
Inherent Causal Orderings of Partial Order
Scenarios

Bill Mitchell

w.mitchell@surrey.ac.uk,
Department of Computing, University of Surrey

Guildford, Surrey GU2 7XH, UK

Abstract. Scenario based requirements specifications are the industry
norm for defining communication protocols. Basic scenarios captured
as UML sequence diagrams, Message Sequence Charts (MSCs) or Live
Sequence Charts (LSC) have partial order semantics that characterize
system traces by restricting the possible order of events within those
traces. The semantic partial order of the scenario specification is called
the causal ordering.
Semantic inconsistencies often occur in partial order scenarios between
the specified causal ordering and the order that events can occur in prac-
tice. Such inconsistencies are known as race conditions. The paper proves
that there is a unique race free partial order that is a minimal weakening
of the causal ordering. In other words, there is a canonical generaliza-
tion of the requirements that corrects all race conditions. Hence any race
free generalization of the original scenario is in fact a generalization of
the canonical scenario. The paper also proves the dual result, there is
a unique race free partial order that is a minimal strengthening of the
causal order. I.e. there is a canonical refinement of the requirements that
corrects all race conditions.

1 Introduction

UML sequence diagrams [19], Message Sequence Charts (MSCs) [18], and Live
Sequence Charts (LSCs) [7] are popular for defining wireless and mobile com-
munication protocols. The semantics of a basic scenario diagram defined with
any of these languages can be given in terms of a partial order on the events in
the scenario. The partial order restricts the order in which events can occur in
any system trace. This partial order is called the causal ordering. We refer to
any basic scenario diagram with such a semantics as a partial order scenario.

Although scenario specification languages have become quite sophisticated
and have expressive powers beyond partial order scenarios, such scenarios are
still the mainstay of industrial specifications. Consequently the study of partial
order scenarios is still an active topic of research [5, 13, 12, 16]. Synthesizing
various types of system models directly from these partial order scenarios is also
an active area [1, 3, 4, 11, 15, 17]. Research into automatic test generation from
partial order scenarios is another active research area [2, 6, 14].

Industrial requirements specifications often contain inconsistencies between
the specified causal ordering and the order that events can occur in practice. Race
conditions are amongst the most common of these inconsistencies. Essentially a
race condition asserts a particular order of events will occur as a consequence of
the causal ordering, when in practise this order can not be guaranteed to occur.
See [9, 10] for the original formal description of the problem within the MSC
context.

It is possible to directly analyze the causal ordering to automatically detect
race conditions [10]. This still leaves the onerous task of actually correcting the
race conditions. Case studies such as [20] have shown that around a third of sig-
nificant defects in SDL specifications are caused by poor requirements specifica-
tions. Since many SDL specifications are refined from MSCs and UML sequence
diagrams this suggests a significant number of errors arise because of poor qual-
ity in partial order scenarios. Hence the ability to automatically correct race
conditions would be of practical value.

In the paper we prove that given a causal ordering there exists a unique min-
imal weakening of that order which does not contain any race conditions, and
which is itself the causal ordering of some scenario (Theorem 10). We call this
weakening the inherent causal ordering, and the scenario to which it corresponds
the inherent causal scenario. We prove the inherent causal scenario is canonical
up to simulation equivalence of system behaviour. Therefore any race free gener-
alization of the original scenario must be a generalization of the inherent causal
scenario. Hence there is an optimal generalization of a partial order scenario that
corrects all race conditions. In section 7 we describe an example MSC scenario
from an industrial case study that illustrates how the inherent causal order can
be of value in practise.

The paper also proves that there is a unique minimal strengthening of a causal
order that corrects all race conditions, and which is equivalent to the causal
ordering of some scenario (Theorem 18). We call this the inherent refinement
ordering. As might be expected we prove the inherent refinement scenario is
canonical up to simulation equivalence. Hence there is an optimal refinement
of a partial order scenario that corrects all race conditions. The results can
be generalized to scenarios that extend the basic partial order semantics with
iteration and branching, as is the case with HMSCs. However, we do not prove
that here due to lack of space.

