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A New Triple-Well Resonant Tunneling Diode with 
Controllable Double-Negative Resistance 

HIROSHI MIZUTA. TOMONORI TANOUE, AND SUSUMU TAKAHASHI, MEMBER, IEEE 

Abstract-A newly structured triple-well resonant tunneling diode 
(RTD) is proposed as a triple-valued logic device. The superiority of 
this new RTD for triple-valued logic application i s  demonstrated with 
numerical simulation based on the transfer matrix method. This new 
RTD exhibits significant double-negative differential resistance, and the 
two current peak voltages are independently controlled with well thick- 
nesses. Comparing the numerical calculation and experimental data, 
it is shown that agreement between the calculation and experiment on 
the two current peak voltages is excellent. 

I .  INTRODUCTION 
ECENTLY, resonant tunneling in multibarrier het- R erostructures [ 13, [2] has attracted considerable inter- 

est, and several resonant tunneling diodes (RTD) [3]-[lo] 
and transistors [11]-[15] have been proposed as func- 
tional devices. One of the most hopeful applications of 
their negative differential resistance (NDR) is multiple- 
valued logic, which can greatly reduce the number of de- 
vices needed for one function [16]. For this application, 
multiple NDR where all peak currents are nearly equal is 
necessary. The simplest structure for an RTD with mul- 
tiple NDR is a double-barrier heterostructure in which 
resonant levels are created in one quantum well. In this 
structure, however, the peak currents due to upper reso- 
nant levels are significantly larger than the peak current 
due to the lowest resonant level. This is caused by excess 
current whose origin is not yet determined. Thus, it is 
difficult to obtain the required multiple NDR by using the 
double-barrier structure. One certain method to avoid this 
difficulty is to arrange two double-barrier RTD's in par- 
allel, where the NDR characteristics of the two diodes can 
be controlled with external bias [17]. This circuit, how- 

triple-well RTD, where the required double NDR can be 
realized, and the two current peak voltages are indepen- 
dently controllable with well thicknesses. 

The method of our numerical calculations is shown in 
Section 11. In Section 111, the operation of the triple-well 
RTD as a triple-valued logic device is demonstrated. 
Comparison between the calculations and experiments is 
discussed in Section IV. 

11. FORMULATION 
In this section, we show the method of our calculation 

to analyze the resonant tunneling in multibarrier hetero- 
structures. Our theoretical approach is based on the trans- 
fer matrix method [ 181, where the potential distribution 
of a resonant tunneling barrier (RTB) is approximated by 
a series of small steps as shown in Fig. 1. The wave func- 
tion \kj ( z )  in the ith section is given in a plane wave form 
as 

\ k I ( z )  = A, exp (ik,z) + B, exp ( - i k , z )  

where k, is the complex wavenumber. Continuity of wave 
function and probability flux are required at all bounda- 
ries. When incident electrons come from the left side of 
RTB, the wave functions \kL and \kR on both sides of RTB 
are given by the following expressjons: 

\k,(z)  = A, exp ( ikLz)  + B, exp ( -ik,z) ,  z C zo 

\ ~ R ( z )  = AR exp ( i k ~ z ) ,  z > ZN 

and coefficients AL,  BL, and AR are connected by transfer 
matrix TI as follows: 

a? exp ( i ( k j  - k i - l ) z i - l )  

a,: exp ( i ( k i  - k i - l ) z i - l )  

a ;  exp ( - i ( k ,  + k , - l ) z , _ l )  

CY: exp ( - i ( k i  + I C , - ~ ) ~ ~ - , )  
K =  

ever, is more complex than that which uses a single diode. 
In this paper, we propose a new RTD structure, i.e., the 

where m: is the effective electron mass in the ith section. 
The transmission probability T through RTB is given as 
follows: 
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Fig. 2. 

Fig. 1.  A series of small steps used for the potential distribution under 
external bias. 
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Schematic energy-band diagram of triple-well resonant tunneling 
barrier and heavily doped electron regions. 

