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Abstract: In this paper we explore the relationship betweefrom their individual local control mechanisms. Unfortoels,

local and global behaviour in a simple model of utility com-characterising the manner in which particular resouraecal
puting infrastructure as the system heterogeneity, logiden tion mechanisms bring about such feedback in full-blown sys
liability are varied. To do this, we implement minimally cem tems can be extremely challenging. Here, we focus on under-
plex agent strategies for which we can identify the fundamerstanding a system featuring minimally complex resource al-
tal generic feedback underlying system behaviour. Suatifeelocation mechanisms, where such a characterisation is more
back must be balanced by any utility computing infrastrrestu tractable. In doing so, we are motivated by the working hy-
if decentralised control is to become an effective techaifqu  pothesis that the dynamics of such a system, while simple, wi

preserving stable functionality. share general properties with more realistic utility cotimm
Keywords: decentralised control, multi-agent system, selfsystems, and a belief that achieving an understanding eidec
organisation, decentralised resource allocation tralised control at this level of abstraction will be crddfat

] is to become an effective means of managing distributed open

The advent of the Internet and distributed computing has eR- Prior Wor k
abled remote access to a range of computational resourdes su
as CPU power, disk storage, bandwidth, laboratory equipmeiThe introduction of shared and constrained resources yi$o0 s
etc. This ability to share and utilise computational resear tems of the kind described above may quickly and unexpect-
across a group of independent users has created an oppprturily lead to the emergence of undesirable system behaviour,
to both simplify the traditional service provisioning médaed often described asource competitiofi7]. Here, consumers
lower service management and provisioning costs. end up competing for specific subsets of resources, leating o
In response to these possibilities, a number of initiativegrs under-utilised. The resulting poor global resourcksati
such asautonomic computing6] and utility computing[9], tion may eventually cause unstable and unpredictable rayste
have been announced by major IT vendors sharing the safugctioning. Furthermore, since there is no centralisedrod,
underlying principles of provisioning resources on demtmd the system may reinforce this competitive behaviour legithn
a large number of users. Since these infrastructures aye, lara very rapid degradation of system performance [5].
open and dynamic systems that are free to change and growintelligent resource allocation in systems of this kind dnav
organically by introducing or removing new components in abeen approached via work on coalition formation [12], group
ad hocmanner, control over their resource allocation presentgoblem solving [13] and teamwork [8]. A common property
unique challenges that may overwhelm existing centraliserf such models is their reliance on distributed protocold an
management approaches [2]. focus on design of intelligent algorithms coordinating bee
Designing effective control mechanisms capable of simultdaviour of agents. However, these mechanisms, whilst decen
neously delivering both low cost of overall infrastructogger-  tralised, generally assume up-to-date shared informasind
ation, and cheap service provision for users, requiresiisnl  thus in order to converge to an optimal solution, they rezmair
that is scalable, reliable and adaptive to changing systam ¢ substantial amount of global system information followgdb
ditions. In this context, the application of a multi-agegss large number of interactions among system elements to main-
tem involving a population of active and autonomous agentain awareness of peer goals, actions, etc. As a consequence
offers one way to address the challenge, but it is far froni-obvthey are often vulnerable to increasing system scale adgl/or
ous how the individual system elements need to be designediamism.
meet these objectives. In particular, this approach addsahe A smaller number of studies focus on systems where agents
problem of designing decentralised resource allocatiochate do not have access to global information and thus operate on
nisms which, despite operating on local and imperfect méor  simple and local algorithms [11, 4, 1]. Despite these limita
tion, lead to the satisfaction of global system objectives. tions, such architectures can be robust to failures and may e
Rather than attempting to assess candidate solutions to thibit interesting self-organising properties that ardiclift to
resource allocation problem, or optimise system perfomaanexplain considering the minimal intelligence of the indwal
in some way, in this paper we focus on understanding thelements.
fundamental nature of the interactions between agentagris
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Fig. 1. Relation between mean system cost and system loagjémts relying orR (left) andRP (right). Three levels of
system load are representdd= 1 (circle), L = 2 (box), L = 3 (rectangle). The dotted lin€() corresponds to optimal
system cost. In each casey = 240, while Uy is varied from 120 through 360.