Although our results are perfectly general and apply to any basic scenario
diagram language such as basic UML sequence diagrams, MSCs or LSCs, we
will use MSC as the central language for the paper. The MSC standard [18]
is stable and MSCs are common in industry. Also MSC 2000 is being adopted
within UML 2.0 [19]. In addition MSCs allow the most general form of causal
ordering since it is possible for an MSC causal order to be almost any irreflexive
transitive partial order.

2 Basic Partial Order Specifications

In this section we define the causal ordering semantics for partial order scenarios
(e.g. basic MSCs). We use the same message semantics as the MSC 2000 standard
[18]. Hence, a partial order scenario defines a set of message exchanges between
processes with asynchronous communication channels. Also we do not assume
any type of buffering with the channels. However, the results in the paper do
hold for both synchronous and FIFO channels.

Let P be a set of processes. A message m between processes is a pair (!m, ?m)
where !m is the send event for m, and ?m is the receive event for m. We regard
!m as belonging to the sending process, and ?m as belonging to the receiving
process. Let E be the set of all send and receive events between all processes.
Each event has a label, let l : E −→ L be the labelling function. For a message
m, l(!m) = l(?m). Within the MSC standard there are many other kinds of
events such as action boxes and condition symbols, but here we only consider
message events to simplify proofs as much as possible. It is straightforward to
generalize the results to include these other events.

Definition 1. A partial order scenario on processes P is

– a collection of disjoint sets E(P) ⊆ E, for each P ∈ P that defines the
message events belonging to P ,

– and a set of irreflexive partial orders <P , where <P is a partial order on
E(P) that defines the local ordering of events for process P .

These local partial orders must be subject to the constraint that for each send
event !m in a set E(P) the corresponding receive event ?m occurs in some set
E(Q). Note messages are allowed to be sent from a process to itself, so we allow
P = Q. We treat a partial order as a binary relation that can be represented as
the set of pairs that are ordered by the relation. Hence we can take the union
of partial orders, which is just the set theoretic union of the sets that represent
the relevant order relations. It is important to note the local orders are not
necessarily total, but can be any irreflexive partial order. In the literature it is
sometimes assumed basic scenario diagrams have total local orderings, so it is
worth emphasizing this does not have to be the case.

Let Msg be the set of messages defined as the set of send and receive event
pairs:

{(!e, ?e) | !e ∈ E(P) and
?e ∈ E(Q) for some P, Q ∈ P}

Definition 2. The causal ordering <C on a partial order scenario is the tran-
sitive closure of the relation given by

(⋃

P∈P
(<P)

)
∪Msg

From now on we will assume that all partial orders are transitive and irreflexive
without loss of generality. We will also assume that all causal orderings are

A B C

a
b

c
d

Fig. 1. Race hidden by coregion

A B

a
b

Fig. 2. Message Overtaking, which is prohibited

irreflexive, so that messages must be received after they are sent. We also, as is
the norm, rule out message overtaking as shown in figure 2. The MSC standard
includes a general ordering construct, which is a simple graphical notation that
explicitly forces one event to occur before another event in the causal order. A
general order construct is depicted as a dashed arrow between the events to be
ordered, with arrow head placed in the middle of the arrow. In combination with
the coregion construct that means a process order <P defined by an MSC can
be any arbitrary irreflexive transitive partial order on the events E(P).

The causal ordering defines the set of all possible system traces that are given
by the partial order scenario. A system trace is any total order extension of <C .
Recall a total order on a set S is a partial order < on S where for any distinct
elements x, y ∈ S, either x < y or y < x.

Definition 3. The set of system traces defined by a causal ordering <C is the
set of total order extensions of <C.

Consider the MSC depicted graphically in figure 1. Each vertical line de-
scribes the time-line for a process, where time increases down the page. The dis-
tance between two events on a time-line does not represent any literal measure-
ment of time, only that non-zero time has passed. Events on the same time-line
are ordered linearly down the page, except where they occur within a coregion.
Within a coregion events are not locally ordered unless that is directly imposed
by a general order construct. Coregions are depicted with a dashed line. For
process B events ?c and ?d are unordered as they occur within a coregion. The
local partial orders defined by this MSC are given in figure 3 where we draw

the ordering downwards, so that !a <B !b for example. In this case the causal
ordering <C is given in figure 4.

