
The Open Provenance Model (v1.01)

Luc Moreau (Editor) (U. of Southampton)
Beth Plale (Indiana U.)
Simon Miles (King's College)
Carole Goble, Paolo Missier (Manchester U.)
Roger Barga, Yogesh Simmhan (Microsoft)
Joe Futrelle, Robert E. McGrath, Jim Myers (NCSA)
Patrick Paulson (PNNL)
Shawn Bowers, Bertram Ludaescher (U. Davis)
Natalia Kwasnikowska, Jan Van den Bussche (U. Hasselt)
Tommy Ellkvist, Juliana Freire (U. Utah)
Paul Groth (USC)

July 17, 2008

Abstract

In this paper, we introduce the Open Provenance Model , a model for

provenance that is designed to meet the following requirements: (1) To

allow provenance information to be exchanged between systems, by means

of a compatibility layer based on a shared provenance model. (2) To al-

low developers to build and share tools that operate on such a provenance

model. (3) To de�ne the model in a precise, technology-agnostic man-

ner. (4) To support a digital representation of provenance for any \thing",

whether produced by computer systems or not. (5) To de�ne a core set

of rules that identify the valid inferences that can be made on provenance

graphs.

1

1 Introduction

Provenance is well understood in the context of art or digital libaries, where it
respectively refers to the documented history of an art object, or the documen-
tation of processes in a digital object's life cycle [5]. Interest for provenance in
the \e-science community" [13] is also growing, since provenance is perceived
as a crucial component of work
ow systems [2] that can help scientists ensure
reproducibility of their scienti�c analyses and processes.

Against this background, the International Provenance and Annotation Work-
shop (IPAW'06), held on May 3-5, 2006 in Chicago, involved some 50 participants
interested in the issues of data provenance, process documentation, data deriva-
tion, and data annotation [8, 1]. During a session on provenance standardization,
a consensus began to emerge, whereby the provenance research community needed
to understand better the capabilities of the di�erent systems, the representations
they used for provenance, their similarities, their di�erences, and the rationale
that motivated their designs.

Hence, the �rst Provenance Challenge was born, and from the outset, the
challenge was set up to be informative rather than competitive. The �rst Prove-
nance Challenge was set up in order to provide a forum for the community to
understand the capabilities of di�erent provenance systems and the expressiveness
of their provenance representations. Participants simulated or ran a Functional
Magnetic Resonance Imaging work
ow, from which they implemented and exe-
cuted a pre-identi�ed set of \provenance queries". Sixteen teams responded to
the challenge, and reported their experience in a journal special issue [10].

The �rst Provenance Challenge was followed by the second Provenance Chal-
lenge, aiming at establishing inter-operability of systems, by exchanging prove-
nance information. Thirteen teams [12] responded to this second challenge. Dis-
cussions indicated that there was substantial agreement on a core representa-
tion of provenance. As a result, following a workshop in August 2007, in Salt
Lake City, a data model was crafted and released as the Open Provenance Model
(v1.00) [9].

The starting point of this work is the community agreement summarized by
Miles [7]. We assume that provenance of objects (whether digital or not) is
represented by an annotated causality graph, which is a directed acyclic graph,
enriched with annotations capturing further information pertaining to execution.
For the purpose of this paper, a provenance graph is de�ned to be a record of
a past execution (or current execution), and not a description of something that
could happen in the future.

The Open Provenance Model (OPM) is a model for provenance that is de-
signed to meet the following requirements:

� To allow provenance information to be exchanged between systems, by
means of a compatibility layer based on a shared provenance model.

2

� To allow developers to build and share tools that operate on such prove-
nance model.

� To de�ne the model in a precise, technology-agnostic manner.

� To support a digital representation of provenance for any \thing", whether
produced by computer systems or not.

� To de�ne a core set of rules that identify the valid inferences that can be
made on provenance graphs.

While specifying this model, we also have some non-requirements:

� It is not the purpose of this document to specify the internal representations
that systems have to adopt to store and manipulate provenance internally;
systems remain free to adopt internal representations that are �t for their
purpose.

� It is not the purpose of this document to de�ne a computer-parsable syntax
for this model; model implementations in XML, RDF or others will be
speci�ed in separate documents, in the future.

� We do not specify protocols to store such provenance information in prove-
nance repositories.

� We do not specify protocols to query provenance repositories.

On June 19th 2008, twenty participants attended the �rst OPM workshop
[3] to discuss the version of the speci�cation. Minutes of the workshop and
recommendations [4] were published, and led to the current version (v1.01) of
the Open Provenance Model.

2 Basics

2.1 Entities

Our primary concern is to be able to represent how \things", whether digital data
such as simulation results, physical objects such as cars, or immaterial entities
such as decisions, came out to be in a given state, with a given set of character-
istics, at a given moment. It is recognised that many of such \things" can be
stateful: a car may be at various locations, it can contain di�erent passengers,
and it can have a tank full or empty; likewise, a �le can contain di�erent data
at di�erent moments of its existence. Hence, from the perspective of provenance,

3

we introduce the concept of an artifact as an immutable1 piece of state; likewise,
we introduce the concept of a process as actions resulting in new artifacts.

A process usually takes place in some context, which enables or facilitates its
execution: examples of such contexts are varied and include a place where the
process executes, an individual controlling the process, or an institution sponsor-
ing the process. These entities are being referred to as Agents . Agents, as we
shall see when we discuss causality dependencies, are a cause (like a catalyst) of
a process taking place.

The Open Provenance Model is based on these three primary entities, which
we de�ne now.

De�nition 1 (Artifact) Immutable piece of state, which may have a physical
embodiment in a physical object, or a digital representation in a computer system.

De�nition 2 (Process) Action or series of actions performed on or caused by
artifacts, and resulting in new artifacts.

De�nition 3 (Agent) Contextual entity acting as a catalyst of a process, en-
abling, facilitating, controlling, a�ecting its execution.

The Open Provenance Model is a model of artifacts in the past , explaining
how they were derived. Likewise, as far as processes are concerned, they may
also be in the past, i.e. they may have already completed their execution; in
addition, processes can still be currently running (i.e., they have not completed
their execution yet). In no case is OPM intended to describe the state of future
artifacts and the activities of future processes.

We introduce a graphical notation and a formal de�nition for provenance
graphs. Speci�cally, artifacts are represented by circles, and are denoted by
elements of the set Artifact. Likewise, processes are represented graphically
by rectangles and denoted by elements of the set Process. Finally, agents are
represented by octogons and are elements of the set Agent in the formal notation.

2.2 Dependencies

A provenance graph aims to capture the causal dependencies between the above-
mentioned entities. Therefore, a provenance graph is de�ned as a directed graph,
whose nodes are artifacts, processes and agents, and whose edges belong to one
of following categories depicted in Figure 1. An edge represents a causal depen-
dency, between its source, denoting the e�ect, and its destination, denoting the
cause.

1In the presence of streams, we consider an artifact to be a slice of stream in time, i.e. the

stream content at a speci�c instant in the computation. A future version of OPM will re�ne the

model to accomodate streams fully as they are recognized to be crucial in many applications.

4

A1 A2

P1 P2
wasTriggeredBy

wasDerivedFrom

A Pused(R)

AP
wasGeneratedBy(R)

Ag P
wasControlledBy(R)

Figure 1: Edges in the Provenance Model

The �rst two edges express that a process used an artifact and that an artifact
was generated by a process. Since a process may have used several artifacts, it
is important to identify the roles under which these artifacts were used. (Roles
are denoted by the letter R in Figure 1.) Likewise, a process may have generated
many artifacts, and each would have a speci�c role. For instance, the division
process uses two numbers, with roles dividend and divisor, and produces two
numbers, with roles quotient and remainder. Roles are meaningful only in the
context of the process where they are de�ned. The meaning of roles is not de�ned
by OPM but by application domains; OPM only uses roles syntactically (as
\tags") to distinguish the involvement of artifacts in processes.

