
Scenario Synthesis from Imprecise

Requirements

Bill Mitchell1, Robert Thomson2, Paul Bristow2

1 w.mitchell@surrey.ac.uk,
Department of Computing, University of Surrey

Guilford, Surrey GU2 7XH, UK
2 {brt007, paul.bristow}@motorola.com

Motorola UK Research Lab, RG22 4PD, UK
May 6, 2004

Abstract. Discovering faults in requirements specifications for distributed
reactive systems is a challenging problem since many issues that need
to be uncovered are a result of subtle component interactions that are
implied by the requirements, but not explicitly described by them. A
further difficulty is caused by the imprecise nature of industrial require-
ments specifications. This makes it difficult to construct valid models of
the possible compositions between the requirements, which would be a
valuable aid in uncovering such interactions.
The paper defines a formal semantics that characterizes a particular type
of imprecise compositional semantics derived from industrial case studies,
and a process algebra that describes the valid requirements compositions
for that formal semantics.

1 Introduction

Telecommunications protocol requirements specifications often con-
sist almost solely of normative MSC scenarios, together with english
text. Requirement specification MSC scenarios tend not to provide
a comprehensive set of examples, and contain implicit behavior that
can easily be missed, or misinterpreted by software developers. Stud-
ies have shown that approximately a third of all serious defects are a
result of poor requirements [11]. It is therefore important to derive a
comprehensive set of scenarios describing implicit compositions be-
tween the requirements for use in uncovering potential defects in
the specifications and as test purposes for the development process.
However, in various case studies at Motorola it has been shown that
although MSC scenarios are precise about message definitions and
exchanges, industrial requirements specifications are often imprecise

about their compositional semantics. That makes it difficult to con-
struct a valid model of the requirements compositions. The MSC
scenarios in the case studies were annotated with global state like
information, which should make composition straightforward. How-
ever, these states were often used imprecisely across different require-
ments scenarios. Therefore not all the compositions that result from
treating the states as if they are precisely defined will be valid. We
will refer to these state like constructs as phases. Intuitively a phase
represents a set of global concurrent states with imprecise composi-
tional semantics. Where the same phase occurs in two MSC scenarios
it is not immediate that it represents the same global states in both
scenarios. They can only safely be assumed to be the same states if
the phase is reached in a consistent manner in both scenarios.

The paper defines a formal phase semantics for MSC scenarios,
which was formulated from an industrial case study involving around
three hundred MSC scenarios. This formalizes when two occurrences
of a phase are consistently reached and define the same global con-
current states. This leads to a technique for synthesising phase com-
position processes from a collection of requirements scenarios. These
characterise the ‘valid’ compositions of requirements specifications
that have imprecise compositional semantics. The compositions are
a subset of those given by regarding the phases as precisely defined
concurrent global states. Note we use the term ‘valid’ within the
context of the industrial case studies.

Related Work

Preliminary results were first reported in [7]. The current paper dif-
fers in that it allows phases to be simultaneously active, describes
how to combine processes rather than traces and permits a temporal
context that controls when features can be concurrent.

There appears to no work in the literature that attempts to de-
fine a formal semantics for composition of informal MSC scenarios.
There are however several papers concerned with model synthesis of
formal MSC scenarios. In [1] they describe how to generate some im-
plied scenarios from basic MSCs. In [9], [8] they address the problem
of synthesising statecharts from MSC scenarios. In [9] they compose
synchronous MSC-s into statecharts by using global state names in-

corporated in the MSC scenarios. Phases are closely related to global
states, but they are not the same. They have state like semantics
when certain behavioral constraints hold. This state like semantics
is dynamically determined by the concurrent behaviour described
by the requirements. In [2], [3] they define scenario and program
synthesis from live message sequence charts (LSCs). They do not
use global state annotation, however the phase semantics here incor-
porates some of the ideas of mandatory behaviour from LSCs that
permits the state like semantics to be determined dynamically.

