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Effects of disorder on the blockade voltage of two-dimensional quantum
dot arrays

Heinz-Olaf Müller,a) Kozo Katayama, and Hiroshi Mizuta
Hitachi Cambridge Laboratory, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE,
United Kingdom

~Received 26 May 1998; accepted for publication 18 August 1998!

The influence of both geometric and offset charge disorder of two-dimensional quantum dot arrays
~also known as network tunnel junctions! on their Coulomb blockade voltageVb is studied using
extensive Monte–Carlo simulations. A general increase ofVb with increasing disorder is confirmed,
but an exception to the rule is found for intermediate degrees of offset charge disorder. Detailed
studies of theVb distribution reveal a stability of its minimal value against geometric disorder,
whereas this figure is considerably increased for high offset charge disorder. Implications of our
results for single electron device design are discussed. ©1998 American Institute of Physics.
@S0021-8979~98!05022-1#
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I. INTRODUCTION

Nanoscale integrated electronics is still close to
boundary between the possible and the impossible, an
therefore very prone to errors caused by unavoidable
effects. Different kinds of disorder, as studied in this artic
are one example.

Disorder is an intrinsic ingredient of nearly all sing
electron circuits fabricated so far, especially those which r
on natural lithography.1,2 Therefore, a fair amount of effor
has already been invested into both theoretical and exp
mental studies of disorder effects in single electron str
tures. The main objectives of this work are the determinat
of the blockade voltageVb , which corresponds to the max
mal bias voltage at which current at zero temperature is
tally suppressed due to Coulomb repulsion, and the expo
z, which describes the current for bias voltages sligh
aboveVb , I}(V2Vb)z.

Of the different types of disorder, offset charges ha
caused by far the most interest. In one-dimensional arr
the influence of offset charge onVb has been studied bot
experimentally3,4 and theoretically.5 The current dependenc
I}(V2Vb)z resulting from the effect of background charg
was suggested6 using z51 in case of one-dimensional a
rays, andz55/3 in case of two-dimensional networks. Th
work has spawned a number of experiments7–11 with in part
different values ofz.

The influence of disorder on Coulomb blockade syste
has also been studied in terms of the metal–insula
transition.12–14The system considered differs, however, fro
the classical Coulomb blockade situation in so far as
conductance is much higher. In fact, it is the conducta
that triggers the transition rather than an applied bias volta

In the present article we investigate the influence of d
order onVb in the case of two-dimensional single electr
networks by means of numerical simulation. In Sec. II
describe our model system and the employed realizatio
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disorder. The following Sec. III gives a detailed overview
our numeric tools and Sec. IV contains the discussion of
results.

II. THE SYSTEM UNDER CONSIDERATION

For the purpose of this study, emphasis is put on
general geometric realization of Coulomb blockade devi
rather than a particular material or a certain technology. T
~regular! basic system of our simulations is shown in Fig.
It consists of an 634 array of planar rectangular dot ele
trodes, each of which is nominally 535 nm2 in size and
placed on a 7 nmgrid. Three leads are attached to the arra
source~left!, drain ~right!, and gate~bottom!. Similar com-
putations with circular dots are performed for reference. T
choice of the system size is a trade off between wha
realized in experiment and what can be handled numerica
The parameters of dot size and dot distance correspon
typical values of both semiconducting and metal dots p
duced by diverse techniques. The bias is applied to
source electrode only whereas the drain is grounded. T
simulates the operation of a memory cell, where the app
word voltage ‘‘writes’’ charge into the memory node.

Two different types of disorder in this system are stu
ied: geometric disorder and offset-charge disorder. Geom
ric disorder is understood as fluctuations in position and s
of the individual dots. In the language of localization15 this
corresponds to topological and compositional disorder,
spectively. Offset charges cause a different kind of com
sitional disorder, where the site energies are changed by
local field distribution rather than the dot’s capacitance.

Position disorder is simulated by changing the dot po
tion from the regular 7 nm grid. Thus, the maximal cell si
within which each dot might move, independent of the oth
dots, is 737 nm2—not so much larger than the dot size itse
(535 nm2). This matches an experimental situation, whe
the tunnel resistance is expected to increase exponent
with the interdot distance and thus strongly suppresses
tunnel current. The ratio of the actual cell size to its ma
3 © 1998 American Institute of Physics
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mum is used as a measure of the degree of position diso
The position of any dot within its cell is evenly, but ran
domly distributed. More sophisticated models might be re
ized easily but the question to what extent they are close
the real world remains open.

