
The composition of Event-B models

Michael Poppleton

School of Electronics and Computer Science,
University of Southampton, Highfield,

Southampton SO17 1BJ, UK,
mrp@ecs.soton.ac.uk

Abstract. The transition from classical B [2] to the Event-B language and method
[3] has seen the removal of some forms of model structuring and composition,
with the intention of reinventing them in future. This work contributes to that
reinvention. Inspired by a proposed method for state-based decomposition and
refinement [5] of an Event-B model, we propose a familiar parallel event compo-
sition (over disjoint state variable lists), and the less familiar event fusion (over
intersecting state variable lists). A brief motivation is provided for these and other
forms of composition of models, in terms of feature-based modelling. We show
that model consistency is preserved under such compositions. More significantly
we show that model composition preserves refinement.

1 Introduction

1.1 Historical context

Early work on the composition of specifications and programs such as [14, 1] indi-
cated the importance of composition as a key mechanism for the scalability of Formal
Methods in software development. Various compositional mechanisms were developed
for classical B as defined in [2] and elaborated in [22]. These mechanisms - denoted
INCLUDES, EXTENDS, USES, etc. - are syntactic in nature, and concerned with the
visibility or inclusion of the text of one machine by another. A variety of visibility
and usage rules and constraints are defined. These mechanisms were designed with the
scalability of automated proof obligation (PO) generation and proof at least as much
in mind as modelling utility. Perhaps unsurprisingly, they are not very intuitive, are
dissimilar to inclusion mechanisms in other languages, and not straightforward to use.
Later work [23] revealed further unsuspected modelling limitations in the composition
of B machines.

Recently completed EU Framework VI project RODIN1 saw the definition of the
Event-B language [19] and the creation of the rich RODIN toolkit [3] for formal mod-
elling, animation, verification, and proof with Event-B. Project RODIN is succeeded
by project DEPLOY2 which will, driven by industrial deployments, further develop the
RODIN toolset and Event-B methods.

1 RODIN - Rigorous Open Development Environment for Open Systems: EU IST Project IST-
511599, http://rodin.cs.ncl.ac.uk

2 DEPLOY - Industrial deployment of system engineering methods providing high dependabil-
ity and productivity: FP VII Project 214158 under Strategic Objective IST-2007.1.2

The classical B compositional mechanisms have been excised from Event-B to
make way for their reinvention in future. The high aspirations of [4], which demon-
strated the modelling power that could be unleashed by implementing the rich generic
axiomatic structuring of set theory at the metalanguage (as opposed to object language)
level, will be realized to some degree by the schedule for project DEPLOY.

The motivation for model decomposition is to reduce model size and proof com-
plexity; there is the bonus of enabling the distribution of development work. Two meth-
ods for decompositional working through refinement are on the DEPLOY schedule.
Methodologically, they work similarly: a single, “abstract” model M is developed and
decomposed - or abstracted - into component models {Ni}. The components are refined
to more “concrete” versions {NRi}; these concrete refinements are then recomposed
into model MR in a particular way that guarantees that MR refines M.

[19, 5] propose the state-based decomposition (called “type A” decomposition, after
Abrial) of a model: here the state variables {vj} of M are initially partitioned across the
{Ni}. The events {ek} follow variables they act on into the {Ni}. Provided all events
acting on a variable v are located in its component machine Ni, that variable is local, or
internal to that machine and needs no special treatment. In general at least one variable
w is shared between two given component machines that act on it; such a variable is
also called external to each. If this is not the case, then we simply have disjoint and
unrelated developments.

Of course, the refinement of M by MR only decomposes provided the gluing in-
variant decomposes conjunctively in the right way. More significantly, [19]3 shows that
external variables must be refined by a common, functional gluing invariant; internal
variables are not so constrained. The functional constraint is required by the proof of
the construction. The part of the gluing invariant concerning say, external v refined by
w, can be written v = h(w), and this equality enables certain existential quantifications
to be simplified with the existential one-point rule.

The second proposal is for event-based decomposition (called “type B” decompo-
sition, after Butler) from [11, 15]. Since “Event-B machines have the same semantic
structure and refinement definitions as action systems” [Op.cit.], this is precisely the
reverse of the composition proposal of [10], where it was posed in an action systems
[7] setting. Here, an abstract model M is refined in a manner that facilitates the parti-
tion of events between component models. The refinement of M to a single model MR
decomposes the state variables (by adding new ones), such that MR is expressible as
a parallel composition of component models || {NRi} over the partitioned variables.
Each event accessing variables in more than one NRi is decomposed into a set of events
each accessing only a local variable, that communicate by message-passing. The se-
mantic correspondence of action systems and CSP is used to proved monotonicity of
this process w.r.t. refinement.

