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Abstract

This paper presents a numerical simulation technique for quantum-dot-based electronic devices based on the three-dimensional (3D)
scattering matrix (S-matrix) theory. Starting from the 3D time-independent Schro¨dinger equation with scattering boundary conditions, the
multi-mode S-matrix and transmission rates are derived and the tunnelling current is calculated based on the global coherent tunnelling
model. The present simulation technique is applied for zero-dimensional (0D) resonant tunnelling diodes (RTDs). The effects of a complex
mixture of lateral mode conserving and non-conserving tunnelling processes on theI–V characteristics are investigated in terms of multi-
mode transmission rates and quasi-bound electronic states at resonance. The simulation is also used for analysing resonant tunnelling (RT)
assisted by ionised impurities in a quantum dot. By introducing ionised impurities in the quantum dot region, a new type of RT via single-
impurity-induced quasi-bound states is investigated.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recent rapid advances in atomic-scale crystal growth and
nanofabrication techniques have enabled us to realise
various kinds of three-dimensional (3D) electron confine-
ment in semiconductors. For electronic device applications
these confinement structures are often formed in a conduc-
tion channel of the device, and new phenomena caused by
the confined electrons are utilised to create novel device
functions. Typical structures are vertical zero-dimensional
(0D) resonant tunnelling (RT) structures [1–9] and lateral
two-dimensional (2D) electron gas (2DEG) structures with
patterned gate electrodes. These structures are regarded as a
virtually isolated quantum dot, which is weakly coupled to
reservoirs and so are well suited to investigate transport
properties of a small number of electrons. In these structures
effects of the 3D energy quantisation and Coulomb blockade
on electron transport become significant, and it has become
of great interest to investigate new memory and logic appli-
cations by using these unique phenomena.

Numerical simulation of carrier transport in the quasi-0D
structures has also become increasingly important
especially for designing and analysing new functional elec-

tronic devices. A proper description of quantum transport in
nanostructures is given in terms of a non-equilibrium quan-
tum transport theory, and various approaches have been
reported such as non-equilibrium Green’s function theory
[10], density matrix theory [11], and Wigner distribution
function theory [12]. These approaches have been studied
intensively and applied for some simple structures such as a
single heterojunction and a double-barrier (DB) RTD.
However, such sophisticated approaches have not been
used for simulating more complicated structures because
of difficulty in implementation. Instead, several numerical
modelling methods have been developed for the quasi-0D
structures by introducing various simplifications. First, a 3D
scattering matrix (S-matrix) theory has recently been
adopted to analyse the 3D quantisation effects on tunnelling
currents in 0D RTDs. This approach facilitates a detailed
analysis of multi-mode RT processes as well as 0D quasi-
bound states in the quantum dots. As the tunnelling current
is calculated assuming global coherent tunnelling of elec-
trons, inelastic scattering processes and many-body effects
cannot be studied in this approach. Nevertheless, this
method has been used as a powerful tool for analysing the
effects of lateral mode mixing [13,14] and ionised-impurity-
assisted tunnelling [15] on theI–V characteristics for the 0D
RTDs. Second, the N-electron model Hamiltonian has been
recently solved for a quasi-0D system with a simple
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harmonic confinement potential [16,17]. Combined with the
tunnelling Hamiltonian model, this approach enables calcu-
lating many-body electronic states beyond a mean field
approximation and the details of the Coulomb blockade
oscillation. Finally, it should also be noted that, in addition
to these microscopic numerical approaches, a macroscopic

equivalent circuit simulation has become very popular as a
handy design tool for the quantum dot devices and circuits.
In this simulation all the quantum mechanical natures of
electrons in the quantum dot are modelled by using two
macroscopic parameters, tunnel resistance and capacitance.

This paper is intended to present a review of the recent
works based on the 3D S-matrix theory mentioned above.
Throughout the paper the GaAs-based 0D RTDs are
employed as an object of numerical analysis as there have
been an enormous amount of experimental studies for this
device. In Section 2 we introduce various 0D RTD struc-
tures and give a brief review of the key transport physics in
this device. Section 3 is devoted to describe the 3D S-matrix
theory and to derive expressions of multi-mode transmission
rates. Then the multi-mode RT and associated quasi-bound
states in a quantum dot are numerically analysed in Section
4. Finally more complex RT induced by ionised background
impurities in a quantum dot is investigated in Section 5.