?b

!d

!a

!b

?d ?c

?a

!c

A< B< C<

Fig. 3. Process Partial Orders

Figure 1 illustrates a race condition. The causal ordering asserts that !b <C
?c. If this MSC is taken as a specification it asserts that after C receives a it
must send c so that it arrives after b is sent. It is not possible for C to know
for sure when !b occurs without querying B. Hence it is quite possible if this
scenario is implemented naively that c will arrive before b is sent, contradicting
the specification. This error can occur even though each of the processes A and
C locally implements the specification correctly.

Definition 4. Define a partial order < on E to be race free when for every event
x and message e:

x <?e ⇒ (x <!e or x =!e)

We define an MSC to be race free when its causal ordering is race free.

?b

!d

!a

!b

?d ?c

?a

!c

Fig. 4. Causal Ordering

That is < is race free if the following holds. When < orders an event x before
the receive event of some message e, then it also orders x to be before the send
event of e.

Note that figure 1 is not race free since !b <C?c, but !b 6<C !c. The three basic
types of race are illustrated in figure 5. In the first example we have ?a <C?b,

but ¬(?a <C !b). In the second example we have !a <C?b, but ¬(!a <C !b). In the
last example we have ?a <C?c, but ¬(?a <C !c). The third race example is the
only one of the three that can be avoided by forcing messages to be synchronous.
Hence the first two examples will cause semantic inconsistencies in synchronous
and asynchronous scenarios.

A B C

a
b

A B C

a
b

A B C

a

b
c

Fig. 5. Three basic types of race condition

3 Partial Order Processes

In this section we define a process algebra term that characterizes the traces that
are defined by a causal ordering. This is a standard result for partial orders, but
we present it in a slightly non-standard format for ease of use later in the paper.
The process algebra term also characterizes the system behaviour up to strong
bisimulation equivalence.

First we set up some notation for defining sets of events that are important
in generating system and process traces. Let < be a partial order on a set of
events E. For a set S ⊆ E define

n(S, <) = {x ∈ E | ∃ y ∈ S : y < x,
and ¬∃ z ∈ E : y < z < x}

m(S,<) = {x ∈ S | ¬∃ y ∈ S : y < x}
af(a, S, <) = m((S − {a}) ∪ n({a}, <), <)

The set n(S, <) are those events that are a least upper bound for some element
in S. The set m(S, <) is just the set of minimal elements of S.

The set af(a, S, <) characterizes how events may follow a in an execution
trace, where S describes the set of all events that are eligible to occur concur-
rently with a. Suppose we have an execution trace t that is a total extension of
<. Let a be some event in t, so that t is of the form t0 · a · t1 (where · denotes

concatenation). Let S be the set of minimal events from the set of all events in
t1. Then t1 must be of the form b ·t2 where b ∈ af(a, S, <). The first element that
can occur in a trace that is a total extension of < has to come from m(E, <).
Hence we can define the system behaviour for a causal ordering as follows.

Definition 5. For a set S ⊆ E define a recursive process algebra term by

P (S, <) =
∑

{a∈S}
a · P (af(a, S, <), <)

and P (∅, <) = 0.

Where a ·P denotes the usual sequential composition of action and process, and
the summation is nondeterministic choice (as standard in both CCS and CSP).

Definition 6. Define the observable behaviour for causal ordering <C to be the
process:

P (M) = P (m(E, <C), <C)

In [8] they define a process algebra term for M that defines the system traces for
<C . Let P ∗(M) denote this process. Process P (M) is strong bisimulation equiv-
alent to P ∗(M). Hence P (M) defines the system traces of the global behaviour
for the processes defined by M .

Suppose that MSC M contains processes Pi for 1 ≤ i ≤ n. Then a parallel
composition of the P (m(E(Pi), <Pi), <Pi) for 1 ≤ i ≤ n is strong bisimulation
equivalent to P (M) (which follows from an analogous result in [8]). However, we
will not need to use that result here.

4 Inherent Causal Behaviour

A partial order < on events preserves the message ordering when !e <?e for
every message e. Let <C be the causal ordering for a partial order scenario.

