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Abstract: In this paper we explore the relationship between
local and global behaviour in a simple model of utility com-
puting infrastructure as the system heterogeneity, load and re-
liability are varied. To do this, we implement minimally com-
plex agent strategies for which we can identify the fundamen-
tal generic feedback underlying system behaviour. Such feed-
back must be balanced by any utility computing infrastructure
if decentralised control is to become an effective technique for
preserving stable functionality.
Keywords: decentralised control, multi-agent system, self-
organisation, decentralised resource allocation

1. Introduction

The advent of the Internet and distributed computing has en-
abled remote access to a range of computational resources such
as CPU power, disk storage, bandwidth, laboratory equipment,
etc. This ability to share and utilise computational resources
across a group of independent users has created an opportunity
to both simplify the traditional service provisioning model and
lower service management and provisioning costs.

In response to these possibilities, a number of initiatives,
such asautonomic computing[6] and utility computing[9],
have been announced by major IT vendors sharing the same
underlying principles of provisioning resources on demandto
a large number of users. Since these infrastructures are large,
open and dynamic systems that are free to change and grow
organically by introducing or removing new components in an
ad hocmanner, control over their resource allocation presents
unique challenges that may overwhelm existing centralised
management approaches [2].

Designing effective control mechanisms capable of simulta-
neously delivering both low cost of overall infrastructureoper-
ation, and cheap service provision for users, requires a solution
that is scalable, reliable and adaptive to changing system con-
ditions. In this context, the application of a multi-agent sys-
tem involving a population of active and autonomous agents
offers one way to address the challenge, but it is far from obvi-
ous how the individual system elements need to be designed to
meet these objectives. In particular, this approach addresses the
problem of designing decentralised resource allocation mecha-
nisms which, despite operating on local and imperfect informa-
tion, lead to the satisfaction of global system objectives.

Rather than attempting to assess candidate solutions to the
resource allocation problem, or optimise system performance
in some way, in this paper we focus on understanding the
fundamental nature of the interactions between agents arising

from their individual local control mechanisms. Unfortunately,
characterising the manner in which particular resource alloca-
tion mechanisms bring about such feedback in full-blown sys-
tems can be extremely challenging. Here, we focus on under-
standing a system featuring minimally complex resource al-
location mechanisms, where such a characterisation is more
tractable. In doing so, we are motivated by the working hy-
pothesis that the dynamics of such a system, while simple, will
share general properties with more realistic utility computing
systems, and a belief that achieving an understanding of decen-
tralised control at this level of abstraction will be crucial if it
is to become an effective means of managing distributed open
systems.

2. Prior Work

The introduction of shared and constrained resources into sys-
tems of the kind described above may quickly and unexpect-
edly lead to the emergence of undesirable system behaviour,
often described asresource competition[7]. Here, consumers
end up competing for specific subsets of resources, leaving oth-
ers under-utilised. The resulting poor global resource utilisa-
tion may eventually cause unstable and unpredictable system
functioning. Furthermore, since there is no centralised control,
the system may reinforce this competitive behaviour leading to
a very rapid degradation of system performance [5].

Intelligent resource allocation in systems of this kind have
been approached via work on coalition formation [12], group
problem solving [13] and teamwork [8]. A common property
of such models is their reliance on distributed protocols and
focus on design of intelligent algorithms coordinating thebe-
haviour of agents. However, these mechanisms, whilst decen-
tralised, generally assume up-to-date shared information, and
thus in order to converge to an optimal solution, they require a
substantial amount of global system information followed by a
large number of interactions among system elements to main-
tain awareness of peer goals, actions, etc. As a consequence,
they are often vulnerable to increasing system scale and/ordy-
namism.

A smaller number of studies focus on systems where agents
do not have access to global information and thus operate on
simple and local algorithms [11, 4, 1]. Despite these limita-
tions, such architectures can be robust to failures and may ex-
hibit interesting self-organising properties that are difficult to
explain considering the minimal intelligence of the individual
elements.
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Fig. 1. Relation between mean system cost and system load foragents relying onR (left) andRP (right). Three levels of
system load are represented:L = 1 (circle),L = 2 (box),L = 3 (rectangle). The dotted line (C∗) corresponds to optimal

system cost. In each case,SN = 240, while UN is varied from 120 through 360.