2. Brief review of experimental studies of 0D RTDs

The 0D RTDs consist of double- (or multiple-) barrier RT
structures with various types of lateral confinement. Fig.
1(a)–(c) show three typical structures. The simplest struc-
ture is a pillar-shaped two-terminal device [1] with a
diameter of a few tens nanometers. In this structure the
lateral confinement is formed by a fixed surface depletion
region as shown in Fig. 1(a). As the surface depletion length
varies along the channel depending on local doping con-
centration, and so an hour-glass shaped non-uniform
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Fig. 1. Schematic cross-sectional views of three typical 0D RTD structures:
(a) two-terminal etched RTD; (b) three-terminal RTD with an implanted in-
plane gate; and (c) three-terminal RTD with a Schottky side gate.

Fig. 2. Various quatisation energies estimated for and AlGaAs/GaAs/
AlGaAs quantum dot as a function of lateral confinement radius.



confinement is formed. The 0D RTDs in Fig. 1(b) and (c)
have gate electrodes, and lateral size of the quantum dot is
variable via gate bias. In the structure shown in Fig. 1(b)
[18,19], p-type Be1 ion implanted gate regions are
employed, which form the lateral PN junction. The
implanted regions are prepared so that the peak of dopant
distribution is aligned to the DB structure. Because of diffu-
sion of implanted ions, lateral size of the quantum dot
becomes much smaller than the emitter pad size, and the
lateral quantisation effects can be observed even for devices
with a fairly large emitter size [19]. The structure shown in
Fig. 1(c) has a Schottky side gate formed by using a shadow
evaporation technique with the top contact being used as the
mask [8,9]. The undercut of the mesa structure has been
achieved by combining a chemically assisted ion beam etch-
ing and an isotropic wet etch. The device with a diameter
down to 0.5mm has been reported for this structure.

In the 0D RTD structures an interplay of lateral quan-
tisation and Coulomb blockade can be observed depend-
ing on the structural parameters. Fig. 2 show various
quantisation energies as a function of a lateral confine-
ment radius, R, estimated for a AlAs(10 nm)/
GaAs(5.6 nm)/AlAs(10 nm) quantum dot by using a
simple parabolic confinement model. The largest quan-
tisation energy is a vertical quantisation energy (a
broken line) which is determined by a DB structure
and results in the negative differential conductance
(NDC) observable at room temperature. The lateral
quantisation energy (a solid line) and single-electron
charging energy (a dotted line) are roughly proportional
to 1/R and 1/R2, respectively. These two energies, there-
fore, exhibit a crossover whenR is decreased. In the 0D
RTDs the quantum dots are usually formed by using
undoped semiconductors, but there may exist back-
ground impurities, either as residual dopants in a growth
process and/or as the ones segregated from the contact
regions. In these circumstances a binding energy due to
an ionised single impurity (a dotted broken line) should
also be taken into account, which can be of order of
10 meV [20].

The lateral quantisation effects were first studied by using
the pillar-type AlGaAs/InGaAs/AlGaAs structure [1] (Fig.
1(a)). A clear fine structure was observed in theI–V char-
acteristics even at rather high temperatures (, 77 K) super-
imposed on the usual NDC of 2D-RTDs. The experimental
data was explained by assuming sequential electron tunnel-
ling from quantised lateral levels in the emitter region to
quantum dot levels in the well, and the observed fine peaks
were attributed to tunnelling in which lateral momentum is
not conserved [2,21]. The difficulty in analysing the data
stems from the non-uniform lateral confinement potential
(see Fig. 1(a)). Non-uniform confinement in the quantum
dot causes wavefunction mismatch and lateral-mode
mixing. Further study of the lateral quantisation effects
has been done by using the AlAs/GaAs/AlAs 0D RTD
structure [18,19] shown in Fig. 1(b). As a result of the

graded doping used in the emitter and collector contact
layers, a virtually flat lateral confinement potential is
achieved around the quantum dot, which can prevent
complex lateral-mode mixing. Multiple current peaks
have been observed in the current pinch-off regime, and
the gate bias dependence of these peak voltages has been
found to be consistent with a simple lateral confinement
model.

