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Abstract—In this paper, we demonstrate that the previously
proposed arrangements of serially concatenated codes have
extrinsic-information-transfer (EXIT) functions that intersect
each other at points that are near but not at the (1, 1) point in the
top-right-hand corner of the EXIT chart, which is typically asso-
ciated with elevated error floors. We propose a novel arrangement
having EXIT functions that do not intersect before the (1, 1) point,
which is typically associated with approaching the maximum-
likelihood (ML) bit-error-ratio (BER) performance. Our method
employs an inner recursive code that is terminated using specif-
ically designed termination sequences, which have a minimum
Hamming distance of at least two between each other. Addition-
ally, we provide optimal termination sequences for a range of inner
code designs. Finally, we demonstrate that our novel approach can
facilitate useful BER reductions in the challenging application sce-
nario when employing short frame lengths on the order of 100 bits,
which are typical in wireless sensor networks, for example.

Index Terms—Convolutional codes, error-correction coding,
information rates, trellis codes.

I. INTRODUCTION

XTRINSIC-information-transfer (EXIT) charts [1] have

been shown to characterize the iterative exchange of ex-
trinsic information between serially concatenated decoders [2],
[3]. This is illustrated in the schematic in Fig. 1(a), where
Be and ¢, are the extrinsic logarithmic-likelihood-ratio (LLR)
sequences exchanged. An EXIT chart is said to have a closed
tunnel when the EXIT functions of the inner and outer decoders
intersect each other, as exemplified in Fig. 2(a). A relatively
high bit error ratio (BER) will typically result in this case,
because the iterative decoding trajectory [1] is prevented from
converging toward the top-right-hand corner of the EXIT chart,
which is the only point where maximum-likelihood (ML) de-
coding is achieved.

If both serially concatenated decoders are capable of pro-
viding extrinsic LLRs (Be or C.) having the maximal mutual
information [I(be;b) or I(&.;¢)] of unity [1] when presented
with a priori LLRs (f)a or C,) that have unity mutual infor-
mation [I(b,;b) or I(€,;c)], then their EXIT functions will
both reach the [I(b;b) or I(&.;c)] = (1,1) point at the top-
right-hand corner of the EXIT chart. In this case, an open EXIT
chart tunnel can be created for sufficiently high channel signal
to noise ratios (SNRs) E./Ny, as exemplified in Fig. 2(c). Pro-
vided that the EXIT functions can adequately predict the path of
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the iterative decoding trajectory, this will then converge toward
the (1, 1) point, as the iterative decoding process proceeds.
Meanwhile, the resultant BER will asymptotically approach
the ML performance but at a fraction of the ML decoder’s
complexity [4].

Note that the ML BER performance depends upon the spec-
trum of Hamming distances [5] between the possible permu-
tations of the transmitted bit sequence, which is labeled d in
Fig. 1(a). Previously, efforts like those in [5] and [6] have
been made to characterize the distance spectrum of serially
concatenated codes to assist the design of improved iteratively
decoded schemes. However, these efforts have limited benefit
if the iterative decoder’s BER performance is prevented from
approaching that of the ML decoder. For this reason, it is critical
that both of the concatenated decoders have EXIT functions
that reach the (1, 1) point of the EXIT chart when the lowest
possible BERs are sought.

Recently, a flurry of serial concatenations employing recur-
sive convolutional inner codes have been proposed, including
those in [6]—[15], for example. While these schemes can have
EXIT functions that reach the (1, 1) point of the EXIT chart,
this is only achieved in the impractical case where the recursive
code has an infinite length, as detailed in [16] and [17]. For
long but finite code lengths, the EXIT functions will intersect
each other at near-(1, 1) points, although this distinction is
often avoided in the corresponding publications. Furthermore,
the intersection point can significantly be shifted away from the
(1, 1) point if short codes are employed, as will be demonstrated
in Section I'V. In these cases, relatively high BERs can result, as
will be shown in Section V. This is of particular concern when
employing an irregular inner code [15], for example, since these
typically use short component codes.

This discussion motivates the novel contribution of this pa-
per. More specifically, in Section II, we propose a scheme that
has EXIT functions that do not intersect until the (1, 1) point
of the EXIT chart, despite employing a recursive inner code
having a finite length. We believe this to be the first time that
this has been demonstrated for the type of scheme considered.
This feat is achieved by terminating the recursive inner code
using bit sequences that have a minimum Hamming distance d
of at least two between each other [18]. This is in contrast with
the approaches in [6], [9]-[11], [19], and [20], which employ
termination sequences that have a minimum Hamming distance
of df = 1 between each other. These schemes therefore have
EXIT functions that intersect each other, as we shall show in
Section I'V.

