

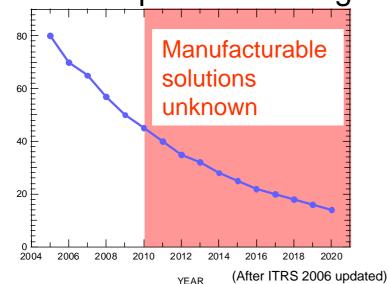
Study of silicon nanodot formation in pulsed-gas plasma process

Yoshishige Tsuchiya, Kenta Ikezawa, Takuya Nakatsukasa, Naoki Inaba, Koichi Usami, Hiroshi Mizuta, and Shunri Oda

Quantum Nanoelectronics Research Center & Department of Physical Electronics TOKYO INSTITUTE OF TECHNOLOGY

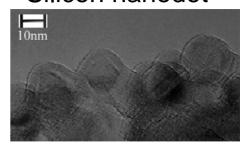
and

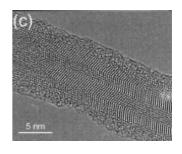
SORST, Japan Science and Technology Agency (JST)
Tokyo, JAPAN



Introduction

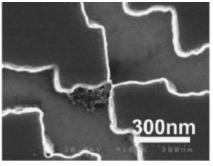
Future Silicon Nanodevices

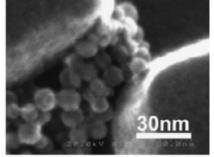

Limit of top-down scaling


Fusion of top-down and bottom-up technologies

→ Use of bottom-up nanostructures

Silicon nanodot




S. Oda, Mat. Sci. Eng. **B101**, 19 (2003).

S. Hofmann *et al.*, J. Appl. Phys. **94**, 6005 (2003).

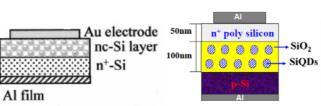
Silicon nanowire

A. Tanaka et al., Curr. Appl. Phys. 6, 344 (2006).

Open a new field of silicon nanodevices

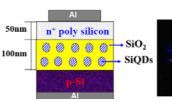
DRAM 1/2 Pitch (nm)

Silicon nanodots (SNDs)

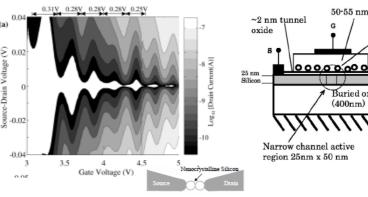

Key building block for future Si nanodevices

10nm

T. Ifuku et al., Jpn. J. Appl. Phys. 36, 4031 (1997).


Electron/Light Emitter

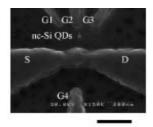
K. Nishiguchi et al., J. Appl. Phys. 92, 2748 (2002).


Nc-Si laver

Si substrate

H. Cheong et al., Tech. Dig. CLEO 2006 CTuN4 (2006).

Single Electron Transistor/Memory

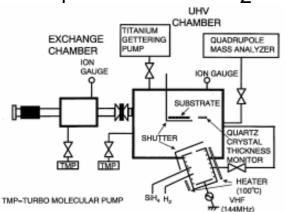

A. Dutta et al., Jpn. J. Appl. Phys. 39, 4647 (2000).

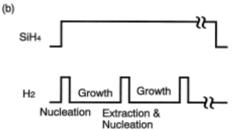
B. J. Hinds et al., J. Appl. Phys. 90, 6402 (2001).