A series of plateau-like structures have also been
observed before a main current peak for the same 0D
RTD structures (Fig. 1(b)) with a larger emitter size. The
current plateaux have been found basically independent
of the gate bias, i.e. the lateral confinement size, unlike
those resulting from the lateral confinement or Coulomb
blockade. From the background donor concentration,
the number of the donor sites was estimated to be from
1 to 5 for these devices, and the observed fine structures
were attributed to a few ionised donors in the quantum
dot [13,15]. Those ionised donors will result in a
localised potential well and associated bound states, which
give rise to RT at lower bias voltages than the threshold
voltage.

As shown in Fig. 2, Coulomb blockade phenomenon
may be observed for smaller devices at lower tempera-
tures. For studying Coulomb blockade, the 0D RTDs
with an asymmetric DB structure have been preferably
used as charge build-up is enhanced in those structures
when an opaque barrier is placed on the collector side.
The pillar-type 0D RTDs (Fig. 1(a)) with asymmetric
AlGaAs/GaAs/AlGaAs DB structures have been used in
the early studies [22,23]. In such 0D RTDs the effect of
lateral quantisation and that of the Coulomb blockade
were observed separately in two bias directions: current
steps attributable to Coulomb blockade were observed
when the transparent AlGaAs barrier is located on the
emitter side while multiple current peaks due to the
lateral quantisation observed in a reverse direction.
Recent experiments performed by using the 0D RTD
structure shown in Fig. 2(c) have clearly showed the
Coulomb blockade oscillation in the conductance as a
function of gate bias. By analysing the details of the
oscillation, it has been found that the energy levels in
the quantum dot are filled with electrons according to
Hund’s rule, like artificial atoms [9].

Among these various phenomena in the 0D RTDs,
this paper focuses on the effects of the lateral confine-
ment and lateral-mode mixing (Section 4) and those of
the ionised-impurity-induced RT (Section 5) on theI–V
characteristics.

3. Numerical simulation based on 3D S-matrix theory

The 3D S-matrix theory is an expansion of the transfer
matrix method for one-dimensional (1D) tunnelling
problems to more general 3D systems. We start from the
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3D time-independent Schro¨dinger equation
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wherez-dimension is chosen perpendicular to the tunnelling
barriers, andx- andy- dimensions parallel to them. In Eq.
(1) V�x; y; z� is the 3D potential distribution which, in
general, consists of the lateral confinement potential,
Vconfinement�x; y; z�, the electron affinity,Vaffinity�z�, along
the vertical channel due to different layered materials, and
the other elastic scattering potentials,Virregular�x; y; z�, due to
all irregularities like ionised impurities or interface
roughness:

V�x; y; z� �Vconfinement�x; y; z�1 Vaffinity�z�1 Virregular�x; y; z�:
�2�

The 3D wavefunction,C�x; y; z�, is decomposed using a
complete set of 2D lateral eigenstates at eachz point,
wg�x; yuz�, as follows:

C�x; y; z� �
X
g

wg�x; yuz�xg�z� �3�

wg (x,yuz) is obtained by solving the following 2D
Schrödinger equation:
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with the Dirichlet boundary conditions,wg � 0, on the
lateral surface of the device. The index,g , represents a
2D lateral mode number andeg�z� the correspondingg th
lateral eigen-energy. In the numerical calculations Eq. (4) is
discretised by using a 3D finite-difference mesh to obtain
eg�z� and wg�x; yuz� along the vertical channel. Eq. (4) is
solved by using the bisection method following House-
holder’s tridiagonalisation to obtaineg�z�. The correspond-
ing eigenstates,wg�x; yuz�, are then calculated by the inverse
iteration method. To make finding the eigenstates faster, it is
very effective to adopt the set of eigenstates obtained at the
presentz-mesh point as an initial guess for the eigenstates at
the nextz-mesh point. In practice, a cut-off value is intro-
duced for the maximum eigenenergy although all of lateral
modes would be necessary to make a complete set. The
number of eigenstates required for realistic calculations
depends on the system under consideration, but, in general,
the maximum lateral eigenenergy is chosen to be much
larger than the Fermi energy in the contact regions.