A process is caused by an agent, essentially acting as a catalyst or controller:
this causal dependency is expressed by the was controlled by edge. Given that
a process may have been catalyzed by several agents, we also identify their roles
as catalysts. We note that the dependency between an agent and a process
represents a control relationship, and not a data derivation relationship. It is in-
troduced in the model to more easily express how a user (or institution) controlled
a process.

It is also recognized that we may not be aware of the process that generated
some artifact A2, but that artifact A2 was derived from another artifact A1.
Likewise, we may not be aware of the exact artifact that a process P2 used,
but that there was some artifact generated by another process P1. Process P2

is then said to have been triggered by P1. Both edges wasDerivedFrom and
wasTriggeredBy are introduced, because they allow a data
ow or process oriented
views of past executions to be adopted, according to the preference of system
designers. (Since wasDerivedFrom and wasTriggeredBy are edges that summarize
some activities for which all details are not being exposed, it was felt that it was

5

not necessary to associate a role with such edges.)
As far as conventions are concerned, we note that causality edges use past

tense to indicate that they refer to past execution. Causal relationships are
de�ned as follows.

De�nition 4 (Causal Relationship) A causal relationship is represented by
an arc and denotes the presence of a causal dependency between the source of
the arc (the e�ect) and the destination of the arc (the cause). Five causal rela-
tionships are recognized: a process used an artifact, an artifact was generated by
a process, a process was triggered by a process, an artifact was derived from an
artifact, and a process was controlled by an agent.

Multiple notions of causal dependencies were considered for OPM. A very
strong notion of causal dependency would express that a set of entities was nec-
essary and su�cient to explain the existence of another entity. It was felt that
such a notion was not practical, since, with an open world assumption, one could
always argue that additional factors may have in
uenced an outcome (e.g. elec-
tricity was used, temperature range allowed computer to work, etc). It was felt
that weaker notions, only expressing necessary dependencies , were more appro-
priate. However, even then, one can distinghish data dependencies (e.g. where
a quotient is clearly dependent on the dividend and divisor) from a control de-
pendency where the mere presence of some artifact or the beginning of a process
can explain the presence of another entity. A number of factors have in
uenced
us to adopt a weak notion of causal dependency for OPM.

� Expressibility. It is anticipated that systems will produce descriptions of
what their components are doing, without having intimate knowledge of the
exact internal data and control dependencies. Weak notions of dependency
are necessary for such systems to be able to use OPM in practice.

� Composability. We shall see how OPM supports multi-level descriptions
(Section 3). In a system consisting of the parallel composition of two sub-
components, the high level summary of the system requires a weaker notion
of dependency than the low level descriptions of its subcomponents.

Hence, we adopt the following causal dependencies in OPM. We anticipate that
subclasses of these dependencies, capturing stronger notions of causality, may be
de�ned in speci�c systems, and over time, may be incorporated in OPM.

De�nition 5 (Artifact Used by a Process) In a graph, connecting a process
to an artifact by a used edge is intended to indicate that the process required the
availability of the artifact to complete its execution. When several artifacts are
connected to a same process by multiple used edges, all of them were required for
the process to complete.

6

Alternatively, a stronger interpretation of the used edge would have required
the artifact to be available for the process to be able to start. It is believed that
such a notion may be useful in some circumstances, and it may be de�ned as
a subtype of used . We note that both interpretations of used coincide, when
processes are modelled as instantaneous.

De�nition 6 (Artifacts Generated by Processes) In a graph, connecting an
artifact to a process by an edge wasGeneratedBy is intended to mean that the pro-
cess was required to initiate its execution for the artifact to be generated. When
several artifacts are connected to a same process by multiple wasGeneratedBy
edges, the process had to have begun, for all of them to be generated.

De�nition 7 (Process Triggered by Process) A connection of a process P2

to a process P1 by a \was triggered by" edge indicates that the start of process P1

was required for P2 to be able to complete.

We note that the relationship P2WasTriggeredBy P1 (like the other causality
relationships we describe in this section) only expresses a necessary condition: P1

was required to have started for P2 to be able to complete. This interpretation
is weaker than the common sense de�nition of \trigger", which tends to express
a su�cient condition for an event to take place.

De�nition 8 (Artifact Derived from Artifact) An edge \was derived from"
between two artifacts A1 and A2 indicates that artifact A1 needs to have been
generated for A2 to be generated.

De�nition 9 (Process Controlled by Agent) The assertion of an edge \was
controlled by" between a process P and an agent Ag indicates that a start and
end of process P was controlled by agent Ag.

2.3 Roles

A role is an annotation on used , wasGeneratedBy and wasControlledBy .

De�nition 10 (Role) A role designates an artifact's or agent's function in a
process.

A role is used to di�erentiate among several use, generation, or controlling rela-
tions.

1. A process may use (generate) more than one artifact. Each used (wasGeneratedBy)
relation may be distinguished by a role with respect to that process. For
example, a process may use several �les, reading parameters from one, and
reading data from another. The used relations would be labeled with dis-
tinct roles.

7

2. An artifact might be used by more than one process, possibly for di�erent
purposes. In this case, the used relations can be distinguished or said to be
the same by the roles associated with the used relations. For example, a
dictionary might be used by one process to look up the spelling of \prove-
nance", (role = \look up provenance"), while another process uses the same
dictionary to hold open the door (role = \doorstop").

3. An agent may control more than one process. In this case, the di�erent pro-
cesses may be distinguished by the role associated with the wasControlledBy
relation. For example, a gardener may control the digging process (role =
\dig the bed"), as well as planting a rose bush (role = \plant") and watering
the bush (role = \irrigating")

4. A process may be controlled by more than one agent. In this case, each
agent might have a distinct control function, which would be distinguished
by roles associated with the wasControlledBy relations. For example, board-
ing the train may be controlled by the ticket agent (role = \sell ticket"), the
gate agent (role = \take ticket") and the steward (role = \guide to seat").

A role has meaning only within the context of a given process (and/or agent).
For a given process, each used , wasGeneratedBy or wasControlledBy relation has
a role speci�c to the process, though the roles may have no meaning outside that
process. In general, for a given process (agent) with several arcs, each role should
be distinct for that process. However, it is possible, though not recommended,
for roles to be the same within a context. For example, baking a cake with two
eggs, may de�ne each egg as a separate artifact, and the two used edges might
have the identical role, say, egg.

The role is recommended but may be unspeci�ed when not known. It is
recommended to give roles whenever possible. For interoperability, communities
should de�ne standard sets of roles with agreed meanings. In addition, a reserved
value will be de�ned for \unde�ned", which should be used when the role is not
known or omitted.

2.4 Examples

An example illustrating all the concepts and a few of the causal dependencies is
displayed in Figure 2. This provenance graph expresses that John baked a cake
with ingredients butter, eggs, sugar and
our.

A computational example is displayed in Figure 3. The �nal data product is
a scienti�c-grade mosaic of the sky, which was produced by a process that used
scienti�c images in FITS format (such as the Sloan Digital Sky Survey data set)
and a parameter indicating the size of the mosaic to be produced. The process
was caused by the Pegasus/Condor Dagman agent.

