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Abstract. Subthreshold design has been proposed as an effective tech-
nique for designing signal processing circuits needed in wireless sensor
nodes powered by sources with limited energy. In this paper we propose
a subthreshold FIR architecture which brings the benefits of reduced
leakage energy, reduced minimum energy point, reduced operating volt-
age and increased operating frequency when compared with recently re-
ported subthreshold designs. We shall demonstrate this through the de-
sign of a 9-tap FIR filter operating at 220mV with operational frequency
of 126kHz/sample consuming 168.3nW or 1.33pJoules/sample. Further-
more, the area overhead of the proposed method is less than that of the
transverse structure often employed in subthreshold filter designs. For
example, a 9-tap filter based on transverse structure has 5x higher area
than the filter designed using our proposed method.
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1 Introduction and Related Work

In wireless sensor nodes there is limited energy and therefore careful usage of
the available energy is required. Subthreshold approach has been demonstrated
to be effective in designing circuits with limited energy supply and therefore
is receiving continuing attention from researchers interested in ultra low power
design in particular wireless sensor networks and ubiquitous computing. The key
to subthreshold design is the recent work reported by several authors which has
already established the importance of leakage current contribution to the total
power in subthreshold designs.

In [1] the authors have demonstrated that an optimal supply voltage Voptimai
exist below the threshold voltage Vp for maximum energy efficiency in subthresh-
old circuits. This occurs when the dynamic energy and leakage energy is compa-
rable and is often referred to as the ‘minimum energy point’. Scaling the supply
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voltage further below V,ptimq may result in correct circuit operation but doesn’t
necessarily improve energy efficiency because the leakage energy starts to domi-
nate. Therefore the dynamic and leakage energy have two opposing trend in this
region that gives rise to a minimum energy point at Viptimar- The subthreshold
FFT design in [2] showed that the circuit can operate down to Vyg = 180mV with
very low operating frequency of 64H z, but the minimum energy point voltage is
much higher than this minimal voltage and is reported at 350mV having opera-
tional frequency of 10k H z. Transistor sizing that affects the energy consumption
and the minimum energy point voltage is considered in the FIR design in [3].
The minimum energy point analysis through an analytical model for the delay
and energy of an inverter chain in subthreshold circuits is discussed in [4]. The
study showed that the minimum supply voltage V;ptimqr for obtaining minimum
energy point is dependent on several circuit parameters including transistor siz-
ing, dynamic voltage scaling, threshold voltage scaling, body biasing and size of
logic depth. The adaptive filter design in [5] proposed dynamic threshold volt-
age scaling approach to reduce leakage energy through substrate biasing. In [6]
the improvement of leakage energy in subthreshold circuits was investigated by
simultaneously scaling the supply voltage and threshold voltage.

One key application in wireless sensor nodes with limited energy supply is
filtering and therefore the design of filter function has been considered in the
recently reported subthreshold designs including [3] and [5]. In this paper we
propose a subthreshold FIR architecture which brings the benefits of reduced
leakage energy, reduced minimum energy point, reduced operating voltage and
increased performance when compared with recently reported subthreshold de-
signs. Our approach is based on reducing the number of transistors needed to
implement a particular filter order. We will demonstrate the proposed archi-
tecture in the design of a 9 tap FIR filter. To the best of our knowledge this
is the first study that shows improvement in leakage energy in the context of
subthreshold design through reduced transistor count.

2 Minimum Energy Operation in Subthreshold Design

The total energy of CMOS a circuit is [4]:

N(l — Oz)VddIoff
f

where N is the number of gates in the circuit, « is the average circuit switching
activity, Cs is the switch capacitance of a single inverter, Vy, is the supply

FEiotal = NaCVE + (1)

\%
voltage, Iors = Ioe "V is the off current, m is the subthreshold slope factor,
Vip, is the thermal voltage and f is the frequency of operation. The frequency

of operation is f = ﬁ and depends on the number of inverters in the
slow X tdelay

critical path (Lgow) and the delay of a single inverter (geiqy). In the above
equation, Vg4 can be scaled down to obtain the V;ptimq; for the minimum energy
point but is bound by a certain limit for the subthreshold operation [4]. The
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Voptimat can be found by expanding the terms and differentiating equation 1:
2 v
Etotal - Nacsvdd + N(l - O‘)Vddloemvth tdelayleow
—Vad
= NaC, Vi + N(1 — ) KCy Lo Ve ™ in

where K is a process dependent parameter. Differentiating with respect to Vyq
gives:

aEtOtal —Vdd

=2NaCVyq + 2N(1 — a)KCsleodedethh
OVya
1 o —Vdd
“ v N = ) KC Lo Vigge ™ =0 (2)

