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AbstneL Lateral-mode-nonconseclving resonant tunnelling through a zerodimensional 
A I G M n G W A I G a A s  resonant tunnelling diode (w RTD) has been analysed by 
numerically salving the threedimensional Schr6dinger equation with scattering boundary 
conditions. multi-mode scattering matrix (S-matrix) method has been introduced 
for the first time to simulate the virtually confined electronic stales and multi-mode 
quantum transport propenis of the OD Rm. We report on the effect of lateral-mode 
mixing, caused by elastic scattering due lo  an hour-glass-shaped confinement potential. on 
the multi-mode transmission properties and current-voltage characteristics of the device. 
I h e  calculated S-matrix clearly shows both new transmission peaks in the offdiagonal 
components which measure the lateral-mode-noncanscrving resonant tunnelling and the 
related Wno-mnance-type stmuctures in the diagonal componenls which represent an 
interference beween the second-order resonant tunnelling process and the conventional 
tunnelling pnress for the off-resonant condition. The total tunnelling current through 
the device i s  calculated and compared with resuh for a device with uniform lateral 
confinement. ?he difference beween the energy separations of the lateral mods in the 
cathode region and in the quantum box leads lo observable fine current peaks in the 
current-voltage characteristics due to the lateral-modeconserving tunnelling. In addition, 
WO small satellite peaks can be found in the high-voltage regime which originate in the 
lateral-mode-nonconserving tunnelling. 

1. Introduction 

Recent rapid advances in crystal growth and microfabrication techniques have allowed 
us to explore a new field of semiconductor device research. The quantum mechanical 
wave nature of electrons appears in mesoscopic semiconductor structures with sizes 
below 100 nm. Instead of conventional devices such as field effect transistors and 
bipolar transistors, which can be described by the classical model, a variety of novel 
device concepts have been proposed based on the quantum mechanical features 
of carriers. One pioneering device in this field is the resonant tunnelling diode 
(m) [l] which utilizes the electron wave resonance in a finite superlattice. The 
negative differential resistance obtained in these structures leads to multi-stable device 
operation, and several new devices have been successfuliy developed. Very recently, 
low-dimensional resonant tunnelling structures [2-91 in which electrons are confined 
laterally as well as vertically have become of great interest Some experimental 
results have been reported on one-dimensional (ID) RTDs [4,6] and zero-dimensional 
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(OD) m s  [2-5, 7-91. The OD KII) (see figure 1) is a virtually isolated quantum 
dot only weakly coupled to reservoirs and so is well suited to investigating electron 
wave transport properties through threedimensionally quantized energy levels. By 
designing structural parameters such as barrier thickness, quantum well width, and 
dimensions of lateral confinement, it is now possible to realize a ‘quantum box’ in 
which the number of electrom is nearly quantized, so the effect of single-charge- 
assisted transport, or so-called Coulomb blockade [lo-121, becomes significant. 

Experimental results reported so far show quite clear fine structure in the current- 
voltage characteristics even at rather high temperatures (- 77 K) superimposed on 
the usual negative differential resistance of ZD m s .  The mechanism of this fine 
structure is under active discussion and several theoretical investigations have been 
reported [1>16]. The difficulty in analysing electron transpolt in this system stems 
from the non-uniform lateral-confinement potential which is formed by differences in 
surface depletion, even though the device is fabricated to he geomeaically straight in a 
vertical direction. As long as the lateral-confinement potential is uniform throughout 
a device [13], an electron wave tunnels through a given channel without coupling 
to other channels. Non-uniform confinement, however, causes lateral wavefunction 
mismatch and changes transport from independent channel tunnelling to coupled 
channel tunnelling. Bryant [1416] reported on theoretical analyses of OD m s  which 
took account of lateral-mode mixing by assuming a constant mixing parameter, and 
showed that new current peaks appeared which depended on the strength of mode 
mixing. Reed and co-workers [3, 171 explained his experimental data by assuming 
sequential electron tunnelling from quantized lateral levels in the emitter region 
to quantum dot levels in the well. They concluded that the observed fine peaks 
were attributable to tunnelling in which lateral momentum is not conserved. Further 
quantitative analysis, however, obviously requires numerical calculations based on the 
three-dimensional scattering theory, which fully includes lateral-mode mixing. 

