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We report on the theoretical investigation of how geometrically uniform highly doped silicon nanowires can break up into a
series of islands that exhibit Coulomb blockade. By using a newly developed numerical simulation in which random ionized
dopants are introduced explicitly and the electron distribution is calculated self-consistently under the Thomas-Fermi approx-
imation, we demonstrate natural formation of electron islands in the nanowires owing to the random dopant potential. We
study the quasi-one-dimensional nature of the electron islands formed in the nanowires. The offset charge effects on the current
threshold of the nanowire transistors are then investigated by feeding the derived structural parameters such as inter-island
capacitance and tunnel resistance into a Monte Carlo single electron transport simulator. We show that the overall threshold
voltage distribution can roughly be described as a two-‘macro’-island system despite a complex series of multiple electron
islands.
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1. Introduction

For realising single- or few-electron memory and logic de-
vices, the double or multiple tunnel junction (MTJ) structures
are a key building block which exhibits the Coulomb block-
ade (CB) effect1–3) and controls the transfer of a small number
of electrons. From the device engineering point of view the
MTJ structure is more suitable than the simple double tun-
nel junction since it reduces co-tunnelling which generally
leads to unfavourable leakage current. Also the MTJ struc-
ture is robust against the offset charge effects4–6) which vary
the Coulomb gap and even may break the Coulomb blockade.
The MTJ structures have been realised by using gated heavily
doped silicon or GaAs nanowires with a few tens of nanome-
ters in width. Although the nanowires are formed to be geo-
metrically uniform, the electron distribution in the nanowires
is not uniform because of randomly distributed dopant atoms
and fluctuations in surface potentials, and isolated electron
islands are naturally formed when the overall electron con-
centration becomes low under a negative gate bias. The
nanowires can be formed either vertically7) or laterally,8) but
the lateral structures have been used more often because of the
simplicity of device fabrication. For the lateral nanowires the
CB oscillation has been observed experimentally at a temper-
ature up to around 60 K, and it has successfully been applied
for making nanoscale memory9–11) and logic devices.12)

Despite the frequent use of the MTJs for device appli-
cations, the basic mechanism of the electron-island forma-
tion and electron transport properties in the heavily-doped
nanowires have not yet been made clear. In this paper we
explore two problems by using a newly developed simula-
tion in which the randomly distributed ionised dopants in the
nanowire are treated explicitly. The first is the way in which
geometrically uniform wires break up into islands; although
many mechanisms can be proposed, we consider solely the
confining effect of the random dopant distribution. The sec-
ond problem is the effect of uncontrolled offset charges which
can gate the islands, so changing the electrical characteristics

of the nanowire. Offset charge independence is a very impor-
tant topic in all single-electron systems and its understanding
and control are essential to building large scale digital logic.
We model the electron distribution in random dopant poten-
tials by extending an approach that Nixon and Davies13) used
to study low electron density quantum wires. We present re-
sults on structural parameters of the resulting electron dis-
tribution and of the electrical characteristics such structures
would produce in the presence of random offset charges. This
work may provide a theoretical framework in which to discuss
and evaluate the potential of single electron devices.

2. Model and Numerical Simulation Method

In this work we use a simple model system, shown in the
inset in Fig. 1. A silicon nanowire is assumed to be a 400-
nm-long rectangular parallelepiped with a cross sectional area
of 20 nm× 10 nm, and ionised dopant atoms are randomly
placed over the entire volume of the nanowire. Such a geo-
metrically and electrically simple system ensures that break-
up into islands results only from random dopant placement. In
addition, this system is computationally accessible whereas a
full simulation of an actual experimental device would require
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Fig. 1. Bare dopant potential φd landscape for a mean dopant concentration
of 1025 m−3 and (inset) the simplified structure of our model. Electrons are
confined to a two-dimensional area (perpendicular to the page.) Dopants
positions are placed randomly (uniform distribution) in the dotted box.
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undue computer time. Regarding the Coulomb-like potential
around an individual ionised dopant, we smoothed away the
singularity by using the potential −e · tanh(λr)/(4πεr) with
a characteristic length scale 1/λ = 2.75 nm, giving a well
depth of 44 meV. These parameters are comparable to the
Bohr radius a∗

0 = 1.9 nm and to shallow dopant ionisation
energies. We randomly generate a set of dopant positions and
calculate a bare dopant potential landscape φd in the absence
of electrons. An example of two-dimensional potential land-
scape φd(x, y) calculated at z = 20 nm is shown in Fig. 1.
The electron density ρ(r) can then be evaluated for a range
of Fermi energies by self-consistently solving the Thomas–
Fermi approximation in two-dimension at T = 0 K:

ρ(r) = m∗e2

π h̄2 [µ − φtotal(r, ρ)], (2.1)

where e · µ is the Fermi energy, φtotal(r, ρ) is the total elec-
trostatic potential and is the sum of the potential due to the
electrons and the local dopant potential. We used electron
effective mass m∗ = 0.32828me and the dielectric constant
εr = 11.9 for silicon, and solved the equation by a relaxation
procedure on a grid of 1 nm pitch for a 20 nm×400 nm section
of two-dimensional electron gas (2DEG). Periodic boundary
conditions were used at the ends of the 400 nm section which
enable an infinitely long thin wire to be simulated.

