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This paper gives an overview of our recent work investigating nano/polycrystalline 
silicon nanostructures for single-electron device applications.  Nano/poly-Si nanowires 
have been used as a key building block for nanoscale memory and logic devices based 
on the Coulomb blockade phenomenon by utilising individual silicon grains and grain 
boundaries as an electron island and a tunnel junction. However, the microscopic 
properties of the grain boundaries as a tunnel barrier have not been made clear, and 
there is no guideline to optimise the grains and grain boundaries in terms of high 
temperature Coulomb blockade operation.  
 
We first provide a short summary on the research of silicon-based single-electron 
devices from the last decade. Various single-electron transistor structures are compared 
in terms of control of electron islands and tunnel barriers. We then investigate the 
single-electron charging phenomena in nano/polycrystalline silicon nanostructures. A 
novel point-contact transistor (Fig. 1) is introduced, which features an extremely short 
and narrow nano/poly-Si nanowire as the transistor’s channel [1]. This structure is 
suitable for studying how a grain smaller than 10 nm in size and a discrete grain 
boundary work as a charging island and a tunnel barrier, respectively. The relationships 
between structural and electrical parameters of grains/grain-boundaries and the 
resulting Coulomb blockade characteristics (Fig. 2) [2] for the point contact transistors 
are investigated by applying various passivation processes such as multiple step 
oxidation [3][4]. Finally, a possibility of controlling and optimising grain and grain-
boundary properties is discussed for improving the Coulomb blockade characteristics 
and realizing nano/poly-Si single-electron transistors operating at room temperature [5]. 
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Fig. 1 A SEM image of an as-prepared 
point contact transistor with a channel 
30-nm-wide and 30-nm-long. The inset 
figure shows the grain structure of 
Secco-etched poly-Si film. Lateral 
dimension of grains in the film ranges 
from 20 nm to 150 nm. 
 

Fig. 2 Two types of Ids-Vgs characteristics 
observed for point-contact transistors 
oxidized at 1000 oC for 15 minutes. 
Difference in the Coulomb oscillation 
period and current peak-to-valley ratio 
are attributed to different size of charging 
island and tunnel barrier properties. 
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