The purpose of this work is to present a theoretical analysis of quantum transport 
in OD m s  based on numerical solutions of the threedimensional Schrodinger 
equation for open systems. Several theoretical studies of the two-dimensional 
scattering equation have been reported for laterally patterned two-dimensional 
electron gas systems [1&25]. Because direct numerical calculations usually have large 
computational time and memory requirement$ several useful alternative methods 
have also been proposed. Also, the threedimensional Schrodinger equation has 
been solved by Kumar and co-workers for a completely isolated quantum dot 
under a magnetic field [26] and a structure periodic in one direction [27]. Since 
the electronic states become completely bound states or sub-bands rather than 
continuous scattering states in these circumstances, this method is not adequate 
for the present purpose. Very recently, Nakasato and Blaikie [28] have analysed 
transport properties of lateral quantum wires with geometrical confinement by solving 
the two-dimensional scattering equation numerically, and have shown anti-resonance 
dips of conductance resulting from lateral-mode mixing. In this paper we present 
the three-dimensional scattering formulation and calculate the scattering matrix (S- 
matrix) numerically to investigate the effect of two-dimensional lateral-mode mixing 
on the transport properties of OD RTDs. In the present calculation the Self-consiStent 
Hartree potential, which would be crucial for analysing the Coulomb blockade, is 
neglected for simplicity. In the next section we present our formulation based on 
three-dimensional scattering theory. In section 3 the present theory is applied to the 
laterally confined OD AIGaAs/InGaAs/AlGaAs resonant tunnelling diodes. The hour- 
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glass-shaped confinement potential due to surface Fermi-level pinning is calculated in 
advance using a classical device simulation with the Spicer et a1 surface defect model 
[W]. This potential is then applied to the threedimensional Schrbdinger equation. 
We focus on the effect of lateral-mode mixing, caused by elastic scattering due to the 
hour-glass-shaped confinement potential, on the multi-mode transmission properties 
and current-voltage characteristics of the device. The S-matrix is calculated to anabse 
momentum-non-conserving tunnelling which can be observed in the offdiagonal 
components of the transmission probability. Furthermore a total tunnelling current 
through the device is calculated and compared with results for a device with uniform 
lateral confinement, in order to investigate the mechanism of the fine structure in the 
currentvoltage characteristics. 

2. Thdimensional  S-matrix theory 

In this section the formulation of multi-mode quantum transport in the OD KII) is 
described based on a three-dimensional S-matrix theory. We start from the three- 
dimensional time-independent Schrodinger equation: 

- (i i2/2")(a2/az2 + @/ay2 + aZ/az2)U'(z, y, z )  + V(Z, Y, z)U'(z, Y, 2 )  

= E * ( z ,  Y, z )  (1) 

where mr is the conduction band effective mass and V(z,  y, z )  is the three- 
dimensional potential distribution which consists of the electron affinity Vu(z, y ,  z ) ,  
the lateral-confinement potential V,(z, y, 2). and the potential due to an external 
bias V,(z, y, I): 

V(Z, Y, z )  = %(z, Y, 2) + V,(z, Y, 2 )  + V,(z, Y, 2). (2) 
The three-dimensional wavefunction V ( z ,  y, z )  is decomposed by using a complete 
set of two-dimensional lateral wavefunctions at each z-point, 'p7(z, y I z) ,  as follows: 

The lateral wavefunction 'p7(z, y I z )  is obtained by sohimg numerically the following 
two-dimensional Schrodinger equation: 

-(h2/2")(@/azZ + a2/aYz)'p7(z, Y I 2) + V(+, Y, z) 'p7(z,  Y 1.) 
= qz) 'p7 (z3  Y I I) (4) 

with the Duichlet boundary conditions,, p7(z, y I z )  = 0, on the boundaries of the 
device. The index y represents a two-dimensional lateral-mode number and e,(.) a 
corresponding 7th lateral eigen-energy. 

Substituting equation (3) into equation (1). the threedimensional Schrodinger 
equation reduces to the following one-dimensional scattering equation for the z-  
component of the wavefunction ,y7(z):  
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F@rc 1. Lateralconfinement patenlial distribution in the zerodimensional 
AIGaAsnnGWAlGaAs r e ~ n a n t  tunnelling diode, calculated by using a classical device 
simulation mking account of the surface carrier trap levels. 

