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Abstract

Scenario based requirements specifications are the industry norm for defining communication pro-

tocols. However, such scenarios often contain race conditions. A race condition occurs when events

are specified to occur in a particular order, but in practice, this order cannot be guaranteed. The paper

considers UML/MSC scenarios that can be described with standard partial order theoretic asynchronous

behavioural semantics. We define these to be partial order scenarios. The paper proves there is a unique

minimal generalization of a partial order scenario that is race free. The paper also proves there is a

unique minimal race free refinement of the behavioural semantics of a partial order scenario. Unlike

the generalization, the refinement cannot be realized in the form of a partial order scenario, although it

can always be embedded in one. The paper also proves the results can be generalised to a sub-class of

iterative scenarios.

I. INTRODUCTION

Practitioners commonly specify asynchronous communication protocols for distributed systems

as a collection of scenarios. UML sequence diagrams [32], Message Sequence Charts (MSCs)

[31], and Live Sequence Charts (LSCs) [15] are popular for defining such scenarios. Such

languages are intuitive and simple to use. Unfortunately, such languages can also beguile the

overworked practitioner struggling with product deadlines.

In general, requirements specifications have been shown to be a significant source of defects.

Published case studies, [11], [19], [20], [24], [33], have shown that about a third of significant

behavioural defects can be traced to requirements specifications. This situation is no different

for distributed communication systems that use sequence diagrams to define behavioural aspects

of the system.

Scenario specification languages have become quite sophisticated and expressive. Despite

this sophistication, basic scenarios are still the mainstay of industrial specifications. A basic

scenario diagram is one whose behavioural semantics can be defined in terms of a partial order

(Definition 2.1) on the events in the scenario. This is the semantics defined in the MSC standard

[31] and now adopted as the core semantics for UML sequence diagrams [32]. The partial order

restricts the order in which events can occur in any system trace. This partial order is called the

causal ordering, (Definition 2.4). The intuition is that the partial order is specifying the causality

between events in a scenario. We refer to basic scenario diagrams as partial order scenarios to
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emphasise this point, (Definition 2.3). It is possible to define other behavioural semantics for

sequence diagrams, for example by constraining behaviour with UML architecture diagrams.

This is beyond the scope of this paper and we only consider partial order scenarios.

A causal order not only specifies that certain events must be ordered in a particular way, but

also that certain events are independent of one another. This can be the case even for events

within the same process. Therefore, a partial order scenario specifies separate concurrent threads

of activity and at what points these threads must be synchronized.

Causal orders can specify an almost arbitrary partial ordering on events within a process.

However, they may only order events from different processes as a result of message passing

between those processes. Hence, an arbitrary partial order over the set of events in a scenario

does not necessarily itself correspond to a partial order scenario.

There are varieties of errors that can creep into scenario based specifications. The purpose of a

protocol scenario is to define message exchanges between processes in order for them to achieve

some common goal. Messages can easily be added between the wrong processes, accidentally

added in the wrong direction, or just missed altogether. This type of static error is generally

picked up by routine document inspections or through automated checks by software tools, such

as with Telelogic’s TAU G2 tool [27], and as such do not require significant effort to resolve.

However, behavioural inconsistencies are more difficult to detect and resolve. In this paper we

focus on one common behavioural inconsistency known as a race condition. Essentially a race

condition asserts a particular order of events will occur because of the causal ordering, when in

practice this order cannot be guaranteed to occur. Because the standard partial order semantics

places almost no constraint on how the causal order is constructed, it is very easy to inadvertently

introduce race conditions into a scenario. [12], [13] give the original formal description of race

conditions within the MSC context.

Scenarios are really best suited for describing exemplary behaviour rather than specifying all

possible concurrent behaviour in a distributed system. However, practitioners find them more

intuitive and ‘easier’ to understand than say state machines, [29]. The standard partial order

semantics does not attempt to distinguish between exemplary and mandatory behaviour, or what

can be implemented in practice. LSCs were introduced in an attempt to address these issues, and

UML 2.0 now includes many constructs that permit greater expressivity in relation to message

flows. Despite these additional constructs the fundamental issue still remains: what consistent
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asynchronous behaviour can be extrapolated from a set of scenarios. Many protocols start life

as partial order scenarios. It is therefore useful to address the issue at this level. Consistent

scenarios that are subsequently constructed can then be enhanced with appropriate constructs to

describe how they should be used in the specification as a whole.

It is possible to directly analyse the causal ordering to automatically detect race conditions

[13]. It is also possible to automatically construct a system trace that describes how a race occurs.

This still leaves the onerous task of deciding what behaviour is possible in practice and actually

correcting the specifications. Complications arise when a scenario contains multiple interrelated

races. Attempting to fix races piecemeal by examining individual error traces can be frustrating

when the races have a common cause that should be resolved directly. Section X describes two

such examples from a proprietary industrial case study.

Main Results of the Paper

In the paper, we prove there is a unique minimal generalization of a partial order scenario

that is race free up to simulation equivalence (Theorem 6.2). We refer to this scenario as the

inherent causal scenario. Note that although the inherent causal scenario is unique, its graphical

depiction is not. Within UML and MSC, it is possible to depict the same behaviour in several

ways due to the many constructs that now exist in these languages. We also prove there is a

unique minimal race free refinement of the behavioural semantics for a partial order scenario

(Theorem 8.6). We refer to this as the inherent refinement ordering. This refinement cannot be

directly realized as a partial order scenario. However, messages can be added to the original

scenario to realize the behavioural refinement as a partial order scenario (Lemma 8.3), whereas

the generalization can be achieved by introducing greater concurrency, which does not require

any additional messages. Race conditions are studied within a partial order theoretic framework.

Uniqueness results are first derived purely in terms of partial orders. We then construct a partial

order scenario realisation of each partial order that characterises a uniqueness result. This is

necessary since an event partial order alone does not necessarily correspond to a partial order

scenario.

The paper also considers how race conditions can occur in iterative scenarios. These extend

partial order scenarios by adding a loop construct. Loops can be nested, and we allow iterative

scenarios to be weakly composed. Race conditions can still occur within a partial order scenario
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as before (which may or may not be part of an iterative scenario). However, they can also occur

because of loop constructs, which only become evident when the loops are unwound. We will

refer to the later type of race as an iterative race.

The paper defines a particular property of partial order scenarios that we refer to as the

convergence property (Definition 9.8). The paper proves that as long as an iterative scenario

is constructed from race free partial order scenarios by means of the loop construct, then it is

free of iterative races if and only if each of its composite partial order scenarios satisfies the

convergence property (Theorem 9.14). From this it is possible to give a constructive algorithm

for adding finitely many messages to an iterative scenario to remove all iterative races and in

such a way that the message flows within loops are not significantly changed. Hence, the problem

of resolving races in iterative scenarios can be reduced to that of resolving them in partial order

scenarios.

Related Work

The study of partial order scenarios has been an active topic of research for many years. [28]

contains an excellent survey of related work in this area, which we strongly recommend to the

reader. [25] is another excellent survey covering verification of protocols specified with MSC

scenarios. In light of these, we will not attempt to give a complete list of all related work here.

The problem addressed in this paper is focused on one particular aspect of message flows

within a sequence diagram. There is of course a wide variety of verification issues connected

with protocol design. Verification of logical properties from MSCs and MSC-Graphs has been

considered by [1], [14], [30], amongst others. This work addresses issues such as deadlock,

livelock and ensuring correct responses to requests. Much of this work has been based on

synthesising finite state automata for the purposes of model checking. [7], [8], [18], [23], [30]

consider how to construct state machines directly from a collection of message sequence charts

via different kinds of compositional semantics. Other work has considered how to interpolate

missing requirements from scenario based specifications [2], [3], [4], [21], [28]. This work is

useful both in verifying a system and in synthesising a more complete specification. [3] is the

seminal work that first considered the realizability of collections of MSCs. In their work, they

consider when MSCs composed via an MSC-Graph can collectively be implemented. The issue

they address is orthogonal to that considered here, as they implicitly regard race conditions as
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benign in their examples. Research into automatic test generation from partial order scenarios

is another active research area [5], [6], [9], [26].

An interesting variation on mainstream MSC/UML scenarios is given by live sequence charts

(LSCs) [15]. As mentioned in the introduction, these permit more expressitivity by permitting

exemplary and mandatory behaviour to be annotated directly within a scenario. It is also possible

to synthesise state machines from LSCs [16]. Although both UML and MSC scenarios are

widespread in industry, LSCs have not yet achieved a large following outside of the academic

community.

