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We report on the theoretical investigation of how geometrically uniform highly doped silicon nanowires can break up into a
series of islands that exhibit Coulomb blockade. By using a newly developed numerical simulation in which random ionized
dopants are introduced explicitly and the electron distribution is calculated self-consistently under the Thomas-Fermi approx-
imation, we demonstrate natural formation of electron islands in the nanowires owing to the random dopant potential. We
study the quasi-one-dimensional nature of the electron islands formed in the nanowires. The offset charge effects on the current
threshold of the nanowire transistors are then investigated by feeding the derived structural parameters such as inter-island
capacitance and tunnel resistance into a Monte Carlo single electron transport simulator. We show that the overall threshold
voltage distribution can roughly be described as a two-‘macro’-island system despite a complex series of multiple electron
islands.
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1. Introduction of the nanowire. Offset charge independence is a very impor-
- . . tant topic in all single-electron systems and its understanding
For realising single- or few-electron memory and logic de- : 0 . .

gcd control are essential to building large scale digital logic.
are a key building block which exhibits the Coulomb bIock-tia?SrEOdee)’(ltg;]ziile;t;o; d'g‘;g';'tt'r?;‘t 'Ei;%f:]d;)rr]g dDopant Egten-
ade (CB) effedt® and controls the transfer of a small number, y 9 PP

of electrons. From the device engineering point of view th}ao study low electron density quantum wires. We present re-

. i : Sults on structural parameters of the resulting electron dis-
MTJ structure is more suitable than the simple double tu'}Fibution and of the electrical characteristics such structures

nel junction since it reduces co-tunnelling which generall ould produce in the presence of random offset charaes. This
leads to unfavourable leakage current. Also the MTJ struc- P P ges.

ture is robust against the offset charge eff&tsvhich vary work may provide a theoretical framework in which to discuss

the Coulomb gap and even may break the Coulomb blockaq%r?d evaluate the potential of single electron devices.

The MTJ structures have been realised by using gated heavﬂy
doped silicon or GaAs nanowires with a few tens of nanome-
ters in width. Although the nanowires are formed to be geo- In this work we use a simple model system, shown in the
metrically uniform, the electron distribution in the nanowiresnset in Fig. 1. A silicon nanowire is assumed to be a 400-
is not uniform because of randomly distributed dopant atonremn-long rectangular parallelepiped with a cross sectional area
and fluctuations in surface potentials, and isolated electraf 20 nm x 10 nm, and ionised dopant atoms are randomly
islands are naturally formed when the overall electron corplaced over the entire volume of the nanowire. Such a geo-
centration becomes low under a negative gate bias. Theetrically and electrically simple system ensures that break-
nanowires can be formed either verticallgr laterally®) but  up into islands results only from random dopant placement. In
the lateral structures have been used more often because ofdlddition, this system is computationally accessible whereas a
simplicity of device fabrication. For the lateral nanowires théull simulation of an actual experimental device would require
CB oscillation has been observed experimentally at a temper-
ature up to around 60 K, and it has successfully been applied
for making nanoscale memdryt) and logic devices?

Despite the frequent use of the MTJs for device appli-
cations, the basic mechanism of the electron-island forma-
tion and electron transport properties in the heavily-doped |
nanowires have not yet been made clear. In this paper wgy)-os X
explore two problems by using a newly developed simula- -0
tion in which the randomly distributed ionised dopants in the N — | _— | X e ,
nanowire are treated explicitly. The first is the way in which 5 Xl(ﬂm)ﬁ 20
geometrically uniform wires break up into islands; although —
man.y .meChamsmS can be proposed, VYG (.:On.SIder solely Hblg 1. Baredopant potential ¢ landscape for amean dopant concentration
confining effect of the random dopant distribution. The sec- 4f 1025 m-3 and (inset) the simplified structure of our model. Electronsare
ond problem is the effect of uncontrolled offset charges which confined to a two-dimensional area (perpendicular to the page.) Dopants
can gate the islands, so changing the electrical characteristicgositions are placed randomly (uniform distribution) in the dotted box.

Model and Numerical Simulation Method
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undue computer time. Regarding the Coulomb-like potential
around an individual ionised dopant, we smoothed away the
singularity by using the potential —e - tanh(Ar) /(4w er) with
a characteristic length scale 1/A = 2.75nm, giving a well
depth of 44meV. These parameters are comparable to the
Bohr radius a5 = 1.9nm and to shallow dopant ionisation
energies. We randomly generate a set of dopant positions and
calculate a bare dopant potential landscape ¢q in the absence
of electrons. An example of two-dimensional potential land-
scape ¢q(X, y) caculated at z = 20nm is shown in Fig. 1.
The electron density p(r) can then be evaluated for a range
of Fermi energies by self-consistently solving the Thomas—
Fermi approximation in two-dimensionat T = OK:

*

p() = o [ = ot )], (2.)
mh

where e - 1 is the Fermi energy, ¢iwa (r, p) is the total elec-
trostatic potential and is the sum of the potential due to the
electrons and the local dopant potential. We used electron
effective mass m* = 0.32828m, and the dielectric constant
€ = 11.9for silicon, and solved the equation by arelaxation
procedureon agrid of 1 nm pitch for a20 nmx 400 nm section
of two-dimensional electron gas (2DEG). Periodic boundary
conditions were used at the ends of the 400 nm section which
enable an infinitely long thin wire to be simulated.

