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Abstract— A novel technique is proposed in this paper that 
achieves a yield optimized design from a set of optimal 
performance points on the Pareto front. Trade-offs among 
performance functions are explored through multi-objective 
optimization and Monte Carlo simulation is used to find the 
design point producing the best overall yield. One advantage of 
the approach presented is a reduction in the computational cost 
normally associated with Monte Carlo simulation. The 
technique offers a yield optimized robust circuit design solution 
with transistor level accuracy. An example using an OTA is 
presented to demonstrate the effectiveness of the work. 

I. INTRODUCTION 
Advances in CMOS technology over the last decade have 

led to increased integration of analog and digital functional 
blocks onto a single chip. In such mixed signal environments, 
the analog circuits must use the same basic transistors as their 
digital neighbours. The design of these analog blocks requires 
circuit parameters to be sized such that the design 
specifications are met. The increasing complexity of device 
models has led to a wider acceptance of simulation and 
optimization based design techniques and tools rather than 
hand calculations [1~6]. With reducing transistor sizes, the 
impact of process variations on analog design becomes 
significant and can lead to circuit performance degradation 
and yield falling below specification. This issue has led to the 
consideration of yield in the design process, generally known 
as design for yield (DFY) [7]. Most DFY approaches optimize 
through analytical and approximation methods rather than 
simulation due to the high computational costs involved.  

In this paper, a new yield optimization technique is 
proposed that does employ simulation but avoids excessive 
computational cost. The approach uses a simulation based 
multi-objective optimization using a genetic algorithm to 
capture the optimal design points for a particular design. 
Monte Carlo simulation is then used for yield estimation, but 
only on a region of interest defined by the design 
specifications. Focusing on a small region means simulation 
time can be reduced whilst maintaining a high level of 
accuracy.  

The paper is organized as follows. Section II provides a 
brief summary of multi-objective optimization. The proposed 
algorithm is given in detail in section III with example results 
in Section IV. Concluding remarks are given in section V. 

II. MULTI-OBJECTIVE OPTIMIZATION 
Circuit performance is a function of designable 

parameters. The design goal is to find a parameter set solution 
that meets all the performance functions and any imposed 
constraints. The optimization formulation for more than one 
objective function is called multi-objective optimization which 
can be generally stated as given in (1). 
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Where fm(x) is the set of M performance functions and gj(x) 
is the set of J constraints. In a design that involves multiple 
conflicting objectives there is not usually a single optimum 
solution which simultaneously optimizes all objectives. The 
outcome from multi-objective optimization is therefore a set 
of optimal solutions [8]. Multi-objective optimization 
corresponds to an objective space with number of dimensions 
equal to the number of objectives. Figure 1 shows the 
relationship between the parameter space and objective space. 
Each point in the parameter space is a solution that 
corresponds to a point in the objective space. The black curve 
on the objective space is called the Pareto front and all 
solution points lying on this curve are called Pareto-optimal 
solutions. Point B in the solution space is an example of a 
non-Pareto optimal point since a more optimal solution exists, 
point (A). The method used in this work to combine all 
performance measures into a single objective is a weighted 
summation, where Wm are the weightings for the performance 
functions as shown in (2). 
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Figure 1. The relationship between parameter space and objective space. 
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III.  PROPOSED ALGORITHM 
The key steps in the proposed algorithm are shown in 

Figure 2 and are discussed in deep in this section. 

A. Netlist and objective function generation 
The starting point for the proposed algorithm is a circuit 

topology, process models and a set of target specifications. 
The first step involves generating a transistor level netlist for 
the chosen circuit topology. From this netlist a set of 
designable parameters are derived which will be used to 
change the circuit’s performance. Examples of designable 
parameters include a transistor’s length and width or a bias 
current. Each parameter will have constraints imposed by the 
designer and once determined, these define the parameter 
space. The performance functions of the circuit are defined as 
the objective functions, for example open loop gain or phase 
margin. Spice testbench netlists are defined to simulate a 
performance for a certain set of parameters.  

B. Muti-objective optimization 
In this stage the parameter space is explored and the design 

improved with respect to the objective functions. The 
optimization, which is called multi-objective optimization 
(MOO), is based on an evolutionary algorithm known as 
weight-based genetic algorithm (WBGA) [9]. WBGA is a 
powerful and efficient approach that uses a genetic algorithm 
(GA) to determine the objective function weighting. This is 
unlike classical weighted optimizations which often suffer 
difficulties in determination of the weight vector.  
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Figure 3. Novel yield targetted algorithm. 