From our search of the literature it appears that our paper is novel in that it proves there exists

a unique optimal solution to a specific class of semantic inconsistencies for sequence diagrams,

namely race conditions. It also appears to be novel in characterising the solution purely in partial

order theoretic terms.

Graphical Notation

Although our results apply to any partial order scenarios, we will use MSC as the graphical

language for the paper. The MSC standard [31] is stable and MSCs are common in industry, also

their semantics are targeted at asynchronous protocols. For the type of elementary scenario we

describe here, the notation is almost identical for UML sequence diagrams, LSCs and MSCs. In

this section, we give a terse and intuitive explanation of the constructs we will use. For formal

details the interested reader is referred to the standards [31] and [32].

Consider the MSC depicted graphically in Figure 2. Each vertical line describes the time-line

for a process, where time increases down the page. Messages are depicted by arrows. Each

message m defines a pair of events (!m, ?m), where !m is the send event for m, and ?m is the

receive event for m. Messages in MSCs are always asynchronous since we are dealing only with

asynchronous protocols.

The distance between two events on a time-line does not represent any literal measurement

of time; only that non-zero time has passed. Events on the same time-line are ordered linearly

down the page, except where they occur within a coregion. Within a coregion, events are not

locally ordered unless that is directly imposed by a general order construct (described below).

Coregions are depicted with a dashed line. For process B in Figure 2 events ?c and ?d are

unordered as they occur within a coregion.
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Fig. 1. Message Overtaking
A B

a
b

It is possible with MSC and UML notation to describe message overtaking, as shown in Figure

1. As is the norm, we rule out message overtaking in specifications. That does not mean we

attempt to forbid message overtaking in practice, only that it may not be specified as having to

occur as part of the protocol definition.

The MSC and UML standards include a general ordering construct, which is a simple graphical

notation that explicitly forces one event to occur before another event. A general order construct

is depicted as a dashed arrow between the events to be ordered, with arrowhead placed in the

middle of the arrow. For example, the MSC in Figure 12 contains a general ordering construct

between the ?b and !c events. Where general ordering constructs span processes in an MSC,

as in Figure 12, the MSC is not strictly a partial order scenario. Events in different processes

may only be ordered by virtue of inter-process communication, as explained in definition 2.4.

We will use the general order construct in simple MSCs to illustrate scenarios, but we point out

when the MSC is not a partial order scenario.

A parallel construct in a MSC/UML sequence diagram, denoted by keyword PAR, describes a

set of concurrent threads that occur in the diagram. Dotted lines delineate the different threads.

Hence, events from one thread are not causally ordered with respect to events from any other

thread. Figure 20 contains two parallel constructs. The first parallel construct contains messages

a, b and c in separate threads, which can therefore occur in any order. The bounding box of

a parallel construct has no effect on the ordering of events, it solely delineates the scope of

the concurrent threads. For example, receive event ?a0 is ordered before each of ?a, ?b and ?c,

even though these events are not ordered with respect of one another since they are in separate

threads. Events within a particular thread are ordered in the usual way, so for example, !c1 must

be before !c2 in the second parallel construct.

An inline reference, denoted by keyword REF, is a placeholder for another sequence diagram.

The reference can be replaced by the contents of the other sequence diagram if desired. The
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reference is weakly composed with the referring diagram when inlined. Figure 20 contains an

inline reference spanning processes A through D.

MSC and UML notations allow a message to be split into lost and found events. This allows

a message to be sent in one scenario and received in another. The send part of the message is

represented by a lost event, and the receive part by a found event. In this paper, we will only use

this construct to simplify the visual layout of scenarios. Hence, the found event corresponding

to a lost event always occurs in the same scenario. Figure 11 gives an example where messages

a and c have been split into lost and found events. The lost event for !a is depicted by the solid

circle terminating the arrow mid-process. The found event for ?a is depicted by the empty circle

that initiates an arrow into process B. In this paper, we follow the convention that the found

event given by a message must always occur after the lost event for the message. The MSC and

UML standards do not make any formal link between a lost event and a found event; that is

they do not identify them as component parts of a single message. However, our convention is

only used in simplifying the visual layout of our examples and does not affect the theoretical

results in any way.

II. BASIC PARTIAL ORDER SPECIFICATIONS

In this section, we define the causal ordering semantics for partial order scenarios. We use the

same message semantics as the MSC 2000 standard [31]. Hence, a partial order scenario defines

a set of message exchanges between processes with asynchronous communication channels.

Definition 2.1:

• A partial order over a set E is a binary relation < such that

< is irreflexive, ¬(x < x) for any x ∈ E

< is transitive, x < y and y < z implies x < z

< is asymmetric, there are no elements x, y ∈ E such that x < y and y < x

• We write ¬(x < y) to denote that it is not the case that x < y.

• Two elements x and y of E are unordered if ¬(x < y) and ¬(y < x).

When this is the case we write x [<]Un y. We define a set to be unordered if every pair of

distinct elements from that set are unordered.

Often in the literature, this type of partial order is referred to as a strict partial order. Virtually

all the partial orders considered in this paper are strict so we adopt the convention of taking
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partial orders as strict unless otherwise stated. A non-strict partial order in the usual sense is

antisymmetric rather than asymmetric. The antisymmetric condition states that if x < y and

y < x then x = y.

Definition 2.2:

• A total order over the set E is a partial order on E where for any two distinct elements a

and b, either a < b or b < a.

• A total extension of a partial order < is any total order <1 such that x < y implies x <1 y.

• The trace of a total order <1 on the set E is the unique sequence of the form

e0 · e1 · · · · en

where E = {ei | 1 ≤ i ≤ n}, and ei <1 ei+1 for each i.

• A trace of the partial order < is the trace of any total extension of <.

Fig. 2. Race Hidden by Coregion
A B C

a
b

c
d

Let P be a set of processes. A message m between processes is a pair (!m, ?m) where !m

is the send event for m, and ?m is the receive event for m. We regard !m as belonging to the

sending process, and ?m as belonging to the receiving process. Let E be the set of all send and

receive events between all processes. Each event has a label, let l : E −→ L be the labelling

function. For a message m, l(!m) = l(?m). Within the MSC standard, there are many other

kinds of events such as action boxes and condition symbols, but here we only consider message

events to simplify proofs as much as possible. It is possible to generalize the results to include

these other events.

Definition 2.3: A partial order scenario M on processes P is

• a collection of disjoint sets E(P ) ⊆ E, for each P ∈ P that defines the message events

belonging to P ,
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• and a set of partial orders <P , where <P is a partial order on E(P ) that defines the local

ordering of events for process P .

These local partial orders must be subject to the constraint that for each send event !m in a set

E(P ) the corresponding receive event ?m occurs in some set E(Q). Note messages are allowed

to be sent from a process to itself, so we allow P = Q. We treat a partial order as a binary

relation that can be represented as the set of pairs that are ordered by the relation. Hence, we

can take the union of partial orders, which is just the set theoretic union of the sets that represent

the relevant order relations. It is important to note the local orders are not necessarily total, but

can be any partial order. In the literature, it is sometimes assumed basic scenario diagrams have

total local orderings, so it is worth emphasizing this does not have to be the case.

Let Msg be the set of messages defined as the set of send and receive event pairs:

{(!e, ?e) | !e ∈ E(P ) and

?e ∈ E(Q) for some P, Q ∈ P}

Definition 2.4: The causal ordering <C on a partial order scenario is the transitive closure

of the relation given by ( ∪
P∈P

(<P )
)
∪ Msg

Note all causal orderings are irreflexive, so that messages must be received after they are sent.

The causal ordering defines the set of all possible system traces that are given by the partial

order scenario. A system trace is any total order extension of <C . Recall a total order on a set

S is a partial order < on S where for any distinct elements x, y ∈ S, either x < y or y < x.

Definition 2.5: The set of system traces defined by a causal ordering <C is the set of traces

for the causal order <C .

Definition 2.6: Let M be a partial order on events EM , processes PM and process orders

{<M
P | P ∈ PM}. Let N be a partial order on events EN , processes PN and process orders

{<N
P | P ∈ PN}. Scenario M is embedded in N if

• PM ⊆ PN

• EM ⊆ EN

• for all x, y ∈ EM and processes P ∈ PM

x <M
P y ⇔ x <N

P y
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Consider the MSC depicted graphically in Figure 2. The local partial orders defined by this

MSC are given in Figure 3 where we draw the ordering downwards, so that !a <B!b for example.

