sc is weak bisimulation equivalent to the global behaviour defined by
the inherent causal scenario for Sc.

PROPOSITION 6.5. Let Sc be a partial order scenario, and let '
denote weak bisimulation equivalence. Then

PI(Sc) ' Pd(Sc)

Recall that the process term PI(Sc) on the left is defined in terms
of the causal semantics of Definition 3.2. PI(Sc) = P (m(E,<I), <I),
which defines the globally observable behaviour of the inherent causal
scenario.

Proof

Let Sc be a partial order scenario over processes
P = {Pi | 1 ≤ i ≤ n}. So we may write

Pd(Sc) = T (∅) ‖d Pr(P1) ‖d · · · ‖d Pr(Pn)

prag_ASE.tex; 30/07/2007; 10:37; p.21



22 Bill Mitchell

Let Pd = Pd(Sc) and let

PI = P (m(E,<I), <I)

To prove weak bisimulation equivalence we prove the following
stronger result. Let α = a0 · · · ak be a sequence of events from E.
We will prove there exists

P ′
d = T (B′) ‖d Pr(P1)′ ‖d · · · ‖d Pr(Pn)′

where Pr(Pi)′ = Pr(In′
i, S

′
i, <Pi) for 1 ≤ i ≤ n and

Pd

α
−−−→? P ′

d

if and only if there exists some

P ′
I = P (S′, <I)

where S′ ⊆ E such that PI

α
−−−→? P ′

I and where

S(P ′
d) = S′

See Definition 6.4 for the definition of S(P ′
d). Once all the events

in α have occurred, the set S(P ′
d) represents all the send events

that are permitted to concurrently occur next in each process in Sc
and all the current receive events in the buffer for the transmission
channel. A corollary of the proof hypothesis is that Pd(Sc) and PI

can always perform the same traces, and at every point during
the execution of a trace they contain exactly the same events that
are eligible to concurrently occur next. We are not interested in
process receive events as they are consumed internally, only receive
events delivered from the transmission buffer will be externally
observable.

Induction statement
This stronger statement can be proved by induction on the length
of α. The base case where the length of α = 0 is trivial so we can
move on to the induction step.

For the induction step we can assume the above is true, and we
need to show that for any a, there is a transition P ′

d
a−→ P ′′

d if and
only if there is some transition P ′

I
a−→ P ′′

I where P ′′
d is related to

P ′′
I as above. From the definitions for the relavent process terms it

is straightforward to prove that P ′
d

a−→ P ′′
d if and only if there is

some transition P ′
I

a−→ P ′′
I . The difficulty lies in showing the rest

of the induction hypothesis holds. The proof now splits into two
cases depending on whether a is a send or receive event.

prag_ASE.tex; 30/07/2007; 10:37; p.22



Lazy buffer semantics 23

Case a =!e
Consider first where a =!e, and suppose P ′

d
!e−→ P ′′

d . Let

P ′′
I = P (S′′, <I)

where S′′ = cns(!e, S′, <I). To prove S′′ = S(P ′′
d ) we will show that

?S′′ =?S(P ′′
d ) and !S′′ =!S(P ′′

d ), which we will prove in that order.

By the induction hypothesis we may suppose that !e ∈ S′
r for some

r. Let S′
r = {!e} ∪ S′′

r . We can then write P ′
d in the form

P ′
d = T (B′) ‖d Pr(In′

r, {!e} ∪ S′′
r , <Pr) ‖d Q

where Q is just a place holder to collect together all the other
Pr(Pi)′ terms. Therefore there is a transition

P ′
d

!e−→
T (B′ ∪ {?e}) ‖d Pr(In′

r, cns(!e, S′
r, <Pr), <Pr) ‖d Q

Let B′′ = B′∪{?e}, and (<r) = (<Pr). From the definition for <I

it is immediate that ?e ∈ cns(!e, S′, <I), since all of the elements
in S′−{!e} are disjoint from !e with respect to <I . This means the
only new receive event in S′′ that was not already present in S′

is ?e. Hence, B′′ is the set of receive events for S′′, which implies
?S′′ =?S(P ′′

d ).