Cathode 

ni-GaAs 20nm 

i-GaAs 6nm 
i ~ AlGaAs 4 nm 
i-lnGaAs 5nm 
i - AlGaAs 4 nm 
i-CaAs 6nm 

n+-GaAs 20nm 

Anode 
Figure 2. lnreedimcnsional finitedifference mesh lattice uscd for numerical calculations. 
Ihe mesh spacing has k e n  chosen to be small for the AlGaAs barriers and the GaAs 
quantum well. 
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where k4( z )  denotes a complex wavenumber given by 

k;(z) = (2m*/h2)(E-E7(z)). (6) 

Mode mixing coefficients Ct$  and Ct;? are written as 

(7) 

(8) 

C(o'l)(+) = / d z / d y v 4 ( z ,  Y I z ) z ( o y , ( z ,  a 

C t $ ( 4  = / dz /dYv , (z ,  Y I Z)%'P7'("' Y I z )  

Y I z)  7-4' 

a2 

and are evaluated by using the previously obtained set of lateral wavefunctions The 
third term in equation (5) causes the mixing of lateral modes and is non-zero unless 
the system is uniform in the r-direction. The first-derivative term of x,(z) in (5) 
can be eliminated by applying the unitary transformation: 

x,(z) = x M 7 , y ( Z ) f 4 & )  (9) 
4' 

where a unitary matrix My,,( z )  is defined as follows: 

%JZ) = e+/* C('")( 7,y' z') dz') . (10) 

The matrix M,,,(z) is calculated by using a second-order-expansion approximation 
[2S] which guarantees unitanty of the matrix. Substituting equations (9) and (10) into 
equation (S ) ,  the transformation leads to the following equation: 

where a matrix W - , ~ , ( Z )  is written as 

and the expression{C(u,')(z))~,4, in equation (13) means the (7,~') element of the 
multiplied matrix C("J)( z)C("J)( 2). 

A set of renonnalized complex wavenumbers K7(z ) ,  which takes in the lateral- 
mode mixing, is obtained by solving an eigenvalue equation: 
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where V',,(z) is a unitary matrix which diagonalizes the matrix WY7,(z). Then the 
z-component of the wavefunction can be expressed as a superposition of plane waves: 

where A7( I) and B7( z )  are coefficients of forward and backward plane waves in the 
7th lateral mode with the complex wavenumber K7(z). Equation (16) is discretized 
on the finite-difference z-mesh points (see figure 2). Assuming these meacients to 
be mnstant between two adjacent z-mesh points, the threedimensional wavefunction 
Q ( z ,  y, z )  can he finally written as 

+Bydexp(-iK$!r)} (17) 

where the index (i) denotes a small region between adjacent r-mesh points zi and 
=i+1. 

From the continuity of the probability flux of electrons through the system, the 
following conditions on the total wavefunctions hold at the r-mesh point z ; + ~  for 
given x and y: 

W ( 2 ,  y, Ziti) = Q(i+l)(X, y ,  zi+l) 

(l /m*)(a/az)Q(')(x,  Y, r)l*=*,+, = (l /m*)(a/ar)Q('+')(x,  Y, z)1.=.,+; (19) 

(18) 

The coefficients at the adjacent z-mesh points are then related as follows: 

The matrix T(i)(y,7') can be expressed as 

where P stands for exp{i(Kyj - K$tl))zitl} and Q stands for exp{i(Ky? + 
K ~ l ) ) z i + l ] ,  and where matrix elements uf)(y,y')  and Xt!,, are given by the 
following expressions: 

7, 7 1  7, 
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Hence the coefficients at the cathode (A!+ Bb) and anode (A:, E t )  edges of the 
device are related by using a multi-mode transfer matrix T(Y,Y’): 