In this case the causal ordering <C is given in Figure 4.

Fig. 3. Process Partial Orders

?b 

!d

!a

!b 

?d ?c 

?a 

!c

A< B< C<

III. RACE CONDITIONS

Figure 2 illustrates a race condition. The causal ordering asserts that !b <C?c. If this MSC is

taken as a specification it asserts that after C receives a it must send c so that it arrives after

b is sent. It is not possible for C to know for sure when !b occurs without querying B. Hence

it is quite possible if this scenario is implemented naively that c will arrive before b is sent,

contradicting the specification. This error can occur even though each of the processes locally

implements the specification correctly.

Fig. 4. Causal Ordering

?b

!d

!a

!b

?d ?c 

?a 

!c

Definition 3.1: A partial order < on E is defined to be race free when for every event x and

message e:

x <?e ⇒ (x <!e or x =!e)

An MSC is defined to be race free when its causal ordering is race free.
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That is < is race free if the following holds. When < orders an event x before the receive

event of some message e, then it also orders x to be before the send event of e. Note that Figure

2 is not race free since !b <C?c, but !b 6<C!c.

Figure 5 shows another typical kind of race condition. This is a greatly simplified version of

a scenario from a Motorola case study. Two other examples from this case study are considered

in detail in Section X. In this scenario A is transmitting messages to C via process B. The only

function for B is to forward the messages. A race condition occurs here between !b and ?c. The

race occurs since !b <C?c, but !b 6<C!c.

In practice it may be that the latency of messages from A to B is large so that B has plenty of

time to forward a before c is received. However, the semantics do not reflect this. As specified

there is no mechanism for B to guarantee that b can be sent before c is received. Such implicit

assumptions based on an existing system can cause problems later when networks are upgraded

and the assumptions are no longer valid. Scenario based specifications are intended for protocol

designs that are independent of low-level properties of the underlying network. One of the useful

side effects of correcting race conditions is that it tends to focus the design at a higher level of

abstraction.

Fig. 5. Message Forwarding Race Condition
A B C

a
b

c
d

IV. PARTIAL ORDER PROCESSES

In this section, we define a process algebra semantics of system traces. This is a standard result

for partial orders, but we present it in a slightly non-standard format for ease of use later in the

paper. The process algebra term characterizes the system behaviour up to simulation equivalence

(this follows from Lemma 7.3). In Section V we describe the system behaviour as a finite state

automaton whose states are the unordered subsets of E. This allows us to link the behavioural

description here with earlier work of [1].
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First we set up some notation for defining sets of events that are important in generating

system and process traces.

Definition 4.1: Let < be a partial order on a set of events E. For a set S ⊆ E define

n(S,<) = {x ∈ E | ∃ y ∈ S : y < x,

and ¬∃ z ∈ E : y < z < x}

min(S,<) = {x ∈ S | ¬∃ y ∈ S : y < x}

max(S,<) = {x ∈ S | ¬∃ y ∈ S : x < y}

cns(a, S,<) = min((S − {a}) ∪ n({a}, <), <)

The set n(S,<) are those events that are a least upper bound for some element in S. The set

min(S,<) is just the set of minimal elements of S.

Note that cns(a, S,<) is always an unordered set since the minimal elements of a set are

themselves always unordered. The set cns(a, S,<) defines what events may be consecutive to a

in a system trace, when S describes a set of events that are eligible to occur concurrently with

a at a given point of the system execution. Suppose we have a system trace t that is a total

extension of <. Let a be some event in t, so that t is of the form t0 · a · t1 (where · denotes

concatenation). Let S be the set of minimal events from the set of all events not in t0 · a. Then

t1 must be of the form b · t2 where b ∈ cns(a, S,<). We can formally prove this result in the

following proposition.

Lemma 4.2: Let < be a partial order on E, a ∈ E and S = {x | x [<]Un a}.

a) If there is a trace for < of the form t0 · a · b · t1 then b is an element of cns(a, S −Ba, <),

where Ba is the set of events in t0.

b) For any b ∈ S there is some trace of the form t0 · a · b · t1.

Proof

Proof of a)

Let t be a trace of the form t0 · a · b · t1. We need to prove that b ∈ cns(a, S − Ba, <).

Since a occurs before b in a trace of < it follows that ¬(b < a). Therefore either a < b or

a [<]Un b.

i) Consider the case where a < b.

Since there is a trace where b is consecutive to a there can be no event c where

a < c < b.
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Hence

b ∈ n({a}, <)

If it is not the case that

b ∈ cns(a, S − Ba, <)

then there must be some e where e < b and e [<]Un a. However, if e < b then e must

have occurred at some point in t0 and hence e ∈ Ba. This leads to a contradiction, so

we must have that b ∈ cns(a, S − Ba, <).

ii) Consider the case where a [<]Un b.

Just as in the previous case if there is any e ∈ E where e < b and e [<]Un a, then

e must occur in t0. Hence b must be an element of min(S − Ba, <). So by definition

b ∈ cns(a, S − Ba, <). This completes the proof of a).

Proof of b)

This case is very straightforward and is included for completeness. Choose any b ∈ S. Let

X = {x ∈ E | x < a or x < b}

Let

Y = E − {a, b} − X

Let t0 be any trace of < restricted to X . Let t1 be any trace of < restricted to Y . Clearly

t0 · a · b · t1 is a trace of <.

That completes the proof of the Lemma. 2

The first element in a trace of < has to come from min(E,<). Hence we can define the system

behaviour for a causal ordering as follows.

Definition 4.3: For a set S ⊆ E define a recursive process algebra term by

P (S,<) =
∑
{a∈S}

a · P (cns(a, S,<), <)

and P (∅, <) = 0.

Where a·P denotes the usual sequential composition of action and process, and the summation

is nondeterministic choice (as standard in both CCS and CSP [22], [17]).
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Definition 4.4: For a partial order < on events E define the observable behaviour of < to

be the process:

P< = P (min(E,<), <)

Define the observable behaviour for partial order scenario M with causal ordering <C to be

the process:

P (M) = P<C

Lemma 4.5: Let < be a partial order on events E. The traces of process P< are exactly the

traces of <.

Proof

The proof of Lemma 4.5 is immediate from Lemma 4.2. For processes P and Q we use

the notation P
a−→ Q to denote P is strong bisimulation equivalent to a ·Q + P ′ for some

process P ′. Let

a0 · a1 · · · an

be a trace for the partial order <.

To prove the Lemma it is enough to prove that there are processes Pi where Pi
ai−→ Pi+1,

P (M) = P0 and Pn+1 = 0, where 0 is the empty process. Define

U(ai) = {e ∈ E | e [<]Un ai}

Aj = {ai | 0 ≤ i ≤ j}

Si+1 = cns(ai, U(ai) − Aj, <)

It follows from Lemma 4.5 that we may define Pi+1 = P (Si+1, <). Note Sn+1 = ∅ so that

Pn+1 = 0. This completes the proof.

2

In [10], a process algebra semantics is defined for basic MSCs (which we refer to as partial

order scenarios) that characterises system traces. In that work, they provide an algebraic semantics

for each of the various constructs for basic MSCs. They also define a particular form of concurrent

composition that reflects the asynchronous communication between processes defined by the

MSC standard [31]. This is unnecessary for our purposes. We only require a process that captures

the system behaviour directly from the causal order. This allows us to use the more elementary

definitions given in this paper.
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V. AUTOMATA OF UNORDERED SETS

From the definition for P (M) we can construct a finite state automaton A(M) that also defines

the traces of the system. The states of the automaton are unordered sets S ⊆ E. The initial state

is S0 = min(E,<C), and ∅ is the accepting state. For each a ∈ S there is a transition

S
a−→ cns(a, S,<C)

From the recursive definition of P (M) we can also give a recursive construction for A(M).

Define Statesi and Transi recursively as follows.

• States0 = {S0}, Trans0 = ∅

• Define Statesn+1 to be the sets cns(a, S,<C) where S ∈ Statesn and a ∈ S. Define Transn+1

to be the transitions S
a−→ cns(a, S,<C) for S ∈ Statesn and a ∈ S.

The states of A(M) are the union of all the Statesi. The transitions of A(M) are the union of

all the Transi. The language accepted by A(M) is exactly the set of traces given by P (M). The

proof of Lemma 4.5 essentially defines the correspondence between the traces of the automaton

and the traces of the process.