Similar to the termination of parallel concatenations of recur-
sive codes [21], our novel approach imposes some restrictions
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Schematics of various serially concatenated code arrangements. The various bit sequences employed in the transmitters are labeled. The corresponding
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LLR sequences employed in the receivers are indicated using tildes. A subscript of “a” indicates a priori information, while a subscript of “e” is employed for
extrinsic information. The circular junctions indicate either a multiplexing or demultiplexing operation.

upon the design of both the termination sequences and the
interleaver. These restrictions are discussed in Section III. Note
that, while the problem of code termination in parallel con-
catenations received a significant amount of attention [21]-[25]
more than a decade ago, termination in serial concatenations
has remained neglected until now. This may be attributed to the
additional challenges that are faced when terminating serially
concatenated codes. More specifically, parallel concatenations
can be terminated by manipulating the uncoded bit sequence
[21], since this (or an interleaved version of it) directly feeds
into all concatenated codes. By contrast, in a serial concatena-
tion, the uncoded bit sequence is encoded by the outer encoder,
before the inner encoder is invoked. As a result, manipulation
of the uncoded bit sequence cannot be employed to directly
terminate the inner code.

After examining the EXIT characteristics of our proposed
scheme and comparing them with those of suitably designed
benchmarkers in Section IV, we shall compare the BER perfor-
mance of these schemes in Section V. Finally, we will offer our
conclusions in Section VI.

II. TRELLIS TERMINATION

In the scheme in Fig. 1(a), the serially concatenated decoders
generate extrinsic LLRs X, pertaining to the bits in the sequence
x by considering the a priori LLRs X, provided by the other
decoder, where x = b in the case of the outer decoder, and x =
c in the case of the inner decoder. These LLR sequences will
have mutual informations of unity if they identify the values
of the corresponding bits in x with absolute confidence [1]. If
the particular decoder generates an extrinsic mutual information
of I(Xe;x) = 1 whenever the a priori mutual information is
I(x,;x) = 1, then the corresponding EXIT function will reach
the (1, 1) point of the EXIT chart. This will be achieved if
the decoder is able to infer the value of each bit in x with
absolute certainty, given the unequivocal a priori knowledge of
all other bit values in x. This is because the decoders generate

the extrinsic information X, pertaining to each particular bit
in the corresponding sequence x by considering the a priori
information X, provided for each of the other bits in x [4].

Let us begin by considering the outer code in Fig. 1(a).
Suppose that there was a minimum Hamming distance of one
between the legitimate permutations of the bit sequence b gen-
erated by the outer encoder. Here, a single unknown bit value
could be the only difference between the correct permutation
of b and another. In this case, the decoder would not be able
to decide which of these two permutations was the correct one.
Hence, the unknown bit value would not be determined, even
though the decoder has unequivocal knowledge of all other bit
values. As a result, the outer code’s EXIT function would not
reach the (1, 1) point of the EXIT chart, as previously described.
By contrast, if the outer code imposed a minimum Hamming
distance of at least two, then a single unknown bit value could
never be the only difference between the correct permutation
and another. In this case, the decoder can always identify the
correct permutation without ambiguity, and the value of the
missing bit will be determined with absolute certainty. Hence,
imposing a minimum Hamming distance of at least two is a
necessary and sufficient condition for the outer code’s EXIT
function to reach the (1, 1) point of the EXIT chart, as was
formally proven in [18]. This criterion is satisfied by a repetition
code, for example.

Similarly, for the inner decoder to have an EXIT function
that reaches the (1, 1) point, it must be able to infer the value
of any single uncoded bit value in ¢ with absolute certainty,
given perfect a priori knowledge of all other bit values in c,
even if the amount of information available for the coded bits
of d is infinitesimally low. A sufficient condition for this is
satisfied when the inner code is a recursive convolutional code
(such as a rate-1 code [7]) having an infinite length, as detailed
in [16] and [17] and alluded to in Section I. However, this
condition is not satisfied when the recursive convolutional code
has a finite length [16], [17]. In common with all other types
of convolutional encoders [26], a recursive encoder employs m
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Fig. 2. EXIT band charts of the schemes introduced in Section II, when trans-
mitting over a BPSK-modulated uncorrelated narrow-band Rayleigh fading
channel at an SNR of E./No = 0 dB. The dotted lines represent the EXIT
bands, which surround the EXIT functions that are plotted using continuous
lines. (a) No termination, na = 4, and nq = 9. (b) d¢ = 1 termination, na =
4, and ng = 9. (¢) d¢ > 2 termination, ng = 4, and nq = 9. (d) No termi-
nation, na = 49, and nq = 99. (e) d¢ = 1 termination, na = 49, and nq =
99. (f) df > 2 termination, ng = 49, and ng = 99.