The approach adopted in our work shares the same matjueried. Since, in reality, the information obtained froncls
vation of understanding how global system stability caseari registries can become stale and unreliable in a dynamic sys-
when agents perform resource allocation independendly, i.tem, in future work we will be interested in systems whers thi
without centralised executive control. However, whergasip  unreliability is sufficient to ensure that consumers praferto
ous work has investigated how the heterogeneity of the systamake use of it at all.
can lead to stability through either limiting the knowleqmes-  Service Allocation is decentralised such that each consumer
sessed by individual agents [11] or by designing local deeis first obtains from the registry a list of existing servicepaa
procedures that diversify agent behaviour [4], here we gocwble of providing any of the resources required by its workflow
on identifying general principles that explain how perfamme  This action takes timé&}, and incurs an execution cost, . Re-
scales under various kinds of systemic pressure. As such, weatedly, services are chosen from this list and their alveil
do not aim to develop a working solution to a specific resourdéy determined (each time incurring a query c@sf, and con-
allocation problem for utility computing. Instead, we cene  suming time,T,). Services may be unavailable because they
trate on characterising relationships between local n@shes  are busy to the extent that they do not have the spare capacity
and global performance that are likely to generalise froen threquired by the workflow component, or because they are no
minimal system explored here to real-world utility compgti longer part of the system. Once an available service has been
systems in general. located, the agent attempts to allocate the next compofiist o

More specifically, we are interested in explaining the waworkflow. Once all components of the workflow are allocated
in which different consumer agent strategies give rise tih boto services in this way, the agent attempts to execute thke-wor
a certain level okfficiencyand a particular degree tdirness  flow using these services. Since services are not lockedgluri
This requires us to analyse not only global behaviour but alghe allocation process, it is possible that a consumer agant
the performance of groups of similar agents, to determiralocate a workflow component but find that the service is busy
how the costs associated with resource allocation in ayutiliwhen it attempts to execute it. In such circumstances, the co
computing infrastructure are distributed across a pojmiaif  sumer must re-allocate this workflow component. Succdgsful

heterogeneous agents. executing a component also takes tifig, and incurs an exe-
. ) cution cost(',.. Should a service fail during execution, the con-
3. Simulation sumer still pays the execution cost, but must also re-akoca

the workflow component. If, during any allocation process, a
consumer makes attempts to locate an available service of a
barticular type, the allocation is deemed to have faileds Hee

The decentralised multi-agent system that we will explore i
this paper comprises of a service registry that serves as-an

;{ento;ysof the retsource prO\;_lders within the sy%tem; a w_pu'wprkﬂow it is part of. Here, for each workflow component to
lon of Sy agents representing resource providers (service & allocated, we setequal to the number of services of the re-

a population ofl/y agents representing resource consumercﬁjired type returned by the registry. Whether successfuher u
(consumers). successful, upon completing a workflow, a consumer agént,

Services are provided by agents that facilitate access to '95 inactive for some randomly determined period drawn from

sources (disk storage, CPU time, etc.). : , a uniform distribution[0, w;] after which the same workflow
Consumer s consume resources according to a fixed persongllocation process begins again

workflow defining the type, capacity and order of SE’r\/'cegcenarios, unless stated otherwise, involve an equal number of

reqU|req. . . S . agents repeatedly attempting to execute each of threedtiffe
The registry is an agent tasked with maintaining an inven-

; A workflows (W7 = {A}, W, = {A,B}, W5 = {4,B,C})
tory of system services, and supplying it to consumers Wh%r a period of time,Ty. Since we expect simple workflows
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Fig. 2. Mean workflow completion costs for agents relyingrofleft) andR P (right) whereH = 4. Within each workflow
type, four subclasses are identified in order of increasapgcity requirements(, s2, s3, s4). Dotted lines correspond to the
optimal cost for each workflow group/y, = 180, Sy = 360, Ty = 400 seconds.

to be requested more frequently, the maximum period of timeonsumers, we are interested in any advantage that one€lass
for which a consumer will sleep after completing (or failingconsumers (say those attempting to execute a simple wopkflow
to complete) a workfloww, is workflow-dependent such that might have over another. In each case, we are interesteavin ho
more complicated workflows tend to be associated with longelifferent consumer agent strategies impact on these mesasur
periods of sleepu; = 18, wy = 28, w3 = 3s.