8

100g
Flour

100g
Sugar

2 eggs

Bake Cake

John

100g
Butter

wasGeneratedBy(cake)

used(flo
ur)

used(sugar)

used(egg)

used(butter)
wasControlledBy(cook)

Figure 2: Victoria Sponge Cake Provenance

While graphs can be constructed by incrementally connecting artifacts, pro-
cesses, and agents with individual edges, the meaning of the causality relations
can be understood in the context of all the used (or wasGeneratedBy) edges, for
each process. By connecting a process to several artifacts by used edges, we are
not just stating the individual inputs to the process. We are asserting a causal
dependency expressing that the process could take place and complete only be-
cause all these artifacts were available. Likewise, when we express that several
artifacts were generated by a process, we mean that these artifacts would not
have existed if the process had not begun its execution; furthermore, all of them
were generated by the process; one could not have been generated without the
others. The implication is that any single generated artifact is caused by the
process, which itself is caused by the presence of all the artifacts it used. We will
use such a property to derive transitive closures of causality relations in Section 6.

We can see here the crucial di�erence between artifacts and the data they
represent. For instance, the data may have existed, but the particular artifact
did not. For example, a BLAST search can be given a DNA sequence and return
a set of \similar" DNA sequences; however, these returned sequences all existed
prior to the process (BLAST) invocation, but the artifacts are novel.

As illustrated by the two examples above, the entities and edges introduced
in Figure 1 allow us to capture many of the use cases we have come across in the
provenance literature. However, they do not allow us to provide descriptions at
multiple level of abstractions, or from di�erent view points. To support these,
we allow multiple descriptions of a same execution to coexist.

9

FITS
DataSet Produce

Sky
Mosaic

Mosaic

Pegasus/
Condor
Dagman

wasGeneratedBy(out)

used(size)

used(inputSet)

wasControlledBy(enactor)

Degree

Figure 3: Montage Provenance

3 Overlapping and Hierarchichal Descriptions

Figure 4 shows two examples of provenance graphs describing what led the list
(3,7) to being as it is. According to the left-hand graph, the list was generated
by a process that added one to all constituents of the list (2,6). According to the
right-hand graph, the derivation process of (3,7) required the list to be created
from values 3 and 7, respectively obtained by adding one to 2 and 6, themselves
being the data products obtained by accessing the contents of the original list
(2,6).

(2,6)

(3,7)

add1ToAll

(2,6)

(3,7)

list
accessor

list
constructor

2 6

3 7

+1 +1

collection

0 1

10

collection

Figure 4: Examples Provenance Graph

10

Assuming these two graphs refer to the same lists (2,6) and (3,7), they provide
two di�erent explanations of how (3,7) was derived from (2,6): these explanations
would o�er di�erent levels of details about the same derivation. The requirement
of providing details at di�erent levels of abstraction or from di�erent viewpoints
is common for provenance systems, and hence, we would expect both accounts
to be integrated in a single graph. In Figure 5, we see how the two provenance
graphs of Figure 4 were integrated, by selecting di�erent colors for nodes and
edges. The darker (green) part belonged to the left graph of Figure 4, whereas the
lighter (orange) part is the alternate description from the right graph of Figure
4. (Graphs in this paper are better viewed in color.) The darker and lighter
subgraphs are two di�erent overlapping accounts of the same past execution,
o�ering di�erent levels of explanation for such execution. Such subgraphs are
said to be overlapping accounts because they share some common nodes (2,6)
and (3,7). Furthermore, the lighter part (orange) provides more details than the
darker subgraph (green): the lighter part is said to be a re�nement of the darker
grapher.

(3,7)

list
accessor

list
constructor

2 6

3 7

+1 +1
add1ToAll

(2,6)

collection

0 1

10

collection

Figure 5: Example of Overlapping and Hierarchical Accounts in a Provenance
Graph

Observing Figure 5, it becomes crucial to contrast the edges originating from
artifact (3,7) with those originating from the list constructor process. Indeed, the
used edges out of the list constructor process mean that both artifacts 3 and 7
were required for the process to take place. On the contrary, since the edges out
of artifact (3,7) are colored di�erently, they indicate that alternate explanations
exist for the process that led to such artifact being as it is. Using the analogy

11

of AND/OR graphs, a process with used edges corresponds to an AND-node,
whereas an artifact with wasGeneratedBy edges from di�erent accounts represent
an OR-node.

It is possible to use re�nements repeatedly to create a hierarchy of accounts,
as illustrated in Figure 6. We see that a third account (blue) is introduced, to
explain how one of the +1 processes was performed.

(3,7)

list
accessor

list
constructor

2 6

3 7

+1 +1
add1ToAll

(2,6)

0 1

10

collection

collection

+2

-1

Figure 6: Hierarchy of Accounts in a Provenance Graph

By combining several accounts, we can obtain cycles, as illustrated by Fig-
ure 7. Here, in the �rst view (darker, orange account), a description of two
processes P1a and P1b is presented, and their dependencies on artifacts A1, A2
and A3. In the second view (lighter, blue account), it is stated that the two
processes P1a and P1b are in fact a single process operating on input A2 and
producing A1 and A3. If we combine the two views, a circle has been created:
A2 ! P2 ! A1 ! P1 ! A2.

While overlapping accounts are intended to allow various descriptions of a
same execution, it is recognized that these accounts may di�er in their descrip-
tion's semantics. In general, such semantic di�erences may not be expressed by
structural properties we can set constraints on in the model (beyond the con-
straints identi�ed in this document).

4 Provenance Graph De�nition

The open provenance model is de�ned according to the following rules, which we
formalise in Section 5.

1. Accounts are entities that we assume can can be compared.

12

A1

A2

P2

P1P1a

A3

P1b

Figure 7: Multiple Accounts Creating Cycle

2. Artifacts are identi�ed by unique identi�ers. Artifacts contain a placeholder
for a domain speci�c value or reference to a piece of state. Two artifacts
are equal if and only if they have the same identi�er (irrespective of their
placeholder contents2). Artifacts can optionally belong to accounts: ac-
count membership is declared by listing the accounts an artifact belongs
to.

3. Processes are identi�ed by unique identi�ers. Processes contain a place-
holder for domain speci�c values or references. Two processes are equal if
and only if they have the same identi�er (irrespective of their placeholder
contents). Processes can optionally belong to accounts: account member-
ship is declared by listing the accounts a process belongs to.

4. Agents are identi�ed by unique identi�ers. Agents contain a placeholder
for domain speci�c values or references. Two agents are equal if and only
if they have the same identi�er (irrespective of their placeholder contents).
Agents can optionally belong to accounts: account membership is declared
by listing the accounts an agent belongs to.

5. Edges are identi�ed by their source, destination, and role (for those that
include a role). The source and destination consist of identi�ers for ar-
tifacts, processes, or agents, according to Figure 1. Edges can also op-

2In the Open Provenance Model, artifact identi�ers are the only way to distinguish artifacts

in the graph structure. Two artifacts di�er if they have di�erent ids, even though they may

refer to a same application data product. Two di�erent artifacts are therefore separate nodes

in a provenance graph: they have two di�erent computational histories. Given that an artifact

represents an instantaneous state of an object, one expect the actural data for a given artifact

to remain constant over time.

13

tionally belong to accounts: account membership is de�ned by listing the
accounts an edge belongs to. Structural equality applies to edges: two
edges used , wasGeneratedBy and wasControlledBy are equal if they have
the same source, the same destination, the same role, and the same ac-
counts; two edges wasTriggeredBy and wasDerivedFrom are equal if they
have the same source, the same destination, and the same accounts. The
meaning of roles is not de�ned by OPM but by application domains; OPM
only uses roles syntactically (as \tags") to distinguish the involvement of
artifacts in processes.