Fig. 6. Automaton Representation of Partial Order Behaviour

{a,b}

{b}
{a,d}

{c,d}
{a}

{d}

{}

{c}

a b

b a

a

d

d

d

c

c

Figure 6 gives an example of the automaton for events {a, b, c, d} with causal order

a < c, b < c, b < d.

The start state in Figure 6 is {a, b}.
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The automaton A(M) also reflects a lattice structure on the unordered sets of <C . Define a

(non-strict) partial order ≺ on unordered sets as follows. Let

S = S ∪ {x | ∃y ∈ S : x >C y}

Define S1 ≺ S2 when

S1 ⊆ S2

The order ≺ defines a lattice structure over the unordered sets. It turns out that there is a transition

S
a−→ S ′ in A(M) if and only if S ≺ S ′ and there is no unordered set U where S ≺ U ≺ S ′.

Hence we can construct the Hasse diagram for ≺ directly from A(M).

For U ⊆ E, U is referred to as an upper section if U = W for some W ⊆ E. In [1], an

automaton A′(M) is defined with states given by the upper sections of E. Transitions are given

by U
a−→ (U − {a}) for each a ∈ min(U,<C). It turns out that A′(M) is isomorphic to A(M).

The isomorphism works as follows.

Given a state U in A′(M), this maps to the state min(U,<C) in A(M). A state S in A(M)

maps to S in A′(M). A transition S
a−→ S ′ maps to S

a−→ S ′. This gives an isomorphism since

for any upper section U , U = min(U,<C). Also for any unordered set S, S = min(S,<C).

In this paper we use unordered sets to construct the system behaviour, rather than upper

sections, since they give a clearer description of possible consecutive events at each point of a

system trace. That gives us greater insight into how races can occur, which is what we require

for the proofs of the main results.

VI. INHERENT CAUSAL BEHAVIOUR

A partial order < on events preserves the message ordering when !e <?e for every message

e. Let <C be the causal ordering for a partial order scenario.

Fig. 7. Inherent Ordering of Figure 2

?b

!d

!a

!b

?d ?c 

?a 

!c
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Definition 6.1: The inherent causal ordering <I of <C is defined to be the transitive closure

of the following binary relation <. For every event x and message e define:

1) x < !e ⇐⇒ x <C!e

2) !e < ?e

Note that when regarding a partial order as a set of pairs, we have

(<I) ⊆ (<C)

Figure 7 gives a graphical depiction of the inherent ordering for Figure 2.

The inherent ordering is the causal order of some partial order scenario. This follows from

the next Theorem.

Theorem 6.2: The inherent causal ordering <I of a partial order scenario with processes P

is the transitive closure of the following binary relation <0. For every event x and message e

define:

1) x <0 !e ⇐⇒ ∃P ∈ P such that x <P !e

2) !e <0 ?e

Proof

Recall that <I is the transitive closure of the binary relation <1 defined by:

1) x <1 !e ⇐⇒ x <C !e

2) !e <1 ?e

Clearly <I is an extension of <0 so it only remains to prove that <I is contained in the

transitive closure of <0. Let <∗
0 be the transitive closure of <0. For a partial order < on E

let a <+ b denote that a < b and there is no event w where a < w < b.

Suppose we have x, y ∈ E where x <I y. The proof now splits depending on whether y is

a send or receive event.

i) Consider the case where y =!e. In this case x <I !e if and only if x <C!e.

Let ui be events where

x <+
C u1 <+

C u2 · · · <+
C un <+

C !e

We prove this case by induction on n.

If x and !e are part of the same process we are done. So we may assume this is not the

case. Let !e belong to process P . Let i be the minimal value such that ui also belongs

to P .
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Suppose that ui =!f for some message f . By definition ui−1 does not belong to P . We

therefore have ui−1 <+
C !f , but ui+1 and !f are on different processes. However, if for

any events g and h on different processes we have g <+
C h then h =?k and g =!k for

some k. Hence ui can not be a send event.

We may then suppose that ui =?f for some message f . It follows from what we have

just said that ui−1 =!f . We have thus constructed a sequence:

x <+
C u1 <+

C u2 · · · <+
C ui−1 =!e

We may now apply the induction hypothesis to prove that x <∗
0 ui−1. By definition we

also have ui−1 <0 ui and ui <0!e. Hence by transitivity x <∗
0!e. This completes the

induction step.

The base case is when x <+
C u1 <+

C !e and u1 belongs to P , but x does not. This can only

be true if u1 =?f and x =!f for some f . In which case it follows that x <∗
0 u1 <0!e

by definition. That completes the proof by induction.

ii) Consider the case where y =?e.

From the definition for <I this can only be if

x <I !e <I?e

Hence by case i) we are done since !e <0?e. 2

In Figure 8 we have illustrated the inherent causal scenario of Figure 2 in the form of an MSC

using a parallel construct. With the parallel construct we have separated message c into one

concurrent thread and messages b and d into another. The dotted line delineates the two threads

within the PAR construct. Note that since !a is outside the parallel construct it must still occur

before both ?c and !b. The illustrations used in the paper for inherent causal scenarios can be

automatically generated from their inherent causal orders, but we will not describe that process

here, as it is a distraction from the central theme of the paper.
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Fig. 8. Inherent Causal Scenario of Figure 2 as MSC
A B C

a

c

b

d

PAR

The inherent causal order for Figure 5 is shown in Figure 9. This is isomorphic as a partial

order to the inherent causal order in Figure 7. However because of the partitioning of events

between processes the inherent causal scenario for Figure 5 is very different to that of Figure

2.

Fig. 9. Inherent Ordering of Figure 5

?c

!d

!a

!c

?d ?b 

?a 

!b

One graphical depiction for the inherent causal scenario for Figure 5 is given in Figure 10.

In this depiction all the events of process B are placed in a single coregion. This decouples ?b

and ?c which removes the race. By placing all the events in a coregion, we must reintroduce

desired orderings between events on that process by use of general ordering constructs. Hence,

there is a general order construct to ensure ?a <I !b and another to force ?c <I !d.
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Fig. 10. Inherent Causal Scenario of Figure 5
A B C

a

b

c

d

In this particular case, it is not possible to use a parallel construct in the same way we did

earlier to depict the inherent causal scenario. It is not as straightforward in this example to

separate the concurrent behaviour into separate linear threads.

Each message forwarded by B is essentially treated independently. Hence, the behaviour of B

is independent of the order that messages are sent to it by A. We can emphasis this more clearly,

and simplify the inherent causal scenario at the same time, by using lost and found messages.

Fig. 11. Alternative Depiction for Inherent Causal Scenario of Figure 5
A B C

a a

b

c c

d

PAR

Figure 11 gives an alternative depiction of the inherent causal scenario for Figure 5. It specifies

exactly the same causal order as Figure 10. With our convention, outlined in Section I, of only

using lost and found events to provide a graphical means of splitting a message we have not

lost any information by depicting a and c in this way. However, by splitting a and c into lost

and found events we can parcel up the rest of the scenario into two concurrent linearly ordered

threads within a parallel construct. Visually this more clearly describes the concurrent structure

of the inherent causal scenario than Figure 10.
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VII. CANONICAL INHERENT PROCESSES

Recall in Section IV we defined the observable process behaviour P (M) of a partial order

scenario M .

Definition 7.1: The inherent process behaviour of a partial order scenario M is defined to be

PI(M) = P (min(E,<I), <I)

Let A denote the standard simulation relation for process algebras. That is P A Q iff

for every transition Q
a−→ Q′, there exists a transition P

a−→ P ′ where P ′ A Q′

Theorem 7.2:

• (<I) ⊆ (<C), and PI(M) A P (M)

• For any race free partial order < that preserves message ordering, let P< = P (min(E,<), <).

Then P< A P (M) iff (<) ⊆ (<I) ⊆ (<C) and P< A PI(M)

That is PI(M) is the canonical process that simulates P (M) and is race free. To say that

(<1) ⊆ (<2) means that for every x and y in E, when x <1 y then x <2 y.

This theorem proves that the order <I describes the maximal ordering with respect to simulation

equivalence that is a race free weakening of <C . Hence constructing an MSC that has partial

order semantics given by <I defines a new MSC that corrects any race conditions in M , and

weakens the causal ordering of M as little as possible. It is straightforward to construct such an

MSC.

The theorem is a consequence of the following Lemmas together with Lemma 4.5. For any

partial order < (which is not necessarily race free) let T (<) be the set of total extensions of <.

