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The influence of both geometric and offset charge disorder of two-dimensional quantum dot arrays
(also known as network tunnel junctionsn their Coulomb blockade voltagé, is studied using
extensive Monte—Carlo simulations. A general increasé,ofith increasing disorder is confirmed,

but an exception to the rule is found for intermediate degrees of offset charge disorder. Detailed
studies of theVy, distribution reveal a stability of its minimal value against geometric disorder,
whereas this figure is considerably increased for high offset charge disorder. Implications of our
results for single electron device design are discussed19@8 American Institute of Physics.
[S0021-897€98)05022-1

I. INTRODUCTION disorder. The following Sec. Il gives a detailed overview of
our numeric tools and Sec. IV contains the discussion of our
Nanoscale integrated electronics is still close to theesylts.
boundary between the possible and the impossible, and is
therefore very prone to errors caused by unavoidable side
effects. Different kinds of disorder, as studied in this article,!l: THE SYSTEM UNDER CONSIDERATION

are one example. _ _ For the purpose of this study, emphasis is put on the
Disorder is an intrinsic ingredient of nearly all single general geometric realization of Coulomb blockade devices
electron circuits fabricated so far, especially those which rely,inar than a particular material or a certain technology. The
on natural lithography:? Therefore, a fair amount of effort (regula basic system of our simulations is shown in Fig. 1.
has already been invested into both theoretical and experj; -onsists of an &4 array of planar rectangular dot elec-
mental studies of disorder effects in single electron StruCtrodes. each of which is nominally>85 nn? in size and
tures. The main objectives of this work are the determinatiorb|aced o a 7 nmgrid. Three leads are attached to the array:
of the. blockade voltagh.’b, which corresponds to the maxi- soyrce(left), drain (right), and gate(bottom). Similar com-
mal bias voltage at which current at zero temperature is t0ptations with circular dots are performed for reference. The
tally suppressed due to Coulomb repulsion, and the exponefgice of the system size is a trade off between what is
¢, which describes the current for bias voltages slightlyyegjized in experiment and what can be handled numerically.
aboveVy, lo(V=Vp)~. _ The parameters of dot size and dot distance correspond to
Of the different types of disorder, offset charges haveyica| values of both semiconducting and metal dots pro-
caus_ed by far the most interest. In one—dlmensm_nal armayuced by diverse techniques. The bias is applied to the
the influence of offset charge o, has been studied both gqrce electrode only whereas the drain is grounded. This
experimentally* and theoretically. The current dependence simulates the operation of a memory cell, where the applied
loc(V—Vp)*¢ result?ng from t'he effect of back_groum_j charges,, g voltage “writes” charge into the memory node.
was suggestédu;mg ¢=1 in case of one-dimensional ar- 1,4 gifferent types of disorder in this system are stud-
rays, and/=5/3 in case of two-dimensional networks. That joq. geometric disorder and offset-charge disorder. Geomet-
work has spawned a number of experiméitswith in part i gisorder is understood as fluctuations in position and size
different values of. of the individual dots. In the language of localizatidthis
The influence of disorder on Coulomb blockade systemg,,responds to topological and compositional disorder, re-
has glsolzbien studied in terms of the metal-insulatogyqcively. Offset charges cause a different kind of compo-
transition.”~“The system considered differs, however, from gjiiona) disorder, where the site energies are changed by the
the classical Coulomb blockade situation in so far as thgycq) field distribution rather than the dot's capacitance.
conductance is much higher. In fact, it is the conductance  pgsition disorder is simulated by changing the dot posi-
that triggers the transition rather than an applied bias voltage;s, from the regular 7 nm grid. Thus, the maximal cell size
In the present article we investigate the influence of disy;ithin which each dot might move, independent of the other
order onV,, in the case of two-dimensional single electron dots, is 7x 7 nmP—not so much larger than the dot size itself
netwqus by means of numerical simulation. In Se_c. I_I We(5% 5 nnf). This matches an experimental situation, where
describe our model system and the employed realization qhe ynnel resistance is expected to increase exponentially
with the interdot distance and thus strongly suppresses the
3E|ectronic mail: hom@phy.cam.ac.uk tunnel current. The ratio of the actual cell size to its maxi-
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(el tances but also of the stray capacitance of each electrode. In
. Lol [ro] [11] [12] [13] [14] ; a next step, these stray capacitances are charged by an at-
(18] [1e] [17] [1#] [1] [z] tached voltage source in order to simulate a certain offset-
charge configuration. Finally, a Monte—Carlo computation
reveals the current through the setup as a function of the bias
voltage.