TABLE I 
STRUCTURE PARAMETERS USED FOR CALCULATIONS 

L a y e r  Yv i d  t 7  (nm 1 

I - A I A s  L a ,  1 0  

I-GaAs L., 11 9 

1 - i l G a A s  L a 2  3 0  

I -GaAs L.. ? i  

and tunnel current density JT is then calculated by the fol- 
lowing formula: 

I - i l G a A s  L,, 3 . 0  

1-GaAs L., 6 . 9  

I - A I A s  L., 1 . 0  

In { 1 + exp ( - ( E z  - E $ ) / k , T ) )  
n m  

- dE,m,*T(Ez) I,: 
. In { 1 + exp ( - ( E z  - E f ) / k B T ) ) ]  

where E: and E: are conduction band edge energies, and 
E$ and E f  are the Fermi energies of electrons at both sides 
of RTB. 

The effective electron mass in AlGaAs is expressed as 
follows: 

m* = (0.067 + 0.083x)mo 

where x is the A1 mole fraction. For the electron effective 
mass in GaAs, the nonparabolicity of the r-band is ap- 
proximately introduced by the following expression [ 191: 

m * ( E )  = 0.067mo{ 1 - 6 a ( E  - E,)/E,) 

where E is the electron energy, a = -0.824, and Eg = 
1.42 eV. The conduction band offset value is assumed to 
be 60 percent of the energy gap difference in the 
GaAs / AlGaAs heterostructure. 

111. DEV~CE OPERATION 
In this section, the operation of the triple-well RTD as 

a triple-valued logic device is demonstrated by using the 
theoretical approach described in Section 11. Fig. 2 shows 
the band diagram of the newly proposed triple-well RTD, 
which consists of three quantum wells of undoped GaAs 
( W1, W2, and W3), four potential barriers (two undoped 
AlAs and two undoped A10.26Gao.74A~), and highly doped 
n-type GaAs ( N o  = 1 .O x 10l8 cmP3) cathode and anode 
layers on both sides. The conduction band offset value 
between GaAs and AlAs is assumed to be 0.956 eV, and 
that between GaAs and A10.26Gao.74A~ to be 0.200 eV. 
The electron effective mass of AlAs is assumed to be 

0.15mo, and that of A10,26Ga0.74A~ to be 0.0886mo. Do- 
nors in the cathode and anode layers are assumed to be 
fully ionized, NG = N,, and electrons to be degenerate. 
Simulated results using structural parameters listed in Ta- 
ble I are shown in Fig. 3. The existent probability 
I \ k E ( z )  l 2  of electrons in RTB is shown in Fig. 3(a), and 
the energy dependence of the transmission probability 
T ( E )  is shown in Fig. 3(b). In Fig. 3(a), ( \ k E ( z ) l 2  is 
plotted for quasi-eigenenergies EX ( i  = 1, 2, 3, * * * , 
numbered from the lowest energy) corresponding to the 
peaks in T (  E ) [ 181. Calculation is performed in the 0 to 
0.22 eV region, and there exists seven quasi-eigenstates. 
The three quasi-eigenstates \kA, !Pi, and !Pi are now uti- 
lized to give double NDR in I-V characteristics as de- 
scribed in the following. 