Both the above proposals elaborate the traditional “top-down” development process;
it remains canonical to start from the most general, and concise abstraction, and then to
elaborate through refinement. Such top-down approaches are not natuarally receptive to
reuse, where one might want to draw on a database of models and model elements, at

3 Note that [5] make the stronger requirement that external variables are not data refined, purely
to simplify their exposition.

various levels of abstraction and genericity. This work is motivated by the desire to fa-
cilitate such working with reuse, i.e. to produce a refinement-preserving compositional
method, which reuses existing models. We demonstrate that Event-B models can in-
deed be so composed, in a manner analogous to the inverse of type A decomposition.
Unlike A- and B-decomposition however, new events are constructed in the composite
machine by a version of the event fusion of Butler and Back [15, 8].

This introduction continues with a précis of specification (section 1.2) and refine-
ment (section 1.3) in Event-B, and ends with some remarks (section 1.4) motivating
feature-based composition as a form of reuse. Section 2 then defines our form of model
composition, including the mechanism of event fusion. We show that model consistency
is preserved under such composition. Section 3 proves that fusion preserves refinement,
an essential property for scalable working. In conclusion section 4 considers related
work, and describes future work.

1.2 Event-B Basics

This section is a précis of parts of [19], the Event-B language definition.
Event-B is designed for long-running reactive hardware/software systems that re-

spond to stimuli from user and/or environment. The set-theoretic language in first-order
logic (FOL) takes as semantic model a transition system labelled with event names. The
correctness of a model is defined by an invariant property, i.e. a predicate, or constraint,
which every state in the system must satisfy. More practically, every event in the system
must be shown to preserve this invariant; this verification requirement is expressed in a
number of proof obligations (POs). In practice this verification is performed either by
model checking or theorem proving (or both).

For modelling in Event-B the two units of structuring are the machine of dynamic
variables, events and their invariants, and the context of static data of sets, constants
and their axioms. Every machine sees at least one context. The unit of behaviour is the
event. An event e acting on (a list of) state variables v, subject to enabling condition, or
guard G(v) and action, or assignment E(v), has syntax

e =̂ when G(v) then E(v) end (1)

That is, when the state is such that the guard is true, this enables the action, or state
transition defined by E(v). Next we give a more general syntax for a nondeterministic
event. We give the guard, whose meaning is obvious from the before-after predicate for
the event: the guard is precisely the statement that there exists an after-state defined by
the before-after predicate, i.e. that the latter is feasible.

event syntax: any t where Q(t, v) then v := F(t, v) end (2)
guard: ∃ t • Q(t, v) (3)
before-after predicate: ∃ t • (Q(t, v) ∧ v′ = F(t, v)) (4)

Note the shorthand syntax: since v above is in general a variable list, F(t, v) is an ex-
pression list. (2-4) define a t-indexed nondeterministic choice between those transitions

v′ = F(t, v) for which Q(t, v) is true4. t is interpreted as an input from the environment.
Syntactic sugar is available: parallel (||) is used to enumerate multiple single-variable
assignments. In the any form, the event guard is not stated explicitly since it is con-
structed automatically from the where clause Q(t, v). The following useful property
always holds for the guard Ge and before-after predicate Ee of an any -defined event e:

Ee ⇒ Ge (5)

For the sake of completeness it is worth defining a more general event syntax that spec-
ifies an after-state in terms of a predicate it satisfies, called x :| P(x, x′, y). The equality-
based event definition of (2-4) is usually sufficiently expressive and forms the basis of
this work.

event syntax: any t where P(x, t, y) then x := t end (6)
guard: ∃ x′ • P(x, x′, y) (7)
before-after predicate: P(x, x′, y) (8)

An event e works in a model (comprising a machine and at least one context) with
constants c and sets s subject to axioms (properties) P(s, c) and an invariant I(s, c, v).
Thus the event guard G and assignment with before-after predicate E take s, c as param-
eters. Two of the consistency proof obligations 5 (POs) for event e are FIS (feasibility
preservation) and INV (invariant preservation). For an event defined as (2-4), FIS clearly
discharges trivially.

P(s, c) ∧ I(s, c, v) ∧ G(s, c, v) ⇒ ∃ v′ • E(s, c, v, v′) FIS (9)
P(s, c) ∧ I(s, c, v) ∧ G(s, c, v) ∧ E(s, c, v, v′) ⇒ I(s, c, v′) INV (10)

1.3 Refinement

The refinement of a context is simply its elaboration, by the addition of new sets, con-
stants and axioms. The refinement of a machine includes both data and algorithm re-
finement: all variables v are replaced by new ones w, some simply by renaming - i.e. of
the same type and meaning - and others by variables of different type. Existing events
are transformed to work on the new variables, and new events can be defined; that is,
the behaviour of an abstract event e can be refined by some sequence of e and new
events. The new behaviour will usually reduce nondeterminism. When model N(w) re-
fines M(v), it also has an invariant J(s, c, v, w) which can include M’s variables v. This
“gluing invariant”, or refinement relation, has the function of relating abstract variables
v to concrete ones w mathematically.

