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Abstract. Lateral-mode-non-conserving resonant tunnelling through a zero-dimensional
AlGaAs/InGaAs/AlGaAs resonant tunnelling diode (oD RTD) has been analysed by
numerically solving the three-dimensiconal Schrodinger equation with scattering boundary
conditions. The multi-mode scattering matrix (S-matrix) method has been introduced
for the first time to simulate the virtually confined electronic states and multi-mode
quantum transport properties of the D RID. We report on the effect of lateral-mode
mixing, caused by elastic scattering due to an hour-glass-shaped confinement potential, on
the multi-mode transmission properties and current-voltage characteristics of the device.
The calculated S-matrix clearly shows both new transmission peaks in the off-diagonal
components which measure the lateral-mode-non-conserving resonant tunnelling and the
related Fano-resonance-type structures in the diagenal components which represent an
interference between the second-order resonant tunnelling process and the conventional
tunnelling process for the off-resonant condition. The total tunnelling current through
the device is calculated and compared with results for a device with uniform lateral
confinement. The difference between the energy separations of the lateral modes in the
cathode region and in the quantum box leads to observable fine current peaks in the
current-voltage characteristics due to the lateral-mode-conserving tunnelling. In addition,
two small satetlite peaks can be found in the high-voltage regime which originate in the
lateral-mode-non-conserving tunnelling.

1. Introduction

Recent rapid advances in crystal growth and microfabrication techniques have allowed
us to explore a new field of semiconductor device research. The quantum mechanical
wave nature of electrons appears in mesoscopic semiconductor structures with sizes
below 100 nm. Instead of conventional devices such as ficld effect transistors and
bipolar transistors, which can be described by the classical model, a variety of novel
device concepts have been proposed based on the quantum mechanical features
of carriers. One pioneering device in this field is the resonant tunnelling diode
(RTD) [1] which utilizes the electron wave resonance in a finite superlattice. The
negative differential resistance obtained in these structutes leads to multi-stable device
operation, and several new devices have been successfully developed. Very recently,
low-dimensional resonant tunnelling structures [2-9] in which electrons are confined
laterally as well as vertically have become of great interest. Some experimental
results have been reported on one-dimensional (1D) RTDs [4, 6] and zero-dimensional
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(oD) RTDs [2-5, 7-9]. The 0D RID (see figure 1) is a virtually isolated quantum
dot only weakly coupled to reservoirs and so is well suited to investigating electron
wave transport properties through three-dimensionally quantized energy levels. By
designing structural parameters such as barrier thickness, quantum well width, and
dimensions of lateral confinement, it is now possible to realize a ‘quantum box’ in
which the number of electrons is nearly quantized, so the effect of single-charge-
assisted transpozt, or so-called Coulomb blockade [10-12], becomes significant.

Experimental results reported so far show quite clear fine structure in the current-
voltage characteristics even at rather high temperatures (~ 77 X) superimposed on
the usual negative differential resistance of 20 RTDS. The mechanism of this fine
structure is under active discussion and several theoretical investigations have been
reported {13-16]. The difficulty in analysing electron transport in this system stems
from the non-uniform lateral-confinement potential which is formed by differences in
surface depletion, even though the device is fabricated to be geometrically straight in a
vertical direction. As long as the lateral-confinement potential is uniform throughout
a device [13], an electron wave tunnels through a given channel without coupling
to other channels. Non-uniform confinement, however, causes lateral wavefunction
mismatch and changes transport from independent channe! tunnelling to coupled
channel tunnelling. Bryant [14-16] reported on theoretical analyses of 0D RTDs which
took account of lateral-mode mixing by assuming a constant mixing parameter, and
showed that new current peaks appeared which depended on the strength of mode
mixing. Reed and co-workers [3, 17] explained his experimental data by assuming
sequential electron tunnelling from quantized lateral levels in the emitter region
to quantum dot levels in the well. They concluded that the observed fine peaks
were attributable to tunnelling in which lateral momentum is not conserved. Further
quantitative analysis, however, obviously requires numerical calculations based on the
three-dimensional scattering theory, which fully includes lateral-mode mixing.