Lemma 7.3: For partial orders <1 and <2 where

P<1 A P<2

then (<1) ⊆ (<2)

Proof

Note that x < y iff for every trace in T (<), x occurs before y in the trace. When P<1 A P<2

then the set of traces for P<2 is contained in the set of traces for P<1 , that is T (<2) ⊆ T (<1).

x <1 y ⇒ x occurs before y in every trace of T (<1)

⇒ x occurs before y in every trace of T (<2)

⇒ x <2 y
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Hence (<1) ⊆ (<2), which concludes the proof. 2

Lemma 7.4: Given two partial orders <1 and <2,

T (<1) ⊆ T (<2) iff P<1 @ P<2

Proof

Note that T (<1) ⊆ T (<2) iff (<2) ⊆ (<1).

Given (<2) ⊆ (<1), to prove P<1 @ P<2 , it is enough to prove that for any S ⊆ E and

a ∈ E,

cns(a, S,<1) ⊆ cns(a, S,<2) (1)

Let
m1 = min((S − {a}) ∪ n({a}, <1), <1)

m2 = min((S − {a}) ∪ n({a}, <2), <2)

We write U ≤ V for sets U, V ⊆ E, when for each u ∈ U , there is some v ∈ V such that

u ≤ v. Note that since (<2) ⊆ (<1) then n({a}, <2) ≤ n({a}, <1).

For a contradiction suppose that x ∈ m1 and x 6∈ m2. This implies there is some y ∈ m2

such that x <2 y. First consider if y ∈ S − {a}. Then x <1 y ∈ S − {a}, hence x 6∈ m1.

This is a contradiction, hence we must have y ∈ n({a}, <2).

Since n({a}, <2) ≤ n({a}, <1), there is some y′ ∈ n({a}, <1) such that x <2 y <1 y′.

Therefore x <1 y′ ∈ n({a}, <1), and so x 6∈ m1. Again a contradiction as required to

complete the proof of equation 1. The proof that T (<1) ⊆ T (<2) implies P<1 @ P<2 , is

completed once we note that min(E,<1) ⊆ min(E,<2).

The converse implication for the Lemma is straightforward. It is true for any processes P

and Q that if P A Q then the set of traces of Q is contained in the set of traces for P .

Since the traces of P<i
are exactly T (<i), the result is then immediate. That completes the

proof of the Lemma. 2

Lemma 7.5: For a partial order < that preserves message ordering and is race free,(
(<) ⊆ (<C)

)
⇒

(
(<) ⊆ (<I) ⊆ (<C)

)
Proof

For this it is enough to prove that whenever x < y then x <I y. The proof splits into cases

depending on whether y is a receive or send event.
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– First suppose that y =!e for some message e. Then x <!e implies x <C !e since

(<) ⊆ (<C). By definition of <I , x <C !e implies x <I !e.

– The other case is where y =?e for some message e. Since < is race free, x <?e implies

that x <!e. As above this implies x <I !e. The ordering <I preserves message ordering,

and hence x <I ?e.

This completes the proof of the Lemma. 2

VIII. INHERENT REFINEMENT BEHAVIOUR

In this section, we define the inherent refinement ordering. This is the dual of the inherent

causal order in that it characterises the minimal refinement of a causal order that is race free.

This is proved by theorem 8.6 which is the dual result of theorem 7.2. However, it is not the

case that we can prove the dual result to Theorem 6.2. That is the inherent refinement ordering

can not necessarily be defined as the causal order for some partial order scenario. In Lemma

8.2 we give a counter example and prove that the refinement order of this example can never

be the causal order of a partial order scenario. In Lemma 8.3 we prove that every refinement

order can at least always be embedded in a race free partial order scenario.

Definition 8.1: The inherent refinement ordering <R of a causal ordering <C is defined to

be the transitive closure of the following binary relation <. For every event x and message e

define:

• x <!e ⇐⇒ x <C?e

• !e <?e

First note that <R is race free. Since it is clear from the definition that x <R ?e implies that

x <R !e or x =!e. Also notice that the refinement order only extends <C by forcing particular

send events to be delayed so that other events may occur first, and hence is implementable.

Fig. 12. Inherent Refinement Ordering of Figure 2 as MSC
A B C

a
b

c
d
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If the partial order scenario is represented as an MSC M then the inherent refinement ordering

can be constructed by adding suitable general orderings to M . These general order constructs

cause appropriate send events to wait until the relevant receive events have occurred. For example

the MSC in Figure 12 describes the inherent refinement order for the partial order scenario in

Figure 2. Note that Figure 12 is not a partial order scenario. The general order construct here acts

across processes and not within a single process. The causal order for a partial order scenario

can impose an arbitrary ordering within a process, but events in separate processes can only be

ordered because of inter-process communication. The general ordering in Figure 12 is clearly not

the result of any inter-process communication. In fact we prove in Lemma 8.2 that the refinement

order for Figure 2 can never be the causal order for a partial order scenario.

Lemma 8.2: Let <0
R be the refinement order of the partial order scenario given by the MSC

in Figure 2. Then there is no partial order scenario whose causal order is an extension of <0
R.

Proof

Recall from definition 2.4 that the causal order for a partial order scenario is defined as the

transitive closure of the relation given by( ∪
P∈P

(<P )
)
∪ Msg

Where <P are the various process orders for the scenario. The process orders for A, B

and C inferred by <0
R are just those defined by Figure 3. Any partial order scenario that

extends <0
R has to be the result of extending the process partial orders <A, <B and <C .

Note that <A and <C are total orders and so can not be extended any further. Hence any

causal order that is an extension of <0
R must extend <B.

However, it is clear that no extension of <B can cause !b to be ordered before !c in the

resulting causal order. That is there are no extensions of <A, <B and <C that result in a

causal order that extends <0
R. As required to complete the proof. 2

Although the inherent refinement order is not a true causal order, we can embed it within a race

free partial order scenario. That is, it is possible to add messages to a partial order scenario so

that the resultant scenario is race free. In addition, when restricted to the events of the original

scenario the new scenario defines exactly the same process orders and its causal order is exactly

the inherent refinement ordering of the original scenario. This is precisely stated in Lemma 8.3.
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Lemma 8.3: Let M be a partial order scenario on events E, with processes P and process

ordering <P for each P ∈ P . Let <R be the inherent refinement order for M .

There is a race free partial order scenario Mm on events Em, with processes P , process

orderings <m
P for each P ∈ P and causal order <m

C such that

1) For each P ∈ P , E(P ) ⊆ Em(P )

2) For each P ∈ P and each x, y ∈ E(P )

x <P y ⇐⇒ x <m
P y

3) For each x, y ∈ E

x <R y ⇐⇒ x <m
C y

Proof

We initialise Mm to be M and add new messages and modify the process ordering as

follows.

Recall that the refinement order is defined by adding x <R !e whenever x <C?e.

For each such pair where x ∈ P1 and !e ∈ P2 we define a new message mx
e where we add

!mx
e to Em(P1) and ?mx

e to Em(P2).

The set Em consists of E together with all such new events.

For each such pair add x <m
P1

!mx
e , and ?mx

e <m
P2

!e.

The causal order for Mm restricted to E is exactly <R and the process orders for Mm

restricted to E are exactly the same as for M , as required. 2

Figure 13 shows one way in which the refinement order for Figure 2 can be embedded in a

partial order scenario. This scenario is given by the construction outlined in the proof of Lemma

8.3.

Fig. 13. Inherent Refinement Ordering Embedded in Partial Order Scenario
A B C

a
b

x

c
d
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The refinement order itself is the unique minimal race free refinement of a causal order, as

proved below in theorem 8.6. However, the choice of embedding for the refinement order is

not unique. The UML and MSC standards contain other constructs that could be used to embed

the refinement ordering in a scenario. In this paper, we do not further address the problem of

choosing how to embed a refinement order within a scenario. Such a choice is best left to system

designers who will want to use constructs suited to their particular circumstances.

Lemma 8.4:

(<C) ⊆ (<R)

Proof

To prove this suppose x <C y. The proof is split into two cases depending on whether y is

a send or receive event.

– If y =!e for some e, then y <C ?e.

Hence from the definition x <C ?e and hence x <R !e.

That is x <R y.

– When y =?e, then x <R !e.

Also !e <R ?e, hence by transitive closure, x <R ?e = y.

This completes the proof of the Lemma. 2

Lemma 8.5: For any race free transitive partial order < that preserves messages and where

(<C) ⊆ (<), then

(<C) ⊆ (<R) ⊆ (<)

Proof

To prove this first consider an event x and message e where x 6=?e and x <C ?e.