As shown in Fig. 3(a), l*;(z)l2, ( \ k ; ( ~ ) ( ~ ,  and 
I \ E ; ( z )  l 2  are mainly located in the wells W l ,  W3, and 
W2, respectively; consequently, their energies EA, E:, 
and E; are mostly determined by the well thickness Lwl ,  
Lw3, and Lw2. Here, the thickness of well 1 ,  L w l ,  is cho- 
sen so that E;  < EF, where EF is the Fermi energy, and 
Lw2 and Lw3 so that EF < E ;  < E;. Calculated values 
of the quasi-eigenenergies and the Fermi energy are listed 
in Table 11, and it can be seen that the condition men- 
tioned above is satisfied. It should be noted that the quasi- 
eigenstate *; plays an important role in realizing the re- 
quired two sharp current peaks. For this level operates as 
an injection level of electrons from the cathode layer, that 
is, the only electrons with energy close to EA are injected 
to W1. The transmission probability of this level is now 
almost zero, but approaches 100 percent when quasi-ei- 
genstate 9; or *; just resonates with this injection level 
*A under external bias. Therefore, the widths of the cur- 
rent peaks become very small, and valley currents can be 
decreased. It should be also noted that, by using the wave 
functions calculated above, the electron concentration in 
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Fig. 3. (a) Existent probability 1 BE(z) 1‘ of electrons in RTB for quasi- 

eigenenergies and (b) transmission probability T versus energy in the 0 
to 0.22 eV region. 
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Fig. 4. Assumed energy-band diagram of triple-well RTD under external 
bias V. 

TABLE I1 
CALCULATED QU4SI-EIGENENERGIES EA-,??; AND THE FERMI ENERGY EF 

Quasi-eigenstate  Eigen-energy (meV) 

E R ’  I 23 5 

E R~ ~ 153.6 
I E m 6  155.2 

E R ’  I 1 9 5 . 8  
I 39.7 Terrni energy E F  

the wells W1,  W 2 ,  and W 3  can be estimated. The peak 
value of the electron concentration in W1 ( -  1 X 1017 
cmP3) is much larger than that in W 2  ( - 1 x 10l6 ~ m - ~ )  
and that in W 3  ( - 3 X loL6 cmP3) due to the relation 
among the quasi-eigenenergies and the Fermi energy 
EA < EF < E: < E;. Therefore, when external bias is 
applied to this RTD, a voltage drop is expected to occur 
almost in W 2  and W 3  because the electric field applied to 
W1 is largely screened by the injected electrons. Thus, 
we assume that the band diagram under external bias can 
be approximated as shown in Fig. 4. A more exact band 
diagram can be determined by self-consistent calculation 
of the Schrodinger equation and Poisson’s equation [20], 
but it would lead to longer computation, and we do not 
expect it to bring any interesting new device operation, 
only better accuracy. 

Calculated I- I/ characteristics where double NDR ap- 
pears are shown in Fig. 5 .  In Fig. 6(a)-(c), I \ k E ( z )  and 
T ( E )  are plotted for three typical points of I-V charac- 
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Fig. 5 .  Calculated current-voltage characteristics of triple-well RTD. 
Three typical points are pointed out by arrows: arrow 1 for the first cur- 
rent peak, 2 for the current valley, and 3 for the second current peak. 
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Fig. 6 Plots of IqE(~ )12  and T ( E )  for three typical points of the I -V 
characteristics shown in Flg. 5 :  (a) first resonant state (arrow l), (b) off- 
resonant state (arrow 2), and (c) second resonant state (arrow 3). 

teristics: first resonant state, off-resonant state, and sec- 
ond resonant state. As shown in these figures, the first 
current peak in the I-V characteristics originates from the 
resonance of qi with \kk, and the second from that of 
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Fig. 7 .  Peak voltages versus well widths: (a) Lw3 dependence of the peak 
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Fig. 8.  The current-voltage characteristics and the load line. Three stable 
points Q,, Q2, and Q3 are located at the voltages V,,,  V,,, and VQ3. 

'Pi with 'Pk. Therefore, two peak voltages V ,  and V2 (see 
Fig. 5 )  are determined by the energy separation between 
EL and E;  and that between EL and E;, respectively. 
Namely, two peak voltages can be independently con- 
trolled with the well thicknesses Lw3 and Lw2. This con- 
trollability is shown in Fig. 7: (a) the L,, dependence of 
the peak voltages VI and V2 and (b) the Lw2 dependence 
of V ,  and V2. These figures clearly show that the first peak 
voltage can be controlled by the thickness of W3 without 
changing the second peak voltage, and similarly the sec- 
ond peak voltage by that of W2. Such an indepenedent 
controllability of two current peak voltages is a special 
feature of the triple-well RTD. 