6. Roles are mandatory in edges used , wasGeneratedBy and wasControlledBy .
The meaning of a role is de�ned by the semantics of the process they relate
to. Role semantics is beyond the scope of OPM.

7. To ensure that edges establish a causal connection between actual causes
and e�ects, the model assumes that if an edge belongs to an account, then
its source and destination also belong to this account. In other words, the
e�ective account membership of an artifact/process/agent is its declared
account membership and the account membership of the edges it is souce
and destination of.

8. An OPM graph is a set of artifacts, processes, agents, edges, and accounts,
as speci�ed above. OPM graphs may be disconnected. The empty set is an
OPM graph. A singleton containing an artifact, a process or an agent is an
OPM graph. The set of OPM graphs is closed under the intersection and
union operations, i.e. the intersection of two OPM graphs is an OPM graph
(and likewise for union). We note at this stage that syntactically valid OPM
graphs may not necessarily make sense from a provenance viewpoint. Rules
below re�ne the OPM graph concept.

9. A view of an OPM graph according to one account, referred to as account
view , is the set of elements whose e�ective account membership for arti-
facts, processes, and agents, and account membership for edges contain the
account.

10. While cycles can be expressed in the syntax of OPM, a legal account view is
de�ned as an acyclic account view, which contains at most one wasGeneratedBy
edge per artifact. This ensures that within one account, an OPM graph
captures proper causal dependencies, and that a single explanation of the
origin of an artifact is given.

11. Hence, a legal OPM graph is one for which all account views are legal.

12. Legal account views are OPM graphs. The union of two legal account views
is an OPM graph (it is not necessarily a legal view since it may contain
cycles). The intersection of two legal account views is a legal account view.

14

13. Two account views can be declared to be overlapping to express the fact
that they represent di�erent descriptions of an execution.

14. A declaration that two views are overlapping is legal if the views have
some artifact, process or agent in common. Whilst one could infer whether
two graphs actually overlap, this would typically require the graphs to be
parsed fully in order to make such an inference; instead, we rely on explicit
declarations of such overlapping properties to facilitate the processing and
traversal of graphs.

15. An account view v1 can be declared to be a re�nement of another account
view v2 to express the fact v1 provides further details about an execution
than v2.

16. A declaration that a view is a re�nement of another legal if the views have
some common \input" artifact and \output" artifact. (De�nition needs to
be re�ned!)

17. A provenance graph is a legal OPM graph where overlapping and re�ned
views are legal.

18. Edges can optionally be annotated with time information. This aspect is
discussed in Section 7.

19. A provenance graph does not need to contain time annotations.

Having de�ned the concept of a provenance graph, we now study its formal
speci�cation.

5 Timeless Formal Model

Figure 8 provides a set-theoretic de�nition [11, 6] of the open provenance model,
based on the concepts introduced so far. The model of causality we propose is
timeless since time precedence does not imply causality: if a process P1 occurs
before a process P2, in general, we cannot infer that P1 caused P2 to happen.
However, the converse implication holds assuming time is measured according to
a single clock.

Even though the provenance model is timeless, we recognize the importance
of time, since time is easily observable by computer systems or users. Hence, in
Section 7, we examine how the causality graph can be annotated with time. We
will also specify constraints that one would expect time annotations to satisfy (in
terms of monotonicity with respect to time) in sound causality graphs.

We assume the existence of a few primitive sets: identi�ers for processes,
artifacts and agents, roles, and accounts. These sets of identi�ers provide in-
denti�es to the corresponding entities within the scope of a given provenance

15

graph. A given serialization will standardize on these sets, and provide concrete
representations for them.

It is important to stress that the purpose of these identi�ers is to de�ne the
structure of graphs: they are not meant to de�ne identities that are persistent
and reliably resolvable over time.

In the model, processes, artifacts and agents are identi�ed by their IDs, and
are associated with a value and zero or more accounts | noted P(Account), the
powerset notation. In the set-theoretic notation, identi�ers map to the corre-
sponding value and account membership. In other words, with a database per-
spective, elements of ProcessId, ArtifactId and AgentId are keys to processes,
artifacts and agents, respectively.

The �ve causality edges can be easily speci�ed by sets Used,WasGeneratedBy,
WasTriggeredBy, WasDerivedFrom, and WasControlledBy making use of identi-
�ers for artifacts, processes or agents, roles, and the associated accounts.

Finally, an OPM graph needs to identify explicitly which accounts are over-
lapping or re�nements. For this, we use a set Overlaps enumerating lists of
overlapping accounts, and a set Refines enumerating lists of re�ned accounts.

ProcessId : primitive set (Process Identi�ers)

ArtifactId : primitive set (Artifact Identi�ers)

AgentId : primitive set (Agent Identi�ers)

Role : primitive set (Roles)

Account : primitive set (Accounts)

V alue : application speci�c set (Values)

Process = ProcessId! V alue� P(Account)

Artifact = ArtifactId! V alue� P(Account)

Agent = AgentId! V alue� P(Account)

Used = ProcessId�Role�ArtifactId� P(Account)

WasGeneratedBy = ArtifactId�Role� ProcessId� P(Account)

WasTriggeredBy = ProcessId� ProcessId� P(Account)

WasDerivedFrom = ArtifactId�ArtifactId� P(Account)

WasControlledBy = ProcessId�Role�AgentId� P(Account)

Overlaps = Account�Account

Refines = Account�Account

OPMGraph = Artifact� Process

�Agent� P(Used)

�P(WasGeneratedBy)� P(WasTriggeredBy)

�P(WasDerivedFrom)� P(WasControlledBy)

�P(Overlaps)� P(Refines)

Figure 8: Timeless Causality Graph Data Model

The model of Figure 8 speci�es all the necessary building blocks for creating
OPM graphs. We now revisit the de�nition provided by Section 4, re-examining

16

each item, and explaining it in terms of the formal model.

1. Accounts are elements of the set Account.

2. All artifacts of a graph must have identi�ers belonging to the setArtifactId.
A function A of type Artifact is total on the set ArtifactId. For an artifact
id a, account membership is A(a):acc. In OPM, the artifact entity contains
a placeholder, A(a):value, for application speci�c values or references to
the actual piece of state.

3. All processes of a graph must have identi�ers belonging to the set ProcessId.
A function P of type Process is total on the set of ProcessId. For a process
id p, account memberhsip is P (p):acc. A process contains a placeholder
P (p):value for application speci�c valuers or references to the actual pro-
cess.

4. All agents of a graph must have identi�ers belonging to the set AgentId.
For the total function AG, and for an agent id ag, account memberhsip is
AG(ag):acc. Placeholder for the actual agent value is AG(ag):value.

5. Equality on edges is de�ned as follows:

For any used edges u1 = hp1; r1; a1; acc1i 2 Used and u2 = hp2; r2; a2; acc2i 2
Used, u1 = u2 if p1 = p2, a1 = a2, r1 = r2, acc1 = acc2.

For any wasGeneratedBy edges g1 = ha1; r1; p1; acc1i 2 WasGeneratedBy
and g2 = ha2; r2; acc2i 2 Used, g1 = g2 if p1 = p2, a1 = a2, r1 = r2,
acc1 = acc2.