?b

!d

!a

!b

?d ?c

?a

!c

Fig. 6. Inherent Ordering

Definition 7. Define the inherent causal ordering <I of <C to be the transitive
closure of the following partial order relation <. For every event x and message
e define:

1. x < !e ⇐⇒ x <C !e
2. !e < ?e

Note that when regarding a partial order as a set of pairs, we have

(<I) ⊆ (<C)

The inherent ordering is the causal order of some partial order scenario. This
follows from the next lemma.

Lemma 8. The inherent causal ordering <I of a partial order scenario with
processes P is the transitive closure of the following partial order relation.

1. x < !e ⇐⇒ ∃P ∈ P such that x <P !e
2. !e < ?e

Figure 6 gives a graphical depiction of the inherent ordering for figure 1.
Since we are able to impose general orderings on events within MSC diagrams

we can represent this inherent ordering as an MSC. That is we can define a second
MSC who’s causal ordering is in fact the inherent ordering of figure 1. This is
the leftmost MSC in figure 7. Notice that the coregion for process B now covers
all the events in E(B). In order to assert that !a must occur before !b we have
added a general ordering construct between these events. This is the dashed
arrow, with arrow head placed at the mid point of the arrow. Wherever such
a general ordering arrow occurs in an MSC from events x to y this explicitly
defines x <C y. Thus definition 2 of <C has to be extended so that it includes
the set of pairs given by the general ordering construct.

A B C

a

b

c
d

A B C

a
b

c
d

Fig. 7. Inherent Causal Ordering, and Inherent Refinement Ordering as MSCs

5 Canonical Inherent Processes

Recall in section 3 we defined the observable process behaviour P (M) of a partial
order scenario M .

Definition 9. Define the inherent process behaviour of a partial order scenario
M to be PI(M) = P (m(E,<I), <I)

Let A denote the standard simulation relation for process algebras. That is
P A Q iff

for every transition Q
a−→ Q′,

there exists a transition P
a−→ P ′ where P ′ A Q′

Theorem 10.

– (<I) ⊆ (<C), and PI(M) A P (M)
– For any race free partial order < that preserves message ordering, let P< =

P (m(E,<), <).
Then P< A P (M) iff (<) ⊆ (<I) ⊆ (<C) and P< A PI(M)

That is PI(M) is the canonical process that simulates P (M) and is race free. To
say that (<1) ⊆ (<2) means that for every x and y in E, when x <1 y then
x <2 y.

This theorem proves that the order <I describes the maximal ordering with
respect to simulation equivalence that is a race free weakening of <M . Hence
constructing an MSC that has partial order semantics given by <I defines a new
MSC that corrects any race conditions in M , and weakens the causal ordering
of M as little as possible. It is straightforward to construct such an MSC.

The theorem is a consequence of the following lemmas. For any partial order
< (which is not necessarily race free) let T (<) be the set of total extensions of
<. Lemma 11 follows immediately from our initial observations concerning the
definition of af(a, S, <).

Lemma 11. The set of traces of P< is exactly T (<), the set of total order
extensions of <.

Lemma 12. For partial orders <1 and <2 where

P<1 A P<2

then (<1) ⊆ (<2)

Proof
Note that x < y iff for every trace in T (<), x occurs before y in the trace.

When P<1 A P<2 then the set of traces for P<2 is contained in the set of traces
for P<1 , that is T (<2) ⊆ T (<1).

x <1 y ⇒ x occurs before y in every trace of T (<1)
⇒ x occurs before y in every trace of T (<2)
⇒ x <2 y

Hence (<1) ⊆ (<2), which concludes the proof.

Lemma 13. Given two partial orders <1 and <2,
T (<1) ⊆ T (<2) iff P<1 @ P<2

Proof
Note that T (<1) ⊆ T (<2) iff (<2) ⊆ (<1). Given

(<2) ⊆ (<1), to prove P<1 @ P<2 , it is enough to prove that for any S ⊆ E
and a ∈ E,

af(a, S, <1) ⊆ af(a, S, <2) (1)

Let
m1 = m((S − {a}) ∪ n({a}, <1), <1)
m2 = m((S − {a}) ∪ n({a}, <2), <2)

We write U ≤ V for sets U, V ⊆ E, when for each u ∈ U , there is some v ∈ V
such that u ≤ v. Note that since (<2) ⊆ (<1) then n({a}, <2) ≤ n({a}, <1).