From Eqs. (1) and (3), the following 1D scattering
equation with lateral-mode mixing terms is derived for

xg�z�:
d2

dz2 xg�z�1 k2
g�z�xg�z�1

X
g 0

(
2C�0;1�g;g 0 �z�

d
dz

xg 0 �z�
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wherekg (z) denotes a complex wave number given by
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Two z-dependent matrices,C(0,1)(z) andC(0,2)(z), in Eq. (5)
represent lateral mode mixing due to non-uniform lateral
confinement atz and are given by

C�0;1�g;g 0 �
ZZ

wg�x; yuz� 2wg 0 �x; yuz�
2z

dx dy �7�

C�0;2�g;g 0 �
ZZ

wg�x; yuz� 2
2wg 0 �x; yuz�

2z2 dx dy �8�

and also the irregularity-induced scattering matrix,
Virregular(z), is defined as follows:

Virregular
g;g 0 �z� �

ZZ
wg�x; yuz�Virregular�x; yuz�wg 0 �x; yuz� dx dy

�9�
These mode-mixing matrix elements in Eqs. (7)–(9) are

numerically evaluated using the obtained set ofwg�x; yuz�.
The first derivative term ofxg�z� in Eq. (5) can be elim-
inated by applying the relevant unitary transformation:

xg�z� �
X
g 0

Mg;g 0 �z�fg 0 �z� �10�

where the unitary matrix,M(z), is defined usingC(0,1) as
follows:

Mg;g 0 �z� � exp 2
Zz

C�0;1�g;g 0 �z0� dz0�
� �

�11�

The unitary matrix,M(z), is calculated using a second-
order expansion approximation which guarantees the unitar-
ity of the matrix

M�z� ù 1 2 1
2

Zz

C�0;1��z0� dz0
� �

· 1 1 1
2

Zz

C�0;1��z0� dz0
� �21

�12�
Substituting Eqs. (10) and (11) into Eq. (5), the transform-
ation leads to the following equation:

d2

dz2 fg�z� � 2
X
g 0

vg;g 0 �z�fg 0 �z� �13�

where the matrix,v (z), is written as follows:

vg;g 0 �z� �
X
g 00

X
g 000
�M21�g;g 00 �z�Wg 00;g 000 �z�Mg 000;g 0 �z� �14�
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The matrix, W(z), in Eq. (14) is given by the following
expressions:

Wg;g 0 �z� � k2
g�z�dg;g 0 2 { C�0;1��Z�} 2

g;g 0 2 C�1;1�g;g 0 �z�

2
2mp

"2 Virregular
g;g 0 �z� �15�

C�1;1�g;g 0 �z� �
ZZ 2wg�x; yuz�

2z

2wg 0 �x; yuz�
2z

dx dy �16�

Renormalised complex wave numbers,Kg (z), are
obtained by solving the following eigenvalue equation:X
g 00

Wg;g 00 �z�Ug 00;g 0 �z� � { Kg 0 �z�} 2Ug;g 0 �z� �17�

whereU(z) is a unitary matrix which diagonalises the matrix
W(z). The eigenvalue equation Eq. (17) is discretised and
numerically solved using the QL method. Thenxg�z� can be
expressed as a superposition of plane waves:

xg�z� �
X
g 0

X
g 00

Mg;g 0 �z�Ug 0;g 00 �z��Ag 00 �z� exp{iKg 00 �z�z}

1 Bg 00 �z� exp{ 2 iKg 00 �z�z} � �18�

whereAg (z) andBg(z) are coefficients of forward and back-
ward plane waves in theg th lateral mode with the complex
wave numberKg(z). Assuming these coefficients to be
constant between two adjacentz-mesh points, the 3D wave-
function,C(x, y, z), can be finally written as

C�i��x; y; z�ù
X
g

X
g 0

X
g 00

wg�x; yuz�M�i�g;g 0U�i�g 0;g 00 �A�i�g 00 exp{iK �i�g 00z}

1 B�i�g 00 exp{ 2 iK �i�g 00z} �
�19�

where the index (i) denotes a region between adjacentz-
mesh pointszi and zi11. From the continuity of electron
probability flux of electrons through the device, the coef-
ficients at the adjacentz-mesh points are then related as
follows:

