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Abstract - Application of a finite difference front fixing method to
a thermistor problem with strongly non-linear material properties
is discussed. Advantages and implementation problems of the
method are highlighted. Particular attention is given to
conservation properties of the algorithm and accurate solutions
close to the moving transition region. The algorithm is tested using
a well-known solution of the plane diffusion problem with complex
conditions at the moving interface.

I. INTRODUCTION

A thermistor is a circuit device with very non-linear
dependence of electric conductivity ¢ on temperature 7 [1].
The changes in 6 may be rapid, typical ¢ variations of four
orders of magnitude with T increasing from 100°C to 200°C
have been recorded [2] (Figure 1). The transition region for a
given point between temperatures 7; and 75, which
corresponds to coordinates s, and s,, is typically small and a
coupled treatment of electric and thermal fields is complex. It
is quite common to ignore the transition and consider a sharp
interface with a step behaviour in . But it was noted [2] that
the step function is not the most realistic model for ¢ and that
a more complex (7) should be used for accurate predictions.
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Fig. 1. Typical variation of conductivity with temperature for a thermistor.

This paper deals with modelling of coupled electric current
and heat flow in a thermistor with a particular attention paid
to a moving transient region. The motion is assumed to be a
complex function of the solution itself. Many numerical
methods developed previously, such as front tracking or re-
meshing techniques, are often not able to cope effectively
with such a strong coupling. On the other hand, the front-
fixing transformations [3] introduce a co-ordinate system in
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which all of the spatial region boundaries are fixed to s; and
s,. One advantage of discretising in the transformed space is
that the meshes automatically adjust themselves to
accommodate the moving interface position. It is therefore
possible to impose irregular meshes with fine resolution in
regions where large temperature and field gradients are
expected, while using larger space steps elsewhere.

The main challenges are the implementation of
conservation laws at the moving boundaries and an effective
mesh refinement. These issues are addressed in the paper.

II. FORMULATION OF THE PROBLEM

The electric current flow in the system and associated Joule
heating are described by Ohm’s law:

VJ=0,J=0cV, 0, =03 =V(coVe), (1)
where J is the current density, ¢ is an electric potential, O, is a

Joule heat. Heat transport is governed by the heat diffusion
equation:

Cp S = VIK(T VT +o(T)4V0), ®)

where C is a specific heat, p is a density, k is a thermal
conductivity. Appropriate initial and boundary conditions for
(1), (2) are discussed elsewhere [2].

III. FRONT-FIXING METHOD

Landau transformation utilises new positional variables
(one for each domain). In the plane case, an introduction of
u=x/s1(f) fixes the extent of high conductivity region to the
domain 0<u<1, while w=(x—s,)/(L—s,), and v=(x—s1)/(s,—51),
fix the extent of the other domains to 0<w<I and 0<v<l. As
an example, the divergent form of Equations (1) and (2) for u
and interface equations at s; may be written as [3]:
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Equations similar to (3)-(7) can be written for v and w. In
fact the Landau transformation introduces a co-ordinate
system in which all of the spatial boundaries are fixed to 0 or
1. Under the transformation, the new computational domains
remain the same with an additional advection term in (3) and
non-linear equation for the boundary motion, Equation (5).
This allows keeping nodes close to the interface independent
of the motion, which gives higher accuracy for the same
number of nodes used. A divergent form of Equations (3) and
(6) ensures that there are no artificial energy sources. The
thermal energy balance at the interfaces is fulfilled by the
variation in interface positions s; and s, to satisfy
Equation (5). Equations (3) to (5) represent a typical Stefan
problem with the so-called implicit moving boundary and
strongly non-linear Joule heat source.

Numerical scheme. The set of simultanecous equations
involves the unknown future temperature field and potentials
together with the future interface position. Since all of the
equations are coupled, if the implicit scheme is to conserve
energy, the entire system must be solved simultaneously. But
the fact that they form a non-linear system means that this is
potentially very demanding in terms of computing times. It is
interesting to note, however, that Equations (3) and (5)-(7) are
only weakly coupled; thus, if the future interface positions were
known, the diffusion problem (3) would become quasi-linear.
With a known temperature profile the potential could be found
from (6), (7) using standard algorithms. Conversely, if future
temperature and potentials were known, the future interface
position could be calculated from Equation (5) relatively easily.
It is possible to implement an efficient algorithm based on de-
coupling the problem in this way. Normally it requires only
few iterations to reach a consistent solution.

IV. VALIDATION

The quality of the solution is assessed using a simplified
system with a known analytical solution. A diffusion-
controlled phase change is an example of a non-linear,
coupled diffusion-motion problem with a discontinuity at the
moving interface, i.e. sharp front. The well known set of
coupled non-linear differential equations may be used to
model the system [3]. It can be described by variation of an
abstract potential (¢) with position (x). Potential profiles
depend on time (¢). Diffusive processes occur simultaneously
in two distinct domains (4 & B), but the potential of one
domain in contact with the other is fixed by a thermodynamic
constraint (equilibrium potentials ¢, and ¢p). The rates at
which potential diffuses towards the interface through 4 and
is removed into B are not necessarily equal. In order to
conserve energy the interface between the two domains must
move. Writing the interface position as s=s(z), the following
set of coupled non-linear differential equations may be used
to model the system

%:a—ax(l)(d)(x,l))%]’ O<x<L, x=s(t) (8)
@ - @ _ B ds(t) _
DA ox s DB o o ((I)B ¢A) 7 , X S(t) (9)
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Landau transformation of Equations (8) and (9) is similar
to Equations (3)-(5) and further discretisation of the problem
is discussed in [4]. The iterative algorithm based on de-
coupling of the problem was implemented, with only 3 to 4
iterations needed to reach a consistent solution in this case.

It is confirmed that the numerical scheme has conservative
properties. The question of whether the solution is accurate
remains. For particular initial and boundary conditions,
analytical solutions are available [5]. This case is presented in
Figure 2 (for geometry where L=1, D=1), the results
correspond to calculations completed using both irregular and
regular meshes. It is clear that, for a given number of
discretisation points, it is possible to find more accurate
solutions by using irregular meshes. In this way errors can be
reduced without requiring extra computational effort.
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Fig. 2. Predictions for interface position: mesh size and time step effects [4].

V. CONCLUSIONS

The use of a front-fixing method for modelling non-linear
coupled thermo-electric processes is demonstrated. Potential
problems with implementation of conservation laws and
complex boundary conditions are considered and solutions
suggested. It is shown that high accuracy can be achieved on
a coarse irregular mesh since the interface is fixed in new
coordinates. The finite difference method is utilized in the
paper as an example; the finite element technique can be also
used for successful discretisation of space and time in the
transformed equations.
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