Therefore x <R !e.

Since (<C) ⊆ (<), we have x <?e.

Since < is race free we have x <!e. Hence, if x <R !e then x <!e.

Since < preserves messages it trivially follows that !e <R ?e implies !e <?e.

Hence as < is transitive we have proved that (<R) ⊆ (<). 2

Given the Lemmas already proved in Section VII we have thus proved the following theorem,

which is the dual to theorem 7.2.

Theorem 8.6: Let PR(M) = P (min(E,<R), <R), then
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• (<C) ⊆ (<R), and P (M) A PR(M)

• For any race free partial order < that preserves message ordering, let P< = P (min(E,<), <).

Then P (M) A P< iff (<C) ⊆ (<R) ⊆ (<) and PR(M) A P<

Hence <R is the canonical refinement of the causal order that corrects all race conditions in the

specification.

IX. INLINE ITERATION

In this section, we extend the notion of partial order scenarios with weak compositional

iteration. Iterative scenarios cannot be characterized by a single partial order scenario and instead

define a set of partial order scenarios. This set can be infinite if the iteration is unbounded. The

semantics defined here is the same as the MSC/UML semantics for iterative scenarios.

First we define in-line composition of partial order scenarios. Let E1 and E2 be disjoint sets

of events, and let l : E1 ∪E2 −→ L be the labelling function. Let M1 be a partial order scenario

defined over E1 consisting of processes P1, and M2 be a partial order scenario over E2 consisting

of processes P2. Note there is no particular relationship between P1 and P2. I.e. they do not

have to be identical and may even be distinct. Although the event sets are distinct the events

can have the same labels. Let <i
P denote the local order for process P in scenario Mi.

Definition 9.1: For partial orders <1 on S1 ⊆ E1, and <2 on S2 ⊆ E2 define the ordering

(<1; <2) to be the transitive closure of:

• For a, b ∈ Si, a(<1; <2)b iff a <i b

• For all a ∈ S1 and b ∈ S2, a(<1; <2)b

Definition 9.2: The in-line composition M = M1; M2 is defined to be the partial order

scenario consisting of events E1 ∪ E2 and processes P1 ∪ P2.

The local order <P for M splits into the following cases:

• For P ∈ P1 − P2, (<P ) = (<1
P ).

• For P ∈ P2 − P1, (<P ) = (<2
P ).

• For P ∈ P1 ∩ P2, (<P ) = (<1
P ; <2

P ).

We write M ; M to denote the in-line composition of two copies of M where we have renamed

all the events in the second copy to be distinct from the first copy, whilst preserving the local

orderings and labels. The expression Mn is defined to be n copies of M composed in-line:

M ; M ; . . . ; M .
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It is important to realize that the causal order for M1; M2 in general is not (<C1 ; <C2). The in-

line composition of two partial order scenarios represents the graphical intuition of concatenating

two scenarios by visually attaching one after the other, as can be seen by examining the MSC

example shown in Figure 14.

Fig. 14. M1, M2 and (M1; M2)

A B

x

A B

y

A B

x

y

Iteration will be specified in terms of sets of partial order scenarios. Hence, we need to extend

the definition of composition to cater for this.

Definition 9.3: An extended scenario S is defined to be a finite set of partial order scenarios.

Define the traces of S to be the union of the traces for the partial order scenarios contained in

S.

Definition 9.4: Let S1 and S2 be extended scenarios. Define S1; S2 to be

{(M1; M2) | M1 ∈ S1, M2 ∈ S2}

We can now define in-line iteration for extended scenarios as follows.

Definition 9.5: The n-th iteration for extended scenario S is defined to be the set

Sn = {Mi1 ; . . . ; Min | Mij ∈ S}

Define the in-line iterative loop construct loop〈m,n〉(S) to be the union
i=n∪
i=m

Si

loop〈0,∞〉(S) denotes the union of all finite iterations of S.

Note this is an infinite set of partial order scenarios and so not an extended scenario.

For a partial order scenario M we will adopt the convention of writing loop〈m,n〉(M)

as short hand for loop〈m,n〉({M}). When m and n are finite loop〈m, n〉(M) is also finite.

When resolving races for loop〈m,n〉(M) we could simply resolve the races in each separate

iteration Mk. The result may no longer be a simple iteration, depending on how the races
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are resolved. However, the result is still an extended scenario. Therefore from a theoretical

perspective resolving races in bounded loops does not pose a serious problem since it can

be reduced to resolving races in a finite set of partial order scenarios. An unbounded loop

loop〈0,∞〉(M) denotes an iteration that can occur any finite number of times, but where it is

not known in advance how many times. For example, unbounded loops can be used to represent

‘do until’ iterations. This type of iteration could occur for example where a base station is

attempting to re-establish a dropped connection and is repeatedly sending a connect request. It

will continue to send the request until it gets an acknowledgement. The question that remains

for the rest of the section is how to resolve races in unbounded loops.

Fig. 15. Unbounded iterative loop
A B

xloop< 0,∞ >

Figure 15 gives the graphical depiction for loop〈0,∞〉(M) when M contains only a single

message x between process A and B. In this example note that M2 will contain a race. As we

now have distinct messages that can have the same label, we are no longer free to identify a

message with its label as we did in earlier examples. In this example let there be events ?e1 and

?e2 with l(e1) = l(e2) = x. Then ?e1 <C ?e2 but ¬(?e1 <C !e2), which defines a race. For Mn

there will be n consecutive copies of the message x from A to B, resulting in n(n− 1)/2 race

conditions. This example illustrates that even when a basic scenario is race free the iteration of

the scenario may well not be.

Definition 9.6: An iterative scenario is defined recursively as

• Any partial order scenario.

• Any scenario of the form S1; loop〈1,∞〉(S2); S3 where S1, S2 and S3 are iterative scenarios.

For brevity we will write S∞ as shorthand for loop〈1,∞〉(S) from now on.

Notice that since S1, S2 or S3 could be the empty set in this definition, we are free to combine

extended scenarios by adding infinite loops whenever we wish. This definition restricts those

infinite sets of partial order scenarios we wish to consider so that they must be the result of
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the loop construct. Note we constrain unbounded loops so that they iterate at least once. This

is done to avoid unnecessary detail in the proofs, and can be done without loss of generality.

Lemma 9.7: There is no generalisation of the iterative scenario in Figure 15 that is race free.

Proof

In this case it is only possible to generalise the iteration by generalizing the body of the loop.

Clearly the loop body can not be any further generalized. The only partial order weaker

than !x <?x is the unordered set {!x, ?x}. This however is not a partial order scenario.

Such scenarios must preserve message ordering, hence there is no generalisation possible

for the iteration. 2

Fig. 16. Bounded and not Convergent Scenario
A B C

a
b

c
d

Fig. 17. Convergent and not Bounded Scenario
A B C D

a b

c d

This lemma proves that the idea of weakening an iterative scenario to remove races is not

possible in general. The problem stems from the fact that iteration semantics are defined via

weak composition of the iterations of the loop body. Therefore the events for a process P in

iteration n are by definition always ordered before the events of P in iteration n + 1. However,

to resolve races between events from different iterations by generalisation requires some way

to specify a weakening of the local process orders across these different iterations. In order to

proceed further we need to characterise race conditions in iterative scenarios in a manner that

can be easily checked.
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Definition 9.8: Let M be a partial order scenario over events E and causal order <C .

For x ∈ E, let x = {x} ∪ {y ∈ E | x <C y} and let x = {x} ∪ {y ∈ E | y <C x}. For an

event x let P (x) be the process P where x ∈ E(P ). For a set of events S ⊆ E let P (S) be

{P (x) | x ∈ S}.

Define M to be convergent if whenever there are events e and ?x where P (?x) ∈ P (e), then

P (!x) ∩ P (e) 6= ∅

Fig. 18. Convergent Embedding of Figure 16
A B C

a
b

c
d

e

Notice that the definition of convergence is constructive. Hence, it is straightforward to check

if a scenario is convergent or not. The notion of convergence has similarities with the notion

of boundedness defined in [1], [3], [21]. For a partial order scenario M define a graph G that

has nodes given by the processes in M . Define an edge between nodes P and Q exactly when

there is a message from P to Q. M is bounded if G is strongly path connected. That is there

are paths between any two nodes in both directions. In [1], property checking for an arbitrary

iterative message sequence chart (MSC) is proved to be undecidable. They prove that when the

body of every iterative loop in an MSC is bounded then property checking becomes decidable.