binary memory elements. Each bit of the encoded sequence d
is generated as a function of both the corresponding bit in the
input bit sequence c and the contents or state of the encoder’s
memory. However, in contrast to nonrecursive encoders, the
state of a recursive encoder depends upon the values of the
previous bits in the encoded sequence d, as well as in the un-
coded sequence c. Encoding typically commences from a par-
ticular state that is known to the recursive decoder. However,
when a recursive encoder finishes encoding a bit sequence ¢
having a finite length, it will enter a particular final state that
is not inherently known to the decoder. It is the decoder’s
uncertainty about the final state that prevents it from inferring
the value of any single uncoded bit value in ¢ with absolute
certainty, even when provided with perfect a priori knowledge
of all other bits in c. As a result, the inner decoder in the scheme
in Fig. 1(a) will have an EXIT function that does not reach the
(1, 1) point of the EXIT chart when c has a finite length, as was

formally proven in [16] and [17]. This is exemplified in Fig. 2(a)
and discussed in Section IV, where this scheme is referred to as
employing “no termination.”

However, code termination [27] can be employed to force
the inner encoder into a particular final state that is expected by
the decoder. As shown in Fig. 1(b), an uncoded bit sequence ¢’
that achieves this may be obtained by considering the uncoded
bit frame ¢ and appending a sequence of specially selected
terminating bits t. Note that attaching a terminating sequence
t comprising m bits is always sufficient to terminate the inner
encoder in the desired final state [27].

With this arrangement, the inner decoder will be aware
of both the initial and final encoder states. It can therefore
employ a trellis that is terminated at both ends to consider
all possible reconstructions of the bit sequence ¢’ [27]. In this
case, knowledge about all but one of the uncoded bits in ¢’
permits the decoder to recurse from each end of the trellis
and identify the state entered before and after the remaining
unknown bit, revealing its value.! Hence, termination allows
the inner decoder to obtain extrinsic LLRs €., having the
maximal mutual information of I(€L;¢’) =1 when provided
with perfect a priori LLRs ¢ that have a mutual information of
1e;e) =1.

However, in Fig. 1(b), it is €, rather than ¢, that is forwarded
to the outer decoder during iterative decoding. Therefore, to
support iterative decoding convergence toward the (1, 1) point,
we require the extrinsic LLRs of ¢, to have a mutual informa-
tion of I(Ce;c) = 1 when the a priori LLRs of €, have unity
mutual information I(€,;c). During iterative decoding, we
obtain &, by removing t, from &, and, following outer decoding
and interleaving, obtain &, by appending t. to &,. However,
unless we have a source of information for t., we must populate
it using zero-valued LLRs, which represent the absence of
information. In this case, the a priori LLRs ¢a’ will never have
unity mutual information I (€}, ¢’), even if ¢, does. As a result,
neither €/, nor €, will have unity mutual information, and hence,
the scheme in Fig. 1(b) will have EXIT functions that intersect
each other before the (1, 1) point of the EXIT chart. This is
exemplified in Fig. 2(b) and discussed in Section IV, where this
scheme is referred to as employing “d¢ = 1 termination.” Note
that this is the termination method employed in [6], [9]-[11],
[19], and [20], as described in Section I.

The described problem can be overcome by employing a
code terminator that is capable of providing extrinsic LLRs t.
that have the maximal mutual information of I(t.;t) = 1. This
can be achieved by employing termination sequences t from a

'An alternative interpretation is that because the particular termination
sequence t that is required depends upon the bit values of the uncoded sequence
c, the possible permutations of the resultant concatenation ¢’ will have a
minimum Hamming distance of at least two between each other. As a result,
the inner decoder becomes capable of inferring the value of a single missing
bit in ¢’ in the same way that the outer decoder can, as previously described.
Note that tailbiting [28] has been proposed as an alternative to termination for
improving a recursive decoder’s performance, since it does not impose the
overhead of requiring termination bits. However, because of this, there is a
minimum Hamming distance of unity between the possible permutations of
the input to a recursive tailbiting encoder. As a result, the EXIT function of a
recursive tailbiting decoder will not reach the (1, 1) point of the EXIT chart, as
previously described.
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set that exhibit a minimum Hamming distance d; of at least two
between each other. This permits the terminator in Fig. 1(b)
to generate extrinsic LLRs t. having a mutual information of
I(te;t) = 1 when provided with a priori LLRs t, that have a
mutual information of [ (Ea; t) = 1, like the outer decoder, as
previously described. Note that the termination sequences of t
must comprise more than m bits for the minimum Hamming
distance df between them to be at least two. Furthermore, not
all sets of bit sequences having a minimum Hamming distance
of at least two between each other are capable of terminating
the inner code. Hence, in Section III, we shall provide optimal
termination sequences for recursive inner codes having various
feedback polynomials.