For a contradiction suppose that x ∈ m1 and x 6∈ m2. This implies there is
some y ∈ m2 such that x <2 y. First consider if y ∈ S−{a}. Then x <1 y ∈ S−
{a}, hence x 6∈ m1. This is a contradiction, hence we must have y ∈ n({a}, <2).
Since n({a}, <2) ≤ n({a}, <1), there is some y′ ∈ n({a}, <1) such that x <2

y <1 y′. Therefore x <1 y′ ∈ n({a}, <1), and so x 6∈ m1. Again a contradiction
as required to complete the proof of equation 1. The proof that T (<1) ⊆ T (<2)
implies P<1 @ P<2 , is completed once we note that m(E, <1) ⊆ m(E, <2).

The converse implication is straightforward. It is true for any processes P
and Q that if P A Q then the set of traces of Q is contained in the set of traces
for P . Since the traces of P<i are exactly T (<i), the result is then immediate.
That completes the proof of the lemma. 2

Lemma 14. For a partial order < that preserves message ordering and is race
free, (

(<) ⊆ (<C)
)
⇒

(
(<) ⊆ (<I) ⊆ (<C)

)

Proof
For this it is enough to prove that whenever x < y then x <I y. The proof

splits into cases depending on whether y is a receive or send event. First suppose
that y =!e for some message e. Then x <!e implies x <C !e since (<) ⊆ (<C).
By definition of <I , x <C !e implies x <I !e.

The other case is where y =?e for some message e. Since < is race free, x <?e
implies that x <!e. As above this implies x <I !e. The ordering <I preserves
message ordering, and hence x <I?e. This completes the proof of the lemma. 2

6 Inherent Refinement Behaviour

In this section we prove the dual result of theorem 10, where instead of general-
izing the causal ordering we refine it.

Definition 15. Define the inherent refinement ordering <R of a causal ordering
<C to be the transitive closure of the following partial order <. For every event
x and message e define:

– x <!e ⇐⇒ x <C?e
– !e <?e

First note that <R is race free. Since it is clear from the definition that x <R?e
implies that x <R!e or x =!e. Also notice that the refinement order only extends
<C by forcing particular send events to be delayed so that other events may
occur first, and hence is implementable.

If the partial order scenario is an MSC then the inherent refinement ordering
can be constructed by adding suitable general orderings to the MSC, which cause
appropriate send events to wait until the relevant receive events have occurred.
For example the rightmost MSC of figure 7 gives the inherent refinement order
for the partial order scenario in figure 1.

The use of general orderings is acceptable so long as they can be implemented
in asynchronous distributed systems. We only use them to delay send events, and
this effect can always be achieved by adding further messages to the partial order
scenario. To force a general ordering x <C !e, where x ∈ E(P) and !e ∈ E(Q), we
can add a new coordination message c with !c ∈ E(P) and ?c ∈ E(Q). We then
alter the local orderings by adding the pairs x <P !c and ?c <Q !e. Processes
P and Q can enforce these orderings locally since they only have to delay send
events to do so.

However, the choice of implementation is for the system designers who may
use other mechanisms which are more appropriate for their particular circum-
stances. The goal of the solution presented here is to correct the semantics for
the scenario in an optimal manner without altering the given message content
of the scenario and without imposing any assumptions about communication
channel semantics.
Lemma 16.

(<C) ⊆ (<R)

Proof
To prove this suppose x <C y. If y =!e for some e, then y <C?e. Hence from

the definition x <C?e and hence x <R!e. That is x <R y.
When y =?e, then x <R!e. Also !e <R?e, hence by transitive closure, x <R

?e = y. This completes the proof of the lemma. 2

Lemma 17. For any race free transitive partial order < that preserves messages
and where (<C) ⊆ (<), then

(<C) ⊆ (<R) ⊆ (<)

Proof
To prove this first consider an event x and message e where x 6=?e and

x <C?e. That is x <R!e. Since (<C) ⊆ (<), we have x <?e. Since < is race
free we have x <!e. Hence, if x <R!e then x <!e. Since < preserves messages it
trivially follows that !e <R?e implies !e <?e. Hence as < is transitive we have
proved that (<R) ⊆ (<). 2

Given the lemmas already proved in section 5 we have thus proved the fol-
lowing theorem, which is the dual to theorem 10.