Although the convergent and bounded definitions have similarities, they define distinct sets of

partial order scenarios. Figure 16 shows a partial order scenario that is not convergent, but is

bounded. It is not convergent since we have P (!b) ∩ P (!d) = ∅ but P (?b) ∈ P (!d). Figure 17

shows a partial order scenario that is convergent, but is not bounded.

Theorem 9.9: Let M be a race free partial order scenario. Then M is convergent if and only

if M∞ is race free.

Proof
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First we prove that if M is convergent then M∞ is race free. For a contradiction suppose

that M is convergent and there is a race in M∞. For an event e ∈ E we will write en to

denote the occurrence of e in the n-th iteration of the loop. We use the notation

en <∞
C hn+m

to denote that event e in the n-th iteration is less than h in the (n+m)-th iteration according

to the causal order for Mn+m.

If M∞ has a race (since M is race free) there must be events e and ?x such that en <∞
C

(?xn+m) and ¬(en <∞
C (!xn+m)) for some m > 0.

Consider any events u and v where ¬(u <C v) and un <∞
C vn+1. Then there must be events

u1 and v1 where u <C u1, v1 <C v and P (u1) = P (v1). This is exactly the condition that

P (u) ∩ P (v) 6= ∅.

Since en <∞
C (?xn+m) there must be some g ∈ E where

en <∞
C gn+m−1 <∞

C (?xn+m)

Consider if gn+m−1 <∞
C (!xn+m). Then trivially there is no race between e and ?x, which

is a contradiction. Therefore ¬(gn+m−1 <∞
C (!xn+m)). That is gn+m−1 and !xn+m are in a

race. In which case we must also have that g1 and !x2 are in a race. This last deduction is

not vital for the proof, but it makes the notation much less cumbersome as we proceed.

Let ?x belong to process P . Consider if P 6∈ P (g). Then there must be a process Q and

events h1, h2 ∈ E(Q) where g <C h1 and h2 <C?x. Since there is a race between g1 and

!x2 we have that h2 6<C!x. Therefore we have constructed a race between h2 and ?x. This is

a contradiction as M is race free. Therefore P ∈ P (g). Since M is convergent this implies

P (!x) ∩ P (g) 6= ∅. From our earlier observation this can only be true when g1 <∞
C (!x2).

This contradicts that there is a race between g and ?x, which in turn contradicts that there

is a race between e and ?x. Hence we have proved that if M is convergent then M∞ is

race free.

To prove the converse we prove that if M is not convergent then there is a race in M∞.

Suppose that we have events e and ?x where P (?x) ∈ P (e) but P (!x) ∩ P (e) = ∅.

Since P (?x) ∈ P (e) we have that e1 <∞
C (?x2). As we observed earlier in the proof

un <∞
C vn+1 if and only if P (u)∩ P (v) 6= ∅. Therefore P (!x)∩ P (e) = ∅ can only be true
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if e1 6<C (!x2). Hence we have a race between e and ?x in M∞. That concludes the proof.

2

This result gives us a precise characterization of when a loop will generate a race purely in terms

of the causal ordering for the body of the loop. Theorem 9.9 will enable us to resolve races

that occur as a result of iteration solely by modifying the body of the loop. This can usually

be done by adding suitable messages to the loop body to ensure the result is convergent, as we

shall demonstrate in the remainder of the section. First, we extend the notion of convergence.

Definition 9.10: Let M and N be partial order scenarios. We define M to be convergent with

respect to N when for every e ∈ E(M) and ?x ∈ E(N) if P (?x) ∈ P (e) then P (!x)∩P (e) 6= ∅.

This version of convergence precisely captures when the composition of two race free partial

order scenarios M ; N is also race free. When M is not convergent with respect to N then usually

it is possible to embed M in some M ′ so that M ′ is then convergent with respect to N and so

M ′; N is race free.

Lemma 9.11: When M and N are race free partial order scenarios, then M ; N is race free if

and only if M is convergent with respect to N .

The proof of this lemma is immediate from the definition of the causal order for M ; N .

Definition 9.12: Let M be a partial order scenario with events E and causal order <C . We

define {!mi ∈ E | 1 ≤ i ≤ n} to be a virtual lower cycle when:

• !mi ∈ min(E,<C) for 1 ≤ i ≤ n

• ?mi ∈ min(E(P (?mi)), <C) for 1 ≤ i ≤ n

• P (?mi) = P (!mi+1) for 1 ≤ i ≤ n − 1

• P (?mn) = P (!m1)

We define {!mi ∈ E | 1 ≤ i ≤ n} to be a virtual upper cycle when:

• !mi ∈ max(E,<C) for 1 ≤ i ≤ n

• ?mi ∈ max(E(P (?mi)), <C) for 1 ≤ i ≤ n

• P (?mi) = P (!mi+1) for 1 ≤ i ≤ n − 1

• P (?mn) = P (!m1)

Scenario M contains no virtual cycles when it contains no upper or lower virtual cycles.
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Fig. 19. Virtual Cycle
A B C

a
b

c

Figure 19 shows an example of a partial order scenario that contains a lower and upper virtual

cycle, both given by !a, !b, and !c. Let U be the scenario in Figure 19. The virtual cycle means

there is no race free partial order scenario that we can embed U into. To make progress we will

need to avoid such scenarios.

Lemma 9.13: Let M and N be race free partial order scenarios. If N contains no virtual

lower cycles then we can embed M in a race free scenario M ↓ N which is convergent with

respect to N . Hence

(M ↓ N); N

is race free.

If M contains no virtual upper cycles then we can embed N in a race free scenario M ↑ N

so that M is convergent with respect to M ↑ N . Hence

M ; (M ↑ N)

is race free.

Proof

We will prove M ↓ N exists by construction. Let <M be the causal order for M and <N

be the causal order for N . Let EM be the events for M and EN be the events for N . Define

a pair ?x ∈ EN and e ∈ EM to be divergent when P (?x) ∈ P (e) but P (!x) ∩ P (e) = ∅.

We initialize M ↓ N to be M and add messages as follows. Let ?x ∈ EN and e ∈ EM be

a divergent pair. Let u ∈ max(EM , <M) where e <M u. Let P (!x) = P and P (u) = Q.

Add a new message w to M ↓ N where !w ∈ E(Q) and ?w ∈ E(P ). It may be necessary

to add P to PM if this is not already present. Modify the process ordering in M ↓ N for

P so that u <P !w.

By adding ?w to P we have forced e <!x, where < is the causal order for (M ↓ N); N .

However, we may have now introduced a race since it is possible that there is some ?x1 ∈
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min(P,<N). If this is so we must introduce another message w1 to M ↓ N . Add !w1 to P

and add ?w <!w1. Also add ?w1 to process P (!x1). This removes the race between ?x1 and

?w. However, there may be ?x2 ∈ min(E(P (!x1)), <N). In which case we have introduced

a race between ?w1 and ?x2. We continue to add extra messages wi until all such races are

removed. Since N has no virtual lower cycles there will be some value k such that after

the addition of wk we do not introduce further races. Notice that all the new messages wi

are added to the end of M . So that a <M b if and only if a < b for every a, b ∈ EM .

For each divergent pair add new messages to M ↓ N as described. The final scenario is by

construction convergent with respect to N . Also by construction M has been embedded in

M ↓ N .

The construction for M ↑ N is dual to the construction of M ↓ N . Initialise M ↑ N to

N . Let ?x and e be a divergent pair. Let u ∈ min(EN , <N) where u <N !x. Add a new

message w where !w is added to process P (e) and ?w is added to process P (!x) = P .

Change the process order in M ↑ N so that ?w <P !x. As before we may have added a race

condition in introducing this new message. Just as before we repeatedly add new messages

wi until no new races are introduced. Since M contains no virtual upper cycles this process

is guaranteed to terminate. By adding new messages in this way for each divergent pair we

construct M ↑ N as required.

2

Lemma 9.13 gives us the construction we need to resolve all races within an iterative scenario,

provided it has no virtual cycles.

Theorem 9.14: Let S be an iterative scenario composed of race free partial order scenarios

that contain no virtual cycles. Then we can resolve all race conditions in S by embedding each

composite partial order scenario within a convergent scenario.

Proof

The proof is by recursion. Suppose we can not write S in the form M1; S′; M2, for some

partial order scenarios M1, M2 and iterative scenario S′. In that case S can only be of the

form M∞ or M for some partial order M . When S is a partial order scenario then we can

replace it by an embedding of the refinement causal order. Consider the case S = M∞. By

the hypothesis M contains no virtual cycles. Therefore M ↓ M is convergent with respect

to M . That is M ↓ M is convergent in the sense of definition 9.8. Hence, (M ↓ M)∞ is
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race free by Theorem 9.9. That completes the proof for the base case.