The purpose of this work is to present a theoretical analysis of quantum transport
in 0D RTDs based on numerical solutions of the three-dimensional Schrodinger
equation for open systems. Several theoretical studies of the two-dimensional
scattering equation have been reported for laterally patterned two-dimensionai
electron gas systems [18-25). Because direct numerical calculations usually have large
computational time and memory requirements, several useful alternative methods
have also been proposed. Also, the three-dimensional Schrodinger equation has
been solved by Kumar and co-workers for a completely isolated quantum dot
under a magnetic field [26] and a structure periodic in one direction [27]. Since
the electronic states become completely bound states or sub-bands rather than
continuous scattering states in these circumstances, this method is not adequate
for the present purpose. Very recently, Nakasato and Blaikie [28] have analysed
transport properties of lateral quantum wires with geometrical confinement by solving
the two-dimensional scattering equation numetically, and have shown anti-resonance
dips of conductance resulting from lateral-mode mixing. In this paper we present
the three-dimensional scattering formulation and calculate the scattering matrix (S-
matrix) numerically to investigate the effect of two-dimensional lateral-mode mixing
on the transport propertics of o RTDs. In the present calculation the self-consistent
Hartree potential, which would be crucial for analysing the Coulomb blockade, is
neglected for simplicity. In the next section we present our formulation based on
three-dimensional scattering theory. In section 3 the present theory is applied to the
laterally confined oD AlGaAs/InGaAs/AlGaAs resonant tunnelling diodes. The hour-
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glass-shaped confinement potential due to surface Fermi-level pinning is calculated in
advance using a classical device simulation with the Spicer et al surface defect model
[30). This potential is then applied to the three-dimensional Schrodinger equation.
We focus on the effect of lateral-mode mixing, caused by elastic scattering due to the
hour-glass-shaped confinement potential, on the multi-mode transmission properties
and current-voltage characteristics of the device. The S-matrix is calculated to analyse
momentum-non-conserving tunnelling which can be observed in the off-diagonal
components of the transmission probability. Furthermore a total tunnelling current
through the device is calculated and compared with results for a device with uniform
lateral confinement, in order to investigate the mechanism of the fine structure in the
current-voltage characteristics.

2. Three-dimensional S-matrix theory

In this scction the formulation of multi-mode quantum transport in the 0D RTD is
described based on a three-dimensional S-matrix theory. We start from the three-
dimensional time-independent Schrodinger equation:

— (B /2m*)(&* [8z? + 8*/8y* + 8/ 82)U (=, y, 2) + V(z, y, 2)¥(z, y, 2)
= E¥(z, y, 2) (1)

where m* is the conduction band ecffective mass and V(z, y, 2) is the three-
dimensional potential distribution which consists of the electron affinity Vi (=, y, z),
the lateral-confinement potential V| ~(x, ¥, z), and the potential due to an external
bias Vex(x, y, z):

V(:L‘, Yy, 2)= Vi)(“«'s ¥, 2) + VLC(Is Y, 2)+ VE.x(l‘, Y, Z)' (2

The three-dimensional wavefunction ¥(z, y, z) is decomposed by using a complete
set of two-dimensional lateral wavefunctions at each z-point, ¢_(x, y | 2), as follows:

Uz, y, 2) = 3o (2, ¥ | 2)x,(2). 3)

The lateral wavefunction . (z, y | z) is obtained by solving numerically the following
two-dimensional Schrodinger equation:

~ (B [2m*)(8[82% 4+ 8% |8y ), (2, y | D) + V (2, ¥, 2),(Z, ¥ | 2)
= e, (2}, (z, ¥ ] 2) 4

with the Dirichlet boundary conditions, ©.(z, ¥ | z) =0, on the boundaries of the
device. The index -y represents a two-dimensional lateral-mode number and ¢, (2) a
corresponding ~th lateral eigen-energy.

Substituting equation (3) into equation (1), the three-dimensional Schrodinger
equation reduces to the following one-dimensional scattering equation for the z-
component of the wavefunction x_ (2):

d? d .
R AORACPNOE DY (2c§‘j;})(z)ax,,(z) + cf,‘j;f,i(z)x1,(z)) =0
..r!