A�i11�
g

B�i11�
g

0@ 1A �X
g 0

T�i��g;g 0�
A�i�g 0

B�i�g 0

0@ 1A �20�

The multi-mode transfer matrix,T(i), can be expressed as

T�i��g;g 0� � a�i�1 �g;g 0�·P�i� a�i�2 �g;g 0�·�Q�i��21

a�i�2 �g;g 0�·Q�i� a�i�1 �g;g 0�·�P�i��21

0@ 1A·X�i�g;g 0

�21�
where the matrices,a (i)andX(i), are given by the following

equations:

a�i�^ �g;g 0� �
1
2

1^
mp�i11�

mp�i�
K�i�g 0

K�i11�
g

8<:
9=; �22�

X�i�g;g 0 �
X
g1

X
g2

X
g3

U�i11�
g1;g M�i11�

g2;g1
M�i�g2;g3

U�i�g3;g
0 �23�

andP(i) andQ(i) stand for

P�i� � exp{i�K�i�g 0 2 K�i11�
g �zi11} �24�

Q�i� � exp{i�K�i�g 0 1 K�i11�
g �zi11} �25�

Hence the coefficients at the emitter and collector edges
of the device are related by using a multi-mode transfer
matrix, T�g;g 0�:
T � T�N�·T�N21�·T�N22�…T�2�·T�1� �26�

AEmitter
g

BEmitter
g

0@ 1A �X
g 0

T�g;g 0�
ACollector
g 0

BCollector
g 0

0@ 1A �27�

It should be noted that the transfer matrix contains both
propagating and evanescent modes depending on the total
energy and lateral mode eigenenergies. In the following
calculations the full transfer matrix is adopted including
the evanescent modes in order to make the transfer matrix
regular even under a non-zero external bias. A relevant
multi-mode scattering matrix,S�g;g 0�, which is defined as

BEmitter
g

ACollector
g

0@ 1A �X
g 0

S�g;g 0�
AEmitter
g 0

BCollector
g 0

0@ 1A �28�

is calculated from the transfer matrix. The total transmission
rate is then obtained from the S-matrix as follows:

T�E� �
X
g

X
g 0

tCollector�g;g 0;E�u�E 2 eEmitter
g �u�E 2 eCollector

g 0 �

�
X
g

X
g 0

tEmitter�g;g 0;E�u�E 2 eEmitter
g �u�E 2 eCollector

g 0 �

�29�
whereu(E) is the step function, and the multi-mode trans-
mission probabilities are defined as follows:

tCollector�g; g 0;E� � uS12�g;g 0�u2 �30�

tEmitter�g;g 0;E� � uS21�g;g 0�u2 �31�
A complete set of the 3D wavefunctions,C�x; y; z�, can be

obtained by using the following scattering boundary con-
ditions:

�AEmitter
g ;BCollector

g � � �0; dg;g0
� �32�

for an incident electron-wave with a lateral mode index,g0,
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originating at the emitter edge of the device, and

�AEmitter
g ;BCollector

g � � �dg;g0
;0� �33�

when it originates at the collector edge. In Eqs. (32) and (33)
dg;g0

is the delta function. Finally, total tunnelling current,
Itunnel, is calculated assuming the global coherent tunnelling
of electrons [13] throughout the device as follows:

Itunnel� e
p"

Z∞

EEmitter
c

T�E�{ fEmitter�E;EEmitter
F �

2 fCollector�E;ECollector
F �} dE �34�

wherefEmitter and fCollector are Fermi distribution functions in
the emitter and collector contact regions, respectively.

4. Multi-mode resonant tunnelling and quasi-bound
states in quantum dots

In this section the simulation technique described in
Section 3 is applied for analysing the effects of lateral
confinement and mode-mixing on theI–V characteristics.
For this study the simple 2-terminal 0D RTD structure (Fig.
1(a)) with an Al0.25Ga0.75As(4 nm)/In0.08Ga0.92As(5 nm)/
Al 0.25Ga0.75As(4 nm) DB structure is used. The DB structure
is sandwiched with two undoped GaAs spacer layers of
6 nm in thickness, and n1-type GaAs emitter and collector

H. Mizuta / Microelectronics Journal 30 (1999) 1007–10171012

Fig. 3. Multi-mode transmission rates calculated for a 0D RTD structure shown in Fig. 1(a): (a) total electron energy dependence of the transmission rates for
lateral-mode conserving tunnelling, (g ,g); and (b) that for lateral-mode non-conserving tunnelling, (1,g 0). The emitter pad size of the 0D RTD is assumed to be
80 × 80 nm2.