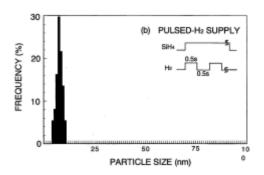
nc-Si dots

Quantum Information Devices

Y. Kawata et al., Ext. Abst. SSDM 2006, pp. 812 (2006).

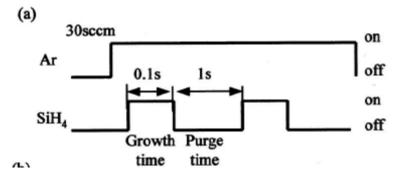


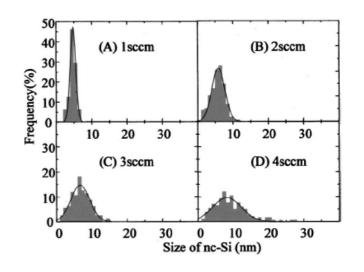



SNDs Fabrication – Pulsed Gas VHF Plasma Process

SiH₄ Plasma + H₂

T. Ifuku et al., Jpn. J. Appl. Phys. 36, 4031 (1997).

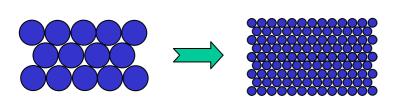



- Nucleation and growth time control
- Diameter around 8±1 nm achieved

Ar Plasma + SiH₄

K. Nishiguchi et al., J. Appl. Phys. 92, 2748 (2002).

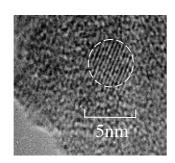
 Faster deposition rate with keeping mono-dispersion



Technical challenge

Further miniaturization

High density assembly Large ΔV_{th} for non-volatile memory High efficiency in electron emitter


Increasing charging and quantum confinement energies

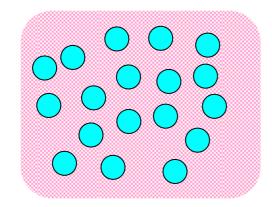
High temperature operation of SET or quantum information devices Blue shift of emitting light wavelength

Surface oxidation (750 °C 15hs)

J. Ohmachi *et al.*, Mat. Res. Soc. Symp. Proc. **638**, F5.3 1-6 (2001).

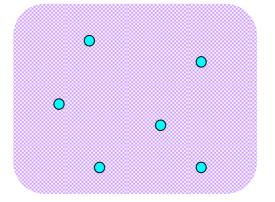
In situ growth of small SNDs with higher deposition rate is preferable

Thick oxide surrounded



Objective

Toward further miniaturization of SNDs

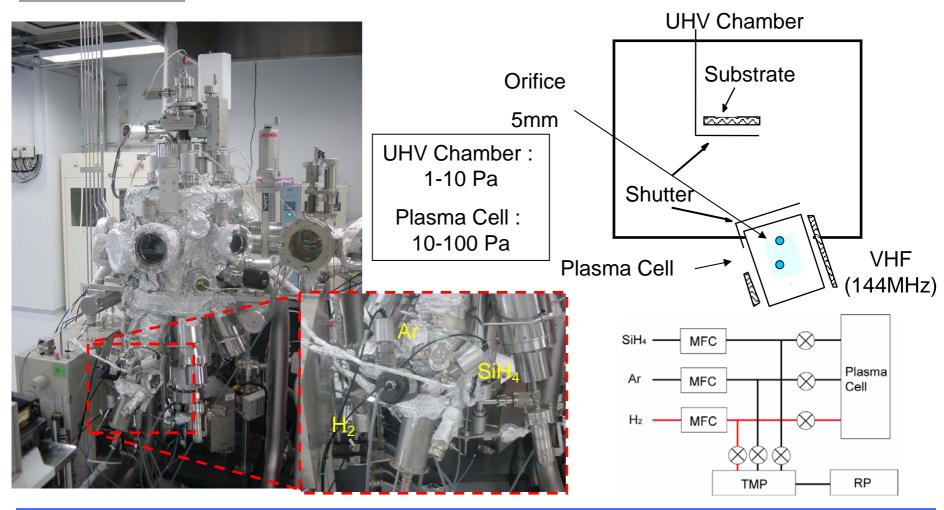

We study effects of H₂ introduction to the SNDs growth in the pulsed SiH₄ supply to VHF Ar plasma system

