Improved device characteristics for deca-nanometre scale TFTs with a single GB in the channel

_Philip Walker_
Microelectronics Research Centre, Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, UK
email:pmw35@cam.ac.uk

_Hiroshi Mizuta, Shigeyasu Uno_
Hitachi Cambridge Laboratory, Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, UK, and CREST JST(Japan Science and Technology)
email:mizuta@phy.cam.ac.uk and drsuno@phy.cam.ac.uk

_Yoshikazu Furuta_
Department of Electronics, Information Systems and Energy Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0781, Japan
email:yosikazu@ele.eng.osaka-u.ac.jp

A simulation model for deep trap states at grain boundaries in Poly-Si TFTs has been developed. The model was used for simulation of single GB TFT devices with sub micron channel lengths. The transport physics have been clarified and it was found that in short channel devices (L$_{eff}<$ 100nm) the single GB TFT shows improved subthreshold behaviour and OFF current compared to its SOI equivalent.