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I. INTRODUCTION with no current saturation, whereas, device A had very good

- - . . _saturation but a low drain current.
Poly-Silicon thin-film transistors (TFTs) have been stadie With device C we observed reasonable current saturation.

extensively in recent years for their application in flat g@lan . .
active matrix liquid crystal displays(AMLCD). It has bee HOW;\//;r t::ee df;t#rfl?r?gn}[lv\;av;nlztr ‘Z‘? good as for device A,
suggested that the TFTs could be used for an integrat %;V ger.

driving circuit of the display. To facilitate the requiredgh he Z?a?r??:;r?hbaeraecielr:izgz (;f tlr(l)e()lgﬁwc;e thWeItr::oi(iE:tif)lﬁsgatnod
performance, much effort has been made to increase both the P y 9

L N L iagram of the device in the saturation region (Fig 4). It was
grain size and therefore the mobility in poly-Si films [1]. fou%d that if the GB is located too closegto trge ?jra)in there

In scaling the channel of the device down to the de- I . i
. . a reduction in the effective channel length of the device
cananometre regime - a length and width comparable to the

oo N resulting in increased short channel effects and poor strre
poly-Si grain size - it is important to understand the effeaft . . .
) ) : . saturation. However if the GB is located near the source edge
discrete GBs on conduction [2] [3]. Furthermore in a devic . S . ;
. . . there is no reduction in effective channel length and irtstea
of these dimensions we can no longer ignore where the grain .
. o e GB acts as a very large source resistance. Therefore such
boundaries are located within the channel. . . ;
a device shows improved saturation at the cost of a decrease
in drive current.

Il. SUMMARY OF RESULTS AND DISCUSSION Fig 5. shows the drain conductance in the “saturation

We investigated the special situation where only a singfg9i0n” as a function of GB position. It was found that the
ain conductance increases rapidly as the GB is movedrclose

GB perpendicular to the channel is present in the device.q& X

situation likely to be found when the grain size is compaerab‘o the drain edge.

to channel length [4]. Under such circumstances it is natura

to expect some variation of the device characteristics with I1l. CONCLUSIONS

grain boundary position. Recent studies have shown that theOur studies show that control of the position of the Grain

threshold voltage of TFTs is strongly influenced by the graiBoundary in the channel is critical for good device perfor-

boundary position [5]. We aimed to investigate if there was anance in TFTs with decananometer channel lengths. Therefor

equally strong influence on the output characteristics ofSTF design and control of the position of the grain boundaries in
A commercially available 2D device simulator, ATLAS, wasTFTs is desirable for optimal device performance.

used in our simulations. A high density of trap states are
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Fig 1. Density of states for the carrier traps in the forbidden Fig 2. Device Structure and relative position of the GB (a) 10nm
energy gap of the Poly-Si grain boundary regions that was used from source. (b) 10nm from drain

the simulations
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Fig 3. 1d-Vd characteristics for a 50nm TFT with (a) device with no GB in the channel (b) device with GB 10nm from the source edge (c) device with GB
10nm from the drain edge
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Fig 4. Conduction band potential close to the interface under the bias condition Vd=Vg=4V for a device with (a) no GB (b) GB 10nm from the source (c)
device with GB 10nm from the drain
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Fig 5. Drain conductance at Vg=4V and Vd=2V as a function of the GB position relative to the source edge