)
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Figure 1.  Lateral-confinement potential distribution in the zero-dimensional

AlGaAs/InGaAs/AlGaAs resonant wunnelling diode, calculated by using a classical device
simulation taking account of the surface carrier trap levels.
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Figure 2. Three<limensional finite-difference mesh lattice used for numerical calculations.
The mesh spacing has been chosen to be small for the AlGaAs barriers and the GaAs
quantum well.
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where k. (z) denotes a complex wavenumber given by

K(2) = 2m* [R)(E - €,(2)). (©)

Mode mixing coefficients Cf,",:,) and C(" %) are written as
@ = [az [aye,(a v 1920012 ©
()= [d [ave iz, y | ) zop(zy | ) ®)

and are evaluated by using the previously obtained set of lateral wavefunctions. The
third term in equation (5) causes the mixing of lateral modes and is non-zero unless
the system is uniform in the z-direction. The first-derivative term of x,(z) in (5)
can be eliminated by applying the unitary transformation:

Xy(2) = Y M, () fp(2) ©)
..YI
where a unitary matrix M. .(z) is defined as follows:

M, .(z) = exp (- f c)( )dz) (10)

The matrix M...(z) is calculated by using a second-order-expansion approximation
[28] which guarantees unitarity of the matrix. Substituting equations (9) and (10) into
equation (5), the transformation leads to the following equation:

2
a3 ) == Ty () (2) (11)
where a matrix w,,.,.(z) is written as
w, (2) = EZ(M 1) EY W (2)M e () (12)
W, (2) = k()6 . - {C© 1>(z)} - ci(2) (13)
@) = [as [avgie, (e v 1D5mep(au 12) (14)

and the expression{C{®!)(z)}? _, in equation (13) means the (~y,~') element of the
multiplied matrix CON(2)CO1(2).

A set of renormalized complex wavenumbers K, (z), which takes in the lateral-
mode miXing, is obtained by solving an eigenvalue equation:

S W, () Vo o(2) = {Ky(2)}2V, 0(2) (15)

.-YH
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where V. ,(2) is a unitary matrix which diagonalizes the matrix W_,(z). Then the
z-component of the wavefunction can be expressed as a superposition of plane waves:

x,(z)—ZZM (2) Vs 30(2) { Ay (2) exp(iK,(2)2)

+ Bu(2) exp(—iK.u(2)2)} (16)

where A, (z) and B, (z) are coefficients of forward and backward plane waves in the
~th lateral mode w1th the complex wavenumber K (z). Equation (16) is discretized
on the finite-difference z-mesh points (See figure 2) Assuming these coefficients to
be constant between two adjacent z-mesh points, the three-dimensional wavefunction
¥(z, y, z) can be finally written as

¥O(z,y, ) = Y3 S0,z v | )M, VD, {AD explik)z)

A A T

+BY exp(— 1K,(Y,?z)} 17

where the index (i) denotes a small region between adjacent z-mesh points z; and
l-|-l
From the continuity of the probability flux of electrons through the system, the
following conditions on the total wavefunctions hold at the z-mesh point z,;, for
given z and y:

\I’(i)(z: Y, zi+1) = ‘I’(i-'-l)(m? Y, z£+1) (18)
(1/m")(8/02)¥ (=, y, 2)],_, . = (1/m*)(8/02)¥ ) (z, y, 2)],_, .. (19
The coefficients at the adjacent z-mesh points are then related as follows:
Ai+l . Ai ,
(Bm) =2 T v) (B?,) : (20)
¥ L
The matrix T()(«y,~’) can be expressed as
. a(f)( l)P (i)( ’)/Q .
T(’)(*y,'y') = -(};) Ty a(i) Y XS;) ) (21)
o2 (7,Y)Q ()P T

where P stands for exp(i( K$) — K{™*V)z,,,) and Q stands for exp{i( K5/ +

Kﬁ*”)z; +1}» and where matrix elements a;‘)(—y,y') and X.(Y"‘).,, are given by the
following expressions:

ag)(‘h“r') = % (1 + (m5+1/m?)(Kﬁr’")/K’(\fﬂl))) @)