We chose Fermi energies based on a fitted distribution of
bare dopant potentials ¢ along the centre line of random
wires. The mean ¢_g islinear in the number density of dopants
Ng and the standard deviation o§ was fitted to «/Ng. We
then chose ten Fermi energies equally spaced in the range
[epS+ea§/2, epS+3eo]. Wewill present data.on donor con-
centrations of 1, 3, 7 and 10 x 10%° m~23, for which the Fermi
energy spacings are 2meV, 37meV, 56 meV and 67 meV.
With finite Vgs, the island structure will be distorted but we
have ignored thisin our analysis as a self-consistent 1 -V so-
[ution would be required and would be computationally very
expensive.

3. Structural Resultsfor Periodic Structure

A typical sample result from the electron density calcula
tion is shown in Fig. 2. Donor concentration Ny is assumed
to be 102 m=3. In Fig. 2, we define a threshold electron
density of 0.001Cm~2 at the edge of an island. The near-
continuous case seen in Fig. 2(a) breaks up into alinear chain
of islands that merge and disappear as the wire becomes suc-
cessively more depleted as shown in Figs. 2(b)—2(e). It should
be noted that the electron distribution is described as a quasi-
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Fig. 2. Anexample solution: the electron density distribution is shown for
Fermi levels ezpig + 3eo§ (a) and four equally spaced levels in the closed
range [eg§ + 4eo§/3, ep§ + ea§/2] (b)—(e). All are plotted on the same
density scale with a maximum of 0.04Cm~2. The areas with electron
density less than 0.001 Cm~2 are set to zero. The sample is 400 nm long
and 20 nm wide with donor concentration of 1026 cm—3,
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linear chain of amultiple electronislands. Thereason why the
electron distribution generally shows one-dimensional nature
aong the wire is simply explained as follows. In the limit of
ajellium model for dopants, the bare dopant potential ¢q is
given by d?¢q/dx? o« Ng, with Ng being the constant dopant
concentration within the nanowire rectangular parallelepiped.
Thus ¢g4 varies quadratically with X, resulting in parabolic-
like confinement potential in cross-section. In the case of ran-
dom dopants with a gate, it is no longer a true parabola as
seen in Fig. 1, but is still similarly shaped. Another set of
sample results are shown in Figs. 3(a)-3(e) for the nanowire
with a lower donor concentration of 10%° m=23. Generally, at
lower dopant densities, the islands tend to be broader, but still
mostly form linear chains. By comparing Fig. 3 with Fig. 4
it can be seen that the confinement potential is steeper and so
the islands are narrower at a higher dopant density.

In Fig. 4, we show the mean of the number of islands
formed in the nanowire using data from a set of 24 random
dopant distributions. It isfound that the number of islands de-
creases monotonically with increasing the Fermi energy (i.e.,
increasing the gate bias), and a so decreases with an increase
in donor concentration. We see that electron islands are still
formed even for the highest Fermi energy corresponding to
3eoy above the mean of the bare dopant potential down the
centre-line of the wire egS. We studied the conditions on
which the channel changes from continuous to discontinuous-
island case. It wasfound that the number of continuous-island
cases is zero for less than a specific Fermi energy and then
rises in a monotonic fashion. In Fig. 4, for the lowest dop-
ing density of 10?° m~3, the channel was discontinuous for all
Fermi energies studied, whilst for the higher doping densities
of 3, 7 and 10 x 10% cm~3 the channels had their first con-
tinuous cases at about Fermi energy of epS + 2.5es§. For the
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Fig. 3. Another example solution for the nanowire with donor concentra-
tion of 10%° m~3: the electron density distribution is shown in the same
manner as Fig. 2, except the maximum dencity scale is now 0.01Cm—2.
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Fig. 4. The mean number of islands as a function of Fermi level for four
different doping levelsin aperiodic structure of 400 nm long. The standard
deviation for all Fermi levelsand all dopant levelsisabout 2.
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higher three doping densities and Fermi energy of eS+3es,
we only get 2, 4 and 4 continuous cases out of our 24 cases,
respectively. The total area covered by the islands is found
to be highly linear as a function of Fermi energy; however,
the mean area of the individual islands is a monotonically in-
creasing super-linear function.