The capacitance computation starts from the known ca-
pacitance of two planar homogeneously charged rectangular
2 electrodes in a common planthe substrate surface. These
basic building blocks are assembled to form larger electrodes
of different (still plana) geometry and varying charge con-
centration. Thus, a coarsening procedure is inevitably part of
our capacitance program. In order to minimize its influence
FIG. 1 Regular Mo-dime_nsior_]abm dot array the disordereq derivatives on the final results and to keep the computational effort
of which are studied in this article. The lea@®urce, gate, drain-from left . . . .
are not affected by disorder. within reasonable limits, checks were done resulting in an

approximate size of 1:61.5 nnt for our building blocks.

The substrate is assumed to fill the semi-infinite space
mum is used as a measure of the degree of position disordd?¢neath the common plane of all electrodes, and one dielec-
The position of any dot within its cell is evenly, but ran- tric constant is used to describe its influence on the electro-
domly distributed. More sophisticated models might be realstatic field. Similarly, the space above the plane of electrodes

ized easily but the question to what extent they are closer t§ given another constant. Symmetry allows further simplifi-
the real world remains open. cation to one homogeneous medium all around the electrodes

Size disorder is simulated in a very similar way, how- of arithmetic-mean dielectric constant. The presented results

ever the dots’ centers are pinned on the 7 nm grid. Theigre calculated for a silicon substrate,£11.9) and SiQ
edge length is varied within a given range, independentlypassivation layer«,~3.9) resulting in a mean value ef
from dot to dot and for both dimensions of each dot. The=7.9.

possible range of dot dimensions to its maximum defines the A difficult point of capacitance computation, but irrel-
degree of disorder. evant to the consideration here, is the difference between

Offset-charge disorder is studied by two different ap-measured and computed capacitance vaii€The presen-
proaches. In the first we assign a value of charge directly téation of purely simulation results allows us to ignore this
each dot in the array whereas in the second the charge on @noblem for the time being.
additional small “impurity” dot influences corresponding The cutoff of the macroscopic leddss another issue to
charges on the regular dots. According to ¢heeriodicity of ~ be addressed: since the capacitance of a wire-like lead in-
the offset-charge behavior the offset charge in the formegreases approximately proportionally to its length and the
case is chosen out of the charge intefvak/2:e/2]. In con-  potential inhibits an 1/r drop off, even parts of the leads far
trast the impurity in the latter case can be charged to anpway from the central dot array contribute significantly to the
value since its charge is excluded from tunneling. potential near the end of the wire. Hence cutoff lengths reach

The setup of the offset-charge configuration in thetremendous values in them range'® For our much smaller
former case starts with an arbitrary choice of the charge oulots, however, we expect correspondingly shorter cutoff
the first dot in the arrayNo. 3 in Fig. 1. The values for the lengths. In detail, we extract a ratio between cutoff length
other dots are chosen in such a way that the offset chargend dot size of about 10 from Ref. 18. Correspondingly for
difference between two neighboring dots does not exceed aur nominally 5<5 nn? dots an estimated cutoff length 50
certain maximum. The ratio of this maximum to the men-nm is used.
tioned limit e allows us again to define a degree of disorder.  As well as all interelectrode capacitances, the computa-
All possible offset-charge values within the predefined rangeion of the whole capacitance matrix allows the estimation of
have identical probability of being selected. The purpose ofhe stray capacitances of each electrode. This is an essential
this offset-charge selection scheme is the incorporation oihgredient of single-electron electronics simulation as
both offset-charge correlation between close dots and indgeointed out recently® since even for electrodes of moderate
pendent variation of the common offset-charge level. size the stray capacitance exceeds the apparently ultrasmall
tunnel capacitances. The value of the stray capacitance fol-
lows from that of the total capacitance minus all cross ca-
pacitances of the electrode under consideration.

The computation procedure comprises essentially two In Fig. 2 computed self-capacitances are displayed for
steps: capacitance calculation and current calculation. Firstectangular dots. Changing the shape of the dot while its area
the geometry of the array under consideration is specifieds fixed results in increased capacitance. For increasing dot
This includes both kinds of geometric disorder as explainedrea a power-law increase of the capacitance is obséseed
above. Given the geometry of the array and its leads, these).
complete capacitance matrix is computed which allows not The realization of a given offset-charge configuration of
only the determination of the interelectrode cross capacithe dot array, which is decided beforehand, makes use of the

IIl. EMPLOYED METHOD

Downloaded 21 Jul 2008 to 152.78.61.227. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