(i) _ 1 i+l (+}
X‘r,)'r' - Z z Z V‘)g:fr )M'E'z..tn) M'E'iz?'n V‘rs.'r 23

inJ T R £
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Hence the coefficients at the cathode (AL, BL) and anode (AR, BR) edges of the
device are related by using a multi-mode transfer matrix T(-y,~'):

(s1)= 2T (gf?) @)

T = TWTWN-DFWV-3 @10, (25)

It should be noted that the transfer matrix contains both propagating and evanescent
modes depending on the total energy and lateral-mode eigen-energies. Nakasato
and Blaikie [28] calculated a reduced transfer matrix from the above full transfer
matrix, to separate the propagating modes from the evanescent ones. In the present
calculations, however, there is always a difference in the number of propagating modes
at the cathode and anode edges under a non-zero external bias, and the resultant
reduced transfer matrix is no longer regular. Thus in the following calculations the
full transfer matrix is adopted rather than the reduced transfer matrix. A relevant
multi-mode scattering matrix S(~,y’) which is defined as

(%) =Ssenn (5) 29)
=2 ;

is calculated from the transfer matrix. The multi-mode transmission probability
tL,R(E;'Y»“!') and the total transmission rate T(FE), ie. conductance at zero
temperature, are then obtained from the S-matrix as follows:

tr(E;1,7") = 1S, YD 27)
t (B 7,7") = |Su(v, )P (28)
T(E) =33 tr(E;7,7)0(E - €5)8(E — &)
v o
= D> (B, 7)0(E - )0(E - €5) (29)
v v

where #(E) is the step function. A complete set of the three-dimensional
wavefunctions ¥(x, y, z) can be obtained by using the following scattering boundary
conditions:

(AL, BY)=(8,,,00 (v=1,2,3,...) (30)
for an incident electron wave with a lateral mode -, originating at the cathode edge
of the system, and

(AL, BR)y=(0,6,.,) (v=1,2,3,...) (31
when it originates at the anode edge. In equations (30) and (31) 6, . is the delta
function. If the system has a real bound state which may be caused by an attractive
scatterer such as an InGaAs quantum well or a deep donor trap level, a bound
state problem has to be solved as well as the above scattering state problem to
obtain a complete set of wavefunctions. Finally, the total tunnelling current [,
is calculated assuming global coherent tunnelling of electron waves throughout the
device as follows:

s = = [ T(E)A(E) - f(EV}E )
™ eV

where f; (E) and fg( E) are Fermi distribution functions in the cathode and anode
regions, respectively.
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3. Numerical results and discussions

In this section the three-dimensional scattering theory described in the previous
section is applied to the 0D RTD structure shown in figure 1, and multi-mode quantum
transport is analysed numerically. In the present paper we adopt a laterally confined
AlGaAs/InGaAs/AlGaAs double-barrier resonant tunnelling structure, The assumed
layer structure consists of an undoped In, ,;Ga, ,As quantum well of 5 nm in
thickness, two undoped Al ,;Ga, ,sAs barriers of 4 nm in thickness, two undoped
GaAs spacer layers of 6 nm in thickness, and n*-type GaAs cathode and anode layers
with a donor concentration of 1.0 x 10'® cm~3. The conduction band discontinuities
in the GaAs/Al, ,;Gaj,5As and GaAs/In, ;Ga, g, As heterostructures are assumed
to be 187.0 and —37.2 meV, respectively. The electron effective mass in the GaAs,
Al ,5Gay 45As, and In, (gGa, g, As layers is assumed to be 0.067, 0.088, and 0.064m,,
respectively. Lateral dimensions of the device are set to be 80 nm in both x- and
y-dimensions.