Fig. 4. Visualised 3D probability density of electrons simulated for the
incident mode at (a) the first resonance and (b) the fourth resonance ener-
gies in Fig. 3.



layers with donor concentration of 1.0× 1018 cm23. Lateral
dimensions of the device are set to be 80 nm in bothx andy
dimensions. The quantum dot region is formed by using
undoped InGaAs and so is assumed to be completely
clean, i.e.Virregular�x; y; z� � 0. As explained in Section 2,
an hour-glass-shaped non-uniform lateral confinement
potential, Vconfinement�x; y; z�, is formed in this structure,
and, strictly speaking, it should be determined through a
self-consistent calculation. However, this would require an
enormous amount of computational time, and so, in this
work, Vconfinement�x; y; z� is calculated by using a classical
drift-diffusion-type device simulation [24] in which surface
carrier traps are taken into consideration by using Spicer’s
unified defect model [25]. As long as the size of the lateral
confinement is much larger than the width of the quantum
well, the calculated potential distribution should be a fairly
good approximation.

The multi-mode transmission probability calculated for

the 0D RTD structure is shown in Fig. 3. Fig. 3(a) and (b)
show the total energy dependence of transmission rates at
zero emitter–collector voltage. In Fig. 3(a) the lateral-mode
conserving tunnelling,uS12�g; g�u2, in which the lateral-
mode numberg is conserved during tunnelling is shown
by using thin solid lines. The total transmission rateT(E)
is also shown by a thick solid line. A grey area in the figures
is the Fermi sea in the emitter contact, and the indices (g ,
g 0) represent the tunnelling process from theg th mode in
the emitter to theg 0th mode in the collector. As shown in
Fig. 3(a) multiple transmission peaks inT(E) are mainly
composed of the transmission peaks of the lateral-mode
conserving tunnelling. The 3D existent probability of elec-
trons, uCE�x; y; z�u2, calculated for the first incident mode
(g � 1) at the first resonant energy is plotted in Fig. 4(a),
which shows the nature of the lowest quasi-bound state of
the quantum dot.

Owing to the non-uniform confinement potential,
however, the S-matrix has non-zero off-diagonal elements,
which represent the tunnelling processes with a change in
the lateral-mode. Fig. 3(b) shows the total energy depen-
dence of transmission rates for such a lateral-mode non-
conserving tunnelling,uS12�1;g 0�u2, for the first incident
mode. In Fig. 3(b) the tunnelling with the first incident
mode is observed only for the outgoing modeg 0 � 5, 6,
and 11. This is purely because of a selection rule for parity
of lateral wavefunctions. Because the elastic scattering due
to the hour-glass confinement potential does not break
symmetry under mirror reflection inx andy dimensions, a
lateral mode couples only with other modes having the same
parity. The lowest wavefunction has even parities in bothx
andy dimensions, and can therefore couple only with upper
modes described above. It can be seen that the transmission
rates for the lateral-mode non-conserving tunnelling also
show resonance peaks at 47 and 93 meV. These enhanced
transmission probability in the off-diagonal processes lead
to additional structures in the diagonal processes in Fig.
3(a): a Fano-resonance-type asymmetric resonance [26]
can be seen for (1, 1) at 93 meV. This structure stems
from the enhanced probability of the second order diagonal
tunnelling, 1! 5! 1, The 3D existent probability of elec-
trons,uCE�x; y; z�u2, calculated for the first incident mode at
92 meV (at the dip of the rate) is shown in Fig. 4(b). It
should be noted that the electron existent probability in
the quantum dot reflects features of the fifth-mode rather
than first-mode despite the incoming wave with the first
mode. This signifies that a large part of the incoming
wave is converted to the fifth-mode in the quantum dot. In
other words, the lateral mode indexg is no longer a good
quantum number for this system.