The approach adopted in our work shares the same moti-
vation of understanding how global system stability can arise
when agents perform resource allocation independently, i.e.,
without centralised executive control. However, whereas previ-
ous work has investigated how the heterogeneity of the system
can lead to stability through either limiting the knowledgepos-
sessed by individual agents [11] or by designing local decision
procedures that diversify agent behaviour [4], here we focus
on identifying general principles that explain how performance
scales under various kinds of systemic pressure. As such, we
do not aim to develop a working solution to a specific resource
allocation problem for utility computing. Instead, we concen-
trate on characterising relationships between local mechanisms
and global performance that are likely to generalise from the
minimal system explored here to real-world utility computing
systems in general.

More specifically, we are interested in explaining the way
in which different consumer agent strategies give rise to both
a certain level ofefficiencyand a particular degree offairness.
This requires us to analyse not only global behaviour but also
the performance of groups of similar agents, to determine
how the costs associated with resource allocation in a utility
computing infrastructure are distributed across a population of
heterogeneous agents.

3. Simulation

The decentralised multi-agent system that we will explore in
this paper comprises of a service registry that serves as an in-
ventory of the resource providers within the system; a popula-
tion of SN agents representing resource providers (services);
a population ofUN agents representing resource consumers
(consumers).
Services are provided by agents that facilitate access to re-
sources (disk storage, CPU time, etc.).
Consumers consume resources according to a fixed personal
workflow defining the type, capacity and order of services
required.
The registry is an agent tasked with maintaining an inven-
tory of system services, and supplying it to consumers when

queried. Since, in reality, the information obtained from such
registries can become stale and unreliable in a dynamic sys-
tem, in future work we will be interested in systems where this
unreliability is sufficient to ensure that consumers prefernot to
make use of it at all.
Service Allocation is decentralised such that each consumer
first obtains from the registry a list of existing services capa-
ble of providing any of the resources required by its workflow.
This action takes timeTx and incurs an execution cost,Cx. Re-
peatedly, services are chosen from this list and their availabil-
ity determined (each time incurring a query cost,Cq, and con-
suming time,Tq). Services may be unavailable because they
are busy to the extent that they do not have the spare capacity
required by the workflow component, or because they are no
longer part of the system. Once an available service has been
located, the agent attempts to allocate the next component of its
workflow. Once all components of the workflow are allocated
to services in this way, the agent attempts to execute the work-
flow using these services. Since services are not locked during
the allocation process, it is possible that a consumer agentmay
allocate a workflow component but find that the service is busy
when it attempts to execute it. In such circumstances, the con-
sumer must re-allocate this workflow component. Successfully
executing a component also takes time,Tx, and incurs an exe-
cution cost,Cx. Should a service fail during execution, the con-
sumer still pays the execution cost, but must also re-allocate
the workflow component. If, during any allocation process, a
consumer makesn attempts to locate an available service of a
particular type, the allocation is deemed to have failed, asis the
workflow it is part of. Here, for each workflow component to
be allocated, we setn equal to the number of services of the re-
quired type returned by the registry. Whether successful or un-
successful, upon completing a workflow, a consumer agent,Ui

is inactive for some randomly determined period drawn from
a uniform distribution[0, ωi] after which the same workflow
allocation process begins again.
Scenarios, unless stated otherwise, involve an equal number of
agents repeatedly attempting to execute each of three different
workflows (W1 = {A}, W2 = {A,B}, W3 = {A,B,C})
for a period of time,TN . Since we expect simple workflows
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Fig. 2. Mean workflow completion costs for agents relying onR (left) andRP (right) whereH = 4. Within each workflow
type, four subclasses are identified in order of increasing capacity requirement (s1, s2, s3, s4). Dotted lines correspond to the

optimal cost for each workflow group.UN = 180, SN = 360, TN = 400 seconds.

to be requested more frequently, the maximum period of time
for which a consumer will sleep after completing (or failing
to complete) a workflow,ω, is workflow-dependent such that
more complicated workflows tend to be associated with longer
periods of sleep:ω1 = 1s, ω2 = 2s, ω3 = 3s.