For any wasControlledBy edges c1 = hp1; r1; ag1; acc1i 2 WasControlledBy
and ag2 = hp2; r2; ag2; acc2i 2 WasControlledBy, c1 = c2 if p1 = p2, ag1 =
ag2, r1 = r2, acc1 = acc2.

For any wasDerivedFrom edges d1 = ha1; a
0

1
; acc1i 2 WasDerivedFrom and

d2 = ha2; a
0

2
; acc2i 2 DerivedFrom, d1 = d2 if a1 = a2, a

0

1
= a0

2
, acc1 = acc2.

For any wasTriggeredBy edges t1 = hp1; p
0

1
; acc1i 2 WasTriggeredBy and

t2 = hp2; p
0

2
; acc2i 2 WasTriggeredBy, t1 = t2 if p1 = p2, p

0

1
= p0

2
, acc1 =

acc2.

6. The model does not place any constraints on roles, beyond their membership
to the set Role.

7. We introduce a convenience function accountOf gr operating on entities of
a graph gr. For a given OPM graph gr = hA;P;AG;U;G; T;D;C;Ov;Rei,
where A 2 Artifact; P 2 Process; AG 2 Agent, and U � Used; G �

17

WasGeneratedBy; T � WasTriggeredBy; D � WasDerivedFrom; C �
WasControlledBy; Ov � Overlapping;Re � Refinement

accountOf gr(p) = P (p):acc

accountOf gr(a) = A(a):acc

accountOf gr(ag) = AG(ag):acc

accountOf gr(u) = acc where u = hp; r; a; acci 2 U

accountOf gr(g) = acc where g = ha; r; p; acci 2 G

accountOf gr(t) = acc where t = hp1; p2; acci 2 T

accountOf gr(d) = acc where d = ha1; a2; acci 2 D

accountOf gr(c) = acc where c = hp; r; ag; acci 2 C

We then introduce e�ectiveAccountOf :

e�ectiveAccountOf gr(p)

= accountOf gr(p)

[i;j;kaccountOf
gr(ui;j;k) where ui;j;k = hp; ri; aj; accki 2 U

[i;j;kaccountOf
gr(di;j;k) where di;j;khai; rj; p; accki 2 G

[i;jaccountOf
gr(ti;j) where ti;j = hp; pi; accji 2 T

[i;jaccountOf
gr(ti;j) where ti;j = hpi; p; accji 2 T

[i;j;kaccountOf
gr(ci;j;k) where ci;j;k = hp; ri; agj; accki 2 C

(It is de�ned similarly for artifacts and agents.)

8. No topological restriction is placed on OPM graphs. For instance, hp; r1; a; ;i 2
U and ha; r2; p; ;i 2 G are two acceptable edges of an OPM graph, which
would create a circularity.

If gr1 = hA1; P1; AG1; U1; G1; T1; D1; C1; Ov1; Re1i and gr2 = hA2; P2; AG2; U2;
G2; T2; D2; C2; Ov2; Re2i, then gr1[gr2 = hA1tA2; P1tP2; AG1tAG2; U1[
U2; G1 [G2; T1 [T2; D1 [D2; C1 [C2; Ov1 [Ov2; Re1 [Re2i, where the t
operator is de�ne as: A1 t A2(x) = hv; a1 [a2i with A1(x) = hv; a1i and
A2(x) = hv; a2i.

If gr1 = hA1; P1; AG1; U1; G1; T1; D1; C1; Ov1; Re1i and gr2 = hA2; P2; AG2; U2;
G2; T2; D2; C2; Ov2; Re2i, then gr1\gr2 = hA1uA2; P1uP2; AG1uAG2; U1\
U2; G1 \G2; T1 \ T2; D1 \D2; C1 \ C2; Ov1 \Ov2; Re1 \Re2i, where the u
operator is de�ne as: A1 u A2(x) = hv; a1 \ a2i with A1(x) = hv; a1i and
A2(x) = hv; a2i.

If gr1; gr2 2 OPMGraph, then

gr1 [gr2 2 OPMGraph

and
gr1 \ gr2 2 OPMGraph:

18

9. For an OPMGraph gr = hA;P;AG;U;G; T;D;C;Ov;Rei, for an account
�, view(�; gr) is hA�; P�; AG�; U�; G�; T�; D�; C�; Ov;Rei, where:

A� � A with A� = f(a; acc) 2 A such that � 2 e�ectiveAccountOf gr(a)g

P� � P with P� = f(p; acc) 2 P such that � 2 e�ectiveAccountOf gr(p)g

AG� � AG with AG� = f(ag; acc) 2 AG such that � 2 e�ectiveAccountOf gr(ag)g

U� � U with U� = fhp; r; a; acci 2 U such that � 2 accg

G� � G with G� = fha; r; p; acci 2 G such that � 2 accg

T� � T with T� = fhp1; p2; acci 2 T such that � 2 accg

D� � D with D� = fha1; a2; acci 2 D such that � 2 accg

C� � C with C� = fhp; ag; acci 2 C such that � 2 accg

10. A legal account view gr = hA;P;AG;U;G; T;D;C;Ov;Rei is such that
there is no cycle in U;G; T;D and if ha1; r1; p1; acc1i 2 G and ha1; r2; p2; acc1i 2
G, then ha1; r1; p1; acc1i = ha1; r2; p2; acc1i, where acc1 is a singleton.

11. Two accounts �1; �2 are declared to be overlapping in an OPMgraph gr =
hA;P; AG;U;G; T;D;C;Ov;Rei, if h�1; �2i 2 Ov or h�2; �1i 2 Ov.

12. Two accounts �1; �2 are declared to be legally overlapping in an OPMgraph
if they are overlapping and if their respective account views hA1; P1; AG1;
U1; G1; T1; D1; C1; Ov1; Re1i and hA2; P2; AG2; U2; G2; T2; D2; C2; Ov2; Re2i
are such that

Domain(A1) \Domain(A2) 6= ;

or Domain(P1) \Domain(P2) 6= ;

or Domain(AG1) \Domain(AG2) 6= ;:

Hence, the overlapping relationship is re
exive, symmetric but not transi-
tive.

13. An account �1 is declared to re�ne account �2 in an OPMgraph gr = hA;P;
AG;U;G; T;D;C;Ov;Rei, if h�1; �2i 2 Re.

14. An account �1 is declared to be legally re�ning account �2 in an OPM-
graph if they are overlapping and if their respective account views gr1 =
hA1; P1; AG1; U1; G1; T1; D1; C1; Ov1; Re1i and gr2 = hA2; P2; AG2; U2; G2;
T2; D2; C2; Ov2; Re2i are such that

source(gr2) � source(gr1)

and sink(gr2) � sink(gr1)

Concept is currently ill-de�ned. De�nition remaining to be �-

nalised. Can we de�ne re�nement just on syntactic properties

of the graphs? Hence, the re�nement relationship is re
exive, asymmetric
and transitive.

19

6 Inferences

The Open Provenance Model has de�ned the notion of OPM graph based on
a set of syntactic rules and the notion of Provenance Graph adding a set of
topological constraints. Provenance graphs are aimed at representing causality
graphs explaining how processes and artifacts came out to be. It is expected
that a variety of reasoning algorithms will exploit this data model, in order to
provide novel and powerful functionality to users. It is beyond the scope of
this document to include an extensive coverage of relevant reasoning algorithms.
However, provenance graphs, by means of edges, capture causal dependencies,
which can be summarised by means of transitive closure that we describe in this
section.

6.1 One Step Inferences

In Section 2, we have introduced the two causal dependencies wasTriggeredBy
and wasDerivedFrom acting as abbreviation for causal dependencies used and
wasGeneratedBy . Figure 9 shows their exact meaning.

