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floating-gate nc-Si dots
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Y. Tsuchiya et al., J. Appl. Phys. 100, 094306 (2006)

Buckled SiOBuckled SiO22 beam with embedded SiNDsbeam with embedded SiNDs

•Beam：200×200×20 nm
•Diameter of dots: 10 nm 
•Interdot spacing: 10 nm
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Test beam structure fabricationTest beam structure fabrication
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2μm

SEM image of a beam Naturally upwardNaturally upward--bent bridge bent bridge 
structure observedstructure observed

Thermal 
oxidation

Isotropic 
etching

Bent 
upward

Y. Tsuchiya et al., J. Appl. Phys. 100, 094306 (2006)

Before loading

Load on the beam using the Load on the beam using the nanonano--indentorindentor

After loading

in collaboration with Y. Higo and K. Takashima of in collaboration with Y. Higo and K. Takashima of 
Tokyo Institute of TechnologyTokyo Institute of Technology

Loading experiment for the beamLoading experiment for the beam

Bent upward Bent downward

Y. Tsuchiya et al., J. Appl. Phys. 100, 094306 (2006)
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Electrical switching of the beamElectrical switching of the beam

SiO2: 100nm
Cr:    15nm

Va

Va = 36V

Buckled 
beam

Va = 0V

Va = 37V

Direct observation of beam mechanical bistabilityDirect observation of beam mechanical bistability

Japanese mechanical bistable device 200 years agoJapanese mechanical bistable device 200 years ago

‘Vidro’ ‘Poppin’
- An instrument with a glass lamella -

‘ A woman playing a vidro’
Utamaro Kitagawa (1753-1806)
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Readout operation of NEMS memoryReadout operation of NEMS memory
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Potential distribution Electron distribution

Hybrid electromechanical Hybrid electromechanical –– transport simulationtransport simulation

Structural mechanics analysis

( ) Fuc =∇⋅∇−

F: force
t l ti t i

u: displacement

Drift-diffusion analysis

( )
( ) SRHpp

SRHnn

qRpqDqp
qRnqDqn
−=∇+∇−⋅∇

=∇+∇−⋅∇
ψμ
ψμ

n, p: electron, hole density

Software: COMSOL Multiphysics Parallel (FEMLAB)
3D or 2D hybrid finite element method analysis

Electrostatic forceDeformation

Drift electric field

c: u-σ translation matrix

Electrostatics analysis

( ) ρψε =∇⋅∇−
ψ: electrostatic potential

ρ: charge distribution

ε: dielectric constant

Charge redistribution

n, p: electron, hole density

μ: mobility
q: elementary charge

D: diffusion coefficient
RSRH: SRH recombination rate

Electro-mechanical 
memory operation

Readout 
characteristic
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For reducing switching voltageFor reducing switching voltage

Smaller zero bias displacement 
leads to lower switching voltage
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Careful structural design of the FG as well as the outer 
cavity needed.

Readout operation of NEMS memoryReadout operation of NEMS memory
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Fabrication of FG with Fabrication of FG with SiNDsSiNDs

σ ～ 2 x 1011 cm-2

VHF pulsed plasma process: VHF pulsed plasma process: ncnc--Si dot depositionSi dot deposition

T. Ifuku et al., Jpn. J. Appl. Phys. 36, 4031 (1997)
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Fabrication of FG with Fabrication of FG with SiNDsSiNDs

Si (111)

SiO2

TEM image of a nc-Si dot
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Fabrication of FG with SiNDsFabrication of FG with SiNDs

SOI based thermal oxide

CVD grown SiO2

SiNDs

(a)

(b) (c)

10nm

Upper cavity

σ ～ 2 x 1011 cm-2

ECR-RIE
(Gas:CF4 / anisotropic)

Plasma Etching
(Gas:CF4,O2 / isotropic)

ECR-RIE Plasma Etching

(d) (e)

Upper cavity 
formed

Lower cavity 
formed

Fabrication of FG with SiNDsFabrication of FG with SiNDs

Length: 
1μm

Cr:100 nm

SiO 50

Beam width:1 μm

500nm

Buckled bridge with SiNDs

1μmSiO2:50 nm

Beam thickness:
100 nm

Upper:
150 nm

Lower:
150 nm

Micro-Raman spectroscopy (μRS)

Ar+ laserBeam size
1 μm×1 μm
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0ωΔ < 0σ >
tensile

0

Mechanical stress analysis using Mechanical stress analysis using μμRSRS

(ω0 ~ 520 cm-1)

4 μm

4 μm

1 μm step,
25 points
around bridge

0ωΔ >
0σ <

compressive

-1[MPa] 434 [cm ]σ ω= − × Δ

: Stressσ

I. De Wolf, Semicond.Sci.Technol.11(1996) 139-154. 

 : Raman mode frequencies
     of Si in presence of stress
ω

0ω ω ωΔ = −Jobin-Yvon U-1000
• 514.5 nm Ar+ laser source
• 1 μm spot diameter
• Resolution ~0.15 cm-1 wave number

Jobin-Yvon U-1000
• 514.5 nm Ar+ laser source
• 1 μm spot diameter
• Resolution ~0.15 cm-1 wave number
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Mechanical stress analysis using Mechanical stress analysis using μμRSRS
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the beam edges
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Switching speed of a simple flat FGSwitching speed of a simple flat FG

For a simple flat SiO2 beam with L < 1 μm, over 
1GHz frequency can be obtained, but……

[2] A.N.Cleland and M.L.Roukes, 
APL 69, 2653 (1996).

[1] X.M.Henry Huang  et al.,   
Nature 421,496 (2003).
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T. Nagami et al., IEEE Trans. Electron Devices 54, 1132 (2007)
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Beam damping effects on switching speedBeam damping effects on switching speed

Beam oscillation damping 
after switching

( )tfku
dt
du

dt
udm =++ξ2

2

mass damping 
parameter

stiffness

km dKdM βαξ +=
mass
damping 

stiffness
damping 

Beam length: 1 μm 
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SuspendedSuspended--Gate MOSFETGate MOSFET
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p-Sub
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Movable gate
6um

Voltage (V
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tgap
Pull-in

Pull-out

Pull-in Pull-out

o tage (

n+n+

ON
Movable gate

N. Abelé, A. Villaret, A.Gangadharaiah, C. Gabioud, 
P. Ancey and A.M. Ionescu, IEDM2006

SG MOSFETSG MOSFET based NEMS memorybased NEMS memory
SUMMARYSUMMARY

Scaling rule for a buckled FG shownScaling rule for a buckled FG shown

Introduction of bistable NEMS into MOS may Introduction of bistable NEMS into MOS may 
provide a new memory device with highprovide a new memory device with high--
speed operation & serious nonvolatility:speed operation & serious nonvolatility:

Scaling rule for a buckled FG shownScaling rule for a buckled FG shown

Mechanical bistability demonstratedMechanical bistability demonstrated

FG / cavity structure optimized for lowering FG / cavity structure optimized for lowering 
programming voltage (<10V) with maintaining high programming voltage (<10V) with maintaining high 
ON/OFF ratio (ON/OFF ratio (~~101055))

Experimental FG with embedded ncExperimental FG with embedded nc--Si dots fabricatedSi dots fabricated

Switching speed less than 50 nsec shown for 1 Switching speed less than 50 nsec shown for 1 μμm FG m FG 
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