We chose Fermi energies based on a fitted distribution of
bare dopant potentials φc

d along the centre line of random
wires. The mean φc

d is linear in the number density of dopants
Nd and the standard deviation σ c

d was fitted to
√

Nd. We
then chose ten Fermi energies equally spaced in the range
[eφc

d+eσ c
d /2, eφc

d+3eσ c
d ]. We will present data on donor con-

centrations of 1, 3, 7 and 10 × 1025 m−3, for which the Fermi
energy spacings are 2 meV, 37 meV, 56 meV and 67 meV.
With finite Vds, the island structure will be distorted but we
have ignored this in our analysis as a self-consistent I–V so-
lution would be required and would be computationally very
expensive.

3. Structural Results for Periodic Structure

A typical sample result from the electron density calcula-
tion is shown in Fig. 2. Donor concentration Nd is assumed
to be 1026 m−3. In Fig. 2, we define a threshold electron
density of 0.001 Cm−2 at the edge of an island. The near-
continuous case seen in Fig. 2(a) breaks up into a linear chain
of islands that merge and disappear as the wire becomes suc-
cessively more depleted as shown in Figs. 2(b)–2(e). It should
be noted that the electron distribution is described as a quasi-
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Fig. 2. An example solution: the electron density distribution is shown for
Fermi levels eφc

d + 3eσ c
d (a) and four equally spaced levels in the closed

range [eφc
d + 4eσ c

d /3, eφc
d + eσ c

d /2] (b)–(e). All are plotted on the same
density scale with a maximum of 0.04 Cm−2. The areas with electron
density less than 0.001 Cm−2 are set to zero. The sample is 400 nm long
and 20 nm wide with donor concentration of 1026 cm−3.

linear chain of a multiple electron islands. The reason why the
electron distribution generally shows one-dimensional nature
along the wire is simply explained as follows. In the limit of
a jellium model for dopants, the bare dopant potential φd is
given by d2φd/dx2 ∝ Nd, with Nd being the constant dopant
concentration within the nanowire rectangular parallelepiped.
Thus φd varies quadratically with x , resulting in parabolic-
like confinement potential in cross-section. In the case of ran-
dom dopants with a gate, it is no longer a true parabola as
seen in Fig. 1, but is still similarly shaped. Another set of
sample results are shown in Figs. 3(a)–3(e) for the nanowire
with a lower donor concentration of 1025 m−3. Generally, at
lower dopant densities, the islands tend to be broader, but still
mostly form linear chains. By comparing Fig. 3 with Fig. 4
it can be seen that the confinement potential is steeper and so
the islands are narrower at a higher dopant density.

In Fig. 4, we show the mean of the number of islands
formed in the nanowire using data from a set of 24 random
dopant distributions. It is found that the number of islands de-
creases monotonically with increasing the Fermi energy (i.e.,
increasing the gate bias), and also decreases with an increase
in donor concentration. We see that electron islands are still
formed even for the highest Fermi energy corresponding to
3eσ c

d above the mean of the bare dopant potential down the
centre-line of the wire eφc

d. We studied the conditions on
which the channel changes from continuous to discontinuous-
island case. It was found that the number of continuous-island
cases is zero for less than a specific Fermi energy and then
rises in a monotonic fashion. In Fig. 4, for the lowest dop-
ing density of 1025 m−3, the channel was discontinuous for all
Fermi energies studied, whilst for the higher doping densities
of 3, 7 and 10 × 1025 cm−3 the channels had their first con-
tinuous cases at about Fermi energy of eφc

d + 2.5eσ c
d . For the
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Fig. 3. Another example solution for the nanowire with donor concentra-
tion of 1025 m−3: the electron density distribution is shown in the same
manner as Fig. 2, except the maximum dencity scale is now 0.01 Cm−2.
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Fig. 4. The mean number of islands as a function of Fermi level for four
different doping levels in a periodic structure of 400 nm long. The standard
deviation for all Fermi levels and all dopant levels is about 2.



Jpn. J. Appl. Phys. Vol. 40 (2001) Pt. 1, No. 10 G. J. EVANS et al. 5839

higher three doping densities and Fermi energy of eφc
d+3eσ c

d ,
we only get 2, 4 and 4 continuous cases out of our 24 cases,
respectively. The total area covered by the islands is found
to be highly linear as a function of Fermi energy; however,
the mean area of the individual islands is a monotonically in-
creasing super-linear function.