Size disorder is simulated in a very similar way, ho
ever the dots’ centers are pinned on the 7 nm grid. Th
edge length is varied within a given range, independen
from dot to dot and for both dimensions of each dot. T
possible range of dot dimensions to its maximum defines
degree of disorder.

Offset-charge disorder is studied by two different a
proaches. In the first we assign a value of charge directl
each dot in the array whereas in the second the charge o
additional small ‘‘impurity’’ dot influences correspondin
charges on the regular dots. According to thee periodicity of
the offset-charge behavior the offset charge in the form
case is chosen out of the charge interval@2e/2:e/2#. In con-
trast the impurity in the latter case can be charged to
value since its charge is excluded from tunneling.

The setup of the offset-charge configuration in t
former case starts with an arbitrary choice of the charge
the first dot in the array~No. 3 in Fig. 1!. The values for the
other dots are chosen in such a way that the offset ch
difference between two neighboring dots does not excee
certain maximum. The ratio of this maximum to the me
tioned limit e allows us again to define a degree of disord
All possible offset-charge values within the predefined ran
have identical probability of being selected. The purpose
this offset-charge selection scheme is the incorporation
both offset-charge correlation between close dots and in
pendent variation of the common offset-charge level.

III. EMPLOYED METHOD

The computation procedure comprises essentially
steps: capacitance calculation and current calculation. F
the geometry of the array under consideration is specifi
This includes both kinds of geometric disorder as explain
above. Given the geometry of the array and its leads,
complete capacitance matrix is computed which allows
only the determination of the interelectrode cross cap

FIG. 1. Regular two-dimensional 634 dot array the disordered derivative
of which are studied in this article. The leads~source, gate, drain-from left!
are not affected by disorder.
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tances but also of the stray capacitance of each electrod
a next step, these stray capacitances are charged by a
tached voltage source in order to simulate a certain off
charge configuration. Finally, a Monte–Carlo computati
reveals the current through the setup as a function of the
voltage.

The capacitance computation starts from the known
pacitance of two planar homogeneously charged rectang
electrodes in a common plane:16 the substrate surface. Thes
basic building blocks are assembled to form larger electro
of different ~still planar! geometry and varying charge con
centration. Thus, a coarsening procedure is inevitably par
our capacitance program. In order to minimize its influen
on the final results and to keep the computational eff
within reasonable limits, checks were done resulting in
approximate size of 1.531.5 nm2 for our building blocks.

The substrate is assumed to fill the semi-infinite sp
beneath the common plane of all electrodes, and one die
tric constant is used to describe its influence on the elec
static field. Similarly, the space above the plane of electro
is given another constant. Symmetry allows further simpl
cation to one homogeneous medium all around the electro
of arithmetic-mean dielectric constant. The presented res
are calculated for a silicon substrate (« r'11.9) and SiO2
passivation layer (« r'3.9) resulting in a mean value of« r

57.9.
A difficult point of capacitance computation, but irre

evant to the consideration here, is the difference betw
measured and computed capacitance values.17,18 The presen-
tation of purely simulation results allows us to ignore th
problem for the time being.

The cutoff of the macroscopic leads18 is another issue to
be addressed: since the capacitance of a wire-like lead
creases approximately proportionally to its length and
potential inhibits an 1/r drop off, even parts of the leads
away from the central dot array contribute significantly to t
potential near the end of the wire. Hence cutoff lengths re
tremendous values in themm range.18 For our much smaller
dots, however, we expect correspondingly shorter cu
lengths. In detail, we extract a ratio between cutoff leng
and dot size of about 10 from Ref. 18. Correspondingly
our nominally 535 nm2 dots an estimated cutoff length 5
nm is used.

As well as all interelectrode capacitances, the compu
tion of the whole capacitance matrix allows the estimation
the stray capacitances of each electrode. This is an esse
ingredient of single-electron electronics simulation
pointed out recently,19 since even for electrodes of modera
size the stray capacitance exceeds the apparently ultras
tunnel capacitances. The value of the stray capacitance
lows from that of the total capacitance minus all cross
pacitances of the electrode under consideration.

In Fig. 2 computed self-capacitances are displayed
rectangular dots. Changing the shape of the dot while its a
is fixed results in increased capacitance. For increasing
area a power-law increase of the capacitance is observed~see
inset!.