The first part of the numerical simulation is to obtain a realistic lateral-
confinement potential distribution created by carrier trap levels on the lateral surface.
The exact lateral-confinement potential should be determined through a fully self-
consistent calculation of the three-dimensional Schrodinger equation. However,
this would require an enormous amount of computational time and is beyond our
present requirements. The self-consistent calculations are left for a future analysis
of Coulomb blockade tunnelling where the self-consistent field produced by a single
electron is dominant. In the present work the confinement potential is calculated
by using a classical device simulation {29] in which surface carrier traps are taken
into consideration by using the Spicer et al unified defect model [30]: a deep donor
level at 0.925 ¢V measured from the conduction band edge and a deep acceptor
level at 0.75 eV from the valence band edge are assumed on the GaAs lateral
surface. As long as the size of the lateral confinement is much larger than the width
of the quantum well, the calculated potential distribution should be a fairly good
approximation for the exact potential distribution determined by the self-consistent
calculation. Figure 1 shows the calculated potential distribution where the sheet
concentration of the surface deep level is assumed to be 5.0 x 10'? cm~2, which is
a plausible value large enough to pin the Fermi level on the surface. It can be seen
that the hour-glass-shaped confinement potential results from the different surface
depletion widths in the intrinsic and contact regions.

The second part of the simulation is to calculate the lateral eigen-energies and
two-dimensional cigenstates at each z-point by using the hour-glass confinement
potential. Equation (4) is discretized by using a three-dimensional finite-difference
mesh lattice, shown in figure 2, which has a uniform mesh spacing in the z- and
y-dimensions and a non-uniform spacing in the :-dimension. Eigen-energies of
the resultant finite-difference equation are obtained up to a given value of total
energy by using the bisection method following Householder’s tridiagonalization. The
corresponding eigenvectors are then calculated by the inverse iteration method. To
speed up finding the eigenvectors, the set of eigenstates obtained at the previous
z-mesh point is used as an initial guess for the eigenstates at the next z-mesh point.
For numerical calculations a cut-off value is introduced for the maximum eigen-
energy although all of the lateral modes would be necessary to make a complete
set. The number of wavefunctions required for realistic calculations depends on the
system under consideration. In general at least all of the lateral eigenstates with
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eigen-energies below the Fermi energy should be taken into account. In the present
calculations, for instance, there are four lateral eigenstates below the Fermi level and
13 lateral modes are calculated for all z-mesh points.

By making use of the lateral eigenstates, the mixing coefficients, ny‘:::,) and C,(r“’.,z,) ’
and the unitary transformation matrix, M.....(z), can be evaluated from equations (7),
(8) and (10). The eigenvalue equation (15) is then solved to get the renormalized
wavenumbers, K. (z), and the unitary matrix, V,,..(z). As the matrix W.,.(z) is
real and symmetric, all of the eigenvalues and eigenvectors can be obtained by using
the QL method [31]. Finally, by using the lateral eigenstates at the cathode and
anode edges, the multi-mode transfer matrix and the resultant scattering matrix are
calculated from equations (21)-(27).

The multi-mode transmission probability calculated for the 0D RTD structure is
shown in figure 3. Figure 3(a) shows the total energy dependence of transmission
probability for diagonal tunnelling from the +yth incident mode to the ~th transmission
mode, |S;,(v,+)|% and figure 3(b) that for off-diagonal tunnelling from the first
incident mode to the ~yth transmission mode, | S},(1,v)|*. The S-matrix clements are
drawn for values of 4 up to 11. In addition, the transmission probability calculated for
a device with completely uniform confinement is shown in figure 4. Before proceeding
to the detailed discussion of these results, it is worth commenting on this structure.
The uniform lateral confinement used for the calculation in figure 4 could be realized
by doping the resonant tunneling structure uniformly, as well as the contact regions.
However, resonant tunnelling is hardly observed in such doped structures because
resonant electron waves suffer from frequent impurity scattering in the quantum well.
Thus the results in figure 4 are based on an unrealistic assumption that electron
waves travel ballistically even in a doped tunnelling structure, and are given simply
for comparison with the results for the hour-glass confinement. In figure 4 the S-
matrix has no off-diagonal elements since there is no lateral wavefunction mismatch
anywhere in the system. This is called independent channel tunnelling, as the lateral
modes are not mixed. The total transmission rate is then just a superposition of
the transmission probabilities through these independent channels shown as a thick
full curve in figure 4. Electronic states corresponding to the first three transmission
probability peaks in figure 4 are shown in figures 5(a)—(d). These figures show the
visualized three-dimensional existence probability of electrons, |Wg(z, ¥, 2){% in the
device: (a) |¥g(x, y, 2)|* for the tunnelling process from the first mode at the
cathode edge to the first modc at the anode edge (this is hereafter denoted as 1 — 1)
at the first peak energy, (b) for the process 2 — 2 at the second peak energy, (c)
for the process 3 — 3 at the second peak energy, and (d) for the process 4 — 4 at
the third peak energy. It should be noted that the wavefunctions for these states are
virtually localized in the quantum box and clearly reflect eigenstates of the quantum
box itself. This fact means that the lateral-mode index v is a good quantum number
throughout the device.