Observe in Fig. 1(b) that the bits of the termination sequence
t remain close to each other within ¢/, since they are merely
appended to c. This is undesirable, because the inner decoder
and the terminator assume the independence of all neighboring
LLRs within ¢/, and t., respectively [29]. Hence, this assump-
tion is not satisfied because these LLR sequences are provided
by t. and &, in which all neighboring LLRs are generated
together by the terminator and the inner decoder, respectively.

The solution of this problem is to introduce the termina-
tion sequence t before interleaving takes place in block 7 in
Fig. 1(c). As a result, the bits within t do not remain close
to each other within c. Furthermore, this approach grants us
some freedom when positioning the bits of t within ¢, po-
tentially facilitating a better distance spectrum and ML BER
performance [6] than that attained by the scheme in Fig. 1(b).
However, we are not granted absolute freedom when designing
the interleaver m. More specifically, not all positionings of the
bits of t within c are capable of terminating the inner code. We
shall discuss the constraints governing the interleaver design in
Section III. Note though that these constraints do not limit the
positioning of the bits of b’ within c. The EXIT characteristics
of the scheme depicted in Fig. 1(c) will be investigated in
Section IV, where the corresponding procedure is referred to
as “dg > 2 termination.”

III. TERMINATOR AND INTERLEAVER DESIGN

Let us assume (without loss of generality) that the recursive
inner encoder in Fig. 1(a) commences the encoding of the
ne-bit sequence ¢ € {0, 1} in the “all-zero” state, where all
m of its binary memory elements store zero-valued bits. If ¢
contains only a single logical one-valued bit (located at position
i € [1,...,nc]), then the inner encoder will remain in the all-
zero state until this single “one” is encountered. After this point,
the recursive inner encoder will emerge from and never return
to the all-zero state, owing to its infinite impulse response [7].
When the encoding of the remaining (n. — ) zero-valued bits
in c is completed, the inner encoder will reside in a particular
final state s; € {0, 1}™, which depends upon the position ¢ of
the one-valued bit within c.

Note that the set of all these so-called impulse response final
states {s;}."¢; will not include the all-zero state. Furthermore,
owing to the regular structure of the trellis, {s;}; <, will be
periodic in ¢, having a period of less than 2. In each period, no
impulse response final states will appear more than once. Since

TABLE 1
OPTIMAL TERMINATOR GENERATOR MATRICES G FOR VARIOUS
INNER-CODE FEEDBACK POLYNOMIALS f

f G dg ag r
[11] [111] 3 1
[111] ﬁ) (1) ﬂ 2 1 0.222
[101] ﬁ) oo ﬂ 2 (0333 | 05
[1011] [8(1) . (1)1 2 | 0857 | 028
[1101] 1001 2 | 0857 | 028
00111
[1001] 01010 2 | 0286 | 0.296
[L111] || LPO0OL] 1o | 0086 | 0375

recursive encoders are linear [21], the final state s € {0,1}™
entered into when encoding an arbitrary ¢ = {¢;};°; can be
determined using a sum over GF(2) according to

S = icisi. (1)
=1

Let us now consider the conditions required for the termina-
tor and interleaver in Fig. 1(c) to be capable of terminating the
inner encoder. These conditions will be satisfied if the various
possible permutations of t allow the inner encoder to end up in
any particular state s € {0, 1}" after encoding c. If this is the
case, then the terminator can select the particular permutation
of t that yields the specific final state s expected by the receiver.
Since there are 2™ possible final states in the set {0,1}™, we
require 2™ termination sequences.

Our termination sequences can be represented by a (2™ x
nt)-element matrix T = [t; to ... tom]", where each termina-
tion sequence column vector t, € {0,1}™ comprises ny > m
bits, where p € [1...2™]. Recall that more than m bits are
required to achieve a minimum Hamming distance d; of at least
two, as described in Section II. Assume that the interleaver 7 in
Fig. 1(c) places the ny bits of the termination sequence t into the
positions {m[j]}*, within the bit sequence c. The set of corre-
sponding impulse response final states can be represented using
the (ng x m)-element matrix S = [Sy[1] Sx[2] --- Sx[ny] - In
the case where the bit sequence b’ in Fig. 1(c) contains only
zero-valued bits, the set of final states that can be reached using
the termination sequences T are represented by the rows of the
2™ x m matrix T - S, in accordance with (1).

If the rows of T - S represent every possible state in the set
{0,1}™, then the termination sequences T and the interleaver
7 can terminate the inner encoder. Note that this is true, even
if the bit sequence b’ in Fig. 1(c) does not contain zero-valued
bits only, since the inner encoder has a linear response to these
bits [21].