When the triple-well RTD of 100 X 100 pm2 is oper- 
ated with a load resistance of 0.15 Q and an applied volt- 
age of 220 mV, the calculated three stable points Q,, Q2, 

and Q3 are located at 34, 100, and 166 mV as shown in 
Fig. 8. Structural parameters are chosen so that voltage 
intervals between them are equal to 66 mV, and this value 
can be also varied with the well thicknesses Lw3 and Lw2, 
as explained above. Therefore, the ideal I-V characteris- 
tics for triple-valued logic can be designed using this tri- 
ple-well RTD. 

IV. DISCUSSION 
A. Peak Voltages V,  and V2 

Based on the numerical calculation described above, a 
triple-well RTD has been fabricated [21]. Fig. 9 shows a 
cross section of the triple-well RTD, where a 10-nm-thick 
undoped GaAs offset layer is introduced under RTB to 
avoid diffusion of silicon ions into the triple-well structure 
from the n+-GaAs anode layer. As shown in Fig. 10, the 
fabricated RTD exhibits a significant double NDR that is 
ideal for triple-valued logic. It was measured at a tem- 
perature of 220 K where two peak currents were nearly 
equal; the current density of the second peak depends on 
temperature as discussed in the next section. We have 
fabricated several RTD's ranging from 4 x 4 to 100 X 
100 pm2 in size and observed changes of the two peak 
voltages. As shown in Fig. 1 1, both of the two peak volt- 
ages are found to depend linearly on the diode current 
through a resistance of approximately 4 Q .  This resistance 
is thought to be induced by the external measurement sys- 
tem and is in series with the diode. Intrinsic values of the 
peak voltages are obtained at the intersections of VI and 
V2 with the vertical axis ( I p  = 0). To compare experi- 
mental with theoretical values of these peak voltages, it 
is necessary to subtract the voltage drop in the offset layer: 
the corrected values VT and V,* are obtained from mea- 
sured values as follows: 

Vi, i = 1, 2 V ;  = LE - LOFFSET 

LE = L B ~  + L w 2  + L B ~  + L w 3  + L B ~  + LOFFSET 

where LoFFSET is the thickness of the offset layer. Theo- 
retical and experimental values after correction are shown 
in Table 111. This excellent agreement between the cal- 
culated and experimental values signifies the propriety of 
the simplified assumption for the energy band diagram. 
Thus, it is shown that the two current peak voltages VI 
and V2 can be quantitatively estimated with our numerical 
calculation. 

L E  

B. Peak Current Density J b  and J ;  

As shown in Section IV-A, the two observed peak volt- 
ages VI and V2 are in excellent agreement with calculated 
values. Up to now, however, comparison between cal- 
culated and experimental peak currents has not been made. 
In this section, the comparison is made between the cal- 
culated and experimental peak current densities, and im- 
provement in the model of the calculation is discussed. 

Fig. 12 shows temperature dependences of the calcu- 
lated and experimental peak current densities J b  and .I;. 
It can be seen that the first peak current density decreases 
and the second increases with a rise in temperature. This 
temperature dependence is theoretically explained as fol- 
lows. 

1) As temperature rises, the number of electrons at 
higher energies increases and that at the resonant en- 
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TABLE IV 
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Fig. I O .  Typical I-V characteristics (220 I<) of a triple-well RTD 
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Fig. 11. Dependence of two peak voltages V ,  and V, on peak currents 

TABLE 111 
CALCULATED A N D  EXPERIMENTAL PEAK VOLTAGES V ,  A N D  Vz  

Experimental  33 106  

ergy decreases. Thus, the first peak current de- 
creases. 

2) At the second resonance (resonance of \E; with 
\EL), another resonance (resonance of \E; with 'Pi) 
also occurs as shown in Fig. 6(c). The number of 
electrons that have enough energy to pass this higher 
resonant level increases at high temperatures; there- 
fore, the second peak current increases. 