J. Appl. Phys., Vol. 84, No. 10, 15 November 1998 Muller, Katayama, and Mizuta 5605

0.6 T T

— 0%
—————— 20%
05| - 40%
............. 600/0
R 80%
e 100%

03

Self capacitance (aF)
lgs (NA)

01t

22 23 24
Edge ratio (solid), Area ratio (dashed) Vgs (MV)

FIG. 2. Self-capacitance of a rectangular dot as function of its edge ratid¢-IG. 4. Source-drain current for different levels of position disorder ranging

(solid curve. The dot area is fixed at 25 fmThe dashed line shows the from 0% (regular arrayto 100%(maximal disordex

area dependence of a quadratic dot as function of the dot area. The inset
shows the same data in double-log representation.
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stray capacitances mentioned above. As depicted schemati-

cally in Fig. 3, an individual voltage source is taken to be x=AF/(kgT),
connected to each dot’s stray capacitance. The voltage value
is adjusted so that the expected charge value is induced on kg Boltzmann’s constant,
the dot. No offset charge is considered for the macroscopic
leads.

Besides all the capacitances, tunnel resistances are anec- e Electronic charge, and
essary input for the Monte—Carlo current calculation. How- )
ever, as long as only the blockade voltageis considered, R tunnel resistance.

it is independent of the choice of the resistarit@is is  This approach is incapable of describing rare tunnel events
because the determination 8f poses an electrostatic prob- adequately since in these ca$elsecomes very small and the
lem without flowing current. A constant tunnel resistance ofsystem gets locked in one state. In our simulatidris lim-
500 K is used for each tunnel junction and the indepen-ted for practical reasons to 0,s resulting in a minimal
dence of the outcome of this value was checked numericallyaonvanishing current oé/0.1us~1.6 pA, where one elec-
This value is large in comparison to the resistance quanturiton only is transferred during alkit. On one hand this pro-
Ro=h/e?~25.79 K) and justifies the use of the so-called cedure might seem rather crude, however, the neglect of
orthodox theory of single-electron tunneliffy. higher-order tunnel processésotunneling imposes further
The Monte—Carlo simulation program is in general simi-deviations in the low-current domain of the simulations. On
lar to other single-electron simulators described extensivelyhe other hand the current discretization provides a unique
in recent literaturé’~* The duration of a specific charge means of extracting the blockade voltaggfrom anl 4V,

state At is modeled by a stochastic Poisson proceSs, —characteristic:V, is assigned the largest value ®f for
= —log(r)/T’, wherer e[0:1] is a random number and is  which the simulation results ilys=0.

the tunnel rate. This rate in turn follows from the difference The importance of sufficiently low temperature in

of free energy between initial and final state of the systensingle-electron tunneling was pointed out even in the very
AF which is calculated from the capacitance setup: early articles on this subje®®.In order to observe single-
electron effects despite thermal fluctuatidqsT <e?/(2C)
is required, where is given by the total capacitance of the
dot. In our case, the computed capacitance is 1-2aF for the
5% 5 nnt dots corresponding to an energy of 40—80 meV. In
/ contrast, a temperature of 4.2 K is used in all our simula-
TSI tions, which corresponds to only 36&V.

L TLTLTLTLTL
LTLTLTILTLTL

fff?% IV. RESULTS AND DISCUSSION

A. Position disorder
v vy @ , . .
In Fig. 4 we present typical results of the whole numeric

procedure described above. In the figure only the voltage

FIG. 3. Realization of a certain offset-charge realization by means of voIt-range neawy, is shown, however tests have run to assure

age sources charging up the individual stray capacitances of each dot in tf@'{rrent Supp_reSSion in the thle blO_Ckade range. The fluctu-
array. Only the first line of voltage sources is shown schematically. ating behavior of the current is attributed to the employed

T temperature,
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FIG. 5. Blockade voltag/,, as function of the degree of size disorder for £ 6. Distribution of the blockade voltage for four different degrees of
arrays of rectangulaill) and circular(®) dots. A slight horizontal offset is high geometric size disorder.

used for clarity.