A1 A2P1 P2
used(R3)

wasGene-
ratedBy(R2)used(R1)

wasTriggeredBy

wasDerivedFrom
(asserted)

Acc1 Acc3Acc2

mayHaveBeenDerivedFrom
(inferred)

Figure 9: One Step Inference in the Provenance Model

Figures 10 and 11 formalize Figure 9 by introducing rules for each inference
that can be performed in the Open Provenance Model. A rule consists of two
expressions separated by a horizontal line. The expression above the line is a
hypothesis, whereas the expression below the line is a conclusion that can be
inferred from the hypothesis.

In Equation (1), a wasTriggeredBy edge is inferred from the existence of a
used and wasGeneratedBy edges, as per described in Figure 9. We note that the

20

inferred wasTriggeredBy edge relies on both accounts acc2 and acc3, hence, it is
given acc2 [acc3 as account.

hp2; r3; a2; acc3i 2 Used ^ ha2; r2; p1; acc2i 2WasGeneratedBy

hp2; p1; acc2 [acc3i 2WasTriggeredBy
(1)

hp2; p1; acci 2WasTriggeredBy

9a2; r2; r3; acc2; acc3; hp2; r3; a2; acc3i 2 Used
^ ha2; r2; p1; acc2i 2WasGeneratedBy
^ acc2 [acc3 = acc

(2)

Figure 10: One Step Inference Rules (1)

Equation (2) is the reverse of Equation (1): it allows us to establish that the
edge hp2; p1; acci 2 WasTriggeredBy is hiding the existence of some artifact a2,
used by p2 and generated by p1. The inferred edges used and wasGeneratedBy are
asserted in the context of some account acc2 and acc3, whose union is the original
account acc. We note that Equation (2) allows us to establish the existence of
some artifact a2 (and r1; r2; acc1; acc2) but it does not tell us what their ids and
values are. This is the consequence of using wasTriggeredBy , which is a lossy
summary of the composition of used and wasGeneratedBy .

The kind of inferences that can be made about wasDerivedFrom is of a dif-
ferent nature. Indeed, without any internal knowledge of P1 in Figure 9, it is
impossible to ascertain there is an actual data dependency between A1 and A2.

Remark. Concretely, a rule such as the following would lead to incorrect

inferences since it allows arbitrary outputs to a process to be inferred to

be dependent on arbitrary inputs to the same process.

ha2; r2; p1; acc2i 2WasGeneratedBy ^ hp1; r1; a1; acc1i 2 Used

ha2; a1; acc1 [acc2i 2WasDerivedFrom

While it is unreasonable to infer an exact dependency by means of wasDerivedFrom,
it is useful to be able to infer that a dependency may exist. To this end, we in-
troduce the edge mayHaveBeenDerivedFrom that marks such a potential depen-
dency. Hence, if ha1; a2i 2WasDerivedFrom, then ha1; a2i 2 MayHaveBeenDerivedFrom,
but not vice-versa. Hence, Equation (3) states that a mayHaveBeenDerivedFrom
edge can be derived from the existence of a succession of wasGeneratedBy and
used edges. Equation (4) is to (2) what wasDerivedFrom is to wasTriggeredBy .

In rules 1 and 3, the inferred edges have accounts acc2 [acc3 and acc1 [acc2,
respectively. Hence, the artifacts and processes connected by these edges will
have an e�ective account membership modi�ed accordingly. We note that rules
1 and 3 e�ectively creates relationships in the union of multiple account views.

21

ha2; r2; p1; acc2i 2WasGeneratedBy ^ hp1; r1; a1; acc1i 2 Used

ha2; a1; acc1 [acc2i 2 MayHaveBeenDerivedFrom
(3)

ha2; a1; acci 2WasDerivedFrom

9p1; r1; r2; acc1; acc2; ha2; r2; p1; acc2i 2WasGeneratedBy
^ hp1; r1; a1; acc1i 2 Used
^ acc1 [acc2 = acc

(4)

Figure 11: One Step Inference Rules (2)

6.2 Transitive Closure

Users want to �nd out the causes of an artifact, not due to one process, but
potentially, due to an unknown number of them.

Hence, for the purpose of expressing queries or expressing inferences about
provenance graphs, we introduce four new relationships , which are transitive ver-
sions of existing relationships, namelyUsed�,WasGeneratedBy�,WasDerivedFrom�

and WasTriggeredBy�. Their de�nitions are displayed in Figure 12. We note that
Figure 12 contains de�nitions (as opposed to inference rules of Figures 10 and
11, which specify which edges can be inferred from which edges). For conve-
nience, we have also introduced a generic causal dependency wasDependentOn�

(see equations (9) to (12)). Note that similar inference rules can be de�ned for
MayHaveBeenDerivedFrom.

Equations (7) and (8) are one of the multiple possible ways of de�ning edges
used� and wasGeneratedBy�. Other de�nitions could be expressed and proved
equivalent (such as used� can be derived from a single used and wasDerivedFrom�).

22

ha2; a1; acci 2WasDerivedFrom� (5)

if a2 = a1 _ 9a3; ha2; a3; acc2i 2WasDerivedFrom
^ ha3; a1; acc1i 2WasDerivedFrom�

^ acc = acc1 [acc2

hp2; p1; acci 2WasTriggeredBy� (6)

if p2 = p1 _ 9p3; hp2; p3; acc2i 2WasTriggeredBy
^ hp3; p1; acc1i 2WasTriggeredBy�

^ acc = acc1 [acc2

hp; a; acci 2 Used� (7)

if 9p2; r; acc1; acc2; hp; p2; acc2i 2WasTriggeredBy�

^ hp2; r; a; acc1i 2 Used
^ acc = acc1 [acc2

hA;P; acci 2WasGeneratedBy� (8)

if 9p2; R; acc1; acc2; hA;R; p2; acc2i 2WasGeneratedBy
^ hp2; P; acc1i 2WasTriggeredBy�

^ acc = acc1 [acc2

hA;P; acci 2WasDependentOn� if hA;P; acci 2WasGeneratedBy� (9)

ha1; a2; acci 2WasDependentOn� if ha1; a2; acci 2WasDerivedFrom�(10)

hp1; p2; acci 2WasDependentOn� if hp1; p2; acci 2WasTriggeredBy� (11)

hP;A; acci 2WasDependentOn� if hP;A; acci 2 Used� (12)

Figure 12: Transitive Closures

23

7 Formal Model and Time Annotations

The Open Provenance Model allows for causality graphs to be annotated with
time annotations. In this model, time is not intended to be used for deriving
causality: if causal dependencies exist, they need to be made explicit with the
appropriate edges. However, time may have been observed during the course of a
process, and we would expect such time information to be compatible with causal
dependencies: the time of an e�ect should be greater than the time of its cause
(for a same clock). Hence, time is useful in validating causality claims.

In the Open Provenance Model, time may be associated to instantaneous
occurrences in a process. We currently recognize four instantaneous occurrences,
which have a reasonable shared understanding in real life and computer systems.
Two of them pertain to artifacts, whereas the other two relate to processes. For
artifacts, we consider the occurrences of creation and use, whereas for processes,
we consider their starting and ending .

The rationale for choosing instant time for the OPM model is the same as for
adopting artifacts as immutable pieces of state. At a speci�c time, an object we
consider will be in a speci�c state, which we refer to as artifact, and for which
we can express the causality path that led to the object being in such a state.