It remains to prove that !S′′ =!S(P ′′
d ). We first prove that !S′′ ⊆

!S(P ′′
d ). We need to consider what new send events are present in

S′′ that are not elements of S′. It will be enough to prove that for
any new send event !g ∈ S′′ then !g ∈ cns(!e, S′

r, <r). By inspection
any new send events in S′′ must come from the set n(!e,<I).

From the definition of the causal ordering <C it follows that

n(!e, <I) ⊆ {?e} ∪ {x ∈ E(Pr) |!e <C x}

Consider the case where ?g ∈ n(!e,<I). By definition that means
!e <I ?g, and there is no x such that !e <I x <I ?g. From the
definition of <I that can only hold if ?g =?e. If this were not the
case then the inequality could only hold if !e <I ?e <C !g <I ?g,
which contradicts that ?g ∈ n(!e,<I). Therefore, n(!e,<I) consists
of only one receive event ?e plus some number of send events. Since
?e ∈ cns(!e, S′, <I), we know cns(!e, S′, <I)−S′ consists of ?e plus
a number of send events.

Consider when !g ∈ n(!e,<I). Then ¬(?e <C !g), for otherwise
!g 6∈ n(!e, <I). Therefore, we have !e <r !g. Further there is no
event x ∈ E(Pr) such that !e <r x <r !g. Hence !g ∈ n(!e,<r).

prag_ASE.tex; 30/07/2007; 10:37; p.23



24 Bill Mitchell

That is any new send event in S′′ that is not already in S′ must
actually be an element of n(!e,<r).

A new send event !g in S′′ must also be an element of cns(!e, S′, <I).
Note, any such !g is also minimal in S′ − {!e} with respect to <I .
Let !g be a new send event in S′′, so that !g ∈ cns(!e, S′, <I) ⊆
n(!e,<I), and hence !g ∈ n(!e,<r). To complete the proof that
!S′′ ⊆ !S(P ′′

d ) we only need to prove that !g is also minimal in
S′ − {!e} with respect to <r, since that will complete the proof
that !g ∈ cns(!e, S′

r, <r).

For a contradiction, consider if there is some element y ∈ S′
r where

y <r !g, and y 6=!e. We know y is not a send event. If this were not
the case, then y ∈!S′

r ⊆ S′. That would imply !g 6∈ cns(!e, S′, <I),
which is a contradiction. Therefore, we may assume y =?f for some
f . Since ?f ∈ E(Pr) this event has not yet occurred. Therefore
there is some event z <C ?f , where

z ∈ B′ ∪
∪
j 6=r

S′
j

Hence, z <I !g, z ∈ S′ and z is distinct from !e. Therefore we have
a contradiction since this again implies !g 6∈ cns(!e, S′, <I). This
proves that !g ∈ cns(!e, S′

r, <r). Hence, in the case where a =!e we
have shown that

!S′′ ⊆ S(P ′′
d )

The proof that !S′′
r ⊆ S′′ is analogous so that we have proved

S′′ = S(P ′′
d ). This completes the proof of the induction step for

the case a =!e.

Case a =?e
Consider next the case where a =?e for some message e. We follow
the same pattern as for the previous case in that we prove the
receive events for S′′ and S(P ′′

d ) are the same, and then that their
send events are the same. We may write P ′′

d in the form

P ′′
d = T (B′′) ‖d Pr(P1)′′ ‖d · · · ‖d Pr(Pn)′′

where Pr(Pi)′′ = Pr(In′′
i , S

′′
i , <Pi).

From the definition for <I it follows that for x ∈ E, ?e <I x if and
only if one of the two conditions below hold

• There is some g ∈ E such that x =!g and ?e <C !g
• There is some g ∈ E such that x =!g and

?e <C !g <C ?g

prag_ASE.tex; 30/07/2007; 10:37; p.24



Lazy buffer semantics 25

Note the second item is true if and only if ?e <I !g <C ?g.
Whichever case applies, it follows that every element of n(?e,<I)
is a send event in E.