, i of the regular case. The data strongly suggests that size dis-
Monte—Carlo algorithm. The figure shows that the currenty,qor does not affect the minimal blockade value of two-

discretization in steps of 1.6 pA does not hinder the COMPUgimensional2D) Coulomb blockade structures.
tation and the evaluation of its results. These results can be understood in terms of dominating
Different curves in Fig. 4 display different levels of po- qay capacitances. The regular dot array of uniform dots,

sition disorder. According to the outlined method of deter-Fig. 1, causes the disorder-independent minimal valug,of
mination of the blockade voltage only a small decreaséof 4 the other hand, the maximal value is governed by the

from 24 to 23 mV is found for the transition from the regular giajjest dot in the current path and the probability of the
case to the maximal disordered one. This disorder stability ofyistence of small dots increases with increasing disorder. In

Vp, is due to the fact that the actual dot positions cannotgnrast to this, large dots are of minor influence\gnin
deviate very far from their nominal position owing to the -5¢0 of quantum dot arrays.

exponential dependence of the tunneling resistance. Hence, \yith regard to the application of Coulomb blockade de-
the variation in capacitances is comparably small and €sp&jices minimal and maximal values bf, are of interest. In a
cially the dominating stray capacitances are almost the saMBemory celP® for instance, minimaV,, determines the re-
for all dots. In this sense, the system is still very much free oo ntion time and the ratio of word voltage and maxirva|
disorder and this is represented in the results of Fig. 4. he read/write time. Therefore our conclusion is twofold:
first, the retention time problem is nearly independent of size
B. Size disorder disorder; second, in order to achieve reliable read/write times

The results for geometric size disorder are shown in Figthe word voltage should be almost ten times as large as the
5. For each degree of disorder, thg of ten samples were regular blockade voltage due to large fluctuations of the
computed and the symbols indicate the mean value of thEaximalV, value.
blockade voltage. In order to guide the eye error bars are )
attached to each symbol corresponding to the size of starfz- Offset-charge disorder (1)
dard deviation. For as few as ten samples, however, the stan- |n Fig. 7 the blockade voltage for different offset-charge

dard deviation is only a fraction of the statistical error. Dataconfigurations is shown. The results for arrays of round dots
for rectangular and circular dots are presented. The higher

of the latter is understood geometrically: the nominal diam-

eter corresponds to the edge length of the rectangular dots. X"
Thus, smaller area causes smaller capacitance and in turn 1:)8 I )
higher blockade voltage. 90 |

With increasing disorder bot, and its standard devia- 80 | 4
tion increases. The suppression of the conductance with in- ’>E‘ 70 | + i i 1
creasing disorder is a very general feature of disorder in- = 60| % 1
duced localizatior® It is studied in terms of the pinning of > 90| el a 1
charge solitons as well:* The large error bars near maximal gg I s -t
disorder indicate a wide distribution &, values. We inves- 20 i ; L %
tigated this range in Fig. 6 in more detail. Here we use 100 10 } % + +
samples of rectangular dots per degree of disorder which 0

0 10 20 30 40 50 60 70 80 90 100

allows a better statistic evaluation. The histogram uses 25
Degree of Disorder (%)

classes. Despite the fluctuation it is seen that for all cases the
mean_value of the _d'Str'bUt'on IS near Its mm'mal_value- TheFIG. 7. Blockade voltag®}, as function of degree of offset-charge disorder
latter is constantly in the range 20—25 mV which is the valu€for arrays of rectangulail) and circular(®) dots, ten samples per point.
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FIG. 8. V,, statistics for intermediate degrees of offset-charge disorder ofg|G. 9. Maximal and minimal blockade voltagk, as function of the offset
100 sample$25%—35%. charge(solid lineg. For the minimal value o¥/, each dot carries the same
value ofQq. For maximalV, it is alternating in source-drain direction. The
dashed line displays the result for a single dot as reference.
are given for comparison again. Starting from the original
value of the regular system an initial drop off \@f is fol-
lowed by a strong increase at high degrees of disorder evetom dot to dot become more and more probable. The situa-
tually reaching about three times the original value. Againtion of Fig. 9, where the offset charge alternates between two
the evaiua‘[ion makes use of Oniy ten Sampies per degree Mﬁlues, is from this pOint of view eXtI’eme, but instructive.
disorder which probabiy does not reveal the whole pictureThe different offset ChargeS shift the electrostatic pOtential of
Two different ranges are therefore studied in detail: the inthe corresponding dots up and down which allows tunneling
termediate range of reduceq) and the high_disorder range electrons to move ea.S”y from a high-potential dot to a low-
of enhanced blockade voltage. potential one but significantly suppresses the next tunneling
Figure 8 ShOWS a histogram Mb in the intermediate event from IOW to hlgh pOtentiaL Therefore Charges get StUCk
disorder rang€25%—35%. The statistics used 100 samples On every second dot and only a considerable increase of the
again. An overall reduction of the blockade voltage is obvi-Pias voltage will allow them to move on.
ous. The origin of this reduction is found once more in the ~ We have checked that this behavior is determined by the
effect of large stray capacitances. Since the drain electrode Rackground charge distribution in the source-drain direction
grounded they cause a drastic capacitance asymmetry resuddly, by considering arrays of different width. All of them
ing in a wide offset-charge range of almost no blockade. Thigroduce very similar results. As expected, the situation is
effect is not limited to two-dimensional arrays of dots, butSymmetric forQ,— —Q which causes a change of sign for
can also be observed in a single dot as shown in Fig. 9. each offset charge and corresponds also to the situation of
Furthermore, in a dot array the breakdown region of thehegative bias. FoR,=0 the results of the “clean” array are
blockade voltage around),~+e/2 increases and thus reproduced, whereas f@y~ *e/2 a breakdown of the Cou-
causes smaller values V'B . For the array, F|g 9 shows the lomb blockade is observed. The latter indicates the ge@eral
blockade voltage with identical offset charge on each doPeriodicity of offset-charge dependencies.
(lower solid curve. No disorder is included in this calcula- From Fig. 9 and from the used definition of disorder in
tion. The upper solid curve in dispia%b for “ﬂipping” Sec. |l quantitative limits for the range of Suppressed and
values ofQ, in source-drain direction, i.e., from left to right €nhanced Coulomb blockade can be determined. A minimal
in Fig. 1. The dots of each row carry identical offset charges
again. This choice simulates the case of a particularly high