Fig. 5(a) shows the emitter–collector voltage dependence
of the total tunnelling current at a temperature of 25, 50 and
77 K. Several satellite current peaks and shoulders are
observed superposed on the conventional NDC character-
istics. For comparison, the current–voltage characteristic
calculated assuming the uniform confinement is also
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Fig. 5. (a) Emitter–collector voltage dependence of total tunnelling current
calculated at various temperatures for the 0D RTDs with hour-glass-shaped
confinement potential. Current peaks and shoulders are indicated by arrows
with the indices, (g , g 0), for the corresponding main tunnelling processes.
(b) I–V characteristics calculated by assuming a completely uniform lateral
confinement for comparison.



shown in Fig. 5(b). It should be noted that only one main
current peak is found without any fine structure in the case
of the uniform confinement. As indicated in Fig. 5(a), first
four peaks in theI–V curves mainly result from the lateral-
mode conserving resonant tunnelling: (1, 1) tunnelling for
the first main peak, (2, 2) and (3, 3) for the second, (4, 4) for
the third, and (5, 5) and (6, 6) for the fourth. As shown in
Fig. 5(a) the fourth peak becomes smaller when temperature
is decreased as it is caused by the tunnelling of electrons
which are thermally excited to the fifth and sixth modes
located above the quasi-Fermi level in the emitter region.

However, the last two current peaks in Fig. 5(a) were
found to be caused by the lateral-mode non-conserving
tunnelling. The total energy dependence of the transmission
probability calculated at the fifth peak voltage (V �
157.5 mV) is shown in Fig. 6(a) and (b): (a) is the diagonal
uS12�g;g�u2; and (b) the off-diagonaluS12�1;g�u2. At this peak
voltage a small transmission peak located under the Fermi
energy leads to the fifth current peak, which is caused by the
lateral-mode non-conserving tunnelling process (1, 5) (see
Fig. 6(b)). From the same analysis it is found that the sixth
current peak is also due to the lateral-mode non-conserving
tunnelling process (2, 9).

As shown in this section, the present 3D S-matrix-based
numerical simulation facilitates to investigate the complex
lateral mode mixing in the quantum dot and the fine struc-
tures in theI–V characteristics.

5. Resonant tunnelling through localised states formed
by random ionised impurities

In Section 4 the 0D RTD with a completely clean quan-
tum dot has been investigated. As the quantum dot area is
generally formed with undoped semiconductors, the typical
background doping concentration is of the order of
1014 cm23. As far as the radius of the active quantum dot
is of the order of a few tens nanometers and the quantum
well width is of the order of a few nanometers, the prob-
ability of a single impurity being in the quantum dot will be
very small. This section deals with quantum dots larger than
those in the previous section, in which a single or a few
background impurity atoms are contained.

For this analysis, the following simple model is used for
Virregular�x; y; z� in Eq. (2) to introduce the random ionised
impurity potential:

Virregular�x; y; z� � Vimpurity�r� �
X
r i

Vim�r 2 r i� �35�

whereVim is expressed by the delta functional potential due
to a discrete ionised impurity, and {r i} denotes the spatial
configuration of the ionised impurities. The 3D spatial co-
ordinates,r i, of ionised donors are expressed using lateral
and vertical displacement from the centre of the quantum
dot, (dx, dy, dz).

The numerical simulation was performed for a relatively
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Fig. 6. Total electron energy dependence of the transmission rates calculated at the fifth peak voltage,V � 157.5 mV, in Fig. 3(a): (a) for lateral-mode
conserving tunnelling, (g , g ); and (b) that for lateral-mode non-conserving tunnelling, (1,g 0).



large-area 0D RTD with the quantum dot region composed
of a symmetric AlAs(4.2 nm)/GaAs(5.6 nm)/AlAs(4.2 nm)
DB structure. The corresponding experimental results were
obtained for the structure shown in Fig. 1(b), which achieves
a virtually flat lateral confinement around the DB structure
[13,19]. In this section, therefore, only the essential active
device region is considered, and the lateral confinement is
assumed to be completely flat. The confinement profile is
simply modelled using a square well 200 nm in diameter in
which the intervals of lateral eigenenergies are so small that
contributions from different modes are barely separable on
the I–V curve.

