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MEMS to NEMS : miniaturization trend ?
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Progressing high-speed Si based MEMS

NEMS integrated into Si nanodevices

Si beam AN.Cleland and M.L.Roukes
L=77um Appl.Phys.Lett. 69, 2653 (1996).
t =0.33um

h=0.8um

fr = 70.72MHz Oscillation frequency of

ot a doubly clamped beam

l t L: beam length

W, < F t: beam thickness

3C-SiC beam
. g L=1.1um
| w=120 nm |
5 il X.M.Henry Huang etal.,
h=75 nm Nature 421,496 (2003).
fr = 1GHz

2003
Over 1 GHz operation possible with size reduction

Fusion of Nano CMOS / SET and NEMS may lead to extended
device performance and even novel functionalities.
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NEMS integrated into Si nanodevices

Fusion of Nano CMOS / SET and NEMS may lead to extended
device performance and even novel functionalities.
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2 Bistable NEMS based memory devices

Nonvolatile NEM memory

Buckled SiO, beam with embedded SiNDs

floating-gate

nc-Si dots

Mechanical bistable states

stable state 1

compressive UpWard o recsive
strain e strain

Si (111)
Si nanodot \ *Beam:200 x 200 X 20 nm
; *Diameter of dots: 10 nm

«Interdot spacing: 10 nm

Young's Poisson’s
modulus | ratio

Si 190 GPa |0.27
SiO, | 70 GPa |0.175

40
air gap Ew ——
Advantages compressive compressivi =2 (/
. . . strain strain 21 1] t
® No charge tunneling via gate oxide g o o -
® High-speed write/erase operation ﬁ i
@ Compatibility with conventional Si W pownward "5_£ = . —
process bent 0L = L
Y. Tsuchiva etal., J. Appl. Phys. 100, 094306 (2006) Applied force (1IN)
Test beam structure fabrication Loading experiment for the beam
Load on the beam using the nano-indentor '1
in collaboration with Y. Higo and K. Takashima of

Anisotropic and
Isotropicetching [ ]
Si Wafer

Resist SiO,(Thermal)

SEM image of a beam

Naturally upward-bent bridge
structure observed

__, Release of stress at Si/SiO,
interface after undercut

Thermal Isotropic Bent
oxidation etching upward

Y. Tsuchiva et al.. J. Appl. Phys. 100, 094306 (2006

Tokyo Institute of Technology | L

Before loading After loading
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Bent upward '

Bent downward -|

Y. Tsuchiva et al.. J. Appl. Phys. 100, 094306 (2006




2008/7/21

Electrical switching of the beam

Japanese mechanical bistable device 200 years ago
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II- Direct observation of beam mechanical bistability
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‘Vidro’ ‘Poppin’
- An instrument with a glass lamella -

“ Awoman playing a vidro’
Utamaro Kitagawa (1753-1806)

Mechanical properties of buckled FG

Scaling law for switching power
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T. Nagami et al., IEEE Trans. Electron Devices 54, 1132 (2007

Readout operation of NEMS memory

Hybrid electromechanical — transport simulation
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Potential distribution Electron distribution

3D or 2D hybrid finite element method analysis
Software: COMSOL Multiphysics Parallel (FEMLAB)

Structural mechanics analysis Drift-diffusion analysis |

-V-(cVu)=F ‘ V-(=anu,Vy +0D,Vn) = GRey,
u: displacement : V(- apu,Vy + qD.,VP): —ORs
F: force

. : n, p: electron, hole densit
c: u-¢ translation matrix P Y

q: elementary charge
Deformationl I Electrostatic force w: mobility - D: diffusion coefficient
: : Rgsgy: SRH recombination rate

Electrostatics analysis ! Drift electric field I
-V-(eVy)=p ‘
v electrostatic potential

Charge redistribution

Electro-mechanical
memory operation

p: charge distribution
€: dielectric constant

Readout
characteristic
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For reducing switching voltage

Effects of cavity structures

Smaller zero bias displacement
leads to lower switching voltage

Pgoc L* T Zg?
¥

20F ‘500“ decreasmg Zo

Beam displacement Z [nm]
o

-20 0 20 40
Gate voltage Vg [V]

Simple reduction of Z, may result in losing bistability.

30

Completely rigid wall

. ——.

Beam displacement Z [nm]
.

bottom, side, top fixed

1 -g-
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Care
cavit

bottom fixed (original
Gate voltage Vq [V] T e e e

ful structural design of the FG as well as the outer
y needed.

Readout operation of NEMS memory

Optimized Readout characteristics
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Fabrication of FG with SiNDs Fabrication of FG with SiNDs
TEM |mage of a nc-Si dot
¢ ~ 2x 10" cm? ¢
# As deposited
—
To TMP UHV Chamber Diameter < 10 nm & dispersion ®1nm
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T. Ifuku et al., Jpn. J. Appl. Phys. 36, 4031 (1997) Andadt
VHF pulsed plasma process: nc-Si dot deposition
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Fabrication of FG with SiNDs

Fabrication of FG with SiNDs
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L e a7 CVD grown SiO,
0000000000
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Buckled bridge with SiNDs
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Mechanical stress analysis using uRS

Mechanical stress analysis using uRS

Micro-Raman spectroscopy (LRS)
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Jobin-Yvon U-1000

*514.5 nm Ar* laser source

« 1 um spot diameter

« Resolution ~0.15 cm-1 wave number

o. Stress  Aw=w-w,
o : Raman mode frequencies
of Siin presence of stress

1. De Wolf, Semicond.Sci. Technol.11(1996) 139-154.
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Peak determined by using
Lorenzian fitting

[MPa]
Pad area Buckl?ld bridge I

Tensile stress of about
100MPa observed around
the beam edges

Switching speed of a simple flat FG

Switching speed of a buckled bistable FG
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For a simple flat SiO, beam with L <1 pm, over
1GHz frequency can be obtained, but......
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T. Nagami et al., IEEE Trans. Electron Devices 54, 1132 (2007)




2008/7/21

Beam damping effects on switching speed

A variety of nonvolatile RAM candidates
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Nano- NEMS-
Flash FeRAM PCRAM MRAM
Cell asi Crystal Cl ey
Device — — H E %
- )
swewe | pg | PYY | B e @
Mechanism of Charge in Charge in Polarization Phase MR Change | Mechanical
Non-volatility Floating Gate Nano-dot Change bistability
Power
Issues Program Volt. |Program Volt. H, block Program Curt. | Program Curt | reduction,
reduction reduction CVD reduction reduction Shock
immunity
Cell Size 4-8 F2 4-8 F2 10-20 F2 8-15 F2 8-15 F2 6-10 F2
g | Program 10us 10us <50 ns 100 ns <50 ns <50 ns
;l,- Read <20 ns <20 ns 100 ns <20 ns <50 ns <20ns?
Voltage <12V <12V 5V 3V 3V <10V
P/E Cycle 108 108 1010 1012 10%5 > 10122
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SG MOSFET based NEMS memory
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SUMMARY-we

‘ JI-VIechanicaI bistability demonstrated

FG / cavity structure optimized for lowering
programming voltage (<10V) with maintaining high
ON/OFF ratio (~105)

Experimental FG with embedded nc-Si dots fabricated

Switching speed less than 50 nsec shown for 1 um FG
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