For all agents, the following values are assigned to thescost-1 System L oad

and execution times of service interactions and servicelexe Si | utilit ting infrastruct " hwit
tions: C,, — 20 units, T, — 500ms, C, = 10, T, — 100ms. ince real utility computing infrastructures must copehwi

These parameters define minimal costs for a consumer g{;\_riation in t.’Oth the level and type of.demand fo'r (and provi-
tempting to execute each workflow@ (W,) — 50 units, sion of) services, demand may sometimes outstrip supgy, pr

C*(Wa) = 80 units, C*(Ws) = 110 units. Since the pro- cluding optimal allocation. To investigate the impact ostsyn

portion of consumers attempting to execute each workflow Eehawour of variation in the balance between supply and de-

the same, the optimal cost for a system can be calculated rggmd, we vary the sy;tem Ioa{j,_defmed as the ratio of con-
C* — 80 units. sumer demand to service provision. For a system whetel,

Consumers rely on strategies to guide their individual béh principle every workflow component can be simultaneously

haviour. Here we explore minimally sophisticated stragegi satisfied by system services, Doublmg this load 2) en-
Random selection (R): when attempting to allocate a work- SUT€S that only half of the consumers’ workflow components

flow component to a service, the consumer makes rando‘f‘ﬁn be executgd simultaneously. Here, system Ipad is manip-
choices from the list of available resources obtained froen t Y ated by holding the number, type and capacity of system

service registryHybrid strategy (RP): when attempting to services constant, and v_arying the number of_ consumers (but
allocate a workflow component to a service, the consumer pn%Ot 'g;_e p;ﬁportlonbs of fd|fferent wortlﬂ‘low(? bE'lng allotcateld) d
erentially returns to the last service employed for that gom Sou Ing the ng(rjn ?.r OI ct:ontf]umezs u_sb 3”. ess S):S en; oad.
nent, if it was executed successfully during the last workflo cenarios are identical to those described in seclion 5 save
otherwise the random selection strategy is employed. that thgre is heterogeneity in the demand for capacity acros
We do not expect these simple strategies to be employ ei djere;t WoCskrowswl = {Aw}, W2 = {411, Bu},
within real utility computing systems. However, the singjil 3H_ {d12’ tth’ 12];)' dioi ina load? Fi 1
of the randomising and canalising behaviours that theyeynpl_I tOV\; otehs elstys e? rtta)s;t)on ° mcreasw:g oa .t Iglul :e
make them good candidates for examination, since any decéfll]qs rates the relationship between mean system cos

tralised resource allocation strategies dratemployed within or ]Ehe two strathegles. Th? abllliy:tpdto aggroaclh _op|t|mfll
utility computing will probably involve some more compli- performance where supply matches demahd( 1) is los

cated form of randomisation and/or canalisation. for higher sy_stem load, and the advar_ltage it_enjoys s
reduced. Neither strategy can cope with the increased numbe

4. Results of “collisions” during resource allocation that result wheon-
sumers can no longer utilise preferred services exclysivel

Here we characterise the behaviour of the minimal simulated

system, concentrating on the manner in which system perfdt2 System Heter ogeneity

mance scales with four system parametketerogeneityload

andreliability. In each case, we are interested in both the e*

ficiency of the system as a whole, and the efficiency of theate the same type of resource will also share exactly the sam

consumer agents within it. The former is measured over a Spseerwce preferences. For example, in the domain of utibty ¢

cific test period by calculating the average cost per exelcut@_u“ng’ different amounts of CPU processing power, storage

workflow. This measure makes sense where consumers never’ qualllty of Ss rV|tcef, etc.,. may fbe re?'wrled. tFor eglncgecon
(or rarely) fail to execute a workflow. At the level of indiwiel ~ SUMET 0Ny a SUDSEL of Services ot a particuiar type willae ¢
pable of satisfying its particular demands. Since many ed¢h

tis highly unrealistic to assume that agents attemptiralte



attributes are dynamic properties that may change rapialy a 150
unpredictably, it may be that a centrally maintained regist
services cannot be relied upon to provide the informatien re
quired by consumers to identify appropriate services.