From equation 2 the first term contributes to the dynamic energy while the
second and third term contributes to the leakage energy. Equating the above
non linear equation 2 to zero and solving for the Vzy would provide the optimal
supply voltage at Vg = Voptimat for the minimum energy point. A solution of this
can be obtained by a curve fitting method. Our approach to obtain the minimum
energy point is to reduce the number(N) of minimum sized (W x L) transistors
through the elimination of multipliers. In [1], it has already been established that
the minimum energy point is dependent on a. It is shown that the Voptimar occurs
at a higher voltage when « is low because a low « gives a circuit more time to
leak and the effective critical path becomes longer. A longer chain of gates in the
critical path (Lgjew) is also detrimental to the overall energy performance of the
circuit as more gates are leaking relative to the dynamic energy. Reducing the
transistor count will increase the switching activity (« or transistor utilization),
hence the increased o can be used to reduce Vg4 which leads to reduced overall
energy. In the proposed filter, a short critical path (Lgjew) is achieved through the
elimination of multipliers. We will illustrate the effects of the above parameters
(N, &, Lsiow, Vaa) in our proposed FIR filter in sec 5.

3 Filtering

A key application for subthreshold wireless sensor node is physiological monitor-
ing application where filtering and convolution is required. In [3], [5] and [7] the
authors have reported how such functions can be implemented using subthresh-
old designs. A standard FIR realization often employed in subthreshold designs
is the transversal structure depicted in Fig.1. The filter input z(n) and output

y(n) is:

—

M
y(n) = 3 h(m)a(n —m) (3)

m=0

In the figure, the symbol 27! is a delay of one sample or unit of time and is
implemented using shift registers. The output sample y(n) is the weighted sum
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of the current input x(n) and (M — 1) previous samples. The calculation of
each of the output sample requires (M — 1) shift registers to store the (M —
1) input samples, M registers to store M coefficients, M multiplications and
(M —1) additions. Therefore, the critical path or delay of an M-tap filter would
consist of one single multiplier and [ceiling(log, M )] number of adder delays. An
example is the critical path of an 9-tap filter that consist of one multiplier and
[ceiling(log, 9)] = 4 adder delays shown as dashed lines in Fig.1. It should be
noted that the critical path of the multiplier consists of 15 full adder stage (tiny
square boxes) as shown in Fig.1.
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Fig. 1. FIR transverse architecture

3.1 Minimum Energy Point Analysis of Adders

As our method eliminates multipliers which consume significant power and also
this leads to reduced critical path or delay. Since we discuss the derivation of the
minimum energy point, both delay and power is important. We will demonstrate
in Section 4 and in Section 5 that removing multipliers from the data path will
have significant energy savings. As a result of eliminating the multipliers, the
only key building block left in the proposed FIR structure (Fig.5) is the adders.
We investigate the minimum energy point for different adders. To the best of
our knowledge, no explicit investigation of obtaining Voptime; and the minimum
energy point for different adder topologies in the context of subthreshold design
has been reported. We examine four adder circuits: Carry Look Ahead(CLA),
Ripple Carry(RC), Carry Select(CS) and Carry Skip(CSK), for which minimum
energy point is determined, using 0.13u Berkeley Predictive Technology Models
[8]. Fig.2 shows hspice simulation of the minimum energy point analysis of the
adders as a function of Vg4. As it can be seen all adders have the minimum
energy point within a £5% range of 200mV, and the CS adder has the minimum
energy point (i.e. lowest energy consumption). This is explained as follows,
The carry select adder has the shortest critical path when compared with
the other adders and its critical path consists of 4 full adders (one RCA-4) and
2 gates (AND, OR) as shown in Fig.3. For comparison the critical path of the
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Fig. 2. Minimum Energy Point of Adders
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Fig. 3. Carry Select Adder

carry skip adder is shown in Fig.4. As shown in the dashed lines, the critical path
of the carry skip adder is longer than the carry select adder since it consists of 2
full adder delays (one RCA-2) and 12 stages of 2-input gates (AND, OR). The
overall delay or the critical path of the carry select adder contains 10, 2-input
gates, whereas the carry skip adder has 16, 2-input gates. So, the carry select
adder has a lower delay than the carry skip adder. The carry select adder also
ensures that for any inputs most of the gates are switching during the circuit
operation due to the two 4-bit ripple carry adder stage (RCA-4) for the most
significant bit that has two carry inputs tied to ‘0’ and ‘1’. From the simulations
we observe that for the same set of inputs the average switching activity of the
carry select adder is 1.3x more than that of the carry skip adder. Due to the
higher switching of the gates the optimal voltage occurs at a much low voltage
for the CS adder because the leakage energy is reduced and an improvement in
overall energy is achieved. It should be noted that in designing the adders only
two input gates with fan-out limited to three and minimum sized transistors
were employed in order to reduce leakage energy and to avoid circuit failure [9].
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Fig. 4. Carry Skip Adder
4 Proposed FIR Architecture