On the other hand, the following two major differences can be seen in the
tunnelling properties of the hour-glass confinement shown in figure 3. First, the
encrgy intervals between transmission probability peaks become larger than those in
figure 4, leading to a large peak-to-valley ratio of transmission probability. Second, the
elastic scattering due to the hour-glass confinement potential mixes the lateral modes
and opens new off-diagonal tunnelling channels. In figure 3{b) two peaks can be
found in the off-diagonal elements of the S-matrix which represent lateral-mode-non-
conserving resonant tunnelling. It should be noted that off-diagonal tunnelling with
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the first incident mode is observed only for the fifth, sixth, and eleventh transmission
modes. This is purely because of a selection rule for parity of lateral wavefunctions.
Because the elastic scattering due to the hour-glass confinement potential does not
break symmetry under mirror reflection in z- and y-dimensions, a lateral mode
couples only with other modes having the same parity. The lowest wavefunction
has even parities in both z- and y-dimensions, and can therefore couple only with
upper modes described above. Additional structures are also observed in the diagonal
elements in figure 3(2). For example, an asymmetric resonant structure can be seen
at a total energy of 91.7 meV. It should be noted that the off-diagonal tunnelling
probability is quite large for the process 1 — 5 at this energy. In these circumstances
the ratio of the second-order diagonal tunnelling is enhanced, in which two elastic
scattering events are involved between the first and fifth lateral modes: this is shown
diagrammatically in figure 6(b). This process is now at resonance and interferes with
the major diagonal tunnelling process, shown in figure 6(a), which is at off-resonance.
The interaction between these two tunnelling processes results in the Fano-resonance-
type lineshape in the transmission probability [32]. The three-dimensional existence
probability of electrons, |Wg(z, y, z)|* at the energy of 91.7 meV is shown in figure 7.
It should be noted that the electron existence probability in the quantum box reflects
features of the fifth mode rather than the first mode despite the first-mode nature of
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o F o at Energy = 46.6 meV

a1 Energy = 39.9 meV

|Wavetunetion(x,y,2)**2 |Wavefunction(x,y,z)[**2
for 3 > 3 tunnelling process
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at Energy = 46.6 meV

at Energy = 53.2 meV

(c) (d)

Figure 5. Visualized three-dimensional existence probability of electrons |¥g(z, y, z)f2
at the lowest three transmission peaks in figure 4: (2) [¥e(z, y, z)* for the process
1 — 1 at the first peak energy; (b) for the process 2 — 2 at the second peak energy;
(¢) for the process 3 — 3 at the second peak energy; and (d) for the process 4 — 4 at
the third peak energy. It should be noted that the second peak in figure 4 is caused by
both tunnelling processes 2 — 2 and 3 — 3. It can be seen that the electron distribution
clearly reflects the lateral eigenstates in the quantum box.

the incoming wave. This signifies that a large part of the incoming wave is converted to
the fifth mode in the quantum box through experiencing lateral-mode-non-conserving
perturbation due to the change in the lateral confinement. In these circumstances the
lateral-mode index -y is no longer a good quantum number for the system.