A GA string is constructed consisting of the weights for 
the objective functions and the designable parameters defined 
in the previous step. Figure 3 shows an example of a GA 
string for 4 designable parameters and 2 objective function 
weightings. 

 
Figure 2. Construction of an example GA string. 

P1 - P4 and W1, W2 are the designable parameters and 
performance weights respectively. The weights for the 
performance functions must be normalized as shown in (3). 
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During optimization, populations of individuals consisting 
of the GA string are randomly generated. Throughout the 
evolutionary algorithm, the individuals go through a process 
of crossover, mutation and selection from one generation to 
another [10]. The evolving designable parameter set replaces 
the existing designable parameters in the spice netlist. This 
new spice netlist is then simulated and the performance for 
each of the objective functions is determined. The 
performance functions are multiplied by their respective 
weights given by the GA string and added together to 
determine a total fitness score. This summation is normalized 
using the following formula given in (4). 
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Where fj(x(i)) is the objective function and wj
x is its weight. 

The optimization process optimizes the individual to improve 
its fitness score. This process will continue until the total 
number of generations is reached. 

C. Pareto front and feasible region 
In multi-objective optimization, where multiple conflicting 

objectives are important, there generally will not be a single 
optimum solution that optimizes all the objectives. The 
previous optimization step results in a number of optimal and 
non-optimal solutions. It is necessary at this point to determine 
the Pareto front which consists of the most optimal, non-
dominated, solutions in the objective space. The two 
conditions below outline the procedure to establish these non-
dominated solutions, thus giving the Pareto-front: 

a) Any two solutions of the optimal set must be non 
dominated with respect to each other. 

b) Any solution that does not belong to the optimal set is 
dominated by at least one member of optimal set 

Having obtained the Pareto-front, the specifications of the 
performances are applied. The result is a set of optimal 
solutions that pass the specifications of the design.  

D. Monte Carlo analysis and solution selection 
The feasible region described in the previous step contains 

all the solutions that met the specifications. However, due to 
statistical variations, circuits made with these parameter sets 
may fall below specification when fabricated. Therefore a 
solution needs to be found that can provide the highest yield 
possible with the consideration of process variations. This is 
achieved using Monte Carlo analysis (MC). Monte Carlo 
analysis uses foundry variation models to simulate the effect 



of randomly selected parameter values on circuit performance 
[11]. Previously, MC analysis has not been a preferred method 
for yield analysis due to its computational cost. In the 
proposed approach, far fewer Monte Carlo analyses are 
required due to the small number of solutions in the feasible 
region, mitigating the computational overhead. During this 
step in the proposed algorithm, a Monte Carlo analysis is run 
for each parameter solution set that lies on the Pareto-front 
within the feasible region. The solution that gives the highest 
yield is then selected as the best solution for the design. 

IV. DESIGN EXAMPLE: SYMMETRICAL OTA 
This section presents a complete design example using a 

symmetrical operational transconductance amplifier (OTA) as 
the target circuit. OTAs are fundamental building blocks, 
employed in numerous analog circuit design applications. The 
OTA was selected as this has been used as the benchmark 
circuit in recent work in this area [7,12]. All following 
simulations are transistor level, using foundry BSim3v3 
models for a 0.35µm AMS process and Cadence Spectre™. 

A. OTA design and objective functions 

The chosen circuit is a symmetrical OTA shown in Figure 
4. The first step is to determine the designable parameters and 
objective function. In this example the lengths and widths of 
M3 to M10 make up a total of 8 designable parameters (M1 
and M2 are fixed). The two performance functions for the 
OTA are open-loop gain and phase margin. The objective 
functions are given in the specification and shown in Table I. 

TABLE I.  OBJECTIVE FUNCTIONS 

Objective function: Specification: 
Open loop gain >50dB 
Phase margin >74deg 

Area minimized 
Power minimized 

B. Multi-objective optimization  
The designable parameters are constrained to a reasonable 

range and these are shown in Table II. 
TABLE II.  DESIGN PARAMETERS  

Design Parameter: Range: 
W1   (M5,M4) 10um - 60um 
L1    (M5,M4) 0.35µm - 4µm 
W2    (M7,M9) 10um - 60um 
L2    (M7,M9) 0.35µm - 4µm 

W3   (M10,M8) 10um - 60um 
L3    (M10,M8) 0.35µm - 4µm 
W4    (M3,M6) 10um - 60um 
L4   (M3,M6) 0.35µm - 4µm 

Wg1   (Gain weight) 0 – 1 (normalized) 
Wg2   (Phase weight) 0 – 1 (normalized) 

Once the parameters have been determined, a GA string 
can be constructed consisting of these and the performance 
weightings. The corresponding string is shown in Figure 5. 
Due to the differences in range between the parameters, they 
were normalized into the same range of [0~1]. The weighting 
vectors have already been normalized between [0~1] using 
equation (3). Each individual generated by the GA will consist  

 

Figure 4. Symmetrical OTA topology. 