The realization of a given offset-charge configuration
the dot array, which is decided beforehand, makes use o
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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stray capacitances mentioned above. As depicted schem
cally in Fig. 3, an individual voltage source is taken to
connected to each dot’s stray capacitance. The voltage v
is adjusted so that the expected charge value is induce
the dot. No offset charge is considered for the macrosco
leads.

Besides all the capacitances, tunnel resistances are a
essary input for the Monte–Carlo current calculation. Ho
ever, as long as only the blockade voltageVb is considered,
it is independent of the choice of the resistances.5 This is
because the determination ofVb poses an electrostatic prob
lem without flowing current. A constant tunnel resistance
500 kV is used for each tunnel junction and the indepe
dence of the outcome of this value was checked numerica
This value is large in comparison to the resistance quan
RQ5h/e2'25.79 kV and justifies the use of the so-calle
orthodox theory of single-electron tunneling.20

The Monte–Carlo simulation program is in general sim
lar to other single-electron simulators described extensiv
in recent literature.21–25 The duration of a specific charg
state Dt is modeled by a stochastic Poisson process,Dt
52 log(r)/G, wherer P@0:1# is a random number andG is
the tunnel rate. This rate in turn follows from the differen
of free energy between initial and final state of the syst
DF which is calculated from the capacitance setup:

FIG. 2. Self-capacitance of a rectangular dot as function of its edge
~solid curve!. The dot area is fixed at 25 nm2. The dashed line shows th
area dependence of a quadratic dot as function of the dot area. The
shows the same data in double-log representation.

FIG. 3. Realization of a certain offset-charge realization by means of v
age sources charging up the individual stray capacitances of each dot
array. Only the first line of voltage sources is shown schematically.
Downloaded 21 Jul 2008 to 152.78.61.227. Redistribution subject to AIP
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G5
kBT

e2R

x

12exp~x!
,

x5DF/~kBT!,

kB Boltzmann’s constant,

T temperature,

e Electronic charge, and

R tunnel resistance.

This approach is incapable of describing rare tunnel eve
adequately since in these casesG becomes very small and th
system gets locked in one state. In our simulationDt is lim-
ited for practical reasons to 0.1ms resulting in a minimal
nonvanishing current ofe/0.1ms'1.6 pA, where one elec
tron only is transferred during allDt. On one hand this pro-
cedure might seem rather crude, however, the neglec
higher-order tunnel processes~cotunneling! imposes further
deviations in the low-current domain of the simulations. O
the other hand the current discretization provides a uni
means of extracting the blockade voltageVb from anI ds–Vd

characteristic:Vb is assigned the largest value ofVd for
which the simulation results inI ds50.

The importance of sufficiently low temperature
single-electron tunneling was pointed out even in the v
early articles on this subject.26 In order to observe single
electron effects despite thermal fluctuationskBT!e2/(2C)
is required, whereC is given by the total capacitance of th
dot. In our case, the computed capacitance is 1–2aF for
535 nm2 dots corresponding to an energy of 40–80 meV.
contrast, a temperature of 4.2 K is used in all our simu
tions, which corresponds to only 360meV.

IV. RESULTS AND DISCUSSION

A. Position disorder

In Fig. 4 we present typical results of the whole nume
procedure described above. In the figure only the volta
range nearVb is shown, however tests have run to assu
current suppression in the whole blockade range. The flu
ating behavior of the current is attributed to the employ

io

set

t-
the

FIG. 4. Source-drain current for different levels of position disorder rang
from 0% ~regular array! to 100%~maximal disorder!.
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Monte–Carlo algorithm. The figure shows that the curr
discretization in steps of 1.6 pA does not hinder the com
tation and the evaluation of its results.

Different curves in Fig. 4 display different levels of po
sition disorder. According to the outlined method of det
mination of the blockade voltage only a small decrease ofVb

from 24 to 23 mV is found for the transition from the regul
case to the maximal disordered one. This disorder stabilit
Vb is due to the fact that the actual dot positions can
deviate very far from their nominal position owing to th
exponential dependence of the tunneling resistance. He
the variation in capacitances is comparably small and e
cially the dominating stray capacitances are almost the s
for all dots. In this sense, the system is still very much free
disorder and this is represented in the results of Fig. 4.

B. Size disorder

The results for geometric size disorder are shown in F
5. For each degree of disorder, theVb of ten samples were
computed and the symbols indicate the mean value of
blockade voltage. In order to guide the eye error bars
attached to each symbol corresponding to the size of s
dard deviation. For as few as ten samples, however, the s
dard deviation is only a fraction of the statistical error. Da
for rectangular and circular dots are presented. The higheVb

of the latter is understood geometrically: the nominal dia
eter corresponds to the edge length of the rectangular d
Thus, smaller area causes smaller capacitance and in
higher blockade voltage.