In Fig. 1, M sees C, N refines M and D refines C, then N sees D. It is also possible
for C not to be refined (i.e. to be identity-refined), in which case N sees C.

As for simple machines, there are proof obligations for refinement. We assume ax-
ioms P(s, c), and abstract, concrete invariants I(s, c, v) and J(s, c, v, w) respectively. An

4 The deterministic assignment is simply written v := F(v), without an any variable or where
clause.

5 See [19] for the others.

variables

invariants

events

variables

invariants

events

abstract
machine

M

concrete
machine

N

sets

constants

properties

sets

constants

properties

concrete
context

D

abstract
context

C

sees

sees

refines refines

Fig. 1. Machine and context refinements (from [19])

abstract event with guard GA(s, c, v) and before-after predicate EA(s, c, v, v′) is refined
by a concrete event with guard GC(s, c, w) and before-after predicate EC(s, c, w, w′).
The following obligations state that the concrete event is feasible (FIS REF), the con-
crete guard strengthens the abstract one (GRD REF), and that every concrete step is
correct (simulates) w.r.t. some abstract step (INV REF):

P(s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ GC(s, c, w)
⇒ ∃w′ • EC(s, c, w, w′) FIS REF (11)

P(s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ GC(s, c, w)
⇒ GA(s, c, v) GRD REF (12)

P(s, c) ∧ I(s, c, v) ∧ J(s, c, v, w)
∧ GC(s, c, w) ∧ EC(s, c, w, w′)
⇒ ∃ v′ • (EA(s, c, v, v′) ∧ J(s, c, v′, w′)) INV REF (13)

[19] defines further refinement obligations, for nondivergence of new events intro-
duced, and “relative deadlockfreeness” to ensure a concrete model cannot deadlock
more often than the abstract one. We do not pursue these matters in this work.

1.4 Model reuse with features

A useful way to analyse reuse - provided by the Software Product Line (SPL) com-
munity, e.g. [20] - is in terms of data and behavioural variability [12] between system
versions. The concepts are as applicable in software reuse through evolution as they are
in SPLs. Event-B deals with static data variability by separating - in a B model - the
dynamic machine from the static context. However, there is no mechanism to deal with
behavioural variability. It is straightforward to generate variant versions of a B develop-
ment that differ only in configuration, or static data: simply switch the required contexts
into the refinement tree. In [21] we proposed the notion of a feature model, as a fine
level of granularity for B specification, with composition of such features as a mecha-
nism for behavioural variability in development, thus contributing to the “Roadmap for
Enhanced Languages and Methods to Aid Verification” [18]. A feature is defined sim-
ply to be a B model which is (largely) atomic with respect to composition. “Atomic”, in

the sense that no syntactically partial, or incomplete, model will (at this time) be input
to reuse in modelling. “Largely”, in the sense that certain obvious refactorings, such as
systematic renamings of certain identifiers, or text insertions such as strengthening of
predicates, will be allowed.

By way of brief motivation for feature-based composition, imagine a database of
Event-B features for some application domain, such as resource management for dis-
tributed computing. Imagine a model M1 with variables x, y and an event

e = any t where Q1(t, x) then x := F1(t, x, y) end

where the event specifies the allocation of some resource x such as a virtual circuit,
subject to some QoS requirement given by (Q1, F1). We might wish - subject to suitable
systematic variable and event renaming - to compose M1 with some other model M2 to
allow specification of other resources through other events f , g in M2. If both variable
lists and event lists are disjoint, composition is a trivial matter with no extra proof
obligations arising. Should the variable lists overlap, it will be necessary to show that
M1 events preserve the invariant of M2 and vice versa.

A more interesting case is where we wish to fuse an event e from M1 with some
event f from M3, say. It may be that M3 specifies different requirements of virtual
circuits, such as fault-tolerance/redundancy. We may wish to select in x a virtual circuit
satisfying QoS (Q1, F1), and supporting fault-tolerance as specified by f .

In the next section we demonstrate that Event-B models (or features) can indeed be
composed, in a manner analogous to the inverse of state-based decomposition, in a way
that preserves refinement. We will focus in particular on the case of event fusion.