4. Discussion on Threshold Voltage Distribution

To establish the threshold voltage Vr of the nanowire de-
vices, it is necessary to make further assumptions. The first
is that the islands are effectively metallic so that they do
not distort when a finite source-drain bias is applied. We
place electrodes with a size of 40nm x 400nm at the ends
of the 20 nm x 400 nm nanowires and assume that this change
in boundary conditions does not change the electron distri-
bution. Next we calculate the capacitance matrix between
all the islands and electrodes of this finite structure, and fi-
nally, very approximately, we take the tunnel resistance Ry
as Rr = Roexp(d/A) whered is the chemical distance be-
tween islands and A = 4nm and Ry = 25.4k2. Chemical
distance is the smallest number of steps taken in the x and
y directions to get from one island to another without cross-
ing another isand. If Ry > 10'°Q then we set Ry — oo.
The tunnel resistance and capacitance matrices form the in-
put to a Monte Carlo single electron transport simulator that
includes only first order tunnelling processes. An iterative
search method is used to find the source-drain bias Vr that
first givesa 1fA current at 4.2K to a precision of <200 V.
The simulation is repeated with a different set of random off-
set charges assigned to each island. The distribution of Vr
can then be plotted for a particular combination of sample and
Fermi energy. lonised dopants in the depletion region induce
offset charges on theislands. The dynamics of single electron
systems are thought to restrict the offset charge to the range
|| < €/2 and asthere are so many ionised dopants we would
expect the induced offset charge to be distributed equally in
thisrange.

In general, Vr decreases with increasing Fermi energy as
theisland sizesincrease. However, anomal ous results can oc-
cur when islands merge together and asingle small island de-
velops elsewhere with a much larger Vr. The distribution of
Vr for the structure shown in Fig. 2(e) is shown in Fig. 5(a).
We note that the distribution has a peak around 50 mV, unlike
asingle island structure where the distribution would be flat.
We are developing an analytical approach to Vr that predicts
that the distribution is a piece-wise polynomial of maximum
degree N — 1, where N is the number of islands. For the
case of Fig. 2(e) with N = 7 (the ‘idands’ at the ends of the
diagram form part of the source and drain), the distribution
of V¢ can be approximated by a piece-wise linear function,
for which N = 2. This suggests that the seven islands are
grouped into two sets, i.e., the three on the left and the group
of four on the right, with tunnel resistances between these
‘macro’ islands at least an order of magnitude larger than the
tunnel resistances within the macro-islands as depicted in Fig.
5(b).

We have also examined to what extent the distribution ob-
tained in Fig. 5(a) can be reproduced by using a two-island
system by choosing capacitance parameters to match the en-
ergetics of the transitions. Figure 6 shows one of the sample
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Fig. 5. (a) The distribution of threshold voltages as calculated for the (fi-
nite) structure in Fig. 2(e). 247 points have been used to form this his-
togram. (b) Schematic two-macro-island system with some of the smallest
tunnel resistances (in 2) between the seven islands. We have coloured the
two ‘macro-islands’.

Probabilty density (arb.units)

0.02 0.04 0.06

0.08 0.1
Threshold voltage (V)

Fig. 6. Thedistribution of atwo island system (inset) ‘equivalent’ to that
shown in Fig. 4. The histogram is generated from a Monte Carlo smula-
tion of the two-island system, the dotted curve represents the theoretical
result.

results from a Monte Carlo simulation of the two-island sys-
tem with the analytical results shown by a dotted line. The
analytic method gives the maximum threshold voltage as,

Ciz+Cx—Cz Ty

CixCox — sz e
where C;y is the sum of capacitances leading to node i, and
Cy2 isthe cross capacitance between the islands. Ty isa cor-
rection factor for finite definition of threshold current, and is
given by Ty = Tg + Ti2 + Tog Where the indices s and d
denote the source and drain electrodes and Tj; is the solution
to,

Vi = (4.1)

F"(T')— 1 _Tii
T @Ry 1 - exp(Tij ke T)

where Iy, is the threshold current of 1fA, and Ty is the first

= lm/e (4.2)
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order tunnelling transition rate formula from the global-view
orthodox theory? using R; j as the tunnel resistance of the
junction. Thisformula predicts a maximum threshold voltage
of 98 meV, while the maximum threshold voltage from the
Monte Carlo simulation was 104 meV, showing good agree-
ment.

However, we could not obtain a good agreement with the
results in Fig. 5(a) although the mean value of Vr for the
seven-island system and the ‘equivalent’ two-island system
are roughly the same. We consider that the details of the dis-
tribution in Fig. 5(a) cannot be described by using a simple
two-island system despite the intuitive classification of the
seven islands into two macro-islands. More detailed inves-
tigation of the Vi distribution remains as a future work.

5. Conclusion

A mechanism of natural formation of electronislandsin the
silicon nanowires has been demonstrated by using a numeri-
cal simulation in which random ionized dopants are treated
explicitly. It has been shown that a virtually linear array of
multiple electron islands are formed in the nanowires, and
the one-dimensional geometrical nature stands out more for
higher doping concentrations. The offset charge effects on the
current threshold of the nanowire transistors have been inves-
tigated by combining these cal culations of the electron islands
with a Monte Carlo single electron circuit simulation. The
obtained threshold voltage distribution has been discussed in
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terms of a macro-islands system consisting of several smaller
islands connected one another.
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