DFT simulation of dynamic charge states in double silicon quantum dots
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Introduction

Quantum Computing has been motivated by the efficiency it
may exhibit when handling some classes of problems that are
classically infeasible [1]. Solid state implementations,
which should be inevitable for large scale quantum circuits,
have been realized through semiconductor based Double
Quantum Dots (DQD) [2]. Isolated (leadless) silicon DQD
has shown long coherence time up to 220 ns [3], which is a
potential virtue for QIP applications.

In this work intensive study has been carried out to uncover
the electronic structure of the isolated silicon DQD through
an atomistic scale simulation. We have succeeded in
combining ab-initio density functional theory (DFT)
calculation with molecular dynamics to simulate the time
dependant evolution of the quantum system. We have also
compared it with the time evolution of an ideal two level
system known as Larmor Precession.

Simulation model and Proposal for transient analysis

In the present analysis we used the well tested SIESTA,
which is the LCAO based DFT simulation package [4] [5].
Fig. 1 shows the atom based DQD model, which can be seen
as two individual dots bridged by a rod-like structure. The
size scale of the DQD system should give an insight to the
effect of scaling. Intentional asymmetry has been introduced
in the DQD to slightly alter the electronic states of the
left/right dot. The overall silicon bone structure is equivalent
to the crystal structure of bulk silicon, and has been
terminated with hydrogen to eliminate the dangling bonds on
the surface.

By applying an electric field in the z direction, the effective
potential on the left/right dot is shifted. Finite interaction
through the ‘bridge’ leads to anti-crossing over the two dots
which can be clearly observed in Fig. 2. The eigenstates
denoted as “WF663’ corresponds to the anti-bonding state and
‘WF662° to the bonding state, a two level system formed
inside an artificial molecule with an energy gap AE of ~3.16
meV.

We propose a time dependant simulation by combining
DFT with molecular dynamics as a way to simulate time
evolution of a quantum system. A simple picture is given in
Fig.3 to understand the simulation procedure. Electric field E,
is applied to the DQD as a step function, forcing an arbitrary
two level system into resonance (or slightly off-resonance).

The electronic structure will be determined through DFT, and
the forces on each atom will be calculated.
Born-Oppenheimer approximation treats the nucleus as
‘classical’ particles, so the positions of the nucleus at time At
can be derived from the classical equation of motion
(Standard Velocity Verlet molecular dynamics method). Time
interval At must be kept very short and 0.5 fs has been chosen
to ensure qualitative accuracy. The wave functions will be
extracted to examine time evolution.

Time dependant evolution of a two level system

The wave functions of WF661 to WF663 are visualized at
two selected time domains in Fig.4. WF662 (bonding state)
shows the wave function seeping into the right dot, as WF663
describes the opposite situation. On the other hand, WF661
does not change during this period, which emphasizes that the
time evolution is not equivalent for each and every
eigenstates.

For quantitative investigation the simulation cell has been
simply divided into two identical boxes, and the DOS has
been calculated for the whole region and left/right box for
WF662. While the DOS for the unit cell stays constant, the
DOS in the right box decreases and then increases
accompanied with a much higher frequency fluctuation. The
low frequency oscillation is thought to correspond to Larmor
precession, while the higher frequency fluctuation is thought
to arise from the Si-H and/or Si-Si bonds, which does not
enter the picture when considering an ideal two level system.

Fig. 6 shows the E* (the energy difference between bonding
and anti bonding states) for WF662 and WF663. The E, for
this particular simulation is off resonance, and the estimated
Larmor precession period 1 _ h ~ 450[ fs] is longer

&% + AE?
than the simulated oscillation.
Acknowledgment

The authors would like to thank Dr A. Andreev of
University of Surrey / Hitachi Cambridge Laboratory, UK for
valuable discussions.

References

[1] Nielsen and Chuang, Quantum Computation and Quantum
Information (Cambridge University Press, Cambridge, 2000)

[2] T. Fujisawa et al., Physica E21 (2004) 1046-1052

[3] J.Gorman et al., Phys. Rev. Lett. 95,090502 (2005)

[4] P. Ordejon et al., Phys. Rev. B53, R10441 (1996)

[5] J.M. Soler et al., J. Phys.: Condens. Matt. 14, 2745 (2002)



Bt
TN
L
]

Total Atoms: 475 (51:279, H:196)

Left Dot 147 S1atoms
Faghit Dot 123 51 atoms
Bridge 4 layers (9 atoms)

Fig. 1: Simulation Model
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Fig. 2: Bare eigen-energy spectra (for unoccupied

states) vs. Electric field in z direction
Discontinuity at Ez=0.003 [V/A] is due to the finite
accuracy for numerical calculations.
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Fig. 3: Simulation Method

(a) The “step function’ at t=0 is taken into account by using
initial parameters converged at E,=0 (time independent
analysis). (b), (d) DFT calculation (c) Positions of nucleus
updated according to Velocity Verlet Algorithm (e) Wave
functions are projected to a 3D finite grid.

t = At, 2At,~

E ~0.003TT5[ViA]

WEFGih3

=
F
£
E

WEFGG2
Bomding State

WFG6]

Fig. 4: Wave functions visualized for specific states
WF661 represents eigenstates at Energy=-3.077[eV] @
Ez=0.003775 [V/A]. WF662, WF663 are denoted similarly.
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Fig. 5 Quantitative evaluation of DOS in
Left/Right and Unit Cell
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Fig. 6 E* for WF662 and WF663
¢ stands for the energy difference between the uncoupled
charged states. The discontinuity at Ez=0.003 [V/A] is due
to finite accuracy, and the gap between simulation and
theory at negative € corresponds to the existence of other
resonant states.