With increasing disorder bothVb and its standard devia
tion increases. The suppression of the conductance with
creasing disorder is a very general feature of disorder
duced localization.15 It is studied in terms of the pinning o
charge solitons as well.27,4 The large error bars near maxim
disorder indicate a wide distribution ofVb values. We inves-
tigated this range in Fig. 6 in more detail. Here we use 1
samples of rectangular dots per degree of disorder wh
allows a better statistic evaluation. The histogram uses
classes. Despite the fluctuation it is seen that for all cases
mean value of the distribution is near its minimal value. T
latter is constantly in the range 20–25 mV which is the va

FIG. 5. Blockade voltageVb as function of the degree of size disorder f
arrays of rectangular~j! and circular~d! dots. A slight horizontal offset is
used for clarity.
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of the regular case. The data strongly suggests that size
order does not affect the minimal blockade value of tw
dimensional~2D! Coulomb blockade structures.

These results can be understood in terms of domina
stray capacitances. The regular dot array of uniform d
Fig. 1, causes the disorder-independent minimal value ofVb .
On the other hand, the maximal value is governed by
smallest dot in the current path and the probability of t
existence of small dots increases with increasing disorde
contrast to this, large dots are of minor influence onVb in
case of quantum dot arrays.

With regard to the application of Coulomb blockade d
vices minimal and maximal values ofVb are of interest. In a
memory cell,28 for instance, minimalVb determines the re-
tention time and the ratio of word voltage and maximalVb

the read/write time. Therefore our conclusion is twofo
first, the retention time problem is nearly independent of s
disorder; second, in order to achieve reliable read/write tim
the word voltage should be almost ten times as large as
regular blockade voltage due to large fluctuations of
maximalVb value.

C. Offset-charge disorder „I…

In Fig. 7 the blockade voltage for different offset-char
configurations is shown. The results for arrays of round d

FIG. 6. Distribution of the blockade voltage for four different degrees
high geometric size disorder.

FIG. 7. Blockade voltageVb as function of degree of offset-charge disord
for arrays of rectangular~j! and circular~d! dots, ten samples per point.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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are given for comparison again. Starting from the origin
value of the regular system an initial drop off ofVb is fol-
lowed by a strong increase at high degrees of disorder e
tually reaching about three times the original value. Aga
the evaluation makes use of only ten samples per degre
disorder which probably does not reveal the whole pictu
Two different ranges are therefore studied in detail: the
termediate range of reducedVb and the high-disorder rang
of enhanced blockade voltage.

Figure 8 shows a histogram ofVb in the intermediate
disorder range~25%–35%!. The statistics used 100 sampl
again. An overall reduction of the blockade voltage is ob
ous. The origin of this reduction is found once more in t
effect of large stray capacitances. Since the drain electrod
grounded they cause a drastic capacitance asymmetry re
ing in a wide offset-charge range of almost no blockade. T
effect is not limited to two-dimensional arrays of dots, b
can also be observed in a single dot as shown in Fig. 9.

Furthermore, in a dot array the breakdown region of
blockade voltage aroundQ0'6e/2 increases and thu
causes smaller values ofVb . For the array, Fig. 9 shows th
blockade voltage with identical offset charge on each
~lower solid curve!. No disorder is included in this calcula
tion. The upper solid curve in displaysVb for ‘‘flipping’’
values ofQ0 in source-drain direction, i.e., from left to righ
in Fig. 1. The dots of each row carry identical offset charg
again. This choice simulates the case of a particularly h
disorder and leads—as discussed below—eventually
higher values ofVb . Here we want to point out that fo
intermediate degrees of disorder in Fig. 7 small (Q0'
20.3e), but still reasonably uniform offset-charge values a
possible which cause the observed behavior of Coulo
blockade reduction.

In Fig. 10 the results for large offset-charge disorder
presented. These confirm the first glimpse from Fig. 7: B
minimal and maximal value ofVb increase with disorder, bu
the width of theVb distribution hardly changes. To dete
mine the shape of the distribution, however, significan
more than the studied 100 samples are necessary.