disorder and leads—as discussed below—eventually to 190 T 8%
higher values ofV,. Here we want to point out that for T 823 o
intermediate degrees of disorder in Fig. 7 smaly¢ 100%

—0.3e), but still reasonably uniform offset-charge values are
possible which cause the observed behavior of Coulomb
blockade reduction.

In Fig. 10 the results for large offset-charge disorder are
presented. These confirm the first glimpse from Fig. 7: Both
minimal and maximal value df}, increase with disorder, but
the width of theV, distribution hardly changes. To deter-
mine the shape of the distribution, however, significantly 1
more than the studied 100 samples are necessary.

The increase of the blockade voltage for high degrees of
disorder can be understood by means of the model systeig. 10. v, statistics for high degrees of offset-charge disorder. Plotted are
used in Fig. 9 since considerable jumps of the offset chargee resuits for 100 samples of rectangular dots.

Probability (%)
S

-
1
1
[
I
1
|
1
|
i
1
|
1
|
i
1
|
I
L

[

0 20 40 60 80 100 120 140 160
Blockade Voltage V,, (mV)

Downloaded 21 Jul 2008 to 152.78.61.227. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



5608 J. Appl. Phys., Vol. 84, No. 10, 15 November 1998 Muller, Katayama, and Mizuta

0.8 — T Offset charges cause a breakdown of the Coulomb
0.7t 1 blockade in an intermediate range of disorder, Wytin-
06 - e ) creases significantly for high offset-charge disorder. In this
o5l e case the width of the/,, distribution increases slower thus
2 o4 mainly causing a shift of the distribution to larger values
£ T e with increasing disorder. The intermediate breakdown is
8 03 p i ) ] shown to be due to the capacitance asymmetry caused by the
0.2} T o dots’ stray capacitances which allow small blockade voltages
0.1 frmmn, . for small (~—e/2) but uniform offset-charge values. The
ol T blockade enhancement is an effect of large disorder which
04 L pins tunneling charges within the dot array.
-1 0.8 -06 -04 -02 0 02 04 06 08 1 With regard to their device application, single-electron
Q (e) systems shall have a well-defined Coulomb blockade. In par-

ticular, the minimal blockade voltage should have a sharp
FIG. 11. Current through a regular dot array as a function of the cl@fge |imit and a reasonably small maximal value is required for
on a small additional impurity dot in its center. The array is six dots long .. . .
and six, four, or two dots widérom top). The applied bias is about 30 mv cOmMpetitive performance. For the cases studied here we find
which is approximately 5 mV abové,, for this type of structure. V), to be independent of position disorder and its minimal

value independent of size disorder. However, care must be

taken to avoid certain correlated values of offset charges
disorder value of 20% is necessary to reach an offset charggnce they will cause a blockade breakdown. Since in general
of —0.3e which leads to blockade suppression. In case of @ffset charges cannot be avoided, decorrelation of them
homogeneous charged quantum dot array this suppressionight be feasible not only to circumvent the breakdown
domain covers about 40% of all offset-charge values. Hencegroblem but also to increase the blockade voltage consider-
V, is reduced for disorder between about 20% and 40%ably.
whereas higher degrees of disorder result in increaged
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