2 MSC Phase Transition Scenarios

In this paper we assume MSCs are defined in accordance with the
MSC 2000 standard [10]. An MSC scenario describes message ex-
changes between processes that achieve a transition between major
operational phases of the system. Consider figure 4, which describes
how a ‘Browser’ process downloads a Java application iteratively
from the ‘Air Interface’ process until it receives the ‘EOF’ message,
or it detects that the file is corrupted. The shortened hexagonals
are MSC condition symbols that describe which operational phase
is active at any time. To emphasize this point we will refer to them
as phase symbols from now on. Phase symbol labels will be iden-
tified with propositional boolean formulae in the paper. In figure 4
‘Browser’ starts the scenario in phase ‘Inactive’, that is the proposi-
tion ‘Inactive’ is given value true and all other phases are made false
for that process. Then phases ‘Active’ and ‘Load File’ become ac-
tive simultaneously, hence are given value true and ‘Inactive’ is given
value false. The point at which a phase symbol is introduced into a
scenario is defined as a phase transition. This interpretation of MSC
condition symbols is an extension of the MSC 2000 standard where
condition symbols have no formal semantics. Common engineering
practise treats MSC condition symbols as global states, but unfortu-
nately in an imprecise fashion that forces the phase semantics that
are discussed in this paper.

User Phone Browser

Java App Download Idle Inactive

key press(java menu)

Java Menu

select(option)

Download

activate

ack

load(URL)

Load File Active

Download File

Download

download OK

InactiveDisplay Notification

Fig. 1. Java Application Download

3 Phase Composition Semantics

Each process behavior described by an MSC scenario can be de-
fined as a process algebra term that characterises this behavior up
to strong bisimulation equivalence [5]. From now on we will identify
an MSC with the set of process algebra terms it defines. For a pro-
cess P we can extract from each MSC scenario Mi a process algebra
term Qi that defines the behavior of P in Mi. In section 4 we will
define a process algebra that permits us to join together these dif-
ferent Qi into a process that describes the implicit phase transitions
of the requirements scenarios. In this section we will motivate the
formal semantics with an informal definition.

For a set of requirements specification scenarios let P be the set
of possible phases that can occur and E be the set of events that
can occur. We regard P as a set of boolean propositions.

Definition 1. A phase trace is a sequence of triples (Si, ei, Si+1),
for 0 ≤ i ≤ n − 1, where each ei ∈ E and Si, Si+1 ⊆ P. Si denotes
the set of phases that are active before event e, and Si+1 denotes the
phases that are active immediately after e.

In practise Si and Si+1 are usually the same as they represent the ma-
jor operational phases of the protocols defined by the requirements,
which do not change after every single event. A triple (Si, ei, Si+1)
is referred to as an annotated event. When a phase trace ends in an
annotated event (S, e, S ′) where S 6= S ′ we say t is a phase transition
trace and (S, e, S ′) is a phase transition.

Figure 1 describes a requirements scenario where the mobile
handset has a dedicated key that causes a menu of java applica-
tions that are available for download to be presented to the user.
Once the user selects one of these applications from the menu the
‘Phone’ process delegates the task of downloading the application to
the (WAP) ‘Browser’ process. Within this scenario it is not specified
how this downloading occurs, it is abstracted away by the action box
‘Download File’.

In figure 1 each process generates a single phase trace. For ex-
ample the phase trace t0 for the ‘Browser’ process is:

({Inactive}, ?activate, {Inactive})
({Inactive}, !ack, {Inactive})
({Inactive}, ?load(URL), {Active})
({Active}, Download File, {Download})
({Download}, !download OK, {Inactive})

3.1 Informal Phase Composition Semantics

Informally we can give requirements scenarios the following seman-
tics, which will allow us to construct phase composition processes
from them. Suppose we have a scenario M that defines message ex-
changes between processes, including the process Q.

Consider two phase transition traces t1 and t2, where t2 is a suffix
of t1 and terminates with a phase transition (S0, e, S1). I.e t1 = t3 · t2

for some t3. In this case we say t1 and t2 match and that S1 is reached
consistently. Hence we can suppose each occurrence of S1 defines the
same set of concurrent global states. This leads us to the idea of
phase transition simulation between processes based on the idea of
one process simulating another once a common phase is shown to be
consistently reached.

A process P simulates the phase transitions of Q when the fol-
lowing holds. If we observe a trace of annotated events of P that
leads to a phase transition, with some suffix equal to a phase trace
of Q, then P must be able to simulate the behavior of Q from then

on. Hence, if there are traces t1 and t2 as above such that P
t1−→ P1,

and Q
t2−→ Q2 then P1 must be able to simulate Q2 (in the con-

ventional sense). Given a number of specification processes Qi it is
possible to define a canonical process that simulates the phase tran-
sitions of them all as will be defined in section 4. That canonical
process captures the legitimate compositions of the scenarios within
an imprecise setting.