For all agents, the following values are assigned to the costs
and execution times of service interactions and service execu-
tions:Cx = 20 units,Tx = 500ms, Cq = 10, Tq = 100ms.
These parameters define minimal costs for a consumer at-
tempting to execute each workflow:C∗(W1) = 50 units,
C∗(W2) = 80 units, C∗(W3) = 110 units. Since the pro-
portion of consumers attempting to execute each workflow is
the same, the optimal cost for a system can be calculated as
C∗ = 80 units.

Consumers rely on strategies to guide their individual be-
haviour. Here we explore minimally sophisticated strategies:
Random selection (R): when attempting to allocate a work-
flow component to a service, the consumer makes random
choices from the list of available resources obtained from the
service registry.Hybrid strategy (RP): when attempting to
allocate a workflow component to a service, the consumer pref-
erentially returns to the last service employed for that compo-
nent, if it was executed successfully during the last workflow,
otherwise the random selection strategy is employed.

We do not expect these simple strategies to be employed
within real utility computing systems. However, the simplicity
of the randomising and canalising behaviours that they employ
make them good candidates for examination, since any decen-
tralised resource allocation strategies thatareemployed within
utility computing will probably involve some more compli-
cated form of randomisation and/or canalisation.

4. Results

Here we characterise the behaviour of the minimal simulated
system, concentrating on the manner in which system perfor-
mance scales with four system parameters:heterogeneity, load
andreliability. In each case, we are interested in both the ef-
ficiency of the system as a whole, and the efficiency of the
consumer agents within it. The former is measured over a spe-
cific test period by calculating the average cost per executed
workflow. This measure makes sense where consumers never
(or rarely) fail to execute a workflow. At the level of individual

consumers, we are interested in any advantage that one classof
consumers (say those attempting to execute a simple workflow)
might have over another. In each case, we are interested in how
different consumer agent strategies impact on these measures.

4.1 System Load

Since real utility computing infrastructures must cope with
variation in both the level and type of demand for (and provi-
sion of) services, demand may sometimes outstrip supply, pre-
cluding optimal allocation. To investigate the impact on system
behaviour of variation in the balance between supply and de-
mand, we vary the system load,L, defined as the ratio of con-
sumer demand to service provision. For a system whereL = 1,
in principle every workflow component can be simultaneously
satisfied by system services. Doubling this load (L = 2) en-
sures that only half of the consumers’ workflow components
can be executed simultaneously. Here, system load is manip-
ulated by holding the number, type and capacity of system
services constant, and varying the number of consumers (but
not the proportions of different workflows being allocated).
Doubling the number of consumers thus doubles system load.
Scenarios are identical to those described in Section 3 save
that there is heterogeneity in the demand for capacity across
three different workflows (W1 = {A10}, W2 = {A11, B11},
W3 = {A12, B12, C12}).

How does the system respond to increasing load? Figure 1
illustrates the relationship between mean system cost and load
for the two strategies. The ability ofRP to approach optimal
performance where supply matches demand (L = 1) is lost
for higher system load, and the advantage it enjoys overR is
reduced. Neither strategy can cope with the increased number
of “collisions” during resource allocation that result when con-
sumers can no longer utilise preferred services exclusively.

4.2 System Heterogeneity

It is highly unrealistic to assume that agents attempting toallo-
cate the same type of resource will also share exactly the same
service preferences. For example, in the domain of utility com-
puting, different amounts of CPU processing power, storage
size, quality of service, etc., may be required. For each con-
sumer, only a subset of services of a particular type will be ca-
pable of satisfying its particular demands. Since many of these



attributes are dynamic properties that may change rapidly and
unpredictably, it may be that a centrally maintained registry of
services cannot be relied upon to provide the information re-
quired by consumers to identify appropriate services.