2 Model and event fusion

Consider two models M1 and M2 which we propose to fuse by combining variables and
events. That is, we concatenate the variable lists and events, conjoin those events with
common names (in a manner to be defined) in a new model M. The variable list v in
M1 comprises the list x of actioned variables and the list y of skipping variables for
each event6. Similarly variables w in M2 comprise actioned z and skipping a. We define
xz = x ∩ z, the common actioned variables, and ya = y ∩ a, the common skipping
variables. Note that the other intersecting variable lists yz and xa are both empty, to
enable meaningful composition definitions. Since the context axioms P1, P2 of the two
models do not influence the proofs we assume they share sets and constants s, c without
loss of generality.

6 Strictly speaking v should be partitioned into (xe, ye) for each event e. We do not need this
decoration since only one event in each model is considered.

M1 : v = x ∪ y
s, c, P1(s, c) context
v, I1(s, c, v) invariant

event:
e = any α where Q1(α, v)

then x := F1(α, v)
Thus

Ge =̂ ∃α • Q1(α, v)
Ee =̂ ∃α • (Q1(α, v)

∧ x′ = F1(α, v))
∧ y′ = y

M2 : w = z ∪ a
s, c, P2(s, c) context
w, I2(s, c, w) invariant

event:
f = any β where Q2(β, w)

then z := F2(β, w)
Thus

Gf =̂ ∃β • Q2(β, w)
Ef =̂ ∃β • (Q2(β, w)

∧ z′ = F2(β, w))
∧ a′ = a

Next we define the fused model M, distinguishing clearly in the before-after predicate
between actioned variables < x− xz > exclusive to M1, common actioned variables xz,
and actioned variables < z− xz > exclusive to M2. We write the fusion of events e and
f as e¯ f . The fused model is then specified in the obvious way:

M : v, w = x ∪ z ∪ y ∪ a
s, c, P1(s, c) ∧ P2(s, c) context
v, w, I1(s, c, v) ∧ I2(s, c, w) invariant
e¯ f = any α, β where Q1(α, v) ∧ Q2(β, w)

then x := F1(α, v) || z := F2(β, w)
end

The usual existence proof obligation for a machine context - i.e. P1 ∧ P2 - arises here.
The meaning of the above syntax - i.e. the use of || over intersecting variable lists,

undefined as yet in the Event-B language - is given by the fused guard and before-after
predicate definitions7:

Ge¯f =̂ ∃α, β • (Q1(α, v) ∧ Q2(β, w) ∧ F1(α, v) = F2(β, w)) (14)
Ee¯f =̂ ∃α, β • (Q1(α, v) ∧ Q2(β, w) ∧< x− xz >′= F1(α, v) ∧

xz′ = F1(α, v) ∧ xz′ = F2(β, w) ∧< z− xz >′= F2(β, w)) ∧
y′ = y ∧ a′ = a (15)

Clearly, there must be sufficient nondeterminism in these definitions to satisfy Ge¯f for
meaningful state values v, w.

The following useful properties are obvious:

Ge¯f ⇒ Ge ∧ Gf Ee¯f ⇒ Ee ∧ Ef (16)

Theorem 1 Event consistency (9-10) is preserved under model fusion.
Proof Assume P1 ∧ P2 ∧ I1 ∧ I2 ∧ Ge¯f ∧ Ee¯f . From (16) the hypotheses of INV(e)
and INV(f) are made available, and it follows that I1(s, c, v′) ∧ I2(s, c, w′). QED

We make some observations:
7 Ge¯f , Ee¯f definitions are given in shorthand; F1, F2 are expression lists, each list being par-

titioned according to the variable sublists in use at that point in the definitions. Thus (14-15)
should be read in terms of the appropriate sublists. In particular, (14) refers only to the the
sublists of F1, F2 assigning to common actioned variables xz.

1. The fusion of two models clearly requires sufficient nondeterminism in the fusing
events’ actions over shared variables, in order for the fused event to be feasible (and
the fused guard not vacuously false). A natural way in which this might arise is as
follows. Event e(v1, v2, v3), say, assigns v1 nondeterministically to F1(α, v1, v2, v3)
for some α, v2 to anything in its type V2, and skips on v3. Event f (v1, v2, v3) as-
signs v1 to anything in its type V1, v2 nondeterministically to F2(β, v1, v2, v3) for
some β, and skips on v3. This represents the compositional modelling, from prior
component models, of the requirement to perform F1 on v1 and F2 on v2, in the
manner suggested in section 1.4.
Methodologically it is desirable that the fusion of two events should refine each of
them, and this is indeed the case, as we show below.

