

Single Electron Transport Simulations in Silicon Nanochains

M. A. Rafiq^{1,2}, Z. A. K. Durrani³, H. Mizuta⁴ and S. Oda¹

¹Quantum Nanoelectronics Research Centre, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan

²National Centre for Nanotechnology, Pakistan Institute of Engineering and Applied Sciences, Nilore Islamabad Pakistan

³Department of Electrical and Electronics Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom

⁴Nanoscale Systems Integration Group, School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom

Abstract: We carry out simulations of Coulomb staircases observed experimentally in the current-voltage (I - V) characteristics of single Si nanochains at room temperature [1]. The nanochains consist of Si nanocrystals (SiNCs) \sim 10 nm in diameter, separated by \sim 5 nm SiO_2 barriers. Coulomb staircases characteristics can be simulated using a multiple tunnel junction (MTJ) model (Figure 1 (a)) [2]. Here, the SiNCs form charging islands, isolated by tunnel barriers at the SiO_2 regions (Figure 1 (b)). Figure 1 (c) shows SEM image of a nanochain. Figure 1 (d) shows the I - V characteristics of a nanochain containing 7 SiNCs, similar to experimentally measured devices. We simulate these characteristics using an MTJ with equal junction capacitances (C), varying values of junction resistances (R_1, R_2, \dots, R_n), and equal SiNC to substrate capacitances C_0 . Simulations show that the C_0 plays an important role in reduction of the threshold voltage, as shown in Figure 1 (e). As C_0 increases, a greater proportion of the source-drain voltage (V_{DS}) across the nanochain drops across the first tunnel junction, due to the voltage divider formed by the first junction capacitance C , and the first stray capacitance C_0 , in parallel with the equivalent capacitance of the rest of the MTJ [3]. The charging energy of the first junction is overcome at lower voltages, leading to a lower onset of current. The simulations demonstrate that a random variation in the tunnel junction resistances leads to clearer Coulomb staircases. A 60% variation in resistances gave the best fit to our experimental results.

Fig 1: (a) Equivalent circuit diagram of a nanochain device (b) Schematic diagram of a nanochain (c) SEM image of a nanochain (d) Experimental and simulated I / V characteristics of a nanochain device (e) Simulated effect of gate capacitance on threshold voltage.

[1] Rafiq *et. al.*, to be published in *J. Appl. Phys.* (2008)

[2] Single-electron circuit simulator ‘SIMON’, see C. Wasshuber, H. Kosina, and S. Selberherr, *IEEE Trans. CAD* **16**, 937 (1997).

[3] M. Amman, E. Ben-Jacob, and K. Mullen, *Phys. Lett. A* **142**, 431 (1989)