In order to manipulate the degree of heterogeneity in con-
sumer demand,H, within the model we assign different capac-
ity requirements to consumers and differing capacity provision
to services. A consumer will be satisfied by any service of the
required type with free capacity that either equals or exceeds
its capacity requirements. As such, consumers with high ca-
pacity demands must necessarily have at least as difficult an
allocation task as consumers with lower capacity demands. In
all cases considered here, there exists an allocation of services
to consumers where all available service capacity is utilised
in executing every workflow component simultaneously (i.e.,
supply always exactly matches demand), and no service has
capacity to simultaneously execute more than one workflow
component. We defineH as the number of unique levels of
service capacity required by the workflows of a consumer pop-
ulation (or, equivalently, the number of unique levels of capac-
ity provided by a population of services). Thus, forH = 1, all
workflows share the same capacity requirements, whereas for
H = 2, each workflow (and every service type) is present in a
low-capacity and high-capacity variant such that each variant
is assigned to an equal number of consumers. The scenarios re-
ported below are otherwise identical to those described in the
Simulationsection above, with systems comprising 180 con-
sumers and 360 services respectively.

Figure 2 illustrates the mean workflow completion costs
for consumers relying on the two most successful strategies,
for the highest degree of consumer heterogeneity (H = 4).
Four levels of capacity demand are depicted for each workflow
{s1, s2, s3, s4}. While high-capacity workflows tend to attract
higher allocation costs, irrespective of consumer strategy, the
departure from optimal allocation costs is much reduced for
RP strategists. Consumers adopting this hybrid strategy were
thus able to form preferences for resources that not only sat-
isfied their own resource demands but, in the case of low-
capacity consumers, also contributed to satisfying the demands
of their competitors, increasing overall system efficiency.

Convergence to an optimal allocation is a consequence of
a balance between random selection and preferential selec-
tion. Where an inefficient allocation of services to consumers
arises, the former tends to disturb preferences for resources
that are overexploited, whilst preferential selection is able to
increase pressure on under-exploited services. In this way, the
extent to which low-capacity consumers form preferences for
high-capacity resources will tend to be matched by the pres-
sure to “move on” exerted by unsatisfied high-capacity con-
sumers. Existence of this pressure is visible in Figure 3, which
illustrates the mean system cost for increasing degrees of het-
erogeneity. Here, unsatisfied high-capacity consumers initially
exert strong pressure on preference reconfiguration, enabling
the system to converge to a more optimal state.

4.3 Service Reliability

A further distinguishing characteristic of utility computing in-
frastructures is the lack of assurance that existing services will
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Fig. 3. Relation between mean system cost and consumer
heterogeneity for agents relying onRP strategy. Four degrees

of consumer heterogeneity are depicted:H = 1 (solid
rectangle),H = 2 (empty rectangle),H = 3 (solid circle) and

H = 4 (empty circle). The dotted lineC∗ corresponds to
optimal system cost.UN = 180, SN = 360.

not fail or become unavailable during a consumer’s lifetime. To
investigate the impact of resource failure, randomly selected
services are removed from the system at a constant rate. The
scenario is initially identical to that described in Section 4.1,
with 360 unallocated services in principle exactly matching the
demand of 180 consumers. However, after a 40-second period
of normal service allocation during which time the system set-
tles to its typical behaviour, services begin to be removed at
random at a rate of one per second, until none remain.

Figure 4 illustrates the manner in which mean system cost
varies over time in such a scenario, both forR strategists and
RP strategists. Over the majority of the simulated period, the
RP population enjoys an advantage over theR population
in terms of allocative efficiency. However, this advantage de-
creases over time. For each population, costs rise with increas-
ing service failure at an accelerating rate, until a catastrophe is
reached at around 360 seconds. At this point, certain types of
resource are no longer present within the system, preventing
some workflows from being completed successfully. By 400
seconds, all consumers are paying a cost associated with ac-
cessing the registry, but are failing to carry out any allocation.

For the scenarios simulated here, over time, as services fail,
system load increases. It is instructive to compare the mean
system cost that results from service failure to that reported for
the same constant system load. Prior to the first resource failure
at t = 40, system load has been stable atL = 1. Subsequently,
as resource failure increases system load, it is remarkablethat
consumers are able to achieve an allocative efficiency equiv-
alent to a system under constant load for load values as high
asL = 12. Despite the scale of the system and the simplic-
ity of the resource allocation mechanisms, it is evident that the
allocative reconfiguration required by increasing load canbe
achieved smoothly and efficiently.