2. Theorem 1a Theorem 1 applies for two models with disjoint variable lists and
composing events by the same reasoning. This is a parallel composition of models,
where each composed event represents the product of all transitions on all variables
from the component models

3. Theorem 1b Theorem 1 applies for two models with disjoint variable and event
lists; this is the embedding of each model in a larger one, where each event acts
on variables from its own model and skips on those from the other model. The
POs discharge trivially since each event is the identity refinement of its abstract
counterpart: for event e acting on v in composed model M, INV discharges by
noting that I1(s, c, v′) follows from INV(e) in M1, and that I2(s, c, w) follows from
skip in M2.

Theorem 2 The fusion e ¯ f , in model M, of two events e and f refines each of those
events in their respective models.
Proof We discharge the refinement obligations (11-13) for e v e¯f ; the f case is treated
identically. FIS REF (11) follows trivially in the same way that FIS does for events of
the form (2-4), since Ge¯f ⇒ ∃ v′, w′ • Ee¯f . GRD REF (12) follows trivially since
Ge¯f ⇒ Ge. For INV REF, for clarity we rename abstract variables in Mv v0, and
assume

P1 ∧ P2 ∧ I1(v0) ∧ v0 = v ∧ I1(v) ∧ I2(w) ∧ Ge¯f (v, w) ∧ Ee¯f (v, w, v′, w′)
We must prove

∃ v′0 • (Ee(v0, v′0) ∧ v′ = v′0 ∧ I1(v′0) ∧ I2(w′))
that is, removing the identical-copy abstract variables v0, v′0

Ee(v, v′) ∧ I1(v′) ∧ I2(w′))

Since Ee¯f ⇒ Ee, and we have the second two conjuncts from INV(e) and INV(f) resp.
we are done. QED

3 Preservation of refinement by event fusion

We show that the fusion of refined events refines the fusion of the original events. Con-
sider the compositional arrangement of models in Fig. 2. Since this construction is
inspired by the state-based decomposition construction of [19] (as discussed in section
1.1), the diligent reader will see that the gluing invariants here are precisely those of
[Op.cit.].

N
v1, v2

eN(v1, v2)

P
v2, v3

eP(v2, v3)

M
v1, v2, v3

eM(v1, v2, v3)

NR
w1, w2

eNR(w1, w2)

MR
w1, w2, w3

eMR(w1, w2, w3)

PR
w2, w3

ePR(w2, w3)

J(v1, w1, w2) &
v2 = h(w2)

K(v3, w3, w2) &
v2 = h(w2)

J(v1, w1, w2) &
K(v3, w3, w2) &

v2 = h(w2)

= eNR � ePR

= eN � eP

Fig. 2. Refinement of event fusion

Model N has variables v1, v2 and event eN(v1, v2) with guard GN and before-after
predicate EN . Model P has variables v2, v3 and event eP(v2, v3) with guard GP and
before-after predicate EP. v2 is thus the shared variable between N and P. Model M
over variables v1, v2, v3 with event eM(v1, v2, v3) =̂ eN ¯ eP is the fusion8 of N and P.
The guard and before-after predicate of eM are named GM, EM respectively.

Next we have two models NR, PR which refine N, P respectively. NR has vari-
ables w1, w2 and event eNR(w1, w2) with guard GNR and before-after predicate ENR. eNR

refines eN with gluing invariant

J(v1, w1, w2) ∧ v2 = h(w2) (17)

Similarly, PR has variables w2, w3 and event ePR(w2, w3) with guard GPR and before-
after predicate EPR. ePR refines eP with gluing invariant

K(v3, w3, w2) ∧ v2 = h(w2) (18)

Note the requirement that the shared variable is refined in the same functional man-
ner in both machines; this satisfies the intuition that a shared variable should be treated
“in the same way” in each sharing refinement chain, before the refinements are fused.
The local variables in component machines may be defined more generally and inde-
pendently of each other, while allowing the reference to the concrete shared variable.

8 Contrast this construction with that of [19] as outlined in sec. 1.1: in that case events eN and eP,
both acting on external variable v2, both appear independently in M. Then, in N the external
effect of eP on v2 must be modelled by a new external event ePx; in N ePx abstracts eP in M. The
new event is required in order that M refines N. In our scheme the fusion of events removes
their independence of behaviour, thus removing the need for external events. The proof of the
construction is simplified, but still requires the functional gluing invariant, for the same reason
as [Op.cit.].