Let us now consider the design of termination sequences T
for various binary recursive inner codes, as exemplified by the
rate-1 code in Fig. 4. We consider codes having various num-
bers of memory elements m € {1,2,3} and various feedback
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Fig. 3. EXIT band chart of the “dy > 2 termination” scheme in Section II
when transmitting frames comprising na = 499 source bits and ng = 999
encoded bits over a BPSK-modulated uncorrelated narrow-band Rayleigh
fading channel having an SNR of E./Ny = 0 dB. Note that the corresponding
EXIT band charts for the “no termination” and “dy = 1 termination” schemes
are visually indistinguishable from this.

polynomials f, as listed in Table I. Note that the bit sequences
required to terminate a recursive inner code do not depend upon
its generator polynomial g. A full search was conducted to find
termination sequences T that are optimal in the sense that they
(in decreasing order of priority):

1) facilitate termination;

2) have a minimum Hamming distance of d; > 2 between
them;

3) have a minimal length ny;

4) have a maximal minimum Hamming distance d¢ between
them;

5) have a minimal fraction a¢ of termination sequence pairs
that are separated by the particular minimum maximal
Hamming distance dy achieved;

6) facilitate termination for a maximal fraction r of the
possible permutations of S.

Note that owing to the periodicity of the impulse response final
states, r is also the fraction of all possible designs for the
interleaver 7 that facilitate termination. In all cases considered,
we found that the set of optimal termination sequences T can
be obtained as the set of codewords that can be generated
by a particular linear block code, which may be described by
a generator matrix (. Table I provides the generator matrix
G corresponding to each feedback polynomial f considered,
together with the associated values of d¢, a¢, and 7.

IV. EXIT CHART ANALYSIS

Let us now consider our novel “df > 2 termination”
scheme’s EXIT characteristics, as provided in Figs. 2 and 3.
The transmission of uncoded bit sequences a having lengths of
na € {4,49,499} bits was considered. Note that an uncoded
bit sequence length of n, = 4 bits is so short that an optimal
non-iterative full-search-based decoder would be preferred in
practice. Despite this, however, it is useful for us to consider
the iterative decoding of these short sequences here, since they
highlight the issues considered in this paper.

The EXIT functions in Figs. 2 and 3 were obtained using an
(R = 1/2)-rate outer repetition code and the inner rate-1 code
of Fig. 4 in the scheme of Fig. 1(c). The rate-1 code employed

Fig. 4. Schematic of a binary recursive rate-1 convolutional code having
m = 2 memory elements, a feedback polynomial of £ =[1 1 1], and a
generator polynomial of g = [1 0 0].

has a feedback polynomial of f = [1 1 1]. This polynomial and
the corresponding (ny = 3)-bit terminator were selected from
Table I, because they are associated with the lowest value of r.
They therefore impose the highest grade restriction upon the
design of the interleaver 7, permitting us to assess the impact
of this. As described in Section II, bit sequences b and ¢ adopt
lengths of np =ne = na/R+ ng € {11,101,1001} bits for
na € {4, 49,499}, respectively. Note that the generator polyno-
mial of the inner rate-1 code in Fig. 4is g = [1 0 0]. As aresult,
the last m number of bits output by the rate-1 encoder will
always equal the final state of its m memory elements. Since
this is known to the receiver when employing termination, there
is no need to transmit these m bits. The number of bits in
the sequence d is therefore given by nq = na/R +ny —m €
{9,99,999} for n, € {4,49,499}, respectively. The transmis-
sion of these bits over a binary (M = 2) phase shift keying
(BPSK)-modulated uncorrelated narrow-band Rayleigh fading
channel having an SNR of E./Ny = 0 dB was simulated. Note
that the corresponding EXIT charts in Figs. 2 and 3 are visually
indistinguishable from those that may be obtained using an
additive white Gaussian noise (AWGN) channel having an SNR
of E./Ny = —2 dB.

Note that the EXIT functions shown in Figs. 2 and 3 are
surrounded by EXIT bands [30]. These show the standard devi-
ation that can be expected for the distribution of the iterative
decoding trajectory corner points. As may be expected, the
iterative decoding trajectories exhibit a greater variation from
frame to frame when the frame length ng is low. The simula-
tions detailed in Section V revealed that the EXIT bands shown
in Figs. 2 and 3 adequately reflected the variation exhibited by
the iterative decoding trajectories, even in the case of nq = 9.
This may be attributed to our use of an (R = 1/2)-rate outer
repetition code, which obtains each pair of extrinsic LLRs in
Bg by simply swapping the corresponding pair of a priori
LLRs in b}. As a result, the (R = 1/2)-rate outer repetition
decoder does not assume the independence of its a priori LLRs,
since only one of these contributes to each extrinsic LLR. For
this reason, the deviation of the iterative decoding trajectories
from the EXIT bands, owing to the dependence between the a
priori LLRs, was found to be significantly lower than what may
typically be expected when employing short interleavers.