Note the above semantics is true if we can assume a phase symbol
is a global state name for some statechart, and is in fact a weakening
of such state semantics. The phase semantics above allows a phase to
act as a global state once there is a match between the behaviour of
two different scenarios. By using such an overlap between scenarios
to define when phase symbols can act in a state like way, we ensure
that they can only be used to compose scenarios where they are
consistently applied.

Consider the examples of figures 1 and 2. Figure 2 describes how
the ‘Browser’ process downloads a file iteratively once it receives
the ?load(URL) message in the ‘Inactive’ phase. Recall that figure 1
abstracted out the details of how the Java application is downloaded.
We can suppose these two scenarios are defined by different feature
teams, quite likely at different times. Perhaps figure 2 is a legacy
requirement specification. Given the informal semantics we can see
how the two ‘Browser’ processes can be joined together within a
single process that represents some of the phase transitions implied
by the two scenarios.

Suppose we observe the initial trace of annotated events for t0
from figure 1 consisting of

Phone Browser Air Interface

Download Inactive Channel

load(URL)

Load File

Resolve URL

get handle(file)

Data
file handle(file)

Read File

read(file handle)

send(file handle)

Check For Errors

loop< 0,∞ >

Alternatives

Fig. 2. Download File with Browser Process

t1 =({Inactive}, ?activate, {Inactive})
({Inactive}, !ack, {Inactive})
({Inactive}, ?load(URL), {Active})

In figure 2 the initial annotated event of process ‘Browser’ is
t2 = ({Inactive}, ?load(URL), {Load File})

This causes a phase transition from ‘Inactive’ to ‘Load File’. Let
us assume within the context of receiving load(URL) that whenever
‘Active’ is an active phase then so is ‘Load File’. Hence the end of
t1 matches t2. That means after the first two annotated events have
occurred t1 matches t2 in that they contain the same events and are
consistently annotated.

Therefore whenever process ‘Browser’ initially follows the sce-
nario given by figure 1 up to the first phase transition, it must be
able to simulate the subsequent scenario given by figure 2. That
means we can combine the two scenarios into that described by fig-

Phone Browser Air Interface

Error Found

corrupt file(file)

Display Failure Notice Inactive

read(file handle)

EOF

DownloadLoad File Channel

download OK

InactiveDisplay Notification

alt

Fig. 3. Alternatives Reference for Figures 2 and 4

ure 4. Note that although figure 1 gave no account of what might
happen if the file being downloaded was corrupted the new scenario
describes this case. This would make a valuable test purpose.

3.2 Formal Semantics of Phase Compositions

We will use a Hennessy Milner style of temporal logic [6] to permit
phases to act as a type of temporal guard. A temporal model M
consists of a directed graph G, with vertex labelling ν : GV −→ 2P ,
edge labelling ε : GE −→ E, and some vertex i that represents the
initial moment. We can think of M as representing a model of the
system global states and execution traces.

Temporal formulae are defined as usual:

– M, v ² 〈e〉φ iff there is an edge (v, w) ∈ GE such that ε(v, w) = e,
and M, w ² φ. I.e. there is some execution trace from v starting
with e where φ holds.

– M, v ² [e]φ iff for every edge (v, w) ∈ GE where ε(v, w) = e,
M, w ² φ. I.e. for every execution trace from v starting with e, φ
holds.

– M, v ² ¤φ iff M, v ² φ and M,w ² ¤φ for every edge (v, w) ∈
GE. I.e. for all execution traces from v, φ holds.

User Phone Browser Air Interface

Java App Download Idle Inactive

key press(java menu)

Java Menu

select(option)

Download activate

ack

load(URL)

Load File Active, Load File

Resolve URL

get handle(file)

Data

file handle(file)

Read File

read(file handle)

send(file handle)

Check For Errors

loop< 0,∞ >

Alternatives

Fig. 4. Synthesized Scenario of Error Checking with Java App Download

– M, v ² ♦φ iff there is some vertex w reachable from v such that
M, w ² φ. I.e. for some execution trace from v, φ holds.

– M, v ² ψ U φ iff there is some vertex w reachable from v such that
M, w ² φ, and for every vertex u on that path to w M, u ² ψ. I.e
there is an execution trace from v where ψ holds until we reach
w when φ becomes true.

The satisfiability of ordinary boolean formulae is defined as usual.
Formula φ is satisfied in M when M, i ² φ. φ is valid when it is
satisfied in every model, when we write ` φ. For formulae ψ and φ
we write ψ ` φ to denote that ` ψ ⇒ φ.