Finally, model MR over variables w1, w2, w3 has event eMR(w1, w2, w3) =̂ eNR¯ePR

which is the fusion of eNR and ePR. We say that eMR has guard GMR and before-after
predicate EMR. We must now show that MR refines M w.r.t. gluing invariant

J(v1, w1, w2) ∧ v2 = h(w2) ∧ K(v3, w3, w2) (19)

Theorem 3 Given that eN v eNR:

J(v1, w1, w2) ∧ v2 = h(w2) ∧ GNR(w1, w2) ∧ ENR(w1, w2, w′1, w′2)
⇒ GN(v1, v2) ∧ ∃ v′1, v′2 • (EN(v1, v2, v′1, v′2) ∧ J(v′1, w′1, w′2) ∧ v′2 = h(w′2) (20)

and eP v ePR:

K(v3, w3, w2) ∧ v2 = h(w2) ∧ GPR(w2, w3) ∧ EPR(w2, w3, w′2, w′3)
⇒ GP(v2, v3) ∧ ∃ v′2, v′3 • (EP(v2, v3, v′2, v′3) ∧ K(v′3, w′3, w′2) ∧ v′2 = h(w′2) (21)

we must show9 eM = eN ¯ eP v eMR = eNR ¯ ePR:

J(v1, w1, w2) ∧ K(v3, w3, w2) ∧ v2 = h(w2) ∧
GMR(w1, w2, w3) ∧ EMR(w1, w2, w3, w′1, w′2, w′3)

⇒ GM(v1, v2, v3) ∧ ∃ v′1, v′2, v′3 • (EM(v1, v2, v3, v′1, v′2, v′3) ∧
J(v′1, w′1, w′2) ∧ K(v′3, w′3, w′2) ∧ v′2 = h(w′2)) (22)

Proof is straightforward and uses the fusion definitions (14, 15), i.e.

GN =̂ ∃α • QN(α, v1, v2) (23)

EN =̂ ∃α • (QN ∧ v′1 = F1
N(α, v1, v2) ∧ v′2 = F2

N(α, v1, v2)) (24)
GP =̂ ∃β • QP(β, v2, v3) (25)

EP =̂ ∃β • (QP ∧ v′2 = F2
P(β, v2, v3) ∧ v′3 = F3

P(β, v2, v3)) (26)
GNR =̂ ∃ γ • QNR(γ, w1, w2) (27)

ENR =̂ ∃ γ • (QNR ∧ w′1 = F1
NR(γ, w1, w2) ∧ w′2 = F2

NR(γ, w1, w2)) (28)
GPR =̂ ∃ δ • QPR(δ, w2, w3) (29)

EPR =̂ ∃ δ • (QPR ∧ w′2 = F2
PR(δ, w2, w3) ∧ w′3 = F3

PR(δ, w2, w3)) (30)

and thus

GM =̂ ∃α, β • (QN(α, v1, v2) ∧ QP(β, v2, v3) ∧ F2
N = F2

P) (31)

EM =̂ ∃α, β • (QN ∧ QP ∧ v′1 = F1
N ∧ v′2 = F2

N ∧ v′2 = F2
P ∧ v′3 = F3

P) (32)

GMR =̂ ∃ γ, δ • (QNR ∧ QPR ∧ F2
NR = F2

PR) (33)

EMR =̂ ∃ γ, δ • (QNR ∧ QPR ∧ w′1 = F1
NR ∧ w′2 = F2

NR ∧ w′2 = F2
PR ∧

w′3 = F3
PR) (34)

9 [19] states that, instead of discharging (11-13), it suffices to prove the composite statement
(22).

We rewrite the theorem in expanded form, omitting redundant guard expressions by (5),
i.e.

Given that eN v eNR:

J(v1, w1, w2) ∧ v2 = h(w2) ∧
∃ γ • (QNR(γ, w1, w2) ∧ w′1 = F1

NR(γ, w1, w2) ∧ w′2 = F2
NR(γ, w1, w2)) (35)

⇒ ∃ v′1, v′2 • (∃α • (QN(α, v1, v2) ∧ v′1 = F1
N(α, v1, v2) ∧

v′2 = F2
N(α, v1, v2)) ∧ J(v′1, w′1, w′2) ∧ v′2 = h(w′2))

... where the RHS can be simplified to ...

∃α • (QN(α, v1, v2) ∧ J(F1
N(α, v1, v2), w′1, w′2) ∧ F2

N(α, v1, v2) = h(w′2)) (36)

and eP v ePR:

K(v3, w3, w2) ∧ v2 = h(w2) ∧
∃ δ • (QPR(δ, w2, w3) ∧ w′2 = F2

PR(δ, w2, w3) ∧ w′3 = F3
PR(δ, w2, w3)) (37)

⇒ ∃ v′2, v′3 • (∃β • (QP(β, v2, v3) ∧ v′2 = F2
P(β, v2, v3) ∧

v′3 = F3
P(β, v2, v3)) ∧ K(v′3, w′3, w′2) ∧ v′2 = h(w′2))

... where the RHS can be simplified to ...

