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 Abstract - Application of a finite difference front fixing method to 
a thermistor problem with strongly non-linear material properties 
is discussed. Advantages and implementation problems of the 
method are highlighted. Particular attention is given to 
conservation properties of the algorithm and accurate solutions 
close to the moving transition region. The algorithm is tested using 
a well-known solution of the plane diffusion problem with complex 
conditions at the moving interface. 

 
I. INTRODUCTION 

 
A thermistor is a circuit device with very non-linear 

dependence of electric conductivity σ on temperature T [1]. 
The changes in σ may be rapid, typical σ variations of four 
orders of magnitude with T increasing from 100oC to 200oC 
have been recorded [2] (Figure 1). The transition region for a 
given point between temperatures T1 and T2, which 
corresponds to coordinates s1 and s2, is typically small and a 
coupled treatment of electric and thermal fields is complex. It 
is quite common to ignore the transition and consider a sharp 
interface with a step behaviour in σ. But it was noted [2] that 
the step function is not the most realistic model for σ and that 
a more complex σ(T) should be used for accurate predictions. 
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Fig. 1.  Typical variation of conductivity with temperature for a thermistor. 

 
This paper deals with modelling of coupled electric current 

and heat flow in a thermistor with a particular attention paid 
to a moving transient region. The motion is assumed to be a 
complex function of the solution itself. Many numerical 
methods developed previously, such as front tracking or re-
meshing techniques, are often not able to cope effectively 
with such a strong coupling. On the other hand, the front-
fixing transformations [3] introduce a co-ordinate system in 

which all of the spatial region boundaries are fixed to s1 and 
s2. One advantage of discretising in the transformed space is 
that the meshes automatically adjust themselves to 
accommodate the moving interface position.  It is therefore 
possible to impose irregular meshes with fine resolution in 
regions where large temperature and field gradients are 
expected, while using larger space steps elsewhere. 

The main challenges are the implementation of 
conservation laws at the moving boundaries and an effective 
mesh refinement. These issues are addressed in the paper. 

 
II. FORMULATION OF THE PROBLEM 

 
The electric current flow in the system and associated Joule 

heating are described by Ohm’s law:  
 , (1) ( ϕ∇σϕ∇≡σ=ϕ∇σ==∇ − 21  ,  ,0 JJJ elQ )
where J is the current density, φ is an electric potential, Qel is a 
Joule heat. Heat transport is governed by the heat diffusion 
equation: 
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where C is a specific heat, ρ is a density, κ is a thermal 
conductivity. Appropriate initial and boundary conditions for 
(1), (2) are discussed elsewhere [2]. 

 
III. FRONT-FIXING METHOD 

 
Landau transformation utilises new positional variables 

(one for each domain). In the plane case, an introduction of 
u=x/s1(t) fixes the extent of high conductivity region to the 
domain 0≤u≤1, while w=(x−s2)/(L−s2), and ν=(x−s1)/(s2−s1), 
fix the extent of the other domains to 0≤w≤1 and 0≤v≤1. As 
an example, the divergent form of Equations (1) and (2) for u 
and interface equations at s1 may be written as [3]: 
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Equations similar to (3)-(7) can be written for v and w. In 
fact the Landau transformation introduces a co-ordinate 
system in which all of the spatial boundaries are fixed to 0 or 
1. Under the transformation, the new computational domains 
remain the same with an additional advection term in (3) and 
non-linear equation for the boundary motion, Equation (5). 
This allows keeping nodes close to the interface independent 
of the motion, which gives higher accuracy for the same 
number of nodes used. A divergent form of Equations (3) and 
(6) ensures that there are no artificial energy sources. The 
thermal energy balance at the interfaces is fulfilled by the 
variation in interface positions s1 and s2 to satisfy 
Equation (5). Equations (3) to (5) represent a typical Stefan 
problem with the so-called implicit moving boundary and 
strongly non-linear Joule heat source. 

Numerical scheme. The set of simultaneous equations 
involves the unknown future temperature field and potentials 
together with the future interface position. Since all of the 
equations are coupled, if the implicit scheme is to conserve 
energy, the entire system must be solved simultaneously. But 
the fact that they form a non-linear system means that this is 
potentially very demanding in terms of computing times. It is 
interesting to note, however, that Equations (3) and (5)-(7) are 
only weakly coupled; thus, if the future interface positions were 
known, the diffusion problem (3) would become quasi-linear. 
With a known temperature profile the potential could be found 
from (6), (7) using standard algorithms. Conversely, if future 
temperature and potentials were known, the future interface 
position could be calculated from Equation (5) relatively easily. 
It is possible to implement an efficient algorithm based on de-
coupling the problem in this way. Normally it requires only 
few iterations to reach a consistent solution. 

 
IV. VALIDATION 

 
The quality of the solution is assessed using a simplified 

system with a known analytical solution. A diffusion-
controlled phase change is an example of a non-linear, 
coupled diffusion-motion problem with a discontinuity at the 
moving interface, i.e. sharp front. The well known set of 
coupled non-linear differential equations may be used to 
model the system [3]. It can be described by variation of an 
abstract potential (φ) with position (x). Potential profiles 
depend on time (t). Diffusive processes occur simultaneously 
in two distinct domains (A & B), but the potential of one 
domain in contact with the other is fixed by a thermodynamic 
constraint (equilibrium potentials φA and φB). The rates at 
which potential diffuses towards the interface through A and 
is removed into B are not necessarily equal. In order to 
conserve energy the interface between the two domains must 
move. Writing the interface position as s=s(t), the following 
set of coupled non-linear differential equations may be used 
to model the system 
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Landau transformation of Equations (8) and (9) is similar 
to Equations (3)-(5) and further discretisation of the problem 
is discussed in [4]. The iterative algorithm based on de-
coupling of the problem was implemented, with only 3 to 4 
iterations needed to reach a consistent solution in this case.  

It is confirmed that the numerical scheme has conservative 
properties. The question of whether the solution is accurate 
remains. For particular initial and boundary conditions, 
analytical solutions are available [5]. This case is presented in 
Figure 2 (for geometry where L=1, D=1), the results 
correspond to calculations completed using both irregular and 
regular meshes. It is clear that, for a given number of 
discretisation points, it is possible to find more accurate 
solutions by using irregular meshes. In this way errors can be 
reduced without requiring extra computational effort. 
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Fig. 2.  Predictions for interface position: mesh size and time step effects [4]. 

 
V. CONCLUSIONS 

 
The use of a front-fixing method for modelling non-linear 

coupled thermo-electric processes is demonstrated. Potential 
problems with implementation of conservation laws and 
complex boundary conditions are considered and solutions 
suggested. It is shown that high accuracy can be achieved on 
a coarse irregular mesh since the interface is fixed in new 
coordinates. The finite difference method is utilized in the 
paper as an example; the finite element technique can be also 
used for successful discretisation of space and time in the 
transformed equations.  
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