The applied voltage dependence of the total tunnelling current is calculated
by assuming ballistic transport throughout the device (equation (32)). Figure 8(a)
shows the I-V characteristics of the device with the hour-glass lateral confinement
calculated at a temperature of 77 K. Uniform external electric field is assumed in
the intrinsic regions of the device in this calculation. Several satellite current peaks
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Mode 1 Mode 1 Mode 1 Mode 5 Mode 1
(=) vlS V_r,;
b

Figure 6. Diagrammatic representation of two processes involved in the diagonal
tunnelling, 1 — 1, at Fano resonance: (2) zero-order tunnelling and (5) second-order
tunnciling. V5; and Vjs denote the elastic scattering between the first and the ffth
lateral modes due to an hour-glass confinement potential.

|[Wavefunction(x,y,z)j**2

for 1 -» 1 tunnelling process
at Energy = 91.7 meV

Figure 7. Visualized three-dimensional existence probability of electrons |¥g(z, ¥, 2)]?
for the tunnelling process 1 — 1 at an energy of 91.7 meV which corresponds to the
dip of the Fano resonance in figure 3. It should be noted that the electron existence
probability in the quantum box reflects features of the fifth mode rather than the first
mode, despite the first-mode nature of the incoming wave.

and shouiders are observed superposed on the conventional negative conductance
characteristics of 2D RTDs. Figure 8(b) shows the I-V characteristics calculated at
lower temperatures. It can be seen that the fine structure in the I~V characteristics
stands out more at a lower temperature. Also the current—voltage characteristics
are compared with those of a device with uniform confinement (broken curve) in
figure 9. It should be noted that only one major current peak is found without
any fine structure in the case of uniform confinement, as the peak-to-valley ratio of
the transmission probability shown in figure 4 is not large enough to separate the
contribution from each mode. In the case of the hour-glass confinement, on the
other hand, the following mechanisms lead to the observable small current peaks in
figure 8. The total energy dependences of the transmission probabilities calculated at
the first four peak (shoulder) voltages are shown in figures 10(a)—(h): the diagonal
elements: |S),(~,~)|? calculated at the first, second, third, and fourth peak voltages
in figures 10(a), (c), (¢), and (g) and the off-diagonal elements, |Sy;(1,v)[% in
figures 10(p), (d), {f), and (k). The total transmission rate is shown by using thick
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Figure 8, (a) Applied voltage dependence of total tunnelling current calculated by using
equation (32) at a temperature of 77 K. Observed satellite current peaks and shoulders
are indicated by arrows. (b) The -V characteristics calculated at lower temperatures.

full curves as in figures 3 and 4. The current peak (shoulder) appears cach time the
new transmission peak (indicated by an arrow) plunges into the Fermi sea. It can be
seen that all of the four peaks are caused mainly by diagonal tunnelling (figures 10(a),
(¢), (¢), and (g)) since the off-diagonal tunnelling shown in figures 10(b), (d), (¢), and
(#) contributes much less to the total transmission probability. Thus these four peaks
mainly result from lateral-mode-conserving resonant tunnelling: 1 — 1 tunnelling for
the first main peak, 2 — 2 and 3 — 3 for the second, 4 — 4 for the third, and 5 — 5
and 6 — 6 for the fourth. As shown in figure 8(b) the fourth peak becomes smaller
with decreasing temperature since it is caused by the tunnelling of eiectrons which
are thermally excited to the fifth and sixth modes located above the quasi-Fermi level
in the cathode region. Obviously other higher diagonal channels such as the 7 — 7
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and 8 — 8 play a negligibly small role since very few electrons occupy the higher
eigenstates in the cathode region.
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Figure 9. Comparison of the current-voltage characteristics calculated for the hour-glass
confinement (full curve) with those for the uniform confinement (broken curve).