The proposed FIR architecture is shown in Fig.1. As it can be seen, it consist
of functional units (FU), adder stage and only one shift and accumulate stage
without any multipliers. We have implemented a 9-tap filter and included the
multiplexors after three delay stages (shaded region) in the FIR to show the
added benefit of this FIR to be configured as a convolution filter often used in
physiological monitoring applications [10]. Assuming the tap coeflicient to be
8-bit wide, a standard M-tap transverse FIR filter equation 3 can be modified
to:

M-1 M-—1 7
y(n) = > h(m)z(n—m) = > an— m)hk(m)Qk] (4)
m=0 m=0 Lk=0

The square term in equation 4 can be implemented by using shift registers and
adders. The term hy, is a one bit data ‘0" or ‘1°, and is the weight of the coefficient.
The resulting architecture based on equation 4 contains same M number of shift-
add-accumulate blocks as multipliers in conventional FIR (Fig.1). This can be
simplified further [11] to equation 5 for area critical implementation resulting in
the following:

7 M—1
J =3 [z x(n—m>hk<m>] o 5

k=0 Lm=0

This results in area efficient architecture because the term inside the square
bracket reduces from 16-bits to 8-bits. For a M-tap filter, a transverse filter with
multipliers will contain 2 x M shift registers, M multipliers and (M — 1) adders,
while the proposed filter will contain 8 x M AND gates, 16 x M shift registers
and (M —1) adders. As shown in Fig.5, the 9-tap filter consists of nine functional
units, an adder stage and one add-accumulate block.

As shown in Fig.5 the functional unit(FU) is the core of the architecture and
is defined in the square bracket term in equation 5. Each FU is capable of one
partial product. In every clock cycle, one 8-bit partial product is calculated. So
a complete 8-bit sample would be delivered once in every eight clock cycle. The
nine functional unit outputs 72-bits of partial product every clock cycle which
is one eighth of the sample. The partial product of each of the functional unit is
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Fig. 5. Proposed FIR architecture

fed to the adder stages that sums up the nine partial product. The adder stages
are 8-bit wide instead of 16-bit, which again reduces area. Coefficient bits are
shifted left in each clock cycle so that the partial product is ANDed from most
significant bit to least significant bit as shown in Fig.5. To avoid overflow, a 16-bit
wider adder structure (with 8-bit half adder and a 8-bit full adder) in the shift,
add-accumulate stage is implemented. The left shift in the accumulator and the
add takes care of the weight associated with the left shift of the coefficient data.
A shift operation is done in the accumulator by tying the least significant bit to
‘0’ to adjust the weight of the coefficients. This process is continued 8 times till
one filtered sample or convolved data is obtained. The new data is loaded after
every eight clock cycles. A simple 8-bit shift register is implemented to generate
the control signal once every 8 clock cycles for loading or shifting of the input
data. The critical path (or longest path) of the design is the dotted line marked
in the Fig.5 which is clearly shorter than the transverse structure. We assume
that the data input is done directly and completely avoids any buffering stages
in the FIR.