Definition 2. For a set S ⊆ P, define
∧

S =
∧

x∈S x. For a phase
trace t = (S, e, S ′) · t′, define its temporal semantics as

‖t‖ =
∧

S ∧ 〈e〉(
∧

S ′ ∧ ‖t′‖)

This formula represents that somewhere within the model M there
should be at least one execution trace with states and events that
match those of t. A context X is any temporal formulae over P
and E. It controls how phases are related across the requirements
scenarios. For the example above, where we assumed that whenever
a load(URL) message is received then Active implies ‘Load File’ until
Inactive, the context would be

¤([load(URL)](Active ⇒ (‘Load File’ U Inactive)))

The temporal context also permits phases defined by different de-
velopment teams to be given a consistent meaning across all the
scenarios.

Definition 3. For context X we define phase trace t to match phase
trace t′ when

X ` (‖t‖ ⇒ ♦‖t′‖)
The matching formula is true when some suffix of the sequence t
contains exactly the same event trace as the whole of t′, and the
phase annotations of the corresponding events are logically consis-
tent within the context defined by X . Note t1 matches t2 in the
informal semantics example since

¤([load(URL)](Active ⇒ (‘Load File’ U Inactive))) ` (‖t1‖ ⇒ ♦‖t2‖)
Given processes whose actions are annotated events we define

first simulation, and then phase transition simulation. For annotated
events a = (S, e, S ′) and b = (U, g, U ′) define a ⇐X b when e = g,
X ` ∧

U ⇒ ∧
S and X ` ∧

U ′ ⇒ ∧
S ′.

Definition 4. Define P to simulate process Q within context X ,
written as P AX Q, if ∀a such that Q

a−→ Q′ there is some a′ where

P
a′−→ P ′ such that a′ ⇐X a and

P ′ AX Q′

This simulation relation forces phases to be compatible as well as
ensuring the events are simulated correctly.

For a phase trace t = a0 · a1 · · · an−1, let P
t−→ P ′ denote that

there are processes Pi, for 0 ≤ i ≤ n, such that Pi
ai−→ Pi+1, P0 = P

and Pn = P ′.

Definition 5. Define P to simulate the phase transitions of process
Q within context X , written as P DX Q, when the following holds.

For all phase transition traces t such that Q
t−→ Q′, and for all

phase traces τ that match t, whenever there is a process P ′ such that
P

τ−→ P ′ then P ′ AX Q′.

In other words, if after being active for some arbitrary time, P sub-
sequently generates a trace of annotated events that match a phase
transition trace of Q, then P must be able to simulate Q from that
time onwards. This implies that a phase transition trace of Q acts
as a kind of temporal guard. If ever the guard is triggered, in the
sense that P can match the phase transition trace, then the rest of
the behavior of Q is then simulated. Note this is a strict weakening
of the global state semantics as in [9], [8] where the phase symbols
of the MSC scenarios are identified with global state names in UML
statecharts.

Let {Mi | 0 ≤ i ≤ n} be a set of scenarios, let Qi be a process
from Mi for each i. That is each Qi defines exactly the observed
behavior of one process in scenario Mi.

Definition 6. We define process P to represent the phase transi-
tions of processes Qi when P DX Qi for each i. The overlaps of P
are those phase transition traces of P that are not contained in any
of the Qi.

Figure 4 describes one of the overlaps given by the phase transition
representation of the ‘Browser’ processes in figure 1 and figure 2.

4 Phase Composition Processes

Let A be the set of annotated events. Let + be the usual choice
operator over process terms. Let · be the usual composition operator
of atomic actions and process terms. Let ρ(X) : A −→ B be a
boolean valued function that defines when an annotated event is a

P ‖ Q = (P 〈⇐〉Q) + (P 〈⇒〉Q)
a · P 〈⇐〉b ·Q = a · P 〈⇐|〉b ·Q when a ⇐X b
a · P 〈⇐〉b ·Q = a · (P 〈⇐〉b ·Q) when a 6⇐X b
a · P 〈⇐|〉b ·Q = (a + b) · (P 〈⇐|〉Q) when a ⇐X b and ¬ρ(X)(a)
a · P 〈⇐|〉b ·Q = (a + b) · (P | Q) when a ⇐X b and ρ(X)(a)
a · P 〈⇐|〉b ·Q = a · P + b ·Q when a 6⇐X b and ρ(X)(a)
a · P 〈⇐|〉b ·Q = a · P when a 6⇐X b and ¬ρ(X)(a)
a · P | b ·Q = (a + b) · (P | Q) when a ⇐X b
a · P | b ·Q = a · P + b ·Q when a 6⇐X b and b 6⇐X a

Fig. 5. Phase Composition Process Algebra

phase transition. That is ρ(X)(S, e, S ′) = t when X 6` (
∧

S ⇒ ∧
S ′).