T = T(N)T(N- l )T (N-Z)  , , , T(Z)T(~) .  (25) 
It should be noted that the transfer matrix contains both propagating and evanescent 
modes depending on the total energy and lateral-mode eigen-energies. Nakasato 
and Blaikie [28] calculated a reduced transfer matrix from the above full transfer 
matrix, to separate the propagating modes from the evanescent ones In the present 
calculations, however, there is always a difference in the number of propagating modes 
at the cathode and anode edges under a non-zero external bias, and the resultant 
reduced transfer matrix is no longer regular. Thus in the following calculations the 
full transfer matrix is adopted rather than the reduced transfer matrix. A relevant 
multi-mode scattering matrix S(Y,Y’) which is defined as 

is calculated from the transfer matrix. The multi-mode transmission probability 
tL,R(E,~,r‘)  and the total transmission rate T ( E ) ,  i.e. conductance at zero 
temperature, are then obtained from the S-matrix as follows: 

tR(&y,y’ )  = IslZ(Y,Y’)lz (27) 

tL(&Y,Y’)  = IS2,(YrY‘)IZ (28) 

= CtL(E;y,y‘)e(E - + ) e ( E -  +) (29) 

T ( E )  = C C t R ( E ; Y , y ’ ) B ( E - € : : ) B ( E - € ~ . )  
7 7‘ 

1 7‘ 

where @ ( E )  is the step function. A complete set of the threedimensional 
wavefunctions ly( 2, y,  z )  can be obtained by using the following scattering boundaly 
conditions: 

for an incident electron wave with a lateral mode yo originating at the cathode edge 
of the system, and 

when it originates at the anode edge. In equations (30) and (31) 67,70 is the delta 
function. If the system has a real bound state which may be caused by an attractive 
scatterer such as an InGaAs quantum well or a deep donor trap level, a bound 
state problem has to be solved as well as the above scattering state problem to 
obtain a complete set of wavefunctions. Finally, the total tunnelling current I,,,,, 
is calculated assuming global coherent tunnelling of electron waves throughout the 
device as follows: 

(A:, B!) = (67,7,,0) 

(A: ,  B t )  = (0, 67,70) 

(Y = L 2 ,  3 , .  . .) (30) 

( Y  = L 2 ,  3 , .  . .) (31) 

I”l = - T(E){fL(E) - fR(E) )dE  (32) ,“h L 
where fL( E) and fR( E) are Fermi distribution functions in the cathode and anode 
regions, respectively. 



8790 H Mizuta et a1 

3. Numerical results and discussions 

In this section the three-dimensional scattering theory described in the previols 
section is applied to the OD RTD structure shown in figure 1, and multi-mode quantum 
transport is analysed numerically. In the present paper we adopt a laterally confined 
AIGaAs/InGaAs/AIGaAs double-barrier resonant tunnelling structure. The assumed 
layer structure consists of an undoped In,,mGao,y2As quantum well of 5 nm in 
thickness, two undoped AI,,zGa,,7sAs barriers of 4 nm in thickness, two undoped 
GaAs spacer layers of 6 nm in thickness, and "+-type GaAs cathode and anode layers 
with a donor concentration of 1.0 x 10l8 The conduction band discontinuities 
in the GaAs/AI,,,G%,,,As and GaAs/In,,,G~,,,AE hetermtructures are assumed 
to be 187.0 and -37.2 mey respectively. The electron effective mass in the GaAs, 
AI,,,Ga,,7sAs, and In,,usGau.y2As layers is assumed to be 0.067,0.088, and 0.064mu, 
resptxtively. Lateral dimensions of the device are set to be 80 nm in both I- and 
y-dimensions 

The first part of the numerical simulation is to obtain a realistic lateral- 
confinement potential distribution created by carrier trap levels on the lateral surface. 
The exact lateral-confinement potential should be determined through a fully self- 
consistent calculation of the threedimensional Schrodinger equation. However, 
this would require an enormous amount of computational time and is beyond our 
present requirements. The self-consistent calculations are left for a future analysis 
of Coulomb blockade tunnelling where the self-consistent field produced by a single 
electron is dominant. In the present work the confinement potential is calculated 
by using a classical device simulation [29] in which surface carrier traps are taken 
into consideration by using the Spicer et a1 unified defect model [30]: a deep donor 
level at 0.925 eV measured from the conduction band edge and a deep acceptor 
level at 0.75 eV from the valence band edge are assumed on the GaAs lateral 
surface. As long as the size of the lateral confinement is much larger than the width 
of the quantum well, the calculated potential distribution should be a fairly good 
approximation for the exact potential distribution determined by the self-consistent 
calculation. Figure 1 shows the calculated potential distribution where the sheet 
concentration of the surface deep level is assumed to be 5.0 x 1Olz cm-z, which is 
a plausible value large enough to pin the Fermi level on the surface. It can be seen 
that the hour-glass-shaped confinement potential results from the different surface 
depletion widths in the intrinsic and contact regions. 