5 Results and Discussion

To validate the efficiency of the proposed architecture, we have designed two
9-tap filters; one is based on the proposed architecture (Fig.5), and is denoted
as Design 1 and the other denoted as Design 2 based on the transverse struc-
ture with multipliers (Fig.1) which has also been employed in recently reported
subthreshold filters [3]. Both designs were simulated using hspice with realis-
tic transistor models from [8]. Apart from the minimum sized two input gates,
the use of shift registers and associated flip flops for data buffering presents a
significant problem because the flip flops fail to function below the threshold
voltage. To mitigate this problem we have used the flip flop design discussed in
[3]. In both designs, 8-bit wide input data and 8-bit coefficients were used. Fig.6
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shows the minimum energy point analysis of both filters. As it can be seen, both
filters can operate down to Vg = 150mV (points © and ©). From the spice
simulations the power obtained for Design 1 is 168.3nW and for Design 2 is
816.0nW. Design 1 has lower minimum energy point at @ and happen at lower
supply voltage (220mV’) than Design 2 (B), 275mV’). The reason why Design 1
outperforms Design 2 in terms of energy consumption is because of the following
reasons: From the simulations we observe that the operating voltage increases
as the switching activity decreases as expected [4]. This is because the ratio of
the dynamic and leakage energy is proportional to the switching activity («). A
higher o will have a lower operating voltage V4, because the influence of leakage
energy on the total energy will be minimal. From the spice simulations we ob-
serve that Design 1 has a higher utilization of the transistors and therefore has
a higher average switching activity, 6x than that of Design 2. This allows for a
lower Vg4 for the circuit to be operated resulting in lower dynamic energy. Also,
due to a higher utilization of the transistor and due to the smaller critical path,
fewer transistors are leaking and hence the leakage energy is low. The critical
path of Design 1 has 60 gate delays whilst the Design 2 consists of 98 gate delays.
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Fig. 6. Minimum Energy Point of two Filters

Fig.7 gives insight into the leakage and dynamic power consumption of both
filter designs as function of V4. Again, as expected Design 1 have lower dynamic
and leakage power components than Design 2. Fig.8 shows the delay performance
of both filter designs as a function of V4. Design 1 has an operating frequency
at 126k H z and Design 2 has an operating frequency at 100kHz. As it can seen
the filter designed using the proposed architecture exhibits better performance
than Design 2. This is because Design 1 filter has much smaller critical path than
that of Design 2 and is illustrated in Fig.1 and Fig.5 respectively. In summary,
Fig.6, 7 and 8 clearly demonstrates that the proposed architecture produce fil-
ters with lower energy consumption (1.33 fgﬁ:ﬁﬁ at 220mV’) and better delay
performance (126kH z) than Design 2 using the transverse structure with multi-
pliers (8.16M at 275mV | 100kH z). An 8-tap subthreshold filter reported in

sample
[3] operates at Vyg = 250mV and 30kHz using the transverse structure shows

further evidence.
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It should be noted that the multipliers takes up considerable area and hence
to the overall transistor count in an FIR up to 30-40% of the total and therefore
reducing the multipliers will reduce the transistor count. As indicated earlier
that the better energy and delay performance of the filters designed using the
proposed architecture is achieved through the removal of multipliers from the
filter architecture. This leads to significant reduction in transistor count. As it
can be observed Design 1 has 144 shift registers (16 regx9 FU) and 72 AND gates
(8 gatesx9 FU) whilst Design 2 has 16 shift registers and 9 multipliers. Table
1 gives the block count and the transistor count of the 9-tap filter (Designl).
For example, 8, 8-bit carry select adders were needed, each has 91 gates, and a
total of 362 transistors. The total transistor count of the 8 adders is 2896. Due to
space limitations it is not possible to conclude the area overhead details of Design
2. But it can be stated that the overall transistor count is roughly 50k nearly
5x higher than the proposed filter which consist of 9 multipliers, adder stage
and the registers. The area cost of the proposed architecture is low compared
with that of filters based on the transverse structure consisting of multipliers.
For example, it was reported in [3] that the 8-tap subthreshold filter has 200k
transistors, which is nearly 20x higher than the proposed filter (Table 1).

Block Circuit Blocks|Transistors

9 FU(2x8b Reg+8 AND) 9 x 640 5760
Add Stage(8x8b CSA) 8 x 362 2896
Control(1x8b Reg) 1 x 304 304
Adder(8b CSA+8xHA) |1 x 362+ 8 x 12 458
Accumulator (2x 16b Reg) 2 x 608 1216
2 MUX 2x14 28

| Total Count of FIR | FIR | 10,662

Table 1. Design 1 Filter Area Overhead.

6 Conclusions and Future Work

We have proposed an FIR filter architecture based on subthreshold transistor
operation. The architecture generates filters with lower minimum energy points,
and operates with lower V4 and exhibits better delay performance than designs
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obtained using the transverse structure that has been employed in previously
reported subthreshold FIR filters. These energy and performance benefits have
been achieved as a result of reducing the number of transistor count needed to
implement the filtering function. This reduction in area overhead brings another
benefit of the proposed filter architecture. We envisage a potential application
for the proposed FIR filter architecture is to be part of DSP architectures aimed
at wireless sensor nodes powered by limited energy sources.

The performance and stability of the subthreshold designs are greatly af-
fected by Process, Voltage and Temperature variations. The effect on the circuit
performance due to these variations will be studied further and is left as a future
work.
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