∃β • (QP(β, v2, v3) ∧ K(F3
P(β, v2, v3), w′3, w′2) ∧ F2

P(β, v2, v3) = h(w′2)) (38)

we must show eM v eMR:

J(v1, w1, w2) ∧ K(v3, w3, w2) ∧ v2 = h(w2) ∧
∃ γ, δ • (QNR(γ, w1, w2) ∧ QPR(δ, w2, w3) ∧ w′1 = F1

NR(γ, w1, w2) ∧ (39)

w′2 = F2
NR(γ, w1, w2) ∧ w′2 = F2

PR(δ, w2, w3) ∧ w′3 = F3
PR(δ, w2, w3))

⇒ ∃ v′1, v′2, v′3 • (∃α, β • (QN(α, v1, v2) ∧ QP(β, v2, v3) ∧ v′1 = F1
N(α, v1, v2) ∧

v′2 = F2
N(α, v1, v2) ∧ v′2 = F2

P(β, v2, v3) ∧
v′3 = F3

P(β, v2, v3)) ∧
J(v′1, w′1, w′2) ∧ K(v′3, w′3, w′2) ∧ v′2 = h(w′2))

... where the RHS can be simplified to ...
∃α, β • (QN(α, v1, v2) ∧ QP(β, v2, v3) ∧

F2
N(α, v1, v2) = F2

P(β, v2, v3) ∧ J(F1
N(α, v1, v2), w′1, w′2) ∧

K(F3
P(β, v2, v3), w′3, w′2) ∧ F2

P(β, v2, v3) = h(w′2)) (40)

Assuming the hypothesis (39) for the refinement of eM , we can partition its terms into
separate quantifications over γ and δ, and thus infer the hypotheses (35, 37) for the
refinements of eN , eP respectively. The consequents of the component refinements (36,
38) follow, and then we infer the result (40) directly by recombining the terms under a
joint quantification over α, β. QED

4 Conclusion and Related Work

(De-)Compositional approaches to modelling and verification have been extensively
studied for obvious reasons, and continue to be developed. We discuss only those most
relevant to Event-B; whilst contemporary work on component- and service-based com-
position such as [6] is interesting, its application to Event-B remains for the future.

Following earlier work on temporal property verification on labelled transition sys-
tems (LTS) inspired by B [9, 13], Kouchnarenko and Lanoix [16, 17] investigated com-
positional verification in that LTS setting. For their expressive “constraint synchonized
product” composition of components, preservation of both local and global invariants
is shown, as well as compositionality of refinement. With stuttering behaviour allowed
and non-increasing of deadlocks in refinement, their work is of interest to the Event-B
community. While this work does not deal with these behavioural aspects of refinement
- leaving that for the future - it does allow for intersecting state spaces, i.e. communica-
tion through shared variables. Kouchnarenko and Lanoix have disjoint state spaces but
their work may be extensible to a message-passing composition like that of Butler [11].

Patterns and techniques for compositional/decompositional working with Event-B
are in their infancy, reflecting the fact that they remain to be implemented in what is
still a very recent language and method. Although the decompositional techniques of
section 1 have been known for some years, and paper-based case studies have been pub-
lished, e.g. [11], these techniques remain to be implemented by tools. Some progress is
expected in this regard during project DEPLOY. For these more established techniques,
and certainly for newer proposals such as ours, case study work is required to validate
their utility, followed by prototype tool development to implement them.

In the short term we will investigate the extensibility of the results of this work.
Obvious questions are (i) does the construction work for full behavioural Event-B re-
finement (as mentioned in sec. 1.3), (ii) under what conditions can features expressed
in the more general syntax (6-8) be composed, and (iii) can we compose subject to less
constrained gluing invariants than (17-18)? Beyond that we anticipate the proposal of
more elaborate patterns of composition. Our proposal (per Fig. 2) gives a simple one-
to-one feature refinement pattern, in general inadequate for elaborating an architectural
model of the system. More flexibility is required in the elaboration of the modular ar-
rangement of refinements. In the figure, for example, we can imagine different depths
in the feature refinement chains, or feature decompositions: say that PR is refined by
event-based decomposition into PR21, PR22, and each of these is further refined into
PR31, PR32 before fusing, together with NR, into MR.

Significant further tool infrastructure will ultimately be required to support reuse,
i.e. the construction of system variants from different arrangements of feature compo-
sition and refinement. This includes inter alia system variant identification (in terms of
components), feature refactoring, and proliferation of feature changes.

References

[1] M. Abadi and L. Lamport. Composing specifications. ACM Trans. Program. Lang. Syst.,
15(1):73–132, 1993.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,
1996.

[3] J. R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool environment
for Event-B. In Z. Liu and J. He, editors, Proc. ICFEM 2006, volume 4260 of LNCS,
Macau, 2006.