Note that Fig. 2 also provides EXIT characteristics for the
“no termination” and the “d; = 1 termination” schemes in
Section II. To ensure fair comparisons, however, it is necessary
for all schemes to generate encoded bit sequences d comprising
the same number ng of bits, when provided with the same
input bit sequence a. For this reason, the “no termination”
and the “df = 1 termination” schemes were emulated using
the schematic of the “df > 2 termination” scheme, which is
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provided in Fig. 1(c). More specifically, while the relevant gen-
erator matrix G in Table I yields the (ny = 3)-bit termination
sequences of t € {[000],[011],[101],[110]} forthe “df > 2
termination” scheme, these sequences were exchanged for t €
{[000],[001],[010],[011]} in the “df = 1 termination”
scheme. Note that these replacement sequences are the (m =
2)-bit “d¢ =1 termination” sequences, concatenated onto a
single zero-valued bit. The inclusion of this single bit represents
doping [31], which is beneficial for iterative decoding. More
specifically, since the receiver of the “df =1 termination”
scheme can expect the first bit in t to have a value of zero, it
can always employ an infinite value for the first LLR in t,,
expressing absolute (and justified) confidence in a bit value
of zero. As in the “df > 2 termination” scheme, there is no
need to transmit the last m number of bits output by the rate-
1 encoder in the “d; = 1 termination” scheme, since these will
always equal its termination state. For this reason, in the “d¢ =
1 termination” scheme, the number of bits in the sequence
d is also given by nqg = na/R+ny —m € {9,99,999} for
na € {4,49,499}, respectively.

By contrast, in the emulation of the “no termination” scheme,
the bit sequence t = [0] was always employed. While this
bit sequence does not facilitate termination at both ends of
the inner decoder’s trellis, it does provide ny = 1 beneficial
doping bit. Since the rate-1 encoder is not terminated in the
“no termination” scheme, it is necessary to transmit all of the
bits output by the rate-1 encoder. Therefore, the employment
of just ng = 1 bit in the sequence t ensures that the number of
transmitted bits is the same as in the “dy > 2 termination” and
“d¢ =1 termination” schemes, namely, ng = na/R+ ng €
{9,99,999} for n, € {4,49,499}, respectively.

Note that the only differences between the three schemes
considered are the sets of possible values for t and the cor-
responding limitations that are placed upon the design of the
interleaver 7.2 Since these limitations are strictest for our pro-
posed “dy > 2 termination” scheme, we consider our compar-
isons to be unbiased. Note that, while the complexity associated
with termination differs in the three schemes considered, we
can expect these differences to be negligible for frame lengths
of ng = 99 and ng = 999 bits, since termination affects only
ng = 3 of these bits. From this perspective, it can be said
that termination is associated with only a negligible com-
plexity cost.

Observe in Fig. 2 that the terminated recursive inner
codes employed in the “df =1 termination” and “df > 2
termination”_schemes have EXIT functions that reach the
[I(be;b), I((ce; )] = (1,1) point of the EXIT chart. By con-
trast, the unterminated inner code of the “no termination”

2When employing a rate-1 inner encoder having a generator polynomial of
the form g = [1, 0,0, ..., 0], it is in fact necessary to interleave the termina-
tion sequence t of the “dy = 2 termination” scheme to distinguish it from the
“no termination” scheme. If the m termination bits of t were merely appended
to the end of the rate-1 encoder’s input bit sequence, like in Fig. 1(b), then they
would only influence the value of the last m bits output by the encoder. Since
these bits are not transmitted when employing termination, the bits that are
transmitted d would only depend upon the source bit sequence a, like in the
“no termination” scheme. For this reason, the “d¢ = 2 termination” scheme
becomes equivalent to the “no termination” scheme, unless its termination
sequence is interleaved, like in Fig. 1(c).

scheme has an EXIT function that does not reach the (1, 1)
point, as predicted in Section II. The shortcomings of the “no
termination” scheme are demonstrated most clearly in Fig. 2(a),
which considers the case of very short coded frames comprising
just nqg = 9 bits. Here, the inner decoder provides extrinsic
LLRs €, having a mutual information of just I(¢.;c) = 0.771
when provided with a priori LLRs ¢, having a mutual infor-
mation of I(€,;c) = 1. As shown in Figs. 2(d) and 3, however,
this problem is mitigated (although not eliminated) as the frame
length is increased. Indeed, the “no termination” scheme’s
inner decoder is capable of providing an extrinsic information
€. having mutual informations of up to I(¢.) =0.979 and
I(€.) = 0.999 for ng = 99 and ngq = 999, respectively.