Pulsed SiH₄ in Ar plasma

High deposition rate

Pulsed H₂ in SiH₄ plasma

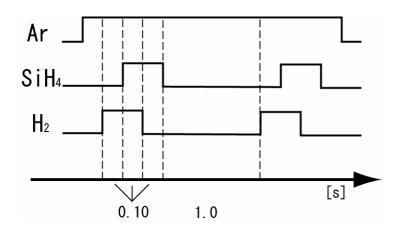
Mono-dispersed with smaller diameter

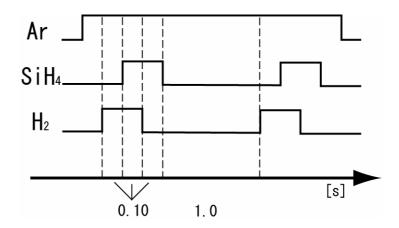

Investigation of SND growth mechanism in SiH₄/H₂/Ar chemistry

Experimental

Apparatus

Newly introduced deposition chamber





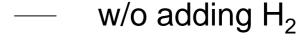
Gas supply conditions

Pulsed SiH₄ and Pulsed H₂ in Ar plasma

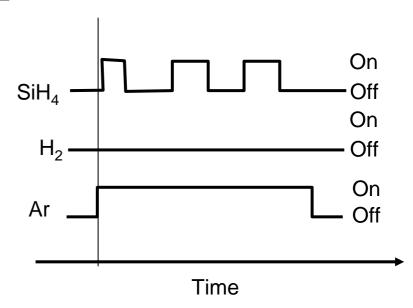
Pulsed SiH₄ in Ar/H₂ plasma

Observations

Shape, Size – SEM (Hitachi S-5000) Crystal or Amorphous – TEM



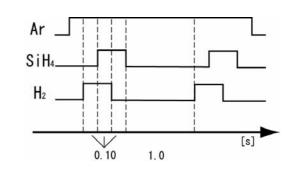


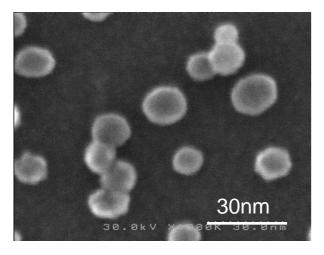


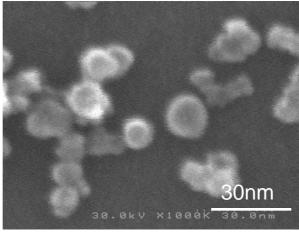
Results

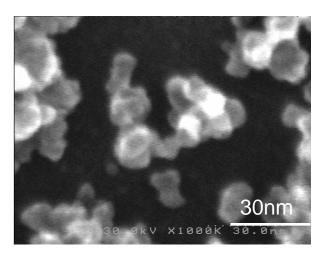
Pulsed SiH₄ supply to Ar plasma

Spherical SNDs observed

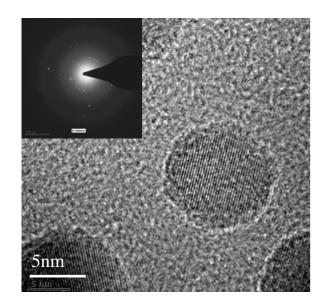

Single crystallized



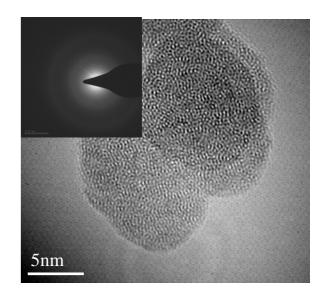

Addition of Pulsed H₂ Supply


SEM images

SiH₄ 1 sccm Ar 90 sccm


H₂ 0.5 sccm

H₂ 1 sccm


H₂ 20 sccm

With increasing H₂ flow rate

- ____**-**
- Number of aggregated clusters increases
- Size of individual dots tends to decrease