In order to manipulate the degree of heterogeneity in con-
sumer demand, within the model we assign different capac-
ity requirements to consumers and differing capacity [miovi
to services. A consumer will be satisfied by any service of the
required type with free capacity that either equals or edsee
its capacity requirements. As such, consumers with high ca-
pacity demands must necessarily have at least as difficult an 70
allocation task as consumers with lower capacity demamds. | Time [b]

all cases considered here, there exists an allocationwtesr . .
Fig. 3. Relation between mean system cost and consumer

to consumers where all available service capacity is atllis hetero ity f s relving 6P strat Four
in executing every workflow component simultaneously (i.e. geneily Tor agents relying strategy. Four degrees
of consumer heterogeneity are depictéd= 1 (solid

supply always exactly matches demand), and no service has .
capacity to simultaneously execute more than one WorkfIO\WCtangle)’H =2 (gmpty rectangle)H ~ f’ (solid circle) and
component. We definél as the number of unique levels of H=4 (empty circle). The dotted liné™ corresponds to
service capacity required by the workflows of a consumer pop- optimal system cost/y = 180, Sy = 360.
ulation (or, equivalently, the number of unique levels gfaa
ity provided by a population of services). Thus, #ér= 1, all  not fail or become unavailable during a consumer’s lifetiiiie
workflows share the same capacity requirements, whereas fovestigate the impact of resource failure, randomly getbc
H = 2, each workflow (and every service type) is present in aervices are removed from the system at a constant rate. The
low-capacity and high-capacity variant such that eachawri scenario is initially identical to that described in Seotib1,
is assigned to an equal number of consumers. The scenarioswith 360 unallocated services in principle exactly matgtme
ported below are otherwise identical to those describetién t demand of 180 consumers. However, after a 40-second period
Simulationsection above, with systems comprising 180 conef normal service allocation during which time the systemn se
sumers and 360 services respectively. tles to its typical behaviour, services begin to be removed a
Figure 2 illustrates the mean workflow completion costsandom at a rate of one per second, until none remain.
for consumers relying on the two most successful strategies Figure 4 illustrates the manner in which mean system cost
for the highest degree of consumer heterogendify=£ 4). varies over time in such a scenario, both foistrategists and
Four levels of capacity demand are depicted for each workfloRP strategists. Over the majority of the simulated period, the
{s1, 52, 53, s4}. While high-capacity workflows tend to attract RP population enjoys an advantage over tRepopulation
higher allocation costs, irrespective of consumer styatde  in terms of allocative efficiency. However, this advantage d
departure from optimal allocation costs is much reduced fareases over time. For each population, costs rise witle#aser
RP strategists. Consumers adopting this hybrid strategy weitgg service failure at an accelerating rate, until a cabgéie is
thus able to form preferences for resources that not only saieached at around 360 seconds. At this point, certain types o
isfied their own resource demands but, in the case of lowesource are no longer present within the system, prexgentin
capacity consumers, also contributed to satisfying thesshels some workflows from being completed successfully. By 400
of their competitors, increasing overall system efficiency seconds, all consumers are paying a cost associated with ac-
Convergence to an optimal allocation is a consequence o#ssing the registry, but are failing to carry out any aflimea
a balance between random selection and preferential selec+or the scenarios simulated here, over time, as servides fai
tion. Where an inefficient allocation of services to consisnersystem load increases. It is instructive to compare the mean
arises, the former tends to disturb preferences for ressurcsystem cost that results from service failure to that regubitr
that are overexploited, whilst preferential selectionbiteado the same constant system load. Prior to the first resouloedai
increase pressure on under-exploited services. In thistivay at¢ = 40, system load has been stabldat 1. Subsequently,
extent to which low-capacity consumers form preferences f@s resource failure increases system load, it is remarkiable
high-capacity resources will tend to be matched by the presensumers are able to achieve an allocative efficiency equiv
sure to “move on” exerted by unsatisfied high-capacity coralent to a system under constant load for load values as high
sumers. Existence of this pressure is visible in Figure 3chvh as L = 12. Despite the scale of the system and the simplic-
illustrates the mean system cost for increasing degreestef hity of the resource allocation mechanisms, it is evidernt the.
erogeneity. Here, unsatisfied high-capacity consumetiallgi ~ allocative reconfiguration required by increasing load ban
exert strong pressure on preference reconfiguration, imigabl achieved smoothly and efficiently.