Consider the case where S is of the form S1; S∞
2 ; S3, and each Si is race free. Write S1 =

S′
1; M1 and S3 = M3; S′

3. Suppose S2 = N1; S′
2; N2. Then

S′
1; (M1 ↓ (N1 ↑ N2));

((N1 ↑ N2); S′
2; N2)

∞;

(N2 ↑ M3); S′
3

is a race free resolution for S. If S2 = M∞ then we can assume M is convergent without

loss of generality. In this case

S′
1; (M1 ↓ M); M∞; (M ↑ M3); S′

3

is race free. That completes the proof. 2

Notice that we do not claim this resolution is canonical. This is still an active area of research,

and it is not yet clear what will be the optimal resolution for races that are caused by iteration

of partial order scenarios.

X. INDUSTRIAL CASE STUDY EXAMPLES

In collaboration with Motorola Research Labs, we have been conducting a number of case

studies [5], [23] into automating pathology detection in MSC telecommunication specifications.

The two examples examined in this section come from a proprietary study involving roughly a

hundred UML 2.0 sequence diagrams. These formed part of the specification for a High Speed

Downlink Packet Access (HSPDA) protocol stack.

There were approximately fifteen diagrams containing multiple race conditions found in the

study. Of these, five contained multiple race conditions caused by iterative loops. The two

examples included in this section contained the most complex race conditions from the study. As

a result of the positive feedback from the case studies, Motorola is planning to incorporate the

research presented here into a prototype tool suitable for larger scale evaluations with engineering

groups, and to conduct further research into extending the results to more general UML sequence

diagrams.

Figure 20 is an anonymized example from the Motorola case study, which contains multiple

race conditions. The original diagram is a UML 2.0 sequence diagram that describes traffic

channel allocation and activation between various processes for the HSPDA protocol. Process
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Fig. 20. UML 2.0 case study example with multiple race conditions
A B C D E F G
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A has delegated the task of determining what resource to allocate to process B. The inline

reference in the MSC is a linear ordering of some events not shown here. These events can be

ignored for the purposes of the example because they are linearly ordered.

In total we have the following six race conditions in Figure 20. Event ?a1 is in a race with !b

and also with !c. Event ?c2 is in a race with !a and also with !b. Also event ?b2 is in a race with

!a and also with !c. It may be that the authors implicitly assumed the downlink latency from

B is much shorter than the uplink latency for the other processes. If this were true, it may be

possible in practice for the specification to be realizable. However, it is far safer to rewrite the

specification without these race conditions.

One way to remove these races would be to regroup the messages within a single parallel

construct. Messages a and a1 could be grouped within the same thread of a parallel construct.

Similarly b, b1, b2 and the inline reference could be grouped in a second thread. Finally c, c1

and c2 could be grouped in the third thread. Figure 21 depicts this solution. It seems reasonable

to suppose this will not contradict what the authors originally intended.

Figure 21 is exactly the inherent causal scenario of Figure 20. In this case the inherent causal
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Fig. 21. Inherent Causal Scenario for Figure 20 as MSC
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Fig. 22. Second Industrial Case Study Example
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order for Figure 20 would seem to represent the specification intended by the authors, rather

than the causal order of Figure 20 itself.

Figure 22 describes a second anonymized example from a case study where several race con-

ditions were contained in a single scenario. This example can be viewed as multiple interacting

threads that represent different features within one scenario.

Altogether there are seven races in the scenario. Receive event ?f is in a race with each of

?a, !b, !c and !d. The remaining three races occur between each of ?b, ?i and ?j. This example

illustrates the value of resolving all the race conditions in a single global solution. For example,
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message f is independent of d (in that it can be sent at any time after ?e, and e is one of

the initial messages in the scenario). Resolving this race by itself would not resolve the races

between ?f and ?a, !b and !c. Rather it would complicate the process of identifying a solution

to the other races. The inherent causal order for this scenario separates a, b, c and d into one

concurrent thread, and messages e and f into a different thread. Adding this concurrent region

resolves all four races simultaneously. One graphical depiction for the inherent causal scenario

of Figure 22 is given in Figure 23. We have again used lost and found events as a graphical

convenience to simplify the diagram.

Finally we provide an embedding of the refinement order for Figure 22 into a partial order

scenario. This characterises the minimal strengthening of Figure 22 that can be achieved by

adding new messages in order to impose the refinement ordering. In this depiction, we have

resolved the race conditions by introducing three new messages. These are x from process B to

C, y from process D to B and z from D to G. The embedding is given in Figure 24. Message

x has resolved the races between ?f and ?a, !b, !c and !d. Message x ensures that process C is

informed when B has sent messages !b, !c and !d and that it is now safe to send f . We include a

coregion around ?x and ?e in order to avoid introducing new race conditions into the scenario.

Messages y and z resolve the races between ?b, ?i and ?j. Message y ensures that b has been

received before message i is sent, and z ensures that i is received before j is sent. Note we have

to place y in a concurrent thread separate from c, d, e, f and x or else we would be introducing

several new race conditions into the scenario. Similarly we include a coregion around ?z and

?h for the same reason.

The inherent causal ordering and the refinement ordering provide the practitioner with useful

insight into the semantically consistent behaviour that can be extrapolated from the scenario.

However, the practitioner may decide to combine the two orderings in some bespoke way to

construct a solution that fits their own circumstances.

In this example it is possible that a combination of Figure 23 and Figure 24 give the appropriate

solution to the race conditions in the original scenario. In the original scenario it could be that e

and f are meant to be in a separate thread to a, b, c and d. However the races between b, i and

j could be the omission of coordinating messages which should have been included. Deciding

which parts of the inherent causal and refinement orderings the author intended to combine

is not something that can be automated. Providing the practitioner with both solutions allows

July 3, 2008 DRAFT



41

Fig. 23. Inherent Causal Scenario for Figure 22 as MSC
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Fig. 24. Embedding of Refinement Order for Figure 22 as MSC
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them to understand with greater clarity what semantically consistent behaviour is captured by

the specification.

XI. CONCLUSION

The paper has proved that there is a canonical solution for correcting all race conditions within

a partial order scenario by weakening the causal relationship. The inherent causal ordering that
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defines the solution can also be presented in MSC or UML format by use of coregion, parallel

and general ordering constructs.

The paper has also proved the dual result, that there is a canonical refinement of the spec-

ifications that corrects all race conditions. This is the inherent refinement ordering. Unlike the

inherent causal order, the inherent refinement ordering cannot be represented by a partial order

scenario. However, we can embed it within a partial order scenario, although the embedding is

not unique. Together these inherent orderings provide a useful insight into the semantically

consistent specifications that are possible for a distributed system. The construction of the

inherent refinement ordering is based on the premise that additional messages are required to

coordinate concurrent threads. Whereas the inherent causal ordering construction is based on the

premise that concurrent threads have been synchronized at a given point when this should not

occur.

Both the inherent causal and inherent refinement orderings can be automatically generated

within a scenario authoring tool, particularly one that supports UML 2.0 sequence diagrams.

The graphical depiction of a partial order scenario is not unique, and so there is great choice in

deciding how to automate the construction of the inherent causal scenario. The paper has used

illustrations, which can be automatically generated, that emphasize the concurrency within the

inherent scenarios by maximizing the use of coregions and parallel constructs. It is also possible

to automate the construction for the embedding of the refinement order into some partial order

scenario. It is not yet clear if there is a canonical way to achieve this. Note this is a different

problem than representing the refinement order as a UML/MSC sequence diagram. In that case,

the representation is straightforward to automate since we are free to use general order constructs

across processes as necessary.

Inherent and refinement orderings are likely to be of most use in complex scenarios that

contain several race conditions that have a common cause, such as the examples in Section X.

Practitioners are not intended to view the inherent and refinement orderings as prescriptive. The

intention is that by providing these solutions to the practitioner they will be able to appreciate

what semantically consistent behaviour can be extrapolated from their specifications. In the case

study the most useful aspect of the inherent and refinement orderings from the practitioners

perspective was that they clearly illustrated what was possible in an asynchronous distributed

environment, and helped to identify where constraints would be needed to realize their intended
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design. Generating error traces that identify individual race conditions would not have provided

this overview because of the complex interrelationships between the race conditions.
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