Theorem 18. Let PR(M) = P (m(E, <R), <R), then

– (<C) ⊆ (<R), and P (M) A PR(M)
– For any race free partial order < that preserves message ordering, let P< =

P (m(E,<), <).
Then P (M) A P< iff (<C) ⊆ (<R) ⊆ (<) and PR(M) A P<

Hence <R is the canonical refinement of the causal order that corrects all race
conditions in the specification.

7 Industrial Case Study Example

A B C D E F G

a0

a

b

c

PAR

a1

b1

another sequence diagram

b2

c1
c2

PAR

d

Fig. 8. UML 2.0 case study example with multiple race conditions

In collaboration with Motorola Research Labs, we have been conducting
a number of case studies [6, 11] into automating pathology detection in MSC
telecommunication specifications. Figure 8 is an anonymized example from a
Motorola case study, which contains multiple race conditions. The original di-
agram is a UML 2.0 sequence diagram that describes traffic channel allocation
and activation between various processes for a telecommunication protocol. Pro-
cess A has delegated the task of determining what resource to allocate to process
B.

A parallel construct in a MSC/UML sequence diagram, denoted by PAR,
describes a set of concurrent threads that occur in the diagram. Dotted lines
delineate the different threads. Hence, events from one thread are not causally
ordered with respect to events from any other thread. Figure 8 contains two
parallel constructs. The first parallel construct contains messages a, b and c in
separate threads, which can therefore occur in any order. The bounding box of
a parallel construct has no effect on the ordering of events, it solely delineates
the scope of the concurrent threads. Note an MSC/UML sequence diagram con-
taining solely messages, coregions and parallel constructs still defines a partial
order scenario in the sense of definition 1.

A B C D E F G

a0

a

a1

b
b1

another sequence diagram

b2

c
c1

c2

PAR

d

Fig. 9. Inherent Causal Scenario for Figure 8 as MSC

An inline reference, denoted by REF, is a place holder for another sequence
diagram. The reference can be replaced by the contents of the other sequence
diagram if desired. The reference is weakly composed with the referring diagram
when inlined. Figure 8 contains an inline reference spanning processes A through

D. We will assume for this example that the inline reference is some linear
ordering of events in order to simplify our calculations.

In total we have the following six race conditions in figure 8. Event ?a1 is
in a race with !b and also with !c. Event ?c2 is in a race with !a and also with
!b. Also event ?b2 is in a race with !a and also with !c. It may be that the
authors implicitly assumed the downlink latency from B is much shorter than
the uplink latency for the other processes. If this were true it may be possible in
practise for the specification to be realizable. However it is far safer to rewrite
the specification without these race conditions.

One way to remove these races would be to regroup the messages within a
single parallel construct. Messages a and a1 could be grouped within the same
thread of a parallel construct. Similarly b, b1, b2 and the inline reference could
be grouped in a second thread. Finally c, c1 and c2 could be grouped in the
third thread. Figure 9 depicts this solution. It seems reasonable to suppose this
will not contradict what the authors originally intended.

Figure 9 is exactly the inherent causal scenario of figure 8. In this case the
inherent causal order for figure 8 would seem to represent the specification in-
tended by the authors, rather than the causal order of figure 8 itself.

The UML 2.0 case study also contained cases of sequence diagrams where
a more intuitively ‘correct’ specification was given by the inherent refinement
ordering, rather than the inherent causal ordering. Hence, we are not proposing
either inherent ordering as some kind of panacea. However, providing practi-
tioners with both inherent orderings in the form of MSCs (or UML sequence
diagrams) will give them a better understanding of what specifications are pos-
sible.

8 Conclusion

The paper has proved that there is a canonical solution for correcting all race
conditions within a partial order scenario by weakening the causal relationship.
Moreover the solution can be easily automated via lemma 8. The inherent causal
ordering that defines the solution can also be presented in MSC format by use of
the MSC coregion, parallel and general ordering constructs. Section 7 gave an ex-
ample from an industrial case study where the inherent causal ordering captured
the intended behaviour of a specification containing multiple race conditions.