The second part of the simulation is to calculate the lateral eigen-energies and 
two-dimensional eigenstates at each r-point by using the hour-glass confinement 
potential. Equation (4) is discretized by using a threedimensional finite-difference 
mesh lattice, shown in figure 2, which has a uniform mesh spacing in the I- and 
y-dimensions and a non-uniform spacing in the r-dimension. Eigen-energies of 
the resultant finite-difference equation are obtained up to a given value of total 
energy by using the bisection method following Householder's tridiagonalization. The 
corresponding eigenvectors are then calculated by the inverse iteration method. RI 
speed up finding the eigenvectors, the set of eigenstates obtained at the previous 
z-mesh point is used as an initial guess for the eigenstates at the next r-mesh point. 
For numerical calculations a cut-off value is introduced for the maximum eigen- 
energy although all of the lateral modes would be necessary to make a complete 
set. The number of wavefunctions required for realistic calculations depends on the 
system under consideration In general at least all of the lateral eigenstates with 
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eigenenergies below the Fermi energy should be taken into account. In the present 
calculations, for instance, there are four lateral eigenstates below the Fermi level and 
13 lateral modes are calculated for all z-mesh points. 

By making use of the lateral eigenstates, the mixing coefficients, CF!,) and CF$, 
and the unitary transformation matrix, M,, , (z) ,  can be evaluated from equations (7), 
(8) and (10). The eigenvalue equation (15) is then solved to get the renormalied 
WVenumbers, ICT(”), and the unitary matrix, V,,,(z). As the matrix W,,,(z) is 
real and symmetnc, all of the eigenvalues and eigenvectors can be obtained by using 
the QL method [31]. Finally, by using the lateral eigenstates at the cathode and 
anode edges, the multi-mode transfer matrix and the resultant scattering matrix are 
calculated from equations (21)-(27). 

The multi-mode transmission probability calculated for the OD RTD structure is 
shown in figure 3. Figure 3(a) shows the total energy dependence of transmission 
probability for diagonal tunnelling from the 7th incident mode to the 7th transmission 
mode, &2(y,y)l*, and figure 3(b) that for off-diagonal tunnelling from the first 
incident mode to the yth transmission mode, ISlz( 1 ,  7)12, The S-matrix elements are 
drawn for values of 7’ up to 11. In addition, the transmission probability calculated for 
a device with completely uniform confinement is shown in figure 4. Before proceeding 
to the detailed discussion of these results, it is worth commenting on this structure. 
The uniform lateral confinement used for the calculation in figure 4 could be realized 
by doping the resonant tunnelling structure uniformly, as well as the contact regions. 
However, resonant tunnelling is hardly observed in such doped structures because 
resonant electron waves suffer from frequent impurity scattering in the quantum well. 
Thus the results in figure 4 are based on an unrealistic assumption that electron 
waves travel ballistically even in a doped tunnelling structure, and are given simply 
for comparison with the results for the hour-glass confinement. In figure 4 the S- 
matrix has no off-diagonal elements since there is no lateral wavefunction mismatch 
anywhere in the system. This is called independent channel tunnelling, as the lateral 
modes are not mixed. The total transmission rate is then just a superposition of 
the transmission probabilities through these independent channels shown as a thick 
full cuwe in figure 4. Electronic states corresponding to the first three transmission 
probability peaks in figure 4 are shown in figures 5(a)-(d). These figures show the 
visualized three-dimensional existence probability of electrons, y ,  r)lz,  in the 
device: (a) JqE(z,  y, z)I2 for the tunnelling process from the first mode at the 
cathode edge to the first mode at the anode edge (this is hereafter denoted as I - 1 )  
at the first peak energy, ( b )  for the process 2 - 2 at the second peak energy, (c) 
for the process 3 -+ 3 at the second peak energy, and ( d )  for the process 4 - 4 at 
the third peak energy. It should be noted that the wavefunctions for these states are 
virtually localized in the quantum box and clearly reflect eigenstates of the quantum 
box itself. This fact means that the lateral-mode index 7 is a good quantum number 
throughout the device. 

