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Abstract
Research on DNA has been widely carried out as a promising material for
nanoelectronics, medicine development and disease diagnosis, using
experiment, simulation and theory. We have carried out molecular dynamics
simulation coupled with the linear response theory, based on the
time-correlation function of an observable, in order to extract the
frequency-dependent electrical characteristics of DNA. We observe a
dielectric relaxation at around 50 MHz in the case of octamers-DNA, which
corresponds to a delta-relaxation. We also observe dielectric relaxation in
the case of mixtures of DNA, water molecules and ions, given by the
superposition of the individual dielectric relaxations of the DNA and the
bulk-like water, at frequencies of about 50 MHz and 10 GHz, respectively.

1. Introduction

Research on DNA has been widely carried out as a promising
material for nanoelectronics, medicine development and
disease diagnosis, using experiment, simulation and theory.
With the completion of the human genome project, a new era of
opportunity is brought to molecular biology and genetics. New
detection methods for DNA are required, in order to enable
devices to collect data at high throughput and in real time.
For this purpose, several new techniques have been proposed,
such as using cantilevers for the detection of steric forces
caused by the hybridization of target DNA with probe DNA
immobilized onto a surface [1–15]. For label-free detection,
it is essential to know the precise electrical characteristics of
DNA. Many experimental results and theoretical calculations
on the conductivity of DNA have been published, showing
a wide variety of behaviour, from insulating to metallic
conduction. Despite this, the conductivity of DNA remains
a matter for investigation [16–36].
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In this paper, we describe a technique to calculate the
electrical characteristics of DNA, which can be applied to
label-free DNA detection. We have employed linear response
theory in a molecular dynamics simulation, to extract the
frequency-dependent electrical characteristics.

In the next section, we describe the linear response theory.
In section 3, we describe the molecular dynamics simulation
and the simulated systems. In section 4, we describe the results
for the frequency-dependent electrical characteristics of DNA.

2. Linear response theory

Linear response theory defines a linear relationship between
the macroscopic characteristics and the microscopic observ-
ables, in quasi-equilibrated and uniform systems [37–40].

For the explanation of dielectric phenomena, linear
response theory deals with the response of a macroscopic
system to an applied external electric field. On the macroscopic
level, linear response theory assumes a linear relationship
between the applied external field E0(ω) and the ensemble
average of an observable 〈O(ω)〉:

〈O(ω)〉 = χO P (ω)E0(ω).
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Figure 1. The simulated time-correlation function 〈M(0)M(t)〉 of a
DNA molecule (crosses) and linear-type (dashed line) and
exponential-type (continuous curve) approximation curves.

χO P (ω) is the complex generalized susceptibility, which
describes the coupling of the observable O(t) to the
polarization P (t) of the system. According to linear response
theory, the generalized susceptibility for an observable O(t) is
defined as

χO P (ω) = 1/3kT [〈O(0)M (0)〉 − jω〈O(0)M (t)〉ω
+ 〈O(0)J(t)〉ω]

where M (t) = �qiri (t) is the dipole moment due to charges
qi and displacement ri(t); and J(t) = �qivi (t) is the
ion current due to charges qi moving with velocity vi(t).
〈A(0)B(t)〉 denotes a time-correlation function of the time-
dependent quantities A(t) and B(t), and 〈A(0)B(t)〉ω denotes
a Laplace transform of the time-correlation function. The
above equations use a general observable O(t), which can
be specified as the polarization of the molecules P (t) =
1/V M (t) or as the current density of the ions I(t) =
1/V J(t), where V is the simulation volume, giving

〈P (ω)〉 = χP P (ω)E0(ω)

with

χP P(ω) = 1/3V kT [〈M (0)M (0)〉 − jω〈M (0)M (t)〉ω
+ 〈M (0)J(t)〉ω]

and
〈I(ω)〉 = χi P(ω)E0(ω)

with

χi P (ω) = 1/3V kT [−jω〈J(0)M (t)〉ω + 〈J(0)J(t)〉ω].

The phenomenological equations of matter, P (ω) = (ε(ω) −
1)E(ω)/4π and I(ω) = σ(ω)E(ω), define the dielectric
constant ε(ω) and the conductivity σ(ω). Both involve the
Maxwell field E(ω), which is the electric field acting inside
a macroscopic piece of matter. In the case of the ideal Ewald
summation, where the cut-off radius rc and decay parameter η

are both infinite, the Maxwell field is equal to the externally
applied electric field E0(ω), and the dielectric constant and
conductivity can be expressed as ε(ω) = 1 + 4πχP P (ω) and
σ(ω) = χi P(ω). Note that the conductivity σ(ω), in this case,
is independent of the dielectric constant, represented by the
susceptibility χP P (ω).
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Figure 2. The frequency-dependent dielectric function: (a) real part
and (b) imaginary part and linear-type (dashed curve) and
exponential-type (continuous curve) approximation curves.