The paper has also proved the dual result, that there is a canonical refine-
ment of the specifications that corrects all race conditions. This is the inherent
refinement ordering. This also can be presented in MSC format, which can be
constructed automatically. Together these inherent orderings provide a useful
insight into the semantically consistent specifications that are possible for a dis-
tributed system.

References

1. R. Alur, K. Etessami, M. Yannakakis, Inference of Message Sequence Charts,
Proceedings 22nd International Conference on Software Engineering, pp 304-313,
2000.

2. M. Beyer, W. Dulz, F. Zhen, Automated TTCN-3 Test Case Generation by
Means of UML Sequence Diagrams and Markov Chains, Proceedings of 12th
Asian Test Symposium (ATS’03), IEEE 2003.

3. Yves Bontemps, Pierre-Yves Schobbens, Synthesis of Open Reactive Systems
from Scenario-Based Specifications, (ACSD’03)

4. Yves Bontemps, Patrick Heymens, Turning high-level live sequence charts into
automata, Proc of Scenarios and State Machines: Models Algorithms and tools,
24th International Conf. on Software Engineering, May 2002, ACM.

5. E. Gunter, A. Muscholl, D. Peled, Compositional Message Sequence Charts,
TACAS 2001.

6. P. Baker, P. Bristow, C. Jervis, D. King, B. Mitchell, Automatic Generation of
Conformance Tests From Message Sequence Charts, Proceedings of 3rd SAM
Workshop 2002, The Broader Applicability of MSC and SDL, pp 170-198, LNCS
2599.

7. David Harel, Werner Damm LSCs: Breathing Life into Message Sequence Charts,
Formal Methods in System Design, 19, 45-80, 2001

8. T. Gehrke, M. Hilhn, H. Wehrkeim, An algebraic semantics for message sequence
chart documents. In FORTE/PSTV‘98, pages 3-18. Kluwer Academic Publishers,
1998.

9. Gerard J. Holzmann, Doron A. Peled, Message Sequence Chart Analyzer, United
States Patent, 5,812,145.

10. Gerard J. Holzmann, Doron A. Peled, and Margaret H. Redberg, An analyzer for
message sequence charts, Software Concepts and Tools, 17(2), 1996.

11. B. Mitchell, R. Thomson, C. Jervis, Phase Automaton for Requirements
Scenarios, Feature Interactions in Telecommunications and Software Systems VII,
77-84, 2003, IOS Press.

12. A. Muscholl, D. Peled: From Finite State Communication Protocols to
High-Level Message Sequence Charts. ICALP 2001, 720-731.

13. D. Peled: Specification and Verification using Message Sequence Charts.
Electronic Notes in Theoretical Computer Science 65, No 7, 2002.

14. E. Rudolph, I. Schieferdecker, J. Grabowski: Development of a MSC/UML Test
Format. 153-164, Formale Beschreibungstechniken fur verteilte Systeme, 2000.
Verlag Shaker 2000, ISBN 3-8265-7491-5.

15. J. Schumann, J. Whittle, Generating Statechart Designs From Scenarios,
Proceedings 22nd international conference on on Software engineering, 2000.

16. A. Tsiolakis, Integrating Model Information in UML Sequence Diagrams,
Electronic Notes in Theoretical Computer Science, June 2001.

17. S. Uchitel, J. Kramer, J. Magee, Synthesis of Behavioral Models from Scenarios,
IEEE Transactions on Software Engineering, vol. 29, no. 2, February 2003

18. Z.120 (11/99)ITU-T Recommendation - Message Sequence Chart (MSC)
19. Object Management Group (OMG), Unified Modeling Language (UML):

Superstructure, Version 2.0, 2003. Available from http://www.omg.org.
20. E. Wong, J. R. Horgan, W. Zage, D. Zage and M. Syring, Applying Design

Metrics to a Large-Scale Software System, (Motorola), Proceedings of the 9th
International Symposium on Software Engineering Reliability (ISSRE ’98),
Paderborn, Germany, November 4-7, 1998.