The increase of the blockade voltage for high degree
disorder can be understood by means of the model sys
used in Fig. 9 since considerable jumps of the offset cha

FIG. 8. Vb statistics for intermediate degrees of offset-charge disorde
100 samples~25%–35%!.
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from dot to dot become more and more probable. The sit
tion of Fig. 9, where the offset charge alternates between
values, is from this point of view extreme, but instructiv
The different offset charges shift the electrostatic potentia
the corresponding dots up and down which allows tunnel
electrons to move easily from a high-potential dot to a lo
potential one but significantly suppresses the next tunne
event from low to high potential. Therefore charges get stu
on every second dot and only a considerable increase o
bias voltage will allow them to move on.

We have checked that this behavior is determined by
background charge distribution in the source-drain direct
only, by considering arrays of different width. All of them
produce very similar results. As expected, the situation
symmetric forQ0→2Q0 which causes a change of sign fo
each offset charge and corresponds also to the situatio
negative bias. ForQ050 the results of the ‘‘clean’’ array are
reproduced, whereas forQ0'6e/2 a breakdown of the Cou
lomb blockade is observed. The latter indicates the genere
periodicity of offset-charge dependencies.

From Fig. 9 and from the used definition of disorder
Sec. II quantitative limits for the range of suppressed a
enhanced Coulomb blockade can be determined. A mini

FIG. 9. Maximal and minimal blockade voltageVb as function of the offset
charge~solid lines!. For the minimal value ofVb each dot carries the sam
value ofQ0 . For maximalVb it is alternating in source-drain direction. Th
dashed line displays the result for a single dot as reference.

FIG. 10. Vb statistics for high degrees of offset-charge disorder. Plotted
the results for 100 samples of rectangular dots.
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disorder value of 20% is necessary to reach an offset ch
of 20.3e which leads to blockade suppression. In case o
homogeneous charged quantum dot array this suppres
domain covers about 40% of all offset-charge values. Hen
Vb is reduced for disorder between about 20% and 4
whereas higher degrees of disorder result in increasedVb

values.

D. Offset-charge disorder „II…

Another approach to the study of offset-charge disor
is presented in Fig. 11. As outlined above, the influence o
charged impurity on the current through the setup is inve
gated. The current for three different arrays of 636, 634,
and 632 dots~from top! as a function of the impurity charg
Qi is displayed. The three curves differ mainly by a const
shift in current which is attributed to the additional dots o
side the central two rows. This suggests that the impu
charge is effectively screened by its nearest neighbors.
strong screening is caused by large stray capacitance
comparison with the tunnel capacitances. Highly charged
purities suppress the current and might even pinch it off a
the case of the narrow 632 system. As discussed above, th
effect can be understood following the line ofVb enhance-
ment by offset charges or in terms of localization caused
disorder as well.15

V. CONCLUSION

In conclusion, we have presented detailed numeric s
ies of the effect of disorder on the blockade voltage of tw
dimensional quantum dot arrays. Given a geometric real
tion ~if necessary with offset charges!, both capacitances an
blockade voltage are computed. We find a dominant in
ence of the stray capacitances which turned out to be la
than the tunnel capacitances. Therefore, neither position
order nor size disorder has a significant effect on the mini
value ofVb . In contrast the mean value increases in case
size disorder whereas position disordered systems behav
most like the regular one.

FIG. 11. Current through a regular dot array as a function of the chargQi

on a small additional impurity dot in its center. The array is six dots lo
and six, four, or two dots wide~from top!. The applied bias is about 30 mV
which is approximately 5 mV aboveVb for this type of structure.
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Offset charges cause a breakdown of the Coulo
blockade in an intermediate range of disorder, butVb in-
creases significantly for high offset-charge disorder. In t
case the width of theVb distribution increases slower thu
mainly causing a shift of the distribution to larger valu
with increasing disorder. The intermediate breakdown
shown to be due to the capacitance asymmetry caused b
dots’ stray capacitances which allow small blockade volta
for small (;2e/2) but uniform offset-charge values. Th
blockade enhancement is an effect of large disorder wh
pins tunneling charges within the dot array.

With regard to their device application, single-electr
systems shall have a well-defined Coulomb blockade. In p
ticular, the minimal blockade voltage should have a sh
limit and a reasonably small maximal value is required
competitive performance. For the cases studied here we
Vb to be independent of position disorder and its minim
value independent of size disorder. However, care mus
taken to avoid certain correlated values of offset char
since they will cause a blockade breakdown. Since in gen
offset charges cannot be avoided, decorrelation of th
might be feasible not only to circumvent the breakdow
problem but also to increase the blockade voltage consi
ably.
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