[4] J.-R. Abrial, D. Cansell, and G. Laffitte. “Higher-order” mathematics in B. In D. Bert, J.P.
Bowen, M.C. Henson, and K. Robinson, editors, Second International Conference of B and
Z Users, volume 2272 of LNCS, page 370393, Grenoble, France, January 2002. Springer.

[5] J.-R. Abrial and S. Hallerstede. Refinement, decomposition and instantiation of discrete
models: Application to Event-B. Fundamenta Informaticae, 77(1-2), 2007.

[6] C. Attiogbé, P. André, and G. Ardourel. Checking component composability. In SC06:5th
International Symposium on Software Composition, volume 4089 of LNCS. Springer, 2006.

[7] R.-J. Back and R. Kurki-Suonio. Decentralization of process nets with centralized control.
Distributed Computing, 3(2):73–87, 1989.

[8] R.J.R. Back and M. Butler. Fusion and simultaneous execution in the refinement calculus.
Acta Informatica, 35:921–949, 1998.

[9] F. Bellegarde, J. Julliand, and O. Kouchnarenko. Ready-simulation is not ready to express
a modular refinement relation. In Fundamental Aspects of Software Engineering 2000,
FASE’2000, volume 1783 of LNCS, pages 266–283, Berlin, March 2000.

[10] M. Butler. Stepwise refinement of communicating systems. Science of Computer Program-
ming, 27:139–173, 1996.

[11] M. Butler. An approach to the design of distributed systems with B AMN. In J.P. Bowen,
M.G. Hinchey, and D. Till, editors, 10th International Conference of Z Users, volume 1212
of LNCS, pages 223–241, Reading, UK, 1997. Springer.

[12] J. Coplien, D. Hoffman, and D. Weiss. Commonality and variability in software engineer-
ing. IEEE Software, pages 37–45, November/December 1998.

[13] C. Darlot, J. Julliand, and O. Kouchnarenko. Refinement preserves PLTL properties. In
Third International Conference of B and Z Users ZB’03 - Formal Specification and Devel-
opment in Z and B, volume 2651 of LNCS, pages 408–420, Turku, Finland, June 2003.

[14] C.B. Jones. Tentative steps toward a development method for interfering programs. ACM
Transactions on Programming Languages and Systems, 5(4):596–619, October 1983.

[15] C.B.(ed.) Jones. Intermediate report on methodology. Technical Report Deliverable 19,
EU Project IST-511599 - RODIN, August 2006. http://rodin.cs.ncl.ac.uk.

[16] O. Kouchnarenko and A. Lanoix. Refinement and verification of synchronized component-
based systems. In K. Araki, S. Gnesi, and D. Mandrioli, editors, Proc. FME2003: Formal
Methods, volume 2805 of LNCS, pages 341–358, Pisa, Italy, September 2003. Springer.

[17] O. Kouchnarenko and A. Lanoix. Verifying invariants of component-based systems through
refinement. In C. Rattray, S. Maharaj, and C. Shankland, editors, AMAST’04:10th Int. Conf.
on Algebraic Methodology and Software Technology, volume 3116 of LNCS, pages 289–
303, Stirling, Scotland, July 2004. Springer.

[18] Abrial J. R. Batory D. Butler M. Coglio A. Fisler K. Hehner E. Jones C. B. Miller D.
Peyton-Jones S. Sitaraman M. Smith D. R. Leavens, G. T. and A. Stump. Roadmap for
enhanced languages and methods to aid verification. In Proc. 5th Int. Conf. Generative
Programming and Component Engineering, Portland, Oregon, 2006.

[19] C. Métayer, J.-R. Abrial, and L. Voisin. Event-B Language. Technical Report Deliverable
3.2, EU Project IST-511599 - RODIN, May 2005. http://rodin.cs.ncl.ac.uk.

[20] K. Pohl, G. Boeckle, and F. van der Linden. Software Product Line Engineering Founda-
tions, Principles, and Techniques. Springer, Heidelberg, 2005.

[21] M. Poppleton. Towards feature-oriented specification and development with Event-B. In
P. Sawyer, B. Paech, and P. Heymans, editors, Proc. REFSQ 2007: Requirements Engineer-
ing: Foundation for Software Quality, volume 4542 of LNCS, pages 367–381, Trondheim,
Norway, June 2007. Springer.

[22] M.-L. Potet. Spécifications et développements structurés dans la méthode B. Technique et
Science Informatiques, 22:61–88, Février 2003.

[23] M.-L. Potet and Y. Rouzaud. Composition and refinement in the B-method. In D. Bert,
editor, 2nd International B Conference, volume 1393 of LNCS, pages 46–65, Montpellier,
France, April 1998. Springer.