The induction hypothesis implies that ?e ∈ B′, and hence there
is a transition P ′

I
?e−→ P ′′

I . We can also assume without loss of
generality that ?e is consumed from the relevant input buffer at
this point, if that is permitted by the process order. Hence, we
have proved that the receive events in S′′ are exactly the events in
B′′ = B′ − {?e}, which implies that ?S′′ =?S(P ′′

d ).

What remains to be proved is that !S′′ =!S(P ′′
d ). To prove that it is

enough to prove the send events in S′′ are the union of all the !S′′
i .

First we prove that !S′′
j =!cns(?e, S′

j , <C) ⊆ cns(?e, S′, <I), where
?e ∈ E(Pj).

Let !g ∈ n(?e,<j), which implies ?e <j !g, and hence ?e <I !g.
Also notice that

∀x ∈ E(Pj). ¬(?e <j x <j !g)

Given that we know u <I v ⇒ u <C v we can prove

∀x ∈ E(Pj). ¬(?e <I x <I !g)

To prove this, assume for a contradiction that there is some x ∈
E − E(Pj) where

?e <I x <I !g

This implies ?e <C x <C !g since (<I) ⊆ (<C). However, it then
follows that there is some ?h ∈ E(Pj) such that x <C?h <j !g.
Therefore, ?e <C ?h <j !g, which implies ?e <j ?h <j !g and we
have a contradiction as required.

Thus, we have proved !g ∈ n(?e,<I). A similar argument also
shows that

!g ∈ cns(?e, S′, <I)

Hence,
!cns(?e, S′

j , <C) ⊆ cns(?e, S′, <I)

and so we have proved that !S′′
j ⊆ S′′. Since none of the other

processes have changed during this transition it is still true that
for i 6= j, !S′

i ⊆ S′′. The converse, that !S′′ is contained in the
union of all the !S′′

i for 1 ≤ i ≤ n, is analogous and so we omit
the details. This completes the proof that !S′′ =!S(P ′′

d ), and so we
have proved S′′ = S(P ′′

d ).

That completes the induction step and so completes the proof of
the bisimulation equivalence.

prag_ASE.tex; 30/07/2007; 10:37; p.25



26 Bill Mitchell

2

As an illustration of Proposition 6.5, we can return to Figures 5
and 1. If the scenario in Figure 5 is realized according to the lazy
buffer semantics of Definition 6.1, then the behaviour that would be
externally observable is that shown in Figure 1. Process D, for example,
is specified in Figure 5 to realize a total order on its events. However,
this behaviour can not be realized within a distributed asynchronous
environment. The actual behaviour that would be observed is given by
the process partial order for D in Figure 2. As we can see from Figure 2,
in a distributed environment this linear specification would be locally
realized as three independent receive events followed by a final send
event.

7. Conclusion

Practitioners use scenario specification languages like UML or MSC to
rapidly develop requirements specifications. Frequently they use these
languages in a semi-formal manner. Scenarios sometimes tend towards
specific examples that contain domain specific assumptions instead of
defining exemplary generalisations. This can lead to specifications that
are semantically inconsistent at the global level of process coordination.
Such discrepancies can result in race conditions.

The inherent causal scenario and lazy buffer realization defined in
the paper represent two orthogonal views of how race conditions may be
resolved. The inherent causal scenario generalises a specification by just
enough to remove race conditions. Thus, the inherent causal scenario
generalises a specification to ensure that the actual observed global
behaviour will match the specified behaviour. However, the inherent
causal ordering is difficult to relate to standard software engineering
constructs, which can make it difficult for practitioners to accept.

The lazy buffer realization avoids race conditions by giving each
process enough autonomy to locally behave correctly with respect to
the specification, even though that may result in global behaviour that
does not match the specification. The reason for this is that although
the lazy buffer realization ensures processes do correctly store and
consume messages as specified, this is not observable externally. Mes-
sage consumption is an internal activity. From an external perspective,
the observable behaviour of a process is determined solely by when a
message is delivered to the process. Hence, with respect to externally
observable behaviour, the lazy buffer realization appears to allow pro-
cesses to ignore the specified order messages are meant to arrive in
when necessary. The lazy buffer realization is appealing since it uses

prag_ASE.tex; 30/07/2007; 10:37; p.26



Lazy buffer semantics 27

a straightforward communication semantics and it is intuitively clear
why it correctly resolves race conditions. From anecdotal evidence, this
seems to be a commonly used realization of a sequence diagram.