140 |

130

the system to converge to a more optimal state. As noted above, as the number of failed resources (and thus
. o system load) increases, the advantage ®RiRthas overR in
4.3 Service Reliability terms of allocative efficiency diminishes until, under extie

system load, it disappears. This result can be interpresed a
indicating that the role of preferential selection withiire R P
strategy also diminishes over time, with behaviour indreglg

A further distinguishing characteristic of utility comjng in-
frastructures is the lack of assurance that existing seswidll



resources of conservative-element agents, aggressife-
element agents driv@-element agents to switch strategy. At
the same timeRR-element agents that successfully allocate
resources also switch strategy element. In both cases, such
switching prevents agents relying upon the same resource fo
a long time. This ensures that the costs of resource compe-
tition are distributed fairly among all agents. Furthermor
as system dynamism increases (with increasing load or het-
RP | erogeneity, for instance), and the chance of developing use
%07 K ful preferences falls, the proportion &f-element agents in-
0 : creases. Likewise, if system dynamism relaxes, the propor-
50 100 180 zgﬁne 250300850 400 tion of agents successfully exploiting preferences irsgsa
. . This coupling between strategy elements drives the system
rerlgﬁ:lc,:eRfZIiﬁflr(()an]‘:rect:gr?segmme???eslil/isr:gr?’ﬁth((;itligrlli?u(aj)eg;?je Ofbehaviour, gnd its response to.externa_lities such as .Ioad or
RP (dotted line). Initially, Uy — 180, Sy — 360. From the heterogeneity. The na.ture_ of tl"IIS. coupling resemble; icerta
' ' ' ' accounts of self-organisation within natural decentealisys-

h H
ermggenstlecgggr,l 223(;22dgmgbz?;ﬁ?]ﬁg;f?huerﬁﬁgzgss ot t?nms, where complex system-level dynamics are charaeteris
P y hed YSMerms of the generic feedback that arise from local intera
cost experienced at an equivalent constant load, calculate

over a windowa00s < £ < 400s. for load values drawn from tions between components [3, 7]. Within the minimal system
v Wi S{<1 2<3 4 ;,6 12} vald W presented here, the strategy (or element) generates destablis-

ing positive feedback within the population of agents, velasr
theP-element induces canalising negative feedback.
dominated by random selections at high system load. This Our results demonstrate that the system tends to adaptively

Mean system cost

o

interaction is discussed further, below balance the elements of the hybrid strategy in response to
. . particular levels of demand. In some sense, the strategy als
5. Discussion ensures that this balance is not achieved at the expense of

fairness within the system, since, on average, every agémt w
the same workflow spends the same amount of time employing
B8ch strategy element. This is clearly visible in the case of
heterogeneity tests, where feedback between populatibns o
agents relying on either th&-element orP-element exert
Sressure on each other. This feedback eventually forces the
reorganisation of agent preferences such that the predesare
Lﬂ‘)eheterogeneity, like the temperature in a Barnards cell, i
“dissipated” automatically and naturally without recait®
intelligent planning or centralised administrative inmtion.

Like any open system, a utility computing infrastructurestnu
operate under a certain amount of stress or pressure. This
per represents a first attempt to understaod such a system
responds to this pressure, awtly. In general, open systems
have a tendency to self-organise in response to systense pr
sure. In the Bernard experiment [14], for instance, drivipg
the temperature of a fluid encourages the system to struct
itself such that its heat is dissipated more effectively—pn o
portunistic equilibrating response that is in oppositiortte
pressure that triggers it. Furthermore, the further suchsa s
tem is perturbed from equilibrium, the more sophisticatedl a Refer ences
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