3. Molecular dynamics simulation

Molecular dynamics simulation has been widely used for
studying molecular structures. In this work, we use TINKER
from Washington University, which employs a smooth
particle-mesh Ewald summation method.

We used octamer randomly generated ds/ss-DNA
d[GTAGCAAA] in this simulation. The simulation
system size corresponds to a DNA surface density of
9.6 molecules nm−2, and a few layers of water molecules
occupy the gaps between adjacent DNA molecules. Each DNA
backbone requires 14 Na+ counter-ions, and two Na+ ions with
two Cl− ions corresponding to a 0.1 M saline solution, similar
to many DNA buffer solutions. A summary of the simulation
is listed in table 1.

4. Simulation results

Figure 1 shows the time-correlation function of a DNA
molecule. A linear-type approximation describes the
behaviour well, Flin(ω) = C0l + Cl1 exp(−t

τ1l
) + C2l t , as does

an exponential-type approximation, Fexp(ω) = C0e exp(−t
τ1e

) +
C1e exp(−t

τ2e
), where C0l , C1l , C2l , τ1l, C0e, C1e , τ1e and τ2e,

are respectively 781.4, 3.6, −0.08, 0.8, 781.4, 3.6, 8000 and
0.8 ps. The frequency-dependent dielectric behaviour is shown
in figure 2. Figure 3 shows the time-correlation function
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Figure 3. (a) The simulated time-correlation function 〈M(0)M(t)〉 and (b), (c) the real and imaginary parts of the dielectric function for a
mixture of DNA and water molecules.

Table 1. Simulation set-up.

Lennard-Jones 12–6 potential
Force field (amber 94 parameter set)

System size 3.107 × 3.107 × 4.350 nm3

Molecules Octamer random sequence ds-DNA,
1239 water molecules,
16 Na+, 2 Cl−, total 4244 atoms

Temperature 298 K
Time step 1 fs
Cut-offs Lennard-Jones, 0.9 nm; Ewald, 0.9 nm
Simulation period 600 ps for equilibrium, 7.3 ns for

correlation function

and the dielectric behaviour for a mixture of DNA and water
molecules. Figure 4 shows the time-correlation function and
the dielectric behaviour for water molecules only.

Figure 3 shows that the characteristic frequency of the
DNA is between 18 and 27 MHz, which is consistent with the
δ-relaxation expected in the range 1 MHz–1 GHz, due to the
orientational change of strongly bound water, or due to short
scale relaxations of the DNA chain. On the other hand, the
characteristic frequency of water molecules, as seen in figure 4,
is nearly the same as that of bulk water, which means that
the few layers of water molecules present still demonstrate
bulklike characteristics. The characteristic frequency of the
molecule mixture seems to be a superposition of those due to
DNA and water individually.

It has been reported that there are at least three kinds of
relaxation for DNA [41].

(1) α-relaxation. Less than a few kHz. A large dielectric
increment whose characteristic frequency is dependent on
the size of the DNA molecule. Relaxation seems to reflect
the migrations of counter-ions along the entire length of
the DNA molecule.

(2) δ-relaxation. 1 MHz–1 GHz. A smaller molecular weight
independent dielectric increment. This has been attributed
to orientational change of strongly bound water, or the
short scale relaxations of the DNA chain.

(3) γ -relaxation. 1 GHz or above. Reorientation of dipolar
water molecules.

Recently published DNA measurements using a 35-mer
of poly-T and poly-G DNA in nanogap junctions demon-
strate similar dielectric decay characteristics to those simulated
here [42]. The characteristic frequency from these experimen-
tal results differs markedly from the simulated results. Such a
difference may be caused by the length and surface density of
the DNA used or differences in the geometry, in the extent of
the simulated region and time or in the relaxation mechanism.

5. Conclusions

In this work, we demonstrate the possibility of extracting the
electrical characteristics of DNA using molecular dynamics
simulation combined with linear response theory. Results
show agreement with previously reported measurements on
the δ-relaxation frequency of DNA and water molecules,
and the latter show similar characteristics to of bulk water.
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Figure 4. (a) The simulated time-correlation function 〈M(0)M(t)〉 and (b), (c) the real and imaginary parts of the dielectric function for
water molecules only.

The simulation system in this work is not large enough to
obtain precise characteristics; however, some agreement with
experimental results is obtained.
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