In some scenarios, occurrences of use or creation of objects and occurrences
of starting or ending of processes may not be instantenous. To capture such sce-
narios, detailed processes and artifacts, and their respective causal dependencies,
need to be made explicit, in order to be expressible in the OPM model. For
instance, the starting of a nuclear power plant is not usefully modelled as an
instantatenous occurrence, when one tries to understand failures that occurred
during this activity; hence, this whole starting occurrence must be modelled by
one process (or possibly several), which in turn have instanenous beginnings and
endings.

In the Open Provenance Model, time information is expected to be obtained
by observing a clock when an occurrence occurs. Given that time is observed,
time accuracy is limited by the granularity of the clock and the granularity of the
observer's activities. Hence, while the notion of time we consider is instantaneous,
the model allows for an interval of accuracy to support granularity of clocks and
observers. In the OPM model, an instantaneous occurrence happening at time t
is annotated by two observation times tm; tM , such that the occurrence is known
to have occurred no later than tM and no earlier than tm. Hence, t 2 [tm; tM].

Concretely, for an artifact, we will be able to state that it was used (or gen-
erated by) no earlier than time t1 or no later than time t2. For a process, we will
be able to state that it was started (or terminated), no earlier than time t1 or no
later than time t2.

In Figure 13, we revisit our formal model, examining where time annotations
are permitted. We �rst introduce a new primitive set Time, for which a given
serialization will specify a format (such as the standard coordinated universal

24

ProcessId : primitive set (Process Identi�ers)

ArtifactId : primitive set (Artifact Identi�ers)

AgentId : primitive set (Agent Identi�ers)

Role : primitive set (Roles)

Account : primitive set (Accounts)

V alue : application speci�c set (Values)

Time : primitive set (Time)

Process = ProcessId! V alue� P(Account)

Artifact = ArtifactId! V alue� P(Account)

Agent = AgentId! V alue� P(Account)

OTime = Time� Time (Observed Time)

Used = ProcessId�Role�ArtifactId� P(Account) �OTime0

WasGeneratedBy = ArtifactId�Role� ProcessId� P(Account) �OTime0

WasTriggeredBy = ProcessId� ProcessId� P(Account) �OTime0

WasDerivedFrom = ArtifactId�ArtifactId� P(Account) �OTime0

WasControlledBy = ProcessId�Role�AgentId� P(Account) �OTime0 �OTime0

Overlaps = Account�Account

Refines = Account�Account

OPMGraph = Artifact� Process

�Agent� P(Used)

�P(WasGeneratedBy)� P(WasTriggeredBy)

�P(WasDerivedFrom)� P(WasControlledBy)

�P(Overlaps)� P(Refines)

Figure 13: Causality Graph Data Model and Time Annotations

25

time, UTC). We then introduce Observed Time as a pair of time values (whose
set is OTime). All time annotations are optional, which we note by OTime0 in
the de�nitions.

Edges involveOTime in their cartesian product. Edges fromWasGeneratedBy
and Used can be annotated by an optional timestamp, marking the associated
artifact was known to be generated or used, at a given time (expressed as an
observation interval).

For WasControlledBy, we allow two optional timestamps marking when the
process was known to be started or terminated, respectively.

For WasDerivedFrom, we also allow one optional timestamp. Given Figure 9
and associated inferences, for a given edge ha1; a2; acci 2WasDerivedFrom, there
is an implicit process that generated a1 and that consumed a2. The time anno-
tation indicates when the artifact was generated.

Likewise, for WasTriggeredBy, we also allow one optional timestamp. Given
Figure 9 and associated inferences, for a given edge hp1; p2; acci 2WasTriggeredBy,
there is an implicit artifact that was used by p1 and generated by p2. The time
annotations indicates the time when the artifact was used by p1.

8 Time Constraints and Inferences

The model of causality in OPM is essential timeless since time precedence does
not imply causality: if a process P1 occurs before a process P2, in general, we
cannot infer that P1 caused P2 to happen. However, the converse implication
holds assuming time is measured according to a single clock.

We therefore expect time annotations to be consistent with causality. To
this end, we extend the de�nition of legal account view, de�ned as: an acyclic
account view, which contains at most one wasGeneratedBy edge per artifact, and
in which causation is time-monotonic, as displayed in Figure 15, and discussed
below.

We remind the reader that all observed times are pairs of instanteous time
values. For T1 = (tm

1
; tM

1
), with tm

1
� tM

1
, and T2 = (tm

2
; tM

2
), with tm

2
� tM

2

inequality is de�ned as follows:

T1 < T2 if tm
1
� tM

1
< tm

2
� tM

2

T1 � T2 if tm
1
� tM

1
� tm

2
� tM

2

According to Figure 14, an artifact must exist before it is being used (T1 < T3
and T4 < T6). If an artifact is used by a process, it will actually be used after
the start of the process (T2 < T3). A process generates artifacts before its end
(T4 < T5), and a process starts precedes its generation of artifacts (T2 < T4) and
its end (T2 < T5).

Equipped with these de�nitions, Figure 15 formally states the time constraints
illustrated by Figure 14.

26

Equation (13) states that generation of an artifact precedes its use. Equation
(14) requires a process to start before it uses artifacts, but after the artifact that
caused it was generated; the use of the artifact taking place before the end of the
process.

Equation (15) states that generation of an artifact by a process is preceded
by the start of the process and takes place before the end of the process.

27

A Pused(R) A
wasGeneratedBy(R)

Ag

wasControlledBy(R)
start: T2
end: T5

T4T3

T1<T3 (artifact must exist before being used)
T2<T3 (process must have started before using artifacts)
T3<T5 (process uses artifacts before it ends)
T2<T4 (process must have started before generating artifacts)
T4<T5 (process generates artifacts before it ends)
T4<T6 (artifact must exist before being used)
T2<T5 (process must have started before ending)
no constraint between t3 and t4

wasGeneratedBy(R)

T1

used(R)

T6

Figure 14: Time Constraints in the Open Provenance Model

used(p1; r1; a; acc1; T3) ^ wasGeneratedBy(a; r2; p2; acc1; T1)

T1 < T3
(13)

used(p; r1; a; acc1; T3) ^ wasControlledBy(p; r3; ag; acc1; T2; T5)

T2 < T3; T3 < T5
(14)

wasGeneratedBy(a; r2; p; acc1; T4) ^ wasControlledBy(p; r3; ag; acc1; T2; T5)

T2 < T4; T4 < T5
(15)

Figure 15: Causation is Time-Monotonic

28

9 Support for Collections

Collections represent groups of objects. Computer programs in general, and
work
ows in particular, usually o�er primitives to manipulate such collections.
It is therefore important that OPM o�ers the means to represent collections and
their provenance. Speci�cally, it is crucial to be able to distinguish the provenance
of collections from the provenance of the items contained in them.

Collections are represented by artifacts, and an OPM graph can express that
a collection was used or was generated by a process. (Likewise, a summary edge
can also express that a collection was derived from another.)

At any point in a computation, a collection consists of a group of member
artifacts, which can be enumerated by means of a collection accessor , and in-
dividually used by processes. Symmetrically, a group of artifacts generated by
processes can be grouped into a collection by means of a collection constructor .

Collection types are de�ned by means of collection accessors and constructors;
such operations are expressed by OPM processes, and the algebraic properties of
these operations de�ne the properties of collections: e.g. ordered or unordered
collections, bags or sets, indexable collections or not.

Over time, in order to promote inter-operability, OPM needs to de�ne
accessors and constructors for common collections.