On the other hand, the following two major differences can be seen in the 
tunnelling properties of the hour-glass confinement shown in figure 3. First, the 
energy intervals between transmission probability peaks become larger than those in 
figure 4, leading to a large peak-to-valley ratio of transmission probability. Second, the 
elastic scattering due to the hour-glass confinement potential mixes the lateral modes 
and opens new off-diagonal tunnelling channels. In figure 3(b) two peaks can be 
found in the off-diagonal elemena of the S-matrix which represent lateral-mode-non- 
conserving resonant tunnelling. It should be noted that off-diagonal tunnelling with 
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F&m 3. Multi-mode lransmision probability lStz(7,7')lz calculated for lhc w mu 
S I ~ U C I L V C  with hour-glass laleral confincmcnl: (a) total energy dependace of transmission 
probability for diagonal tunnelling from lhe 7th incident mode 10 the 7th transmission 
mode, IStz(7, 7)lz, and (b)  that for offdiagonal tunnelling from the 61x1 incident mode 
10 the 7th trammission mode, IS12(1, 7)lz. The S-matrix clemenw are d r a w  for values 
of 7' up to 11. A thick full curve represents the total transmission probability T ( E )  
defined by equation (29). 

Er 
TOTAL ELECTRON ENERGY (meV) 

Figum 4. Multimode transmission probability 
lStz(7, -()Iz calculated for the OD ~ 1 N C t U r e  
with uniform lateral confinement. The off- 
diagonal elements are now zero. 

the first incident mode is observed only for the fifth, sixth, and eleventh transmission 
modes. This is purely because of a selection rule for parity of lateral wavefunctions. 
Because the elastic scattering due to the hour-glass confinement potential does not 
break symmetry under mirror reflection in I- and y-dimensions, a lateral mode 
couples only with other modes having the same parity. The lowest wavefunction 
has even parities in both I- and y-dimensions, and can therefore couple only with 
upper modes described above. Additional structure$ are also observed in the diagonal 
elements in figure 3(a).  For example, an asymmetric resonant structure can be seen 
at a total energy of 91.7 meV It should be noted that the off-diagonal tunnelling 
probability is quite large for the process 1 i 5 at this energy. In these circumstances 
the ratio of the second-order diagonal tunnelling is enhanced, in which two elastic 
scattering events are involved between the first and fifth lateral modes: this is shown 
diagrammatically in figure 6(b). This process is now at resonance and interferes with 
the major diagonal tunnelling process, shown in figure 6(a) ,  which is at off-resonance. 
The interaction between these two tunnelling processes results in the Rno-resonance- 
type heshape in the transmission probability [32]. The three-dimensional existence 
probability of electrons, I Q E (  I, y, z)/* at the energy of 91.7 meV is shown in figure 7. 
It should be noted that the electron existence probability in the quantum box reflects 
features of the fifth mode rather than the first mode despite the first-mode nature of 
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F@e 5. Visualized three-dimensional existence probability of electrons ~ W E ( Z ,  y ,  .)Iz 
a1 Ihe lowest three transmission peaks in figure 4 (4) IrIre(z, y,  *)I' for  the pracess 
1 - 1 at the fin1 peak energy; (b) for the process 1 - 2 a1 the second peak energy; 
(c) for the process 3 - 3 a1 the second peak energy; and (d) for the process 4 + 4 at 
the third peak energy. It should be noted that the seeond peak in figure 4 is caused by 
both tunnelling processes 2 -+ 2 and 3 -+ 3. It can be seen that the electron distribution 
clearly reflects the lateral cigenstates in the quantum bax. 

the incoming wave. This signifies that a large part of the incoming wave is converted to 
the fifth mode in the quantum box through experiencing lateral-mode-non-conserving 
perturbation due to the change in the lateral confinement. In these circumstances the 
lateral-mode index y is no longer a good quantum number for the system. 