Note when X is a tautology, then ρ(X)(S, e, S ′) denotes that S and
S ′ are disjoint. For annotated events a = (S, e, S ′) and b = (U, e, U ′)
define a + b = (S ∪U, e, S ′ ∪U ′). For a set of processes Q consisting
of processes Qi, for 1 ≤ i ≤ n let πQ denote Q0 ‖ Q1 ‖ · · · ‖ Qn.

In figure 5 we briefly describe a process algebra that defines how
to synthesise a phase transition representation from a set of pro-
cesses described by the requirements scenarios. For this algebra we
further define | to be commutative and (P 〈⇒〉Q) = (Q〈⇐〉P) and
the process 0 to act as a multiplicative zero element for these two
operators, so that (0〈⇐〉Q) = 0, and 0 | Q = 0. Notice that a + b is
equivalent to b + a, hence in the penultimate axiom

a · P | b ·Q = (a + b) · (P | Q)

when a ⇐X b or when b ⇐X a. Finally we assume all the defined
compositional operators in the algebra distribute over summation of
processes. The algebra essentially defines an algorithm for the con-
struction of a minimal phase transition representation as explained
in theorem 1.

The process P ‖ Q will consist of P and Q glued together along
traces from each process that match. The process P 〈⇐〉Q defines
joins between the processes where a trace from P matches a trace
from Q. Process P 〈⇐〉Q acts like P until it reaches an action that
Q is able to perform (if there is such a place). It then changes to
the process P 〈⇐|〉Q. This process now allows P and Q to unfold in
lock step. If this continues until there is a phase transition, then we
have a match between a trace in P and Q. The process P 〈⇐|〉Q will

now become P | Q. If there is no such match then essentially Q is
discarded. Process P | Q allows P and Q to unfold in lock step until
they diverge, at which point it splits into the summation of the two
processes.

Hence if we have two traces P
t1−→ P ′ and Q

t2−→ Q′ where t1
matches t2, then there is a trace P ‖ Q

t1−→ P ′ | Q′. If there are no
matches between any traces of P and Q then P ‖ Q degenerates into
P + Q. Because it is possible for a process to have a non-degenerate
match between two of it’s own traces, it is not the case that P ‖ P
is necessarily equivalent to P .

Theorem 1. Given a set Q of processes Qi from requirements sce-
narios Mi for 0 ≤ i ≤ n, then

P = πQ

is a phase transition representation of Q.
Process P is canonical upto simulation equivalence. That is if

P ′ is another phase transition representation of Q, then P ′ AX P .
Define P to be the phase composition process for Q.

Figure 6 is the phase composition process of the two ‘Browser’ pro-
cesses defined in figures 1 and 2. The dotted arrows represent the part
of the process behavior that is exclusive to figure 1. The solid arrows
are the behavior that is defined by figure 2. The grey box denotes
where phase trace t1 matches t2. This match defines where the two
‘Browser’ processes are joined together. The process is depicted as a
finite state automaton, where the edges are labelled with annotated
events. The temporal context here causes Active and Load File to be
simultaneously valid, hence both phases are included in the relevant
annotated events. Where a set of phases in an annotated event only
contains a single phase we leave out the surrounding braces for that
set and just write the phase on its own.

In general the phase composition process P is built by joining
together specification scenario processes wherever there is a match
between phase transition traces. Suppose there are two specification
processes Q0 and Q1, where there is a phase transition trace t0 within
the body of Q0 that matches some phase transition trace t1 at the
start of Q1. Then P will contain a copy of Q0 joined to Q1 along

(Read File,
?send(file_handle),
Read File)

(Inactive, !ack, Inactive)

(Inactive,?load(URL), {Active, Load File})

(Inactive, ?activate, Inactive)

(Active,
Download File,
Download)

(Download, !download_OK, Inactive)

({Active, Load File}, Resolve URL, {Active, Load Fi le})

({Active, Load File}, !get_handle(file), {Active, L oad File})

({Active, Load File}, ?file_handle(file), Read File)

(Read File,
!read(file_handle),
Read File)

(Read File,
Check For Errors,
Read File)

(Read File, Check For Errors, Error Found)

(Error Found, corrupt_file(file), Inactive)

(Read File, ?EOF, Download)

Fig. 6. ‘Browser’ Phase Composition Process

the end of t1 that corresponds to t0. By exhaustively joining all such
matches together in a single process we construct P . The process
algebra of figure 5 captures this idea formally.