The experimental peak current densities show qualita- 
tively the same temperature dependence as the calculated 
ones. Their absolut- values, however, are more than one 
order of magnitude smaller than the calculated values. 
These facts signify that our understanding of the resonant 

mechanism explained in Section I11 is fundamentally cor- 
rect, but the number of electrons at the resonant energies 
is overestimated in our calculation. As a reference, coni- 
parison between calculated and experimental peak current 
densities was made in double-barrier RTD with two AlAs 
barriers, and the disagreement between them was less than 
a factor 3 .  Thus, the discrepancy in the peak current dens- 
ities of the triple-well RTD is peculiar to this structure. _. . . ^  .. - . . . .  , 
I he most signihcant difference between the double-bar- 
tier RTD 2nd niir trinle-well RTD i s  the  t=xi \ tenw of well 
1, i.e., the injection level \EL. As explained in Section 
111, this level acts as an injection level, and the only elec- 
trons in the cathode layer with energy nearly equal to EL 
can go into well 1. Tunnel current flows only whcn the 
quasi-eigenstate \E; or \E: just resonants with this level. 
Such resonant tunneling mechanisms bring sharp current 
peaks and high peak current densities. However, the en- 
ergy uniformity of the electrons injected into well 1 can 
be lost by the scattering processes such as LO-phonon, 
and r + X intervalley scattering, which are ignored in 
our calculation. These scattering processes broaden the 
width of the injection level in energy space and cause the 
energy relaxation of the electrons in well 1, resulting in 
the decrease of the peak currents. The observed half- 
widths (full width at half-maximum) of the two current 
peaks and the calculated ones are listed in Table IV. As 
shown in this table, the observed values are two or three 
times larger than the calculated ones. This broadening of 
the current peaks implies the existence of the scattering 
effects described above. 

A new theoretical approach taking into account the 
scattering mechanisms explained above is currently being 
developed, and preliminary calculations indicate that the 
difference between the calculated and experimental peak 
current densities seems to be reduced. Details of this cal- 
culation will be reported elsewhere. 
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V. CONCLUSION ating at room temperature,” IEEE Electron Device Lett.,  vol. EDL- 
7, pp. 573-516, 1986. 
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IEEE Electron Device Lett.,  vol. EDL-6, no. 12, pp. 636-638, 1985. 
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vice,” IEEE Trans. Electron Devices, vol. ED-34, no. 8, pp. 1768- 
1773, 1987. 
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sterdam: North-Holland, 1984, p. 415. 

ri71 F. CaDasso. s. Sen. A. Y. Cho. and D. SIvico, “Resonant tunneling 

A s t r u c t W d  triple-well RTD has been proposed 
and theoretically analyzed for a triple-valued logic de- 
vice‘ The superiority Of the 

is demonstrated with numerical 
simulation based on the transfer matrix method. In this 

q;, corresponding to the ground states of triple wells W1, 
W3, and W2. When external bias is applied, the reso- 
nance of qi with 9; the first current peak, and 
that of 9; with qk causes the second. Thus, this new 

RTD for 
logic 

structure, there exist three quasi-eigenstates q;, qi, and 

L .  

RTD exhibits significant double-negative resistance, and 
the two current peak voltages are independently con- 
trolled with the thicknesses of wells w3 and w 2 .  The 

devices with multiple negative differential resistance and demonstra- 
tion of three-state memory cell for multiple-valued logic applica- 
tions,” IEEE Electron Device Let t . ,  vol. EDL-8, pp. 297-299, 1987. 

[I71 A. Harwit and J. S.  Harris, Jr.,  “Calculated quasi-eigenstates and 
controllability of two current peak voltages is character- 
istic of the triple-well RTD. Comparing the numerical 
calculation and experimental data, the calculated two cur- 
rent peak voltages are in excellent agreement with exper- 
imental ones. 
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