4. Discussion on Threshold Voltage Distribution

To establish the threshold voltage VT of the nanowire de-
vices, it is necessary to make further assumptions. The first
is that the islands are effectively metallic so that they do
not distort when a finite source-drain bias is applied. We
place electrodes with a size of 40 nm × 400 nm at the ends
of the 20 nm×400 nm nanowires and assume that this change
in boundary conditions does not change the electron distri-
bution. Next we calculate the capacitance matrix between
all the islands and electrodes of this finite structure, and fi-
nally, very approximately, we take the tunnel resistance RT

as RT = RQ exp(d/
) where d is the chemical distance be-
tween islands and 
 = 4 nm and RQ = 25.4 k�. Chemical
distance is the smallest number of steps taken in the x and
y directions to get from one island to another without cross-
ing another island. If RT > 1016 � then we set RT → ∞.
The tunnel resistance and capacitance matrices form the in-
put to a Monte Carlo single electron transport simulator that
includes only first order tunnelling processes. An iterative
search method is used to find the source-drain bias VT that
first gives a 1 fA current at 4.2 K to a precision of <200 µV.
The simulation is repeated with a different set of random off-
set charges assigned to each island. The distribution of VT

can then be plotted for a particular combination of sample and
Fermi energy. Ionised dopants in the depletion region induce
offset charges on the islands. The dynamics of single electron
systems are thought to restrict the offset charge to the range
|q0| < e/2 and as there are so many ionised dopants we would
expect the induced offset charge to be distributed equally in
this range.

In general, VT decreases with increasing Fermi energy as
the island sizes increase. However, anomalous results can oc-
cur when islands merge together and a single small island de-
velops elsewhere with a much larger VT. The distribution of
VT for the structure shown in Fig. 2(e) is shown in Fig. 5(a).
We note that the distribution has a peak around 50 mV, unlike
a single island structure where the distribution would be flat.
We are developing an analytical approach to VT that predicts
that the distribution is a piece-wise polynomial of maximum
degree N − 1, where N is the number of islands. For the
case of Fig. 2(e) with N = 7 (the ‘ islands’ at the ends of the
diagram form part of the source and drain), the distribution
of VT can be approximated by a piece-wise linear function,
for which N = 2. This suggests that the seven islands are
grouped into two sets, i.e., the three on the left and the group
of four on the right, with tunnel resistances between these
‘macro’ islands at least an order of magnitude larger than the
tunnel resistances within the macro-islands as depicted in Fig.
5(b).

We have also examined to what extent the distribution ob-
tained in Fig. 5(a) can be reproduced by using a two-island
system by choosing capacitance parameters to match the en-
ergetics of the transitions. Figure 6 shows one of the sample
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Fig. 5. (a) The distribution of threshold voltages as calculated for the (fi-
nite) structure in Fig. 2(e). 247 points have been used to form this his-
togram. (b) Schematic two-macro-island system with some of the smallest
tunnel resistances (in �) between the seven islands. We have coloured the
two ‘macro-islands’ .
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Fig. 6. The distribution of a two island system (inset) ‘ equivalent’ to that
shown in Fig. 4. The histogram is generated from a Monte Carlo simula-
tion of the two-island system, the dotted curve represents the theoretical
result.

results from a Monte Carlo simulation of the two-island sys-
tem with the analytical results shown by a dotted line. The
analytic method gives the maximum threshold voltage as,

VT = e
C1� + C2� − C12

C1�C2� − C2
12

− T�

e
(4.1)

where Ci� is the sum of capacitances leading to node i , and
C12 is the cross capacitance between the islands. T� is a cor-
rection factor for finite definition of threshold current, and is
given by T� = Ts1 + T12 + T2d where the indices s and d
denote the source and drain electrodes and Ti j is the solution
to,

�i j (Ti j ) = 1

e2 Ri j

−Ti j

1 − exp(Ti j/kBT )
= Ith/e (4.2)

where Ith is the threshold current of 1 fA, and �i j is the first
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order tunnelling transition rate formula from the global-view
orthodox theory1) using Ri j as the tunnel resistance of the
junction. This formula predicts a maximum threshold voltage
of 98 meV, while the maximum threshold voltage from the
Monte Carlo simulation was 104 meV, showing good agree-
ment.

However, we could not obtain a good agreement with the
results in Fig. 5(a) although the mean value of VT for the
seven-island system and the ‘equivalent’ two-island system
are roughly the same. We consider that the details of the dis-
tribution in Fig. 5(a) cannot be described by using a simple
two-island system despite the intuitive classification of the
seven islands into two macro-islands. More detailed inves-
tigation of the VT distribution remains as a future work.

5. Conclusion

A mechanism of natural formation of electron islands in the
silicon nanowires has been demonstrated by using a numeri-
cal simulation in which random ionized dopants are treated
explicitly. It has been shown that a virtually linear array of
multiple electron islands are formed in the nanowires, and
the one-dimensional geometrical nature stands out more for
higher doping concentrations. The offset charge effects on the
current threshold of the nanowire transistors have been inves-
tigated by combining these calculations of the electron islands
with a Monte Carlo single electron circuit simulation. The
obtained threshold voltage distribution has been discussed in

terms of a macro-islands system consisting of several smaller
islands connected one another.
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