The paper has proved these two apparently different approaches
are, at the globally observable level, the same. Hence, realizing a sce-
nario with lazy buffers defines the unique minimal generalisation of
the scenario to remove all race conditions. Since the inherent causal
scenario is itself a partial order scenario, we have also proved that the
lazy buffer realization is equivalent to a partial order scenario. This
demonstrates that the lazy buffer realization does represent a coherent
semantic solution to race avoidance. Therefore, in this particular sense,
the lazy buffer pragmatic approach is the theoretically best possible
solution to resolving race conditions. The proof is an equivalence and
so we have also proved that the inherent causal scenario is a genuine
‘real-world’ software engineering solution to resolving race conditions.

References

1. Alur, R. and Yannakakis, M. 1999, Model checking of message sequence
charts, Proceedings of the Tenth International Conference on Concurrency
Theory, LNCS 1661, Springer, pp 114–129.

2. Alur, R. and Etessami, K. and Yannakakis, M. 2000, Inference of Message
Sequence Charts, Proceedings 22nd International Conference on Software
Engineering, pp 304-313.

3. Alur, R. and Etessami, K. and Yannakakis, M.2001, Realizability and
verification of MSC graphs, Proceedings of the 28th International Colloquium
on Automata, Languages, and Programming, Springer, New York, pp
797-808.

4. Ben-Abdhallah, H. and Leue, S. 1997, Syntactic detection of process
divergence and non-local choice in message sequence charts, Proceedings of
the 3rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, Springer, pp 259-274.

5. Baker, P. and Bristow, P. and Jervis, C. and King, D. and Mitchell, B. 2002,
Automatic Generation of Conformance Tests From Message Sequence Charts,
Proceedings of 3rd SAM Workshop, Telecommunications and Beyond: The
Broader Applicability of MSC and SDL, LNCS 2599, Springer, pp 170-198.

6. Beyer, M. and Dulz, W. and Zhen, F. 2003, Automated TTCN-3 Test Case
Generation by Means of UML Sequence Diagrams and Markov Chains,
Proceedings of 12th Asian Test Symposium (ATS’03), IEEE, pp 102–106.

7. Bontemps, Y. and Schobbens, P. 2003, Synthesis of Open Reactive Systems
from Scenario-Based Specifications, Third International Conference on
Application of Concurrency to System Design (ACSD’03), IEEE, pp 41-50.

8. Bontemps, Y. and Heymens, P. 2002, Turning high-level live sequence charts
into automata, Proc of Scenarios and State Machines: Models Algorithms and
tools, 24th International Conf. on Software Engineering, ACM.

prag_ASE.tex; 30/07/2007; 10:37; p.27



28 Bill Mitchell

9. Chung, S. and Kim, H. S. and Seop Bae, H. and Kwon, Y. R. and Lee, B. S.
1999, Proceedings International Symposium on Software Engineering for
Parallel and Distributed Systems, pp 72 – 82.

10. Clarke, E. and Andwing, J. 1996, Formal methods: State of the art and
future directions. ACM Computing Surv., 4(28), pp 626–643.

11. Gehrke, T. and Hilhn, M. and Wehrkeim, H. 1998, An Algebraic Semantics
for Message Sequence Chart Documents, in Proceedings of the FIP TC6
WG6.1 Joint International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols (FORTE XI) and
Protocol Specification, Testing and Verification (PSTV XVIII), pp 3–18.

12. Gunter, E. and Muscholl, A. and Peled, D. 2003, Compositional Message
Sequence Charts, International Journal on Software Tools for Technology
Transfer (STTT), Springer, 5(1), pp 78–89.

13. Holzmann, G. J. and Peled, D. A. Message Sequence Chart Analyzer, United
States Patent, 5,812,145.

14. Holzmann, G. J. and Peled, D. A. and Redberg, M. H. 1996, An Analyzer for
Message Sequence Charts, Software Concepts and Tools, 17(2), pp 70–77.