The applied voltage dependence of the total tunnelling current is calculated 
by assuming ballistic transport throughout the device (equation (32)). Figure 8(a) 
shows the I-V characteristics of the device with the hour-glass lateral confinement 
calculated at a temperature of 77 K. Uniform external electric field is assumed in 
the intrinsic regions of the device in this calculation. Several satellite current peaks 
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Mode 1 Mode 1 Mode5 Model  * _I --. - -- .__ Mode 1 

(b) 

FWrt 6. Diagrammatic repredenlalion of two pmeessea invoked in the diagonal 
tunnelling. 1 + 1. at Fano m n a n a :  (0) ze roade r  tunnelling and (6) secondader 
tunnelling. V5t and VIS denote the elastic scattering between the first and the fifth 
lateral modes due to an hour-glass confinement potential. 

iwlvrrunrtioni.,r.2)I-.1 

rur I .> I iunnriiinp process 
SI Energy I 91.7 moV 

Figurr 7. Visualized three-dimensional existence probability of electrons l'€'~(r, y, z) I2  
for the tunnelling process 1 -+ 1 at an energy of 91.7 meV which corresponds to  the 
dip of the Fano m n s n c e  in figure 3. It should be noted that the electron existence 
probability in the quantum box reflecls features of the fifth mode rather than the fint 
mode, despite the first-mode nature of the incoming wave. 

and shoulders are observed superposed on the conventional negative conductance 
characteristics of ZD RTDS. Figure 8(b) shows the I-V characteristics calculated at 
lower temperatures. It can be seen that the fine structure in the I-V characteristics 
stands out more at a lower temperature. Also the current-voltage characteristics 
are compared with those of a device with uniform confinement (broken curve) in 
figure 9. It should be noted that only one major current peak is found without 
any fine structure in the case of uniform confinement as the peak-to-valley ratio Of 
the transmission probability shown in figure 4 is not large enough to separate the 
contribution from each mode. In the case of the hour-glass confinement, on the 
other hand, the following mechanisms lead to the observable small current peaks in 
figure 8. The total energy dependences of the transmission probabilities calculated at 
the first four peak (shoulder) voltages are shown in figures 10(a)-(h): the diagonal 
elemenm: lS,z(y, y)I2, calculated at the first, second, thud, and fourth peak Voltages 
in figures lO(u), (c), (e), and (g) and the off-diagonal elements, ~ S l z ( l , ~ ) ~ 2 ,  in 
figures 10(b), (d), (f), and (h). The total transmission rate is shown by using thick 



APPLIED VOLTAGE (mV) 

(a) 

~ 

Hourglass confinement 

PLym 8. (a) Applied voltage dependence of total tunnelling current calculated by using 
equation (32) at a temperature of 77 K. O k N e d  Satellite cumnt peaks and shoulders 
are indicated by a m .  (b) ?he I-V characteristin calculated at lower lemperatum. 

full curves as in figures 3 and 4. The current peak (shoulder) appears each time the 
new transmission peak (indicated by an arrow) plunges into the Fermi sea. It can be 
seen that all of the four peaks are caused mainly by diagonal tunnelling (figures lO(a), 
(c), (e), and (g)) since the off-diagonal tunnelling shown in figures 10(b), (d), (e), and 
(/I) contributes much less to the total transmission probability. Thus these four peaks 
mainly result from lateral-modeanserving resonant tunnelling: 1 - 1 tunnelling for 
the first main peak, 2 - 2 and 3 - 3 for the second, 4 + 4 for the third, and 5 -+ 5 
and 6 - 6 for the fourth. As shown in figure 8(b) the fourth peak becomes smaller 
with decreasing temperature since it is caused by the tunnelling of electrons which 
are thermally excited to the fifth and sixth modes located above the quasi-Fermi level 
in the cathode region. Obviously other higher diagonal channels such as the 7 - 7 
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and 8 -+ 8 play a negligibly small role since very few electrons occupy the higher 
eigenstates in the cathode region. 
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F@m 9. Comparison of lhe current-vollage characteristics calculated for the hour-glau 
confinement (full curve) with lhose for the uniform confinement (broken curve). 