Let us now turn our attention to the outer EXIT functions
provided in Figs. 2 and 3. Similar to the EXIT functions of
irregular codes [8], these are obtained as a weighted average
of the EXIT functions belonging to the half-rate repetition code
and terminator in Fig. 1(c). Here, a weight of (ny, — ng)/np is
applied to the half-rate repetition code’s EXIT function, since it
provides (np, — nt) of the np bits in b. Meanwhile, the EXIT
function of the terminator is associated with a weight of nt, /np,
which diminishes as np (and, hence, nq) is increased. It is
for this reason that the outer EXIT functions in Figs. 2 and 3
resemble the diagonal EXIT function of the half-rate repetition
code to an increasingly greater degree as nq is increased.

Observe in Fig. 2 that the “no termination” and “df > 2
termination” schemes have inverted outer EXIT functions that
reach the [I(be; b), I(€c;c)] = (1,1) point of the EXIT chart.
By contrast, the inverted outer EXIT function of the “d¢ = 1
termination” scheme has an EXIT function that does not reach
the (1, 1) point in this way. This may be attributed to the
unavailability of any extrinsic information pertaining to the
two terminating bits of t that are employed in the “df = 1
termination” scheme. As a result, the corresponding LLRs
in t. must be allocated zero-valued LLRs, as described in
Section II. This yields an extrinsic mutual information I (BC; b)
of less than unity, even when the a priori mutual information
I(b,;b) is unity. Indeed, the “d; = 1 termination” scheme is
only capable of providing extrinsic mutual informations of up
to I(be;b) = 0.818, I(be;b) = 0.980, and I(be;b) = 0.998
for ng = 9, nga = 99, and nq = 999, respectively.

As highlighted in Fig. 2(a)—(c), our novel “d; > 2 termina-
tion” scheme is the only one that can create an open EXIT chart
tunnel to the (1, 1) point.

Note that, in the “no termination” scheme, the “terminator”
block in the receiver of Fig. 1(c) has an inverted EXIT function
that resembles a vertical line at [ (BC; b) = 1, since it always
provides an infinite value for the ny = 1 extrinsic LLR of to.
Similarly, the terminator of the “d¢ = 1 termination” scheme
has an inverted EXIT function that resembles a vertical line
at I(b,; b) = 0.333, since it provides an infinite value for one
of the ny = 3 extrinsic LLRs in t,. It is for this reason that
the inverted outer EXIT functions of the “no termination” and
“d¢ = 1 termination” schemes commence at points [ (Be; b) >
0 along the horizontal axis of the EXIT charts. This is in
contrast to the “d; > 2 termination” scheme, which is unable
to generate any extrinsic information b. in the absence of any
a priori information b,, since it does not employ doping.
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Observe that the area beneath the outer EXIT function pro-
vided in Fig. 2(a) for the “no termination” scheme is approxi-
mately equal to the overall coding rate of n,/ng = 0.444 [32].
By contrast, the terminated schemes have corresponding areas
in Fig. 2(b) and (c) of about (n, +m)/np = 0.545. In all
cases, the areas beneath the inner EXIT functions become equal
to those of the outer EXIT functions at an SNR of —2.18 dB
for the Rayleigh fading channel and —3.58 dB for the AWGN
channel. Note that these are the SNRs at which the channel
capacity equals the throughput n,/ng - logy (M) = 0.444 of
the schemes, indicating that none of them suffer from rate
loss [32].

V. BIT-ERROR-RATE PERFORMANCE

In this section we consider the BER performance that can
be achieved by the “no termination,” “d¢ = 1 termination,” and
“dy > 2 termination” schemes in Section IV when employing
various frame lengths. This was investigated by simulating
the transmission of randomly generated frames over BPSK-
modulated uncorrelated narrow-band Rayleigh fading channels
and AWGN channels having various SNRs per bit Ej, /Ny =
nd/Na - F./Ny. In each case, the number of frames considered
was adjusted to ensure that a statistically significant number
of bit errors was observed. A different random design was
employed for the interleaver 7 in each frame, since this is
assumed by the EXIT band chart analysis in Section IV [30].
Note that, in the case of the terminated schemes, the resultant
interleaver designs were rejected if they would not facilitate
termination, as detailed in Section III.