Theorem 2. The phase composition process of theorem 1 is regular.
That is it can always be represented by a finite state automaton.

If in fact phase symbols truly are global state names, then the
phase composition process will always be simulated by the resultant
statechart. Hence traces of the phase composition process are also
traces of any future refinements of the scenarios that transform phase
symbols to global states.

Motorola Pilot

The process algebra in figure 5 can be implemented in an efficient
manner to provide an automated mechanism for generating phase
transition representations of requirements scenarios. A prototype
version of this has been implemented by Motorola UK Research Labs

[7] as an extension of their test generation tool set [4]. Their cur-
rent prototype does not allow iterative processes, and has not imple-
mented temporal contexts. The prototype has been used on various
existing 3G requirements scenarios and is currently being used as
part of a pilot study during the development of new products.

Phase Composition Test Purposes

It is possible to automatically generate test purposes from the phase
composition process. The phase composition process can be used to
generate new MSC scenarios that describe implicit phase transitions
within the requirements. Figure 4 is derived in this way from figure
6. Such new MSC scenarios can be used to generate test suites via
tools such as ptk [4]. ptk can derive TTCN2, TTCN3 or SDL test
cases directly from MSC requirements using a number of algorithms
to choose which MSC traces to generate the tests from.

5 Conclusion

Around a third of significant defects can be traced to requirements
specifications. Hence it is important to be able to construct a model
of possible compositions of the requirements as an analytic tool to
facilitate the detection of such defects. Such a model is also useful
in ensuring sufficient coverage of test cases for feature interactions
implied by the requirements, which are often caused by composition
between requirements for different features.

Unfortunately MSC requirements scenarios usually have impre-
cise compositional semantics that makes it hard to synthesise an
analytical model of their possible compositions. Here we have de-
fined a process algebra that defines how such imprecise scenarios
can be composed. The algebra allows phase symbols to have global
state like semantics when there is a suitable overlap of concurrent
behaviour between scenarios. This ensures composition occurs only
where phase symbols have consistent state like definitions.

References

1. R. Alur, K. Etessami, M. Yannakakis, Inference of Message Sequence Charts,
Proceedings 22nd International Conference on Software Engineering, pp 304-313,
2000.

2. Yves Bontemps, Pierre-Yves Schobbens, Synthesis of Open Reactive Systems
from Scenario-Based Specifications, Third International Conference on
Application of Concurrency to System Design (ACSD’03)

3. Yves Bontemps, Patrick Heymens, Turning high-level live sequence charts into
automata, Proc of Scenarios and State Machines: Models Algorithms and tools,
24th International Conf. on Software Engineering, May 2002, ACM.

4. P. Baker, P. Bristow, C. Jervis, D. King, B. Mitchell, Automatic Generation of
Conformance Tests From Message Sequence Charts, Proceedings of 3rd SAM
Workshop 2002, Telecommunications and Beyond: The Broader Applicability of
MSC and SDL, pp 170-198, LNCS 2599.

5. T. Gehrke, M. Hilhn, H. Wehrkeim, An Algebraic Semantics for Message
Sequence Chart Documents, in Formal Description Techniques, Chapman Hall
1998.

6. M. Hennessy, R. Milner, Algebraic Laws for Nondeterminism and Concurrency,
Journal of the ACM, 32: 137-161, 1985.

7. Bill Mitchell, Robert Thomson, Clive Jervis, Phase Automaton for Requirements
Scenarios, Feature Interactions in Telecommunications and Software Systems
VII, 77-84, 2003, IOS Press.

8. J. Schumann, J. Whittle, Generating Statechart Designs From Scenarios,
Proceedings 22nd international conference on on Software engineering, 2000.

9. S. Uchitel, J. Kramer, J. Magee, Synthesis of Behavioral Models from Scenarios,
IEEE Transactions on Software Engineering, vol. 29, no. 2, February 2003

10. Z.120 (11/99)ITU-T Recommendation - Message Sequence Chart (MSC)
11. E. Wong, J. R. Horgan, W. Zage, D. Zage and M. Syring, Applying Design

Metrics to a Large-Scale Software System, (Motorola), Proceedings of the 9th
International Symposium on Software Engineering Reliability (ISSRE 98),
Paderborn, Germany, November 4-7, 1998.