We examine the device which contains two ionised
donors: one donor is at the centre of the active device
region,�dx; dy; dz� � �0;0;0� and the other at�dx; dy; dz� �
�48;48 and 1.3 nm, respectively). Fig. 7 shows the energy
dependence of the total transmission rate,T(E), for an emit-
ter–collector voltage of 175 mV. In the high-energy region
we see a series of transmission peaks which are very close to
each other. These transmission peaks represent RT through

the original quantised states whose energy intervals are
determined by the size of the lateral confinement and
which are thus nearly degenerate as the confinement size
is chosen to be fairly large. These peaks simply give rise to a
large single NDC in theI–V characteristics (see the main
peak in the inset of Fig. 9) in the same way as in conven-
tional RTDs. In addition to these peaks, however, two sep-
arate transmission peaks are seen in Fig. 7 at lower energies.
These new peaks result from the ionised donors embedded
in the active device region: the attractive potential of each
ionised donor selectively pulls down one of the degenerate
states to lower energy. The state chosen is determined by
both the position of the ionised donor and the spatial distri-
bution of the original eigenstate. This may be understood
from the probability densities of electrons calculated at
these two resonant energies. Fig. 8(a) and (b) show the
visualised 3D and 2D probability densities at (a) first and
(b) second resonances calculated for the lowest first-mode
incident waves from the emitter. The 2D pictures show the
in-plane amplitude atz� 0, uC�x; y;0�u2. It can be seen that
the electron probability densities are strongly localised
around the different ionised donor sites although the inci-
dent wave spreads laterally over the whole area at the emit-
ter edge.

These transmission characteristics lead to theI–V
characteristics shown in Fig. 9. It is found that the
ionised-donor-induced transmission peaks seen in Fig. 7
lead to current plateaux with a step,DI, of about 0.1 nA
before the main NDC. Obviously the details of the current
plateaux depend on the donor configuration, and theI–V
curve shown here is just for one particular configuration.
It should, however, be noted that the simulated current
step corresponds well to the experimental results [13,19].
This is becauseDI is essentially determined by the width of
the corresponding transmission peak, i.e. the dwell time,td,
[13] of electrons at the resonant state, as follows:

DI � e=td �36�
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Fig. 7. Total electron energy dependence of the total transmission rate
calculated for a large-area (200 nm in diameter) 0D RTD with two ionised
donors placed in the quantum dot. The emitter–collector voltage is 175 mV
which corresponds to the second plateau of theI–V characteristics (see Fig.
9).

Fig. 8. Visualised 3D and 2D probability density of electrons simulated for the first incident mode at (a) the first resonance and (b) the second resonance
energies in Fig. 7.



wheretd is mainly determined by the layer thicknesses of
the AlAs/GaAs/AlAs DBs. The dwell time estimated from
Eq. (36) is also found to be in good agreement with that
evaluated for the present 0D RTD by magneto-conductance
measurements [13,27].

The detailed fine structure of theI–V characteristics
depends on the location of the ionised donor in the quantum
dot. From the analysis by using a single donor ion [15], it
was found that the single transmission peak induced by the
single ionised donor gradually shifts to higher energy and
finally merges into the series of peaks when the donor is
moved from the centre to the edge of the quantum dot, either
laterally or vertically. This is because the interactions
between the single ionised donor and the tunnelling elec-
trons are essentially determined by the overlap of the origi-
nal lateral wavefunctions with the local potential profiles.
As the single donor moves towards the edge the amplitude
of the original lateral wavefunction at the donor site
decreases, and the attractive potential of the donor has
less effect on the electron state. As a result the subthreshold
voltage of the single current plateau also shifts towards the
main peak voltage with a positional shift of the single donor
while DI remains virtually the same. In the case of multiple
ionised donors, therefore, the fine structure will be given by
a superposition of the current plateaux and so will be donor-
configuration-dependent.

6. Conclusion

We have presented the numerical simulation based on the
3D multi-mode S-matrix theory as a powerful analysis tool

for quantum-dot-based electronic devices. The simulation
technique has been applied for various vertical 0D RTDs.
The effects of the lateral-mode non-conserving RT
processes on theI–V characteristics were investigated.
The calculated S-matrix clearly showed new transmission
peaks in the off-diagonal components, which result in the
extra satellite current peaks. The simulation has also been
applied for analysing RT assisted by background ionised
impurities in a quantum dot. It has been demonstrated that
a single ionised donor impurity forms a new quasi-bound
state at a lower energy than other levels and leads to a
current step before the main current threshold, which is in
good agreement with the experimental data.
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