5nm

H₂ 0.5 sccm

H₂ 1 sccm

H₂ 20 sccm

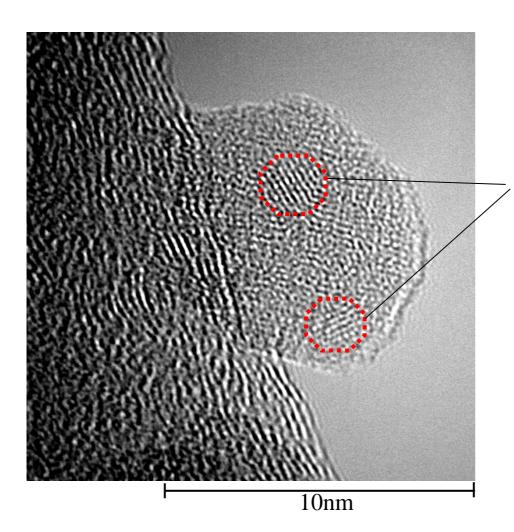
Single-crystalline

Poly-crystalline

Amorphous

Crystallinity decreases with increasing H₂ flow rate

Change of Crystallinity is related to addition of H₂



Addition of H₂ to background Ar plasma

——— Pulsed SiH₄in Ar/H₂ plasma

Multi-domain structure

Crystallization is likely to be blocked by adding H₂

Discussion

Effects of H₂ dilution

In Si thin film growth by PECVD using H₂/SiH₄

H₂ dilution induces change from amorphous to crystalline

N. Shibata et al., Mat. Res. Soc. Symp. Proc. 95, 225 (1987).

Production of Si nano-particle using VHF discharges High H₂/SiH₄ ratio causes better crystallinity

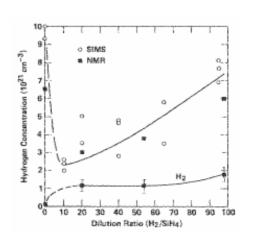
M. Shiratani et al., Trans. Mat. Res. Soc. Jpn. 30, 307 (2005).

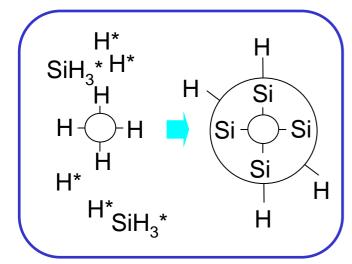
Our results has opposite tendency

Effects of H₂ addition are different in our condition using SiH₄/Ar/H₂ chemistry?

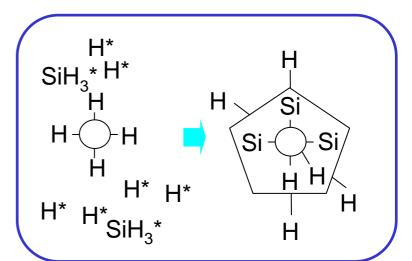
Possible model

Excess H₂ incorporation


In microcrystalline Si deposition


H₂ is incorporated at highly diluted condition

N. M. Johnson et al., Appl. Phys. Lett. 53, 1626 (1988).


High SND growth rate in Ar plasma

Excess H₂ easily incorporated

H₂

Sufficient H₂ for crystallization

Amorphous phase

Why does it happen?

High deposition rate in pulsed SiH₄ supply to Ar plasma

Due to matching effect between ionization energy of SiH₄ and Metastable state in Ar

Current condition w/o H₂ actually realized high deposition rate with good crystallinity

Might has a tendency to change drastically by slight change of parameter

Quantitative analysis of H₂ incorporation is important.

Are SNDs miniaturized?

Actually size of individual SNDs was reduced. Preventing aggregation is future issue.

Summary

We studied SND formation in the pulsed-gas VHF plasma process combined with three gas sources of SiH₄, Ar, and H₂.

We found that the crystallinity of individual dots changed drastically by adding H₂ into SiH₄/Ar system

Observed effects of H₂ addition has opposite tendency compared with previous reports, and might be explained as a unique features in our SiH₄/Ar/H₂ system.

Size reduction of individual SNDs by adding H₂ is useful for future SND applications.