 

Figure 5. Construction of the GA string for this example. 

of a set of designable parameters as defined by the GA String. 
The designable parameters are used for spice simulation and 
the weight vectors for the weight summation. 

The same testbench netlist is used to determine both the 
open loop gain and phase margin for each individual. Power 
consumption is calculated by multiply the average supply 
current of the individual with the voltage supply. The area of 
the design is calculated by summation of the transistor active 
areas. The total fitness score for each individual is calculated 
using the normalized weighted-summation formula explained 
in the previous section. A total of 100 generations each with a 
population size of 100 are used in this case, giving the total 
number of samples for the optimization as 10,000. During the 
optimization, the GA generates and optimizes the designable 
parameters and weight vectors to achieve a higher fitness 
score, and hence optimizes the performance functions. The 
result of the optimization is a full set of designable parameters, 
weight vectors and performance functions. 

C. Pareto front and feasible region 
To illustrate the optimization, Figure 6 shows a plot of 

open loop gain and phase margin for the 10,000 individuals in 
the example. The Pareto front can be clearly seen and contains 
1022 optimum solutions (circuit candidates) for the design. 

 

Figure 6. Gain and phase margin for the individuals. 



The in-specification area is shown on the figure, which 
narrows down the solution space to a small feasible region. 
This reduced feasible region is shown in detail in Figure 7 
where there are only 10 points on the Pareto front. It is these 
designs that are used in the next step. 

D. Monte Carlo analysis and solution selection 
Every optimal solution on the feasible region undergoes a 

Monte Carlo simulation using foundry process variation and 
mismatch models. 500 samples are chosen for the simulation 
and from these the yield percentage is calculated which is 
shown in Table III. 

TABLE III.  DESIGN POINT YIELD PERCENTAGE 

Design Point: Gain (dB): Phase Margin (deg): Yield (%): 
1 50.05 75.9 75 
2 50.17 75.8 98 
3 50.35 75.5 100 
4 50.46 75.3 99 
5 50.54 75.2 98 
6 50.57 75.1 97 
7 50.72 74.9 94 
8 50.81 74.6 91 
9 51.04 74.2 58 

10 51.06 74.1 55 

The yield spread from 55% to 100% highlights the benefits 
of the proposed technique, for without knowledge of the yield 
for these optimum solutions, a designer may unwittingly 
choose a poor design point. Figure 7 has been shaded to 
indicate approximate gradients of yield. This plot is a useful 
tool to appreciate the design space and allows a design to be 
chosen that meets specification and also has maximum yield. 
Design point 3 would be suitable for this example design.  

A summary of the parameters associated with this design 
example are shown in Table IV. A total of 10,000 simulations 
were run in the initial MOO step and from 1022 Pareto points, 
only 10 were in the feasible region. By concentrating only on 
the feasible region during the yield estimation, the 
computational overhead is reduced and the entire design cycle 
took only 48 minutes on a 1.2GHz Ultra Sparc 3 workstation. 
This cpu run-time compare well with previous work, for 
example in [7] which takes several hours of cpu time. 
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Figure 7. Gain and phase margin for individuals in the feasible region. 

TABLE IV.  DESIGN PARAMETER SUMMARY 

Parameters: Values: 
No. Generations 100 

Evaluation Samples 10,000 
Pareto Points 1022 

Region of Interest Points 10 
CPU Time 48 minutes  

 

V. CONCLUSIONS 
In this paper a new yield characterization model has been 

proposed that achieves a yield optimized design from a set of 
optimal performance points on the Pareto front. Multi-
objective optimization based on a genetic algorithm is used to 
explore the design space and Monte Carlo simulation is used 
only on the optimal solutions in the feasible region to find the 
design point producing the best yield percentage. The 
approach can be applied to any circuit topology and enjoys 
reduced computational overhead due to only focusing the 
yield simulation on a small feasible region. 
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