Figure 16 illustrates an example of collection, whose provenance consists of
two overlapping views (re�nements). In the high level view, the collection [b1,

b2, b3, ...] is described as resulting from mapping a function f over a collec-
tion [a1, a2, a3, ...].

collection
accessor

collection
constructor

a1 a2

b1 b2

f f
map_f

[a1, a2, a3, …]

collection

path3’

collection

1

a3

b3

f

pa
th

2

path3

[b1, b2, b3, …]

path1

path1’
path2’

in

out

Figure 16: Provenance of a Collection

The individual members of collection [b1, b2, b3, ...] were generated by
application of process f to the members of collection [a1, a2, a3, ...]. The

29

convention is that the role associated with each individual of a collection is the
path that allows us to access that individual artifact in the collection. It could
be a simple index (0, 1, ...) when the collection is an ordered list, or it can be
an XPath expression when the collection is an XML document. The `collection'
role is used to mark the used edge in the accessor and the generated edge in the
constructor. Algebraic de�nitions of constructors and accessors must also de�ne
the roles that are permitted.

10 Example of Representation

In this Section, we construct an explicit representation of the model for Figure 4.
It appears in Figure 17, where we see:

� an explicit enumeration of artifact and process ids (no agent in this graph);

� the symbols O and G to denote orange and green accounts, respectively;

� explicit mappings for processes and artifacts from their ids to their values
and accounts;

� in this representation, the \values" of processes is a URI to concepts in an
ontology, whereas the \values" of artifacts are immediate;

� the list of edges;

� explicit declaration of re�nement.

11 Conclusion

The document has introduced the open provenance model, consisting of a technology-
independent speci�cation and a graphical notation, to express causality graphs
representing past executions. In the future, we will de�ne a serialization format
for this model. We will also specify protocols by which provenance of artifacts
can be determined, and protocols for applications to record descriptions of their
execution. We invite teams that have de�ned their own provenance model to
establish whether their representations can be converted into this model and
vice-versa.

30

ProcessID = fp1; p2; p3; p4; p5g

ArtifactID = fa1; a2; a3; a4; a5; a6g

Account = fG;Og

P � Process =

f p1 ! hhttp : ==process:org=add1ToAll; fGgi;

p2 ! hhttp : ==process:org=split; fOgi;

p3 ! hhttp : ==process:org=plus1; fOgi;

p4 ! hhttp : ==process:org=plus1; fOgi;

p5 ! hhttp : ==process:org=cons; fOgi g

A � Artifact =

f a1 ! h(2; 6); fG;Ogi;

a2 ! h(3; 7); fG;Ogi;

a3 ! h2; fOgi;

a4 ! h6; fOgi;

a5 ! h3; fOgi;

a6 ! h7; fOgi g

u � Used =

f used(p1; in; a1; fGg);

used(p2; pair; a1; fOg);

used(p3; in; a3; fOg);

used(p4; in; a4; fOg);

used(p5; left; a5; fOg);

used(p5; right; a6; fOg) g

g �WasGeneratedBy =

f wasGeneratedBy(a2; out; p1; fGg)

wasGeneratedBy(a3; left; p2; fOg);

wasGeneratedBy(a4; right; p2; fOg);

wasGeneratedBy(a5; out; p3; fOg);

wasGeneratedBy(a6; out; p4; fOg);

wasGeneratedBy(a2; pair; p5; fOg) g

r � Refines =

f refines(G;O) g

Figure 17: Representation of Figure 4

31

A Best Practice on the Use of Agents

With the de�ned notion of account, we now revisit the sky mosaic example. In-
stead of Figure 3, a di�erent description could encompass the steps the operating
system (or the grid) goes through in order to execute a program (as in the PASS
and ES3 approaches). Figure 18 illustrates some possible causal dependencies
for a system-level description. Here, we see an explicit reference to the work
ow
script used by the enactor.

Mosaic

Execute
Program

used(exec)

Enactor
Executable

Operating
System/

Grid
wasControlledBy(OS)

wasGeneratedBy(out)

Montage
Workflow

Script

us
ed

(sc
rip

t)

Figure 18: Overlapping Montage Provenance

Naturally, both descriptions can coexist in a same provenance graph, using the
concept of overlapping descriptions, as depicted by Figure 19. While such a de-
scription is perfectly acceptable, it fails to tell us that the agent Pegasus/Condor
Dagman is this executable, which itself was activated under the control of the
operating system (or Grid).

In other circumstances, it is necessary to explain that multiple agents were all
controlling a same process, but from di�erent perspective. For the case present,
the researcher who controlled the experiment, the enactment engine, and the
funding institution are all potential causes of the experiment. We then obtain
Figure 20, where we see three processes triggering the production of a mosaic.
Further experience will the model will allow us to identify guidelines to promote
inter-operability of systems.

32

Degree

FITS
DataSet Produce

Sky
Mosaic

Mosaic

Pegasus/
Condor
Dagman

wasGeneratedBy(out)

used(size)

used(inputSet)

wasControlledBy(enact)

Execute
Program

used(exec)

Enactor
Executable

Operating
System/

Grid

wasGeneratedBy(out)

Montage
Workflow

Script

us
ed

(sc
rip

t)

Alternate

wasControlledBy(os)

Figure 19: Montage Provenance

Produce
Mosaic

Pegasus

FITS The
Mosaic

Run a
workflow

Researc
her

Perform
experime

nt

NSF

Fund
project

Workflow
Template Proposal

Figure 20: Multiple Agents Controlling a Process

33

References

[1] Raj Bose, Ian Foster, and Luc Moreau. Report on the International Prove-
nance and Annotation Workshop (IPAW06). Sigmod Records, 35(3):51{53,
September 2006.

[2] Ewa Deelman and Yolanda Gil (Eds.). Workshop on the challenges of scien-
ti�c work
ows. Technical report, Information Sciences Institute, University
of Southern California, May 2006.

[3] Open provenance model workshop: Towards provenance challenge 3.
http://twiki.ipaw.info/bin/view/Challenge/OpenProvenanceModelWorkshop,
June 2008.

[4] Paul Groth. First opm workshop minutes.
http://twiki.ipaw.info/bin/view/challenge/�rstopmworkshopminutes,
Information Science Institute, USC, July 2008.

[5] PREMIS Working Group. Data dictionary for preservation metadata |
�nal report of the premis working group. Technical report, Preservation
Metadata: Implementation Strategies (PREMIS), 2005.

[6] G. Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq Proof
Assistant | Tutorial. Technical report, INRIA, 1999. Available from
coq.inria.fr.

[7] Simon Miles. Technical summary of the second provenance challenge work-
shop. http://twiki.ipaw.info/bin/view/challenge/secondworkshopminutes,
King's College, July 2007.

[8] Luc Moreau and Ian Foster, editors. Provenance and Annotation of Data |
International Provenance and Annotation Workshop, IPAW 2006, volume
4145 of Lecture Notes in Computer Science. Springer-Verlag, May 2006.

[9] Luc Moreau, Juliana Freire, Joe Futrelle, Robert E. McGrath, Jim Myers,
and Patrick Paulson. The open provenance model (v1.00). Technical report,
University of Southampton, December 2007.

[10] Luc Moreau and Bertram Ludaescher, editors. Special Issue on the First
Provenance Challenge, volume 20. Wiley, April 2007.

[11] David A. Schmidt. Denotational Semantics. A Methodology for Language
Development. Brown Publishers, 1986.

[12] Second challenge team contributions. http://twiki.ipaw.info/bin/view/Challenge/ParticipatingTeams,
June 2007.

34

[13] Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in
e-science. SIGMOD Record, 34(3):31{36, September 2005.

35