As noted above, as the number of failed resources (and thus
system load) increases, the advantage thatRP has overR in
terms of allocative efficiency diminishes until, under extreme
system load, it disappears. This result can be interpreted as
indicating that the role of preferential selection within theRP
strategy also diminishes over time, with behaviour increasingly
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Fig. 4. Relation between mean system cost and degree of
resource failure for consumers relying onR (solid line) and
RP (dotted line). Initially,UN = 180, SN = 360. From the

40th second, one randomly selected resource fails
permanently each second. Symbols indicate the mean system

cost experienced at an equivalent constant load, calculated
over a window300s < t < 400s, for load values drawn from

{1, 2, 3, 4, 5, 6, 12}.

dominated by random selections at high system load. This
interaction is discussed further, below

5. Discussion

Like any open system, a utility computing infrastructure must
operate under a certain amount of stress or pressure. This pa-
per represents a first attempt to understandhowsuch a system
responds to this pressure, andwhy. In general, open systems
have a tendency to self-organise in response to systemic pres-
sure. In the Bernard experiment [14], for instance, drivingup
the temperature of a fluid encourages the system to structure
itself such that its heat is dissipated more effectively—an op-
portunistic equilibrating response that is in opposition to the
pressure that triggers it. Furthermore, the further such a sys-
tem is perturbed from equilibrium, the more sophisticated are
its mechanisms for resisting the perturbation [10].

Here, at any point in time a population ofRP consumers
can be represented as two interdependent sub-populations of
agents: one currently able to rely on a developed preference,
while the other either has no such preference, or has a prefer-
ence for a service that is currently busy, and must rely on ran-
dom selection. While it is important to remember that every
consumer in aRP population possesses the same strategy, we
will refer to these temporary behavioural dispositions asRP
strategyelements. Agents relying on theR-element are more
aggressive, selecting resources randomly and thereby dispers-
ing their activity across all system resources. Agents relying
on theP-element, on the other hand, canalise their activity
in a specific region of the systems resources. Where supply
meets or exceeds demand, the former encourages system fair-
ness, while the latter lowers system cost.

Since there is no central controller deciding which agent
should rely on which strategy element, it is interesting to ex-
plore by what means the balance between strategy elements
is brought about. Crudely, each “sub-population” exerts a
specific pressure on the other. By “stealing” the preferred

resources of conservativeP-element agents, aggressiveR-
element agents driveP-element agents to switch strategy. At
the same time,R-element agents that successfully allocate
resources also switch strategy element. In both cases, such
switching prevents agents relying upon the same resource for
a long time. This ensures that the costs of resource compe-
tition are distributed fairly among all agents. Furthermore,
as system dynamism increases (with increasing load or het-
erogeneity, for instance), and the chance of developing use-
ful preferences falls, the proportion ofR-element agents in-
creases. Likewise, if system dynamism relaxes, the propor-
tion of agents successfully exploiting preferences increases.
This coupling between strategy elements drives the system
behaviour, and its response to externalities such as load or
heterogeneity. The nature of this coupling resembles certain
accounts of self-organisation within natural decentralised sys-
tems, where complex system-level dynamics are characterised
in terms of the generic feedback that arise from local interac-
tions between components [3, 7]. Within the minimal system
presented here, theR strategy (or element) generates destablis-
ing positive feedback within the population of agents, whereas
theP-element induces canalising negative feedback.

Our results demonstrate that the system tends to adaptively
balance the elements of the hybrid strategy in response to
particular levels of demand. In some sense, the strategy also
ensures that this balance is not achieved at the expense of
fairness within the system, since, on average, every agent with
the same workflow spends the same amount of time employing
each strategy element. This is clearly visible in the case of
heterogeneity tests, where feedback between populations of
agents relying on either theR-element orP-element exert
pressure on each other. This feedback eventually forces the
reorganisation of agent preferences such that the pressuredue
to heterogeneity, like the temperature in a Barnards cell, is
“dissipated” automatically and naturally without recourse to
intelligent planning or centralised administrative intervention.
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