15. Harel, D. and Damm W. 2001, LSCs: Breathing Life into Message Sequence
Charts, Formal Methods in System Design, 19, pp 45–80.

16. Harel, D. and Kugler, H. 2002, Synthesizing state-based object systems from
LSC specifications, International Journal of Foundations of Computer
Science, 13(1), pp 5–51.

17. Leue, S. and Mehrmann, L. and Rezai, M. 1998, Synthesizing Software
Architecture Descriptions from Message Sequence Chart Specifications,
Proceedings 13th IEEE International Conference on Automated Software
Engineering, IEEE, pp 192–195.

18. Lohrey, M. 2002, Safe Realizability of High-level Message Charts. In
Proceedings of the 13th International Conference on Concurrency Theory
(CONCUR).

19. Mauw, S. and Reniers, M. A. 1995, An Algebraic Semantics of Basic Message
Sequence Charts, The Computer Journal, 7(5), pp 473–509.

20. Mauw, S. and Reniers, M. A. 1999, Operational Semantics for MSC’96
Computer Networks, 31(17), 1785–1799.

21. Mitchell, B. 2005, Resolving Race Conditions in Asynchronous Partial Order
Scenarios, IEEE Transactions on Software Engineering, 31(9), pp 767- 784,
preliminary version also appeared as [22].

22. Mitchell, B. 2004, Inherent Causal Orderings of Partial Order Scenarios,
International Colloquium on Theoretical Aspects of Computing, Guiyang
China, LNCS 3407, Springer, pp 114–129.

23. Mitchell, B. and Thomson, R. and Jervis, C. 2003, Phase Automaton for
Requirements Scenarios, Proceedings of Feature Interactions in
Telecommunications and Software Systems VII, IOS Press, pp 77-84.

24. Object Management Group. Unified Modelling Language Specification,
Version 2.0 Specification, OMG, 2004. http://cgi.omg.org/.

25. Peled D. 2002, Specification and Verification using Message Sequence Charts.
Electronic Notes in Theoretical Computer Science, 65(7).

26. Rudolph, E. and Schieferdecker, I. and Grabowski J. 2000, Development of a
MSC/UML Test Format, Formale Beschreibungstechniken fur verteilte
Systeme, Verlag Shaker, pp 153-164.

27. Sun, J. and Song Dong, J. 2005, Synthesis of Distributed Processes from
Scenario-Based Specifications, proceedings of FM 2005: Formal Methods,

prag_ASE.tex; 30/07/2007; 10:37; p.28



Lazy buffer semantics 29

International Symposium of Formal Methods Europe, LNCS 3582, Springer,
pp 415-431.

28. Schumann, J. and Whittle, J. 2000, Generating Statechart Designs From
Scenarios, Proceedings of the 22nd international conference on Software
engineering, pp 314–323.

29. Wang, H. H. and Qin, S. and Sun, J. and Song Dong, J. 2007, Realizing Live
Sequence Charts in SystemVerilog, Proceedings of First Joint IEEE/IFIP
Symposium on Theoretical Aspects of Software Engineering, TASE, IEEE, pp
379-388.

30. Whittle, J. and Saboo, J. and Kwan, R. 2005, From Scenarios to Code: an
Air Traffic Control Case Study, Journal of Software and Systems Modeling,
Springer, 4(1), pp 71–93.

31. Tsiolakis, A. 2001, Integrating Model Information in UML Sequence
Diagrams, Electronic Notes in Theoretical Computer Science, 50(3), pp
266–274.

32. Uchitel, S. and Kramer, J. and Magee, J. 2004, Incremental Elaboration of
Scenario-based Specifications and Behaviour Models using Implied Scenarios,
ACM Transactions on Software Engineering and Methodology (TOSEM),
13(1), pp 37—85.

33. Z.120 (11/99)ITU-T Recommendation - Message Sequence Chart (MSC)

prag_ASE.tex; 30/07/2007; 10:37; p.29



prag_ASE.tex; 30/07/2007; 10:37; p.30