In all simulations, iterative decoding was continued until
convergence was detected. As may be expected, fewer iterations
were required to achieve this when the E}, /Ny value was high.
At a Rayleigh fading channel E,/Ny value of 10 dB and
an AWGN channel E}, /Ny value of 4 dB, we found that the
schemes employing frame lengths of ng =9, nqg =99, and
na = 999 typically required four, five, and six iterations to
achieve convergence, respectively. Our BER results are pre-
sented in Figs. 5 and 6.

Observe in Figs. 5 and 6 that improved BERs are offered
when longer frames are employed. This behavior is typical of
iteratively decoded schemes, since higher frame lengths permit
the iterative decoding trajectories to more readily navigate
through the EXIT chart tunnel [1]. In all cases, the “ds > 2
termination” scheme can be seen to offer the most desirable
performance at high Ej/Ny values. This may partially be
attributed to its EXIT functions, which do not intersect each
other before the (1, 1) point of the EXIT chart, like those
of the “no termination” and “d; = 1 termination” schemes
did, as described in Section IV. Furthermore, owing to the
increased Hamming distance of df = 2 between the various
termination sequences of the “d¢ > 2 termination” scheme, it
was found to offer better distance properties and, hence, lower
error floors than the “no termination” and “d¢ = 1 termination”
schemes.

More specifically, owing to the selection of outer and inner
codes employed, the minimum Hamming distance between any
two legitimate permutations of the bit sequence d was found

100 . :
No termination )
d¢ = 1 termination a
101 v dy > 2 termination o B
Na=4,nNq=9 ——
10-2 Na =49, nq = 99 ——— i
nag = 499, ng = 999 -
10-3
ot
[ca)
m \\
1074
“\T‘
1075 \\\
N
£y A\\A \\\
1076 !'g \N\“\ o \\\ ~
h, \ s, \
B W ow, .
8 N e »
10-7
0 10 20 30 40 50
Ey/No [dB]
Fig. 5. BER versus Ep/Ng performance of the schemes introduced in

Section II when transmitting frames having various lengths over a BPSK-
modulated uncorrelated narrow-band Rayleigh fading channel.
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Fig. 6. BER versus Ep/Ng performance of the schemes introduced in
Section II when transmitting frames having various lengths over a BPSK-
modulated AWGN channel.

to be two in the “ds > 2 termination” scheme, irrespective of
the interleaver design. The “no termination” scheme was also
found to have a minimum Hamming distance of two but with
higher multiplicities, explaining the higher error floors shown
in Figs. 5 and 6. Note that the “d; = 1 termination” scheme
reduces the minimum Hamming distance to one whenever its
interleaver adopts an unfortunate design, causing its error floors
to be the highest of all. This is surprising, since termination
typically improves the distance properties of turbo codes [21].
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We shall explore this finding in a future publication, where we
shall determine the conditions in which the “d; = 1 termina-
tion” scheme degrades the minimum Hamming distance.

For a frame length of ng = 999 bits, the three schemes can
be seen to offer similar BER performance in Figs. 5 and 6. This
may be explained by the shifting of the intersection point of
the “no termination” and “d¢ = 1 termination” schemes’ EXIT
functions toward the (1, 1) point, as described in Section IV.
Furthermore, it was found that the conditions required for the
“dy = 1 termination” scheme to adopt a minimum Hamming
distance of one are more rarely satisfied as its frame length
increases.

VI. CONCLUSION

In this paper, we have proposed a novel method for ter-
minating recursive inner codes in serial concatenations. Our
method employs termination sequences having a minimum
Hamming distance of at least two between them, as described
in Section II. In Section IV, we have demonstrated that our
approach facilitates the creation of an open EXIT chart tunnel
to the (1, 1) point of the EXIT chart, where the ML BER
performance is obtained. By contrast, when termination is
omitted or the “dy = 1 termination” method in [6], [9]-[11],
[19], and [20] is employed, the EXIT functions intersect each
other before the (1, 1) point, as shown in Section IV. As a
result, our novel approach facilitates useful BER reductions
when employing transmission frames that are on the order of
100 bits long, which are typical in wireless sensor networks,
for example. Indeed, Fig. 5 shows that our proposed “ds > 2
termination” scheme can achieve a BER of 1076 at an Ej, /No
value that is 6.5 dB lower than that required by a “df =1
termination” benchmarker when employing an encoded frame
length of ng = 99 bits and transmitting over an uncorrelated
Rayleigh fading channel. In the case of an AWGN channel, a
corresponding gain of 1 dB was obtained, as shown in Fig. 6.
These results are particularly remarkable, because in this com-
parison, the termination method employed affected the values
of only ny = 3 of the np, = 101 bits that were encoded by the
inner encoder. Furthermore, these gains were obtained without
incurring a significantly higher computational complexity, as
described in Section I'V.
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