Let us now turn to the two small current peaks at higher applicd voltages in
figure 8. The total energy dependenoe of the transmission probability calculated at
the two peak voltagcs is shown in figures 11(a)-(d). Figures 11(a) and () show the
diagonal, |S,;(v,v)/* and off-diagonal, 1512(1,1«)| at the fifth peak voltage, and
figures 11(c) and (d) the diagonal, |S;,(v,~)[% and the off-diagonal, | S),(2,v)[%, at
the sixth peak voltage. Small transmission peaks located under the Fermi energy are
again found which lead to the fifth and sixth current peaks. These transmission peaks
are, however, attributed not to diagonal tunnelling but to off-diagonal tunnelling:
lateral-mode-non-conserving resonant tunnelling 1 — 5 for the fifth peak shown
in figure 11(b) and 2 — 9 for the sixth peak shown in figure 11(d). It should
be mentioned that, for the sixth current peak, the 3 — 10 tunnelling channel is
simultaneously opened with the 2 — 9 channel. As described above, the fourth
current peak is mainly due to 5 — 5 and 6 — 6 diagonal tunnelling, along with
a small contribution by 1 — 5 off-diagonal tunnelling. Even after the diagonal
tunnelling channels close, at a voltage such that the fifth and sixth lateral eigenstates
in the quantum well simultaneously line up with the fifth and sixth lateral eigenstates
in the cathode region, the off-diagonal channel 1 — 5 is still open, resulting in another
current peak. Thus the fifth 1 — 5 peak can be thought of as a satellite peak of the
main fourth § — 5 peak. However, in the case of the sixth 2 — 9 peak the diagonal
9 — 9 channel cannot give rise to a main peak as the ninth eigenstate in the cathode
region is essentially unoccupied, so the 2 — 9 channel gives rise to a new main peak.

As shown here the number of extra current peaks (shoulders) observed in the
I-V characteristics directly measures the number of resonant tunnelling channels in
which the lateral mode is not conserved. Also it is possible to estimate the magnitude
of the lateral-mode mixing by analysing the extra peak current.
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Figure 10. Thial energy dependences of the transmission probabilities calculated at the
first four peak (shoulder) voltages indicated by arrows with the numbers 1, 2, 3, and 4
in figure 3. (4), (c), {¢), and (g) show the diagonal elements |Sy;(v, v)[? and (B), (d),
(f), and (h) the off-diagonal elements |S13(1, 4)|>. The total transmission rate is shown
by using thick full curves as in figures 3 and 4.
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Figure 11. Thtal energy dependence of the transmission probability calcylated at the last
two peak voltages indicated by arrows with the numbers § and 4 in figure 3. (a) and (c)
show the diagonal elements |Syy (=, )%, (&) the offi-diagonal |Spa(1, ¥)|%, and (d) the
off-diagonal | Sy, (2, )%

4. Conclusions

We have reported a numerical simulation of a zero-dimensional resonant tunnelling
diode based on three-dimensional S-matrix theory. By taking lateral-mode mixing
into consideration, the three-dimensional Schrodinger equation has been solved for
an Al ,5Gay 75As/In, (sGa, g, AS/Al, ,5Ga, 75As double-barrier structure with a lateral
cross sectional area of 80 nm?. The effect of lateral-mode mixing, caused by elastic
scattering duc to the hour-glass-shaped lateral-confinement potential, on the multi-
mode transmission properties and the current-voltage characteristics of the device
has been analysed quantitatively. Comparisons have been made with a device under
entirely uniform confinement.

We have shown that the hour-glass confinement potential causes larger energy
intervals between transmission probability peaks and the mixing of lateral modes.
These effects result in a large peak-to-valley ratio of transmission probability and
the opening of new off-diagonal tunnelling channels, respectively. The calculated
S-matrix clearly shows both new transmission peaks in the off-diagonal components,
which represent lateral-mode-non-conserving resonant tunnelling, and related Fano-
resonance-type structures in the diagonal components, which represent an interference
between the second-order resonant tunnelling process and the diagonal tunnelling
process under the off-resonant condition. The calculated total tunnelling current
through the device shows several small satellite peaks which are superposed on the



Three-dimensional numerical analysis of 0D RTDs 8799

conventional negative differential conductance. Analysis of the S-matrix has shown
that two of the peaks observed in the higher-applied-voltage regime are caused by
resonant tunnelling in which the lateral modes are not conserved.
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