Let us now turn to the two small current peaks at higher applied voltages in 
figure 8. The total energy dependence of the transmission probability calculated at 
the two peak voltages is shown in figures ll(a)-(d). Figures ll(a) and (b) show the 
diagonal, ~ S l z ( y , y ) ~ z ,  and off-diagonal, ~ S l z ( l , y ) ~ z ,  at the fifth peak voltage, and 
figures ll(c) and (d) the diagonal, ISl,(y,y)12, and the off-diagonal, IS,,(2,y)12, at 
the sixth peak voltage. Small transmission peaks located under the Fermi energy are 
again found which lead to the fifth and sixth current peaks. These transmission peaks 
are, however, attributed not to diagonal tunnelling but to off-diagonal tunnelling: 
lateral-mode-non-conserving resonant tunnelling 1 -+ 5 for the fifth peak shown 
in figure ll(b) and 2 -+ 9 for the sixth peak shown in figure ll(d). It should 
be mentioned that, for the sixth current peak, the 3 - 10 tunnelling channel is 
simultaneously opened with the 2 - 9 channel. As described above, the fourth 
current peak is mainly due to 5 -+ 5 and 6 + 6 diagonal tunnelling, along with 
a small contribution by 1 -+ 5 off-diagonal tunnelling. Even after the diagonal 
tunnelling channels close, at a voltage such that the fifth and sixth lateral eigenstates 
in the quantum well simultaneously line up with the fifth and sixth lateral eigenstates 
in the cathode region, the off-diagonal channel 1 + 5 is still open, resulting in another 
current peak. Thus the fifth 1 -+ 5 peak can be thought of as a satellite peak of the 
main fourth 5 3 5 peak. However, in the case of the sixth 2 + 9 peak the diagonal 
9 -+ 9 channel cannot give rise to a main peak as the ninth eigenstate in the cathode 
region is essentially unoccupied, so the 2 + 9 channel gives rise to a new main peak. 

As shown here the number of extra current peaks (shoulders) observed in the 
I-V characteristics directly measures the number of resonant tunnelling channels in 
which the lateral mode is not conserved. Also it is possible to estimate the magnitude 
of the lateral-mode mixing by analysing the extra peak current. 

, 
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FI@m 10. %la1 energy dependences of the transmission probabilities calculated at the 
first four peak (shoulder) voltages indicated by arrmvs with the numbem 1, 1, 3, and 4 
in figure 3. (a). (c). (e). and (B) show lhc diagonal elements l S t * ( ~ , y ) l ~  and (b), (4, 
0, and (h) the offdiagonal elements lS1z(l,T)lz. The total transmission rate is shavn 
by using thick full CUN- a6 in Egum 3 and 4. 
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Figom 11. 'btal energy dependence of the transmission probability calculated at the last 
two peak voltages indhled  by a m  with the numbers 5 and 6 in Bgure 3. (a) and (c) 
show lhe diagonal elements ISjz('y, y)12, (b) the offdiagonal IS1z(l,y)Jz, and (d) the 
offdiagonal ISl2(2, $I2. 

4. Conclusions 

We have reported a numerical simulation of a zero-dimemional resonant tunnelling 
diode based on three-dimensional S-matrix theory. By taking lateral-mode mixing 
into consideration, the three-dimensional Schrbdinger equation has been solved for 
an ~ , , G a , , , S A s / I n , . , , G a " , ~ ~ A s / ~ u , ~ G ~ , ~ ~ A s  double-barrier structure with a lateral 
cross sectional area of 80 nm2. The effect of lateral-mode mixing, caused by elastic 
scattering due to the hour-glass-shaped lateral-confinement potential, on the multi- 
mode transmission properties and the currentvoltage characteristics of the device 
has been analysed quantitatively. Comparisons have been made with a device under 
entirely uniform confinement 

We have shown that the hour-glass confinement potential causes larger energy 
intervals between transmission probability peaks and the mixing of lateral modes. 
These effects result in a large peak-to-valley ratio of transmission probability and 
the opening of new off-diagonal tunnelling channels, respectively. The calculated 
S-matrbr clearly shows both new transmission peaks in the offdiagonal components, 
which represent lateral-mode-non-conserving resonant tunnelling, and related Fano- 
resonance-type structures in the diagonal components, which represent an interference 
between the secondarder resonant tunnelling process and the diagonal tunnelling 
process under the off-resonant condition. The calculated total tunnelling current 
through the device shows several small satellite peaks which are superposed on the 
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conventional negative differential conductance. Analysis of the S-matrix has shown 
that two of the peaks observed in the higher-applied-voltage regime are caused by 
resonant tunnelling in which the lateral modes are not consemd. 
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