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With advantage of fabrication techniques for nanometer scale structures, it becomes 

possible to create quantum wire with the diameter of the order of the Fermi wavelength, and to 
experimentally study the quantum transport properties through them.[1,2] We present theoretical 
and numerical results for nonequilibrium transport properties with a simplest model of three-site 
quantum wire(Fig.1) making use of Keldysh formalism.[3-5] Some rigorous formulas in 
noninteracting case are provided for direct calculations. 
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Where t/Γ=γ ,  t/y ε= ,  ( )t/yy ii σε−= . 
According to numerical calculation results obtained from those formulas, we investigate 

differential conductance, transport current, conductance and site electron charges of the wire in 
some special occasions. In the case of a uniform ingredient wire, we show that, if site-site 
couplings in wire are tougher than wire-electrode couplings (γ<1), the resonant tunneling 
transport takes place and the phenomenon of conductance quantization can be easily observed. 
Whereas wire-electrode couplings are tougher than site-site couplings in wire (γ>1), these 
quantum effects in transport will disappear gradually with the increase of strength of the 
wire-electrode couplings (Fig.2, Fig.3). We also discuss charge distributions in three sites of the 
wire and the characteristics of charge barrier (Schottky barrier) regardless of Coulomb 
interaction (Fig.4). When T>0K, line shapes of transport characteristics become not to change 
so much and become all smoother than those in T=0K due to thermal fluctuations. In the case of 
a wire containing impurities, line shapes of transport characteristics are changed because of the 
change of system electronic states. 
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Fig.1. Model of three-site quantum wire combined with two external electrodes. ασε ,k (α=L or R) 
and σε i are on-site energies in the electrodes and the wire region, respectively. Transfer integrals between 
nearest-neighbor sites are σj,it , and tunnel combination integrals between the wire and the electrodes 
are σα k,V . µL and µR denote electrochemical potentials of the left and right electrodes, respectively. 
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Fig.2. Differential conductance as a function of 
electrochemical potential µ for self energies γ= 1, 
0.2 and 3 (normalized by t), when T=0K. t is 
transfer energy between nearest- neighbor sites. 
 
 
 
 
 
 
Fig.3. Transport current as a function of 
electrochemical potential of left electrode µL 
(µR=-5) for self energies γ= 1, 0.2 and 3, when 
T=0K. 
 
 
 
 
 
 
Fig.4. Charges in the three sites as a function of 

electrochemical potential of the left electrode µL  

(µR=-5) for self